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Abstract
Reliable mechanical fault diagnosis of high-voltage circuit breakers is important to ensure the safety of electric power
systems. Recent fault diagnosis approaches are mostly based on a single classifier whose performance relies heavily on
expert prior knowledge. In this study, we propose an improved Dempster–Shafer evidence theory fused echo state neural
network, an ensemble classifier for fault diagnosis. Evidence credibility is calculated through the evidence deviation matrix
and the segmented circle function and employed as credibility weights to rectify the raw evidence. Then, an improved
Dempster–Shafer evidence fusion algorithm is proposed to fuse evidence from different echo state network modules and
sensors. Unlike conventional classifiers, the proposed methodology consists of multiple echo state neural network modules. It
has better flexibility and stronger robustness, and its model performance is not sensitive to network parameters. Comparative
analysis indicates that it can handle the paradox evidence fusion analysis and thus can achieve better diagnostic performance.
The superiority of the reported fault diagnosis approaches is verified with the experimental data of a ZN12 high-voltage circuit
breaker.

Keywords High-voltage circuit breaker ·Mechanical fault diagnosis · Ensemble classifier ·Dempster–Shafer evidence theory

Introduction

A high-voltage circuit breaker (HVCB) is crucial for
ensuring the safety and stability of electric power systems.
Due to mechanical, electrical, and environmental impacts,
HVCBs suffer from functional deterioration or even failure.
According to statistical data, more than half of major fail-
ures are caused by mechanical issues (e.g., joint clearance
faults caused by wear and corrosion) [1, 2]. Traditional
maintenance is generally based on manual schemes, which
are quite costly and time-consuming. Furthermore, as more
disassembly is involved in the process of manual mainte-
nance, HVCBs might suffer from secondary damage. There
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is indeed a requirement for mechanical intelligence fault
diagnosis [3, 4].

With the rapid development of industrial informatization
and machine learning technology, machine learning-based
methods for fault diagnosis of HVCBs have received atten-
tion from the industry. Feature extraction and data classifica-
tion are the main tasks in fault diagnosis. More specifically,
in these methods, characteristic data of different mechanical
states are collected and then used to train and test the classifi-
cation model. However, most of these methods are typically
based on a single classifier and sensor, whose performance
is sensitive to network parameters. In other words, the per-
formance quality needs to be ensured by the expert’s prior
knowledge of optimal model configurations.

Although various machine learning techniques have been
applied in the mechanical fault diagnosis of HVCBs, there
are still two open issues. First, as prior knowledge of model
structures and parameter selection are indispensable in recent
approaches, insufficient expert knowledge may reduce the
diagnostic accuracy of these methods. Second, the input data
in the most recent fault diagnosis models are collected from
a single sensor, and the diagnostic decisions are based on
an individual classifier. Thus, the diagnosis models have
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poor robustness, and prediction errors are more likely to
occur. Synthesis fault diagnosis models with fusion analy-
sis are rarely reported. Therefore, it is meaningful to explore
effective information fusion techniques and further build an
ensemble diagnosis model for enhancing the fault diagnosis
performance of HVCBs.

To address the above problems, we report an improved
Dempster–Shafer evidence theory-fused echo state neural
network (IDS–ESN), a novel ensemble model that com-
bines different intelligent classifiers through the improved
DS evidence theory. More specifically, energy distributions
in vibration intrinsic modal function (IMF) components by
variational mode decomposition (VMD) are extracted as
the feature vector for diagnostic model training and testing.
Then, multiple ESN modules trained by features of different
sensors are adopted as sub-classifiers.Moreover, considering
the paradox issue, an improvedDS evidence fusion algorithm
is proposed by evaluating the deviation degree among mul-
tiple pieces of evidence. Finally, through evidence fusion,
the ensemble IDS–ESN is obtained for the mechanical fault
diagnosis of HVCBs.

In summary, themain contributions of this study are three-
fold.

1. To the best of our knowledge, the capability of ESN is
investigated for the first time in the mechanical fault
diagnosis of HVCBs. The comparative results demon-
strate that this approach achieves promising performance
improvement.

2. Typical DS is improved to fuse multisource informa-
tion from multiple sensors and ESN sub-classifiers. The
proposed IDS–ESN model can effectively enhance the
accuracy and make the diagnostic model more robust
than individual ESN models.

3. For IDS–ESN, a new training mechanism is investigated.
In multiple scenarios, IDS–ESN is more robust and can
achieve higher diagnostic accuracy than the traditional
DS method.

The rest of our paper is structured as follows. “Related
works” outlines the main related works. “Platform descrip-
tion and setup” describes the studied HVCB and the
experimental setup. “Ensemble echo state network with evi-
dence fusion” describes the theoretical background and our
improvedDS evidence theory. “Results and discussion” anal-
yses the feature extraction of vibrations by the VMDmethod
and the effectiveness of the improved DS evidence theory.
Conclusions are given in “Conclusions”.

Related works

In the past decade, artificial techniques have been widely
applied in fault diagnosis, online monitoring, and intelligent
decision-making in energy field [5, 6]. Feature extraction
and machine learning algorithms are investigated in the fault
diagnosis literature. For feature extraction, sound [7], con-
tact travel curves [8, 9], electromagnet coil currents [10,
11], and vibrations [12–15] are typical signals used for fault
diagnosis. Since abundant structural state-related informa-
tion is contained in vibrations, most fault diagnosis studies
are based on vibration analysis. A series of time–frequency
methods have been proposed for signal processing and the
subsequent feature extraction of vibration data, including
empirical mode decomposition (EMD), local mean decom-
position (LMD), empirical wavelet packet decomposition
(WPD), the empirical wavelet transform (EWT), and VMD
[16–20]. Furthermore, different types of amplitude and fre-
quency vibration features, such as time–frequency entropy,
permutation entropy, singular entropy, and energy entropy,
were extracted as the input for fault diagnosis models. For
multiclass issues, the extracted feature vector is generally
high-dimensional and contains redundant components. Thus,
the feature selection technique can be used to reduce the
dimensionality of a raw feature vector by discarding redun-
dant and irrelevant vectors, which can further enhance the
model performance [21, 22]. These feature extraction meth-
ods have achieved promising performance with respect to
both nonadaptive and adaptive analysis, which contributes to
developing intelligent fault diagnosis methods for HVCBs.

For fault diagnosis, a robust and high-accuracy classifier
is required to distinguish the type of fault. For example,
Tao et al. [23] proposed a feature metric-based fault diag-
nosis approach under limited data conditions. In the study,
a parametric optimization-based meta-learning network and
a metric learning network were combined to extract opti-
mization information to adapt between different domains
and metric information for similarity discrimination, respec-
tively. For the diagnosis of spring fatigue and oil damper
leakage, Ma et al. [24] reported a fault diagnosis model
based on a random forest (RF) model to reduce nonessen-
tial features. Zhang et al. [25] designed an asynchronous
interval type-2 fuzzy approach to address the fault detection
problem of a quarter-car suspension system. In particular, a
fault diagnosis model based on a support vector machine
(SVM) that relied less on the sample size was reported
[26]. By optimizing kernel and penalty parameters, advanced
SVMmethods have been reported and have achieved perfor-
mance improvements. Biclass and multiclass SVM methods
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have been investigated for mechanical fault diagnosis of
HVCBs, in which the looseness of a base screw, electro-
magnet immobility, and overtravel have been diagnosed
successfully [27, 28]. Compared with other neural networks,
echo state networks (ESN) have strong self-adaptability in
storing nonlinear input–output mapping relationships. Only
the output weights of the ESN need to be trained by a linear
regression algorithm, which avoids gradient disappearance
and high computational complexity. Therefore, ESN models
have been widely applied in control [29, 30], pattern recog-
nition [31, 32], and nonlinear time series prediction [33, 34].
As a novel research field, machine learning and swarm intel-
ligence approaches have been successfully combined, and
outstanding results have been obtained in different areas.

Dempster–Shafer (DS) evidence theory could be utilized
as a fusion approach for fault diagnosis, target recogni-
tion, and condition monitoring [35]. However, while there
are probable conflicts of different evidence, the traditional
DS evidence fusion method could produce a contradictory
result. Considering that there might be deviations in sen-
sor data, Murphy [36] collected the evidence multiple times
and calculated the average to weaken the conflict caused
by these deviations. On this basis, Deng et al. [37] further
introduced the Euclidean distance function to calculate the
support degree of specific evidence by other evidence, which
improved the robustness of the original method. A new evi-
dence fusion rule was reported for bearing and gear fault

diagnosis by Li et al. and Zhang et al. [38, 39], in which
evidence credibility was obtained by substituting the evi-
dence distance matrix with a modified Gini index function.
To prevent conflicting evidence fusion in the conventionalDS
approach, this fusion rule is achieved directly by evaluating
the correlation between different evidence data. The DS evi-
dence theory has been successfully applied in themechanical
fault diagnosis of rotating parts, such as bearings, gearboxes,
and rotors, providing valuable guidance for fault diagnosis
of HVCBs.

Platform description and setup

High voltage circuit breaker

A spring-driven HVCB uses stored elastic potential energy
to realize the operations of opening and closing and is now
widely used in energy power systems. Figure 1 describes the
mechanical systemof the studiedZN12HVCB. Its fast opera-
tion is generally controlledwithin tens ofmilliseconds. Thus,
the structural dynamic characteristics are quite sensitive to
clearance joints. Severe collisions between moving parts
would be strengthened by clearance joints, thus deteriorating
the operation quality. Under the influence of wear, corro-
sion, etc., the joint clearance size will increasingly deviate

Fig. 1 Mechanical system of the ZN12 HVCB
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Fig. 2 Flowchart of the IDS–ESN-based fault diagnosis model

from the original design value, which leads to greater impact
stress during mechanical operation and induces mechanical
faults. Therefore, this paper focuses on diagnosing mechan-
ical faults caused by clearance joints.

The vibration signal consists of a series of complex high-
frequency vibration waves generated by various components
(e.g., electromagnet and motor components, as shown in
Fig. 1). Its amplitude, frequency, energy distribution, and
other signal characteristics could contain large amounts of
structural state-related information. In this paper, combining
the energy distribution of vibration signals in different IMF
components of VMD, an ensemble classifier is proposed to
diagnoseHVCBfaults.MultipleESNmodules are adopted as
sub-classifiers and fused via an improvedDS evidence fusion
theory. The overall technical flowchart is given in Fig. 2, and
it illustrates the main steps of fault diagnosis in the paper.

Step 1 Repeat the operation experiments of a ZN12 HVCB
in different mechanical states. Except for the normal condi-
tion, clearance joint faults at three locations are constructed.
Furthermore, by changing the joint clearance size, we can
obtain two fault conditions for each fault joint clearance.
Each type of operation experiment under different fault con-
ditions is carried out 100 times. Thus, a total of 400 groups
of vibration signals of two measuring points under different
operation conditions are collected.

Step 2 Decompose the obtained vibration signal by VMD
method. Then, the energy distribution in different IMFs
is extracted as the mechanical state-related feature of the
HVCB. The most common way to evaluate a fault diagnosis
model is to use training data to train the model and test data
to test the model’s performance. Therefore, the feature data
obtained from the operation experiment are divided into four
data sets, as listed in Table 1, for model training and testing.

Step 3 Perform model training of multiple ESN modules, in
which random uniform sampling of the original accelerator
data is applied. Taking data set A in Table 1 as an example,
25 training samples (50 data points for each fault condition)
are randomly selected for each load condition to generate a
training set. The remaining 25 samples are classified as test
sets. It is important to note that to guarantee an objective
result, the testing data should not appear in the training data
set. Otherwise, over-optimistic problems could emerge in the
diagnostic result.

Step 4 Employ the trained ESN modules with different net-
work parameters (spectral radius and different numbers of
reservoir neurons) as the sub-classifiers of the ensemble
model. Their model training tasks are implemented on the
above data sets in Table 1. In addition, raw diagnostic results
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Table 1 Data set for model
training and testing Fault type Normal Fault I Fault II Fault III

Clearance size (mm) < 0.04 < 0.04 0.25 0.75 0.25 0.75 0.25 0.75

Data set A

Training 25 25 25 25

Testing 25 25 25 25

Data set B

Training 25 25 25 25

Testing 25 25 25 25

Data set C

Training 50 50 50 50

Testing 50 50 50 50

Data set D

Training 50 50 50 50

Testing 50 50 50 50

of the different mechanical states mentioned in step 1 then
be obtained.

Step 5 Produce the fused fault diagnosis result. In the fusion
process of the ensemble model, the output of each ESN
module is considered as the raw evidence and fused by DS
evidence fusion algorithm for the final fault diagnosis result
by our improved DS evidence fusion algorithm. It is worth
mentioning that for objective fault diagnosis evaluation, the

established models often need to be tested many times for
average accuracy, and multiple sampling steps are necessary.
Taking data set A in Table 1 as an example, for each training
circle, the 25 data points in the training set need to be ran-
domly sampled from data set A, and the original testing set
is replaced with the remaining 25 data points.

Fig. 3 Experimental setup
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Table 2 Fault position, raw
vibration signal, and its FFT
spectra

Type Position Raw signal Spectra

Normal /

Fault Ι

Fault 

Fault 

Testing platform

The HVCB is generally in a long-term static state in its ser-
vice period, resulting in a shortage of sample data in recent
fault diagnosis research. Limited by insufficient fault data,
clearance joint fault diagnosis has rarely been reported in
previous studies. In this paper, an experimental setup based
on a real ZN12 HVCB is built. As shown in Fig. 3, in addi-
tion to the normal operating condition, joint fault conditions
at three positions are simulated by changing the joint clear-
ance size (fault sizes of 0.25 mm and 0.75 mm). For the
normal condition, its joint clearance size is controlled within
0.04 mm, which is negligible.

Two sets of monoaxial CCLD/IEPE shock accelerometers
(Brüel and Kjær, type 8339) are screwed into the HVCB to
record vibrations during the closing operation. The measure-
ment range, sensitivity, and upper cutoff frequency of our
accelerometer are ± 10,000 m/s2, 0.25 mv/g, and 20 kHz,

respectively. In addition, a Brüel & Kjær type 3053-B-120
signal acquisition card is adopted for vibration collection. It
is worthmentioning that to preventmutual influence between
two adjacentmechanical operations of theHVCB, an interval
of more than 3 min for each opening and closing operation
test is needed. Furthermore, our multiple comparison tests
have shown that the installation location of the accelerometer
is significant for effective vibration measurement. To ensure
that the extracted vibration signal contains sufficient state-
related information, the accelerometers should be installed
near the failure point, but the distance between the two mea-
suring points should be as far as possible. It is ideal for the
accelerometer axis lines to be perpendicular to each other.

During the test, the sampling frequency of the acquisition
card is set to 65,536 Hz with a sampling time of 1 s. For
each normal case and for the three types of joint clearance
faults, there are 100 groups of vibration signals from the two
accelerometers, and each signal contains 65,536 data points.
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Fig. 4 Regular network architecture of ESN

Table 2 lists the three joint fault locations and the relative
FFT spectrum of vibration signals from sensor #1 under the
four operating conditions.

Table 2 shows that the FFT spectrumof the obtained vibra-
tion signals covers thewhole frequency range (0–32,768Hz),
which ensures that themeasured data contain all state-related
information of the HVCB. On the whole, the vibration signal
has the characteristics of a narrow time domain, wide fre-
quency band, and high amplitude. In addition, its vibration
FFT spectrum characteristics under different working condi-
tions, including the evolution trend and the amplitude peak
point versus frequency, have significant similarities, which
makes fault differentiation difficult. Next, the ESN-based
technique is applied to the aforementioned fault diagnosis.

Ensemble echo state network with evidence
fusion

Echo state network

ESN is a simple and efficient recurrent neural network that
is gaining popularity in time series forecasting. As shown in
Fig. 4, the hidden layer in the ESN is replaced by a dynamic
reservoir, which consists of a large number of sparsely con-
nected neurons.

For illustration, taking an ESN module composed of K
input neurons, N reservoir neurons, and L output neurons as
an example, the basic equations can be described as follows:

x(n + 1) � tan h(W inu(n + 1) +W resx(n) +W backy(n)),
(1)

y(n + 1) � W outu(n + 1), (2)

where x(n) � (x1(n), ...xN (n))T , y(n) � (y1(n), ...yL (n))T

and u(n) � (u1(n), ...uk(n))T represent the input vector,
the reservoir state, and the output vector, respectively. W in,

W res, andWout denote the input-to-hidden, hidden-to-hidden,
and hidden-to-output connection weight matrices, respec-
tively. In the ESN, Wout is the only parameter that needs to
be trained, and other weights are randomly determined and
do not change with the training process. In the traditional
method, the parameter Wout is determined by minimizing
the training error as

W out � argmin
W

‖WX − D‖22, (3)

where X and D are the Ltr × N reservoir state matrix and Ltr
×L signal labelmatrix during the training stage, respectively,
and Ltr is the training length. X and D can be calculated as
follows:

X �

⎡
⎢⎢⎢⎢⎣

x1(1) x2(1) ... xN (1)
x1(2) x2(2) ... xN (2)
...

...
...

...
x1(Ltr ) x2(Ltr ) . . . xN (Ltr )

⎤
⎥⎥⎥⎥⎦
, (4)

D �

⎡
⎢⎢⎢⎢⎣

d1(1) d2(1) ... dL (1)
d1(2) d2(2) ... dL (2)
...

...
...

...
d1(Ltr ) d2(Ltr ) . . . dL (Ltr )

⎤
⎥⎥⎥⎥⎦
, (5)

where d(t) � [d1(t), … dL(t)] denotes the tth teacher signal.
In general, Eq. (3) can be directly solved by the pseudoin-
verse method. However, an ill-posed solution and overfitting
problems can occur due to the pseudoinverse technique for
high-dimensional internal states. In that case, a two-norm
penalty term of regularization parameter ρ is introduced to
the cost function:

W out � argmin
W

‖WX − D‖22 + ρ‖W‖22. (6)

Then, the solution of Eq. (6) is given by

(W out)T � (XT X + ρ I )−1XT D, (7)

where I is the identity matrix. In the current study, the output
weights are trained by the ridge regression mechanism. The
training process of the traditional ESN module is outlined in
Algorithm 1 [34].
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It is worth mentioning that whether the reservoir has the
echo state property is very important for the performance of
the ESN. The meaning of the echo state property is that the
influence of previous input on the future state should gradu-
ally tend to disappear.During training, the reservoir gradually
removes the historical information to reach an asymptotically
stable state.Overall, themain features of theESNmodule can
be summarized as follows: (1) the core structure is a randomly
generated and unchanged sparsely connected reservoir. (2)
The output weight is the only part that needs to be trained
and adjusted. (3) Its training task can be completed by simple
linear regression.

Dempster–Shafer evidence theory

DS evidence theory can be employed to combine informa-
tion from multiple sensors or evidence sources to produce a
synthesis decision. For example, suppose a set comprises N
mutually independent and exclusive elements that describe a
certain system and the so-called discernment frame.

� � { A1, A2, . . . Ai , . . . , AN } . (8)

In fault diagnosis of HVCBs, elements A1 ~ AN in the
discernment frame generally represent the possible working
conditions, including the normal and fault states. Then, m
(A) is defined as the basic probability assignment function,
which reflects the confidence degree of a specific subset of
Θ . This function obeys the following limitations.

⎧⎪⎨
⎪⎩
m(φ) � 0
0 ≤ m(A) ≤ 1, ∀A ⊂ �∑

A⊂� m(A) � 1

. (9)

Assume that there is a finite BFA functionm1,m2,…,mn;
then, the evidence fusion law is defined as follows:

(m1 ⊕ m2 · · · ⊕ mn) (A) � 1

1 − k

∑
A1∩A2...∩An�A

m1(A1)

∗ m2(A2) . . . ∗ mn(An),

(10)

where k is called the conflict coefficient, which is applied to
evaluate the degree of evidence conflict and can be expressed
as follows.

(11)

k �
∑

A1∩A2...∩An�∅
m1(A1) ∗ . . .mn(An)

� 1 −
∑

A1∩A2...∩An ��∅
m1(A1) ∗ . . .mn(An).

DS evidence fusion theory provides a good method to
synthesize information from different sources, but there are
also some disadvantages. As k [refer to Eq. (11)] increases,
the conflict degree between the different pieces of evidence
becomes more serious, and the result obtained by the fusion
method will contradict the intuitive judgment. As shown in
Table 3, the common evidence fusion paradox issues, includ-
ing the complete conflict paradox, 0 trust paradox, 1 trust
paradox, and high conflict paradox, limit the applicability of
DS theory [38]. For fault diagnosis issues, A ~ E in Table 3
can be treated as concerned fault types. m1 ~ m4 can be the
produced fault prediction results of each classifier module.
For instance. Module m1 in the complete conflict paradox
line completely diagnoses the input data as fault type A.
However, module m2 diagnoses it as fault type B with 100%
certainty. Therefore, the diagnostic results obtained by m1

and m2 are self-contradictory, which leads to the complete
conflict paradox issue. Modules m3 and m4 produce proba-
bility distributions of the three fault types.

Improved Dempster–Shafer evidence theory

In the conventional DS evidence fusion algorithm, inaccurate
fusion results could be caused by conflicts from different
evidence sources. In this section, the evidence deviation
degree is first calculated by the Euclidean distance and
then substituted into a segmented circle function to evalu-
ate the evidence’s credibility. Evidence credibility is further
employed as the weight to amend the original evidence and
decrease evidence conflict.

First, the BPAmatrixBM×N , whereM andN represent the
kinds of evidence andproposition in the frameof discernment
Θ , is defined. To obtain the deviation degree of a particular
piece of evidence, pi � (mi(A1),mi(A2),…mi(A3)) is defined
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Table 3 Paradox issues in
convolutional DS fusion Paradox Evidence Proposition

A B C D E

Complete conflict paradox m1 1 0 0 – –

m2 0 1 0 – –

m3 0.8 0.1 0.1 – –

m4 0.5 0.2 0.3 – –

0 trust paradox m1 0.5 0.2 0.3 – –

m2 0.5 0.2 0.3 – –

m3 0 0.9 0.1 – –

m4 0.5 0.2 0.3 – –

1 trust paradox m1 0.9 0.1 0 – –

m2 0 0.1 0.9 – –

m3 0.1 0.15 0.75 – –

m4 0.1 0.15 0.75 – –

High conflict paradox m1 0.7 0.1 0.1 0 0.1

m2 0 0.5 0.3 0.1 0.2

m3 0.6 0.1 0.15 0 0.15

m4 0.55 0.1 0.1 0.15 0.1

m5 0.6 0.1 0.2 0 0.1

as the ith row in the BPA matrix. Then, the Euclidean dis-
tances between pi and other evidence points are added to
obtain the deviation degree of the ith evidence point:

di �
M∑
j�1

∥∥pi − p j
∥∥ �

M∑
j�1

N∑
k�1

∣∣mi (Ak) − m j (Ak)
∣∣, (12)

where di is the so-called absolute deviation degree coeffi-
cient of the ith evidence point. In Eq. (12), the range of
mi(Aj) is [0,1], and the sum of mi(Aj) meets the criteria
of

∑N
j�1mi (A j ) � 1. Furthermore, the relative deviation

degree coefficient is obtained as follows:

εi � di
2M

εi ∈ [0, 1], M ≥ 3, (13)

whereM represents the data category, that is, the categorical
series of mechanical faults in the paper. Parameter εi reflects
the similarity between the ith evidence point and the other
evidence points. In other words, a smaller εi value (closer to
0) means that evidence mi has greater consistency with the
other evidence and is more objective; thus, better evidence
credibility should be given and vice versa. Therefore, the
evidence credibility should be a decreasing function of εi.
For that purpose, we propose a segmented circle function as
follows:

ε∗
i �

{
0.5 +

√
0.25 − ε2i (0.5 > εi ≥ 0)

0.5 − √
0.25 − (εi − 1)2 (1 ≥ εi ≥ 0.5)

, (14)

Fig. 5 Segmented circle function curve

where εi
* represents the final deviation degree coefficient. It

can be detected that within the argument range [0, 1], Eq. (14)
is a typical decreasing function that varies from 1 to 0. In
addition, at the start and end of the curve, the slope is smaller
(refer to Fig. 5), which retains higher credibility of evidence
with a low deviation degree and reduces the influence of
abnormal evidence on the final fusion result.

Furthermore, the credibility of the obtained evidence is
employed as a weight coefficient to amend the original evi-
dence:
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⎧⎪⎨
⎪⎩

m∗
i (A j ) � mi (A j )ε∗

i ( j � 1, 2 . . . N )

m∗
i (�) � 1 −

N∑
j�1

m∗
i (A j )

, (15)

where F represents the uncertain proposition and m∗
i (�)

describes the uncertainty degree of the ith proposition of the
discernment frame. It shouldbenoted that in the improvedDS
evidence theory,we calculate the summation of theEuclidean
distances between the selected evidence and others and then
obtain the evidence credibility by the segmented circle func-
tion. This unique combination can give higher confidence to
the evidence that has better similarity with others. Further-
more, it weakens the negative effects of conflicting evidence,
which will improve the accuracy of the fusion results.

Results and discussion

While using VMD, the final IMF number (I) needs to be
predetermined and is vital for the effectiveness of this signal
analysis method, since it directly affects the performance of
VMD [40]. In this section, the centre frequency observation
result is first analyzed to determine the optimal parameter I .
Then, we perform two sets of experimental result analyses.
In the first set, we evaluate howwell our IDS evidence fusion
algorithm solves the paradoxes by comparing it with several
existing fusion approaches. In the second set, we analyze
the performance of IDS–ESN for mechanical fault diagnosis
of HVCBs and compare its performance with other widely
applied classifiers and DS–ESN.

State-related feature extraction

In general, the centre frequency interval of adjacent IMFs
gradually shrinkswith increasing I and eventually leads to the
over-decomposition problem. On the other hand, too small a
predetermined I might bring about the modal aliasing issue,
which causes the failure of state-related information separa-
tion. At present, there is no standard method for the selection
of this parameter, and it is selected mainly based on expert
experience. Although there are some reported techniques,
such as introducing the cuckoo search algorithm intoVMD to
determine the mode number [5], they suffer from high com-
putational complexity and are time-consuming. The centre
frequency observation method is directly applied to deter-
mine the optimal mode number in this paper. Therefore,
multiple VMD attempts are conducted to determine I . For
the convenience of centre frequency observation, the differ-
ent FFT spectra of IMFs (I varies in a range of 4–7) are given
in Fig. 6.

The original vibration is well-decomposed into 5 IMFs
with relatively uniform centre frequency intervals. Hence,

no obvious centre frequency increase occurs in the last IMF.
For instance,when I is set to 7, the highest centre frequency is
26697 Hz, which is only an increase of 125 Hz in the case of
I � 5. Moreover, as I increases (I > 6), the centre frequency
difference between adjacent IMFs decreases, and the modal
aliasing phenomenon occurs. In summary, the optimal mode
number I of VMD in this paper is 5. Moreover, as the feature
value of the HVCB’s health state, the energy distribution of
the vibration signal on the 5 IMFs is calculated as follows:

Pi � Ei

E
, (16)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ei �
ti∫

t0

|A(t)|2dt

E �
5∑
1
Ei

, (17)

where i is the serial number of the IMFs. t0 and ti repre-
sent the start and end times of the collected vibration signal,
respectively. A(t) and Ei denote the amplitude at different
timepoints and the signal energy of each IMF, respectively.

Discussion of the improved Dempster–Shafer model

To demonstrate the superiority of the improved DS (IDS)
algorithm, we compare the paradox evidence fusion ability
of our IDS with that of the traditional and modified DS algo-
rithms fromMurphy [36], Deng [37], and Li [38]. Taking the
data in Table 3 as an example, the comparative fusion results
are listed in Table 4.

The complete conflict paradox (k � 1) makes the denom-
inator of Eq. (10) zero and eventually leads to fusion failure
of the convolution DS fusion method. In the 0 trust para-
dox, since evidence m3 is equal to zero in column A, the
final BPA of proposition A is always zero regardless of how
other evidence supports A. For the 1 trust paradox, the final
BPA results are m(A) � m(C) � 0 and m(B) � 1. This is
contrary to the actual situation, as there is very little support-
ing evidence for proposition B. Regarding the high conflict
paradox, the final fusion results are m(B) � 0.3571, m(C) �
0.4286, andm(E)� 0.2143. Due to the high conflicts among
evidence, propositionC has a larger BPA value than proposi-
tion B, which is also contrary to the correct situation. Table 4
shows that all four modified methods can deal with paradox-
ical evidence fusion problems but with different BPA values.
In the complete conflict paradox, 0 trust paradox, and 1 trust
paradox, the maximum BPA values in IDS and the algo-
rithm from Li are similar and obviously higher than those
of the other methods. In the high conflict paradox, IDS has
a maximum BPA value of 0.9870. For the maximum BPA
value, the closer to 1 it is, the more confidence it presents

123



Complex & Intelligent Systems

Fig. 6 FFT spectra with varying I
values

intuitively. Therefore, IDS is superior to other algorithms in
high-conflict paradox evidence fusion cases. In addition, it
is important to note that, compared with other faults, such as
spring fatigue and overtravel faults, the state characteristic
of clearance joint faults in this paper is weaker. Thus, a high
conflict paradox among different sensors and classifiers is
more likely to appear. In summary, our proposed IDS model
can achieve the best overall performance while addressing
paradoxical evidence for fault diagnosis of HVCBs.

Fault diagnosis result

In this paper, the average accuracy and stability at multiple
times are selected as the performance evaluation indicators.
First, multiple comparative experiments with several other
state-of-the-art classifiers, namely, the backpropagation (BP)
neural network, radial basis (RBF) neural network, SVM
model, extreme learning machine (ELM), and RF network
are conducted to evaluate the performances of individual
ESN modules. To verify the adaptability of the fault diag-
nosis model, these classifiers are trained and tested with the
same input, corresponding to the different fault joint clear-
ance sizes. Since the data in data sets A ~ D (refer to Table
1) can come from single or multiple sensors, there are three
combinations of training and test sets in this paper. To prevent

random sampling errors, the same model training and testing
process is repeated 100 times, and the average accuracy is
taken as the final result, as shown in Fig. 7.

In Fig. 7, 1 and 2, represent the experimental data of
0.25 mm and 0.75 mm fault joint clearance sizes, respec-
tively, in the subsequent sections. 1 → 2 means training the
model on the input of the 0.25 mm fault clearance size and
then testing it on that of the 0.75 mm fault clearance size.
Through Fig. 7, the following observations can be made.
First, in Fig. 7a–c, the ESN has the highest diagnostic accu-
racy. In addition, according to our literature review, ESN is
used in the field of mechanical fault diagnosis of HVCBs
for the first time, which points out a new direction for this
field. Second, the mechanical fault diagnosis performance
results of different classifiers with multiple sensors as input
are better than those with a single sensor. This indicates that
the state-related information of the vibrations at different
positions has complementary features. Combining different
sensor information should provide more useful information
for fault diagnosis. In addition, the diagnosis accuracy on
single sensor data can be negatively affected by the sensor
quality, signal processingmethod, environmental effects, and
so on, which limits the diagnostic accuracy. Third, in ESN,
the diagnostic accuracy values for 1→ 1 and 2→ 2 can reach
95.3% and 95.69% from double-sensor input, respectively.
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Table 4 Comparisons of the fusion results

Paradox Methods Proposition

A B C D E F

Complete conflict paradox (k � 1) DS – – – – – –

Murphy 0.8204 0.1748 0.0048 – – –

Deng 0.8166 0.1164 0.0670 – – –

Li 0.9284 0.0716 0.0000 – – –

IDS 0.9260 0.0290 0.0322 – – 0.0128

0 trust paradox (k � 0.99) DS 0.0000 0.7273 0.2727 – – –

Murphy 0.4091 0.4091 0.1818 – – –

Deng 0.4318 0.2955 0.2727 – – –

Li 0.7418 0.2582 0.0000 – – –

IDS 0.7252 0.0888 0.1858 – – 0.0002

1 trust paradox (k � 0.99) DS 0.0000 1.0000 0.0000 – – –

Murphy 0.1676 0.0346 0.7978 – – –

Deng 0.1388 0.1318 0.7294 –

Li 0.0594 0.0000 0.9406 – – –

IDS 0.0045 0.0138 0.9811 – – 0.0006

High conflict paradox (k � 0.9999) DS 0.0000 0.3571 0.4286 0.0000 0.2143 –

Murphy 0.7637 0.1031 0.0716 0.0080 0.0538 –

Deng 0.5324 0.1521 0.1462 0.0451 0.1241 –

Li 0.6210 0.1456 0.1308 0.0000 0.1026 –

IDS 0.9870 0.0030 0.0064 0.0000 0.0036 0.0000

The maximum BPA as bolded means the highest confidence

However, in the cases of 1 → 2 and 2 → 1, the accuracy
values decrease to 86.6% and 79.1%, respectively.

Notably, the diagnostic accuracy of each classifier in this
paper is lower than that in previous literature. This can be
explained by the fact that previous works tend to investi-
gate the diagnosis of totally different types of mechanical
faults; thus, the feature is more differentiated. In this paper,
the studied mechanical faults are in different positions, but
all mechanical faults are essentially caused by abnormal joint
clearance; these faults may have in-depth correlations, which
increase the difficulty of diagnosis. Moreover, to reflect the
diagnostic ability of ESN, the span of the fault joint clearance
size is enlarged (from 0.25 to 0.75mm), so the characteristics
of fault data of different clearance sizes at the same position
have greater dissimilarity.

In actual circumstances, the joint clearance size changes
along with the service time of the HVCB. Therefore, it is
more desirable that the obtained model can adapt to differ-
ent fault clearance size conditions. From Fig. 7d, we can
see that in the cases of 1 → 2 and 2 → 1 in the 100
testing circles, although some accuracy values are greater
than 90%, the accuracy rate is not stable, and the ampli-
tude fluctuation is more than 20%, which deteriorates the

model performance. This phenomenon can be explained by
the characteristics of the ESN algorithm itself. In the ESN,
the internal sparse connection structure of the neurons in
the reservoir, the connection weight matrices of the reser-
voir input, and the reservoir-to-reservoir input are randomly
initiated without adjustment in training. Therefore, the net-
work structure and parameters of the ESN module obtained
from different training processes are different, resulting in
unstable diagnosis results. To address this problem, we ini-
tialize multiple ESN modules with different spectral radii
and reservoir neuron numbers. Then, their output is fused by
the aforementioned IDS algorithm. The average accuracy of
100 test circles for normal and threemechanical fault types is
listed in Table 5. In addition, the total average accuracies of
the individual ESN modules and ensemble ESN modules by
IDS with input from multiple sensors vary and are described
in Fig. 8.

Some interesting observations can be made from Table 5.
In the case of 1 → 2, the total average accuracy of the indi-
vidual ESN module is 86.56%. Through fusion analysis, the
DS–ESN and IDS–ESN modules improve the accuracy by
2.16% and 4.27%, respectively. However, in the case of 2 →
1, the accuracyvalues of theDS–ESNand IDS–ESNmodules
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Fig. 7 Fault diagnosis results of
different individual classifiers on
data sets A ~ D

Table 5 Fault diagnosis results of
individual and ensemble ESN
modules

Case Classifier Normal (%) Fault I (%) Fault II (%) Fault III (%) Ave (%)

1 → 2 ESN 99.04 88.50 85.18 72.96 86.42

DS–ESN 98.96 95.68 87.88 72.36 88.72

IDS–ESN 99.76 95.06 88.12 80.38 90.83

2 → 1 ESN 98.14 88.10 95.70 32.54 78.62

DS–ESN 98.24 89.56 96.16 31.54 78.87

IDS–ESN 98.20 89.52 95.92 37.24 80.22

Fig. 8 Accuracy fluctuation of
individual and ensemble ESN
models
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Fig. 9 Average accuracy with
different percentages of mixed
input

Fig. 10 Diagnosis statistics of the
fusion model with 10% mixed
input

are almost constant (only a 1.6% increase in the IDS–ESN).
In different circumstances, the diagnostic accuracy of Fault
III is always significantly the lowest, especially in the 2 →
1 case, which eventually results in unsatisfactory final diag-
nostic results. This might be because the position of Fault
III is far from the sensors in our experimental setup. Fault-
related features are attenuated before the measuring points,
making it more difficult to extract valid feature values from
the measured signal. This phenomenon indicates that mea-
suring points are crucial to the validity of the fault diagnosis
results, and even the ensemblemodel may still have poor per-
formance on a certain type of mechanical fault. In our future
research, we will adopt other diagnostic methods to improve
the diagnostic accuracy of this fault.

In Fig. 8, the red and black lines represent the average
accuracy of the fusion model consisting of 25 and 50 ESN
modules by IDS. We find that in IDS–ESN, the fluctuation
amplitude of the average accuracy decreases significantly,
and the degree of decline is positively correlated with the
number of fused ESNmodules. Therefore,main optimal con-
figuration of our model is the number of ESNmodules. More
specifically, it is found when the number of the adopted echo
state neural networkmodules increases to 50, the final output
of IDS–ESN is sufficiently stable (the largest accuracy differ-
ence is within 4% of 100 statistical tests). In IDS–ESN, only
the output weights of each ESN module need to be trained

by a linear regression algorithm, which avoids gradient dis-
appearance and has high efficiency. Overall, the instability
of the diagnostic accuracy is resolved. If all modules can be
trained properly, the ensemble model is expected to better
reflect the nonlinear mapping between the input and marked
fault types. In this paper, for performance evaluationof unbal-
anced input, we train the IDS–ESN model with the mixing
input, in which the training data contain a certain percent-
age of different clearance size data. The obtained results are
described in Fig. 9. More specifically, the diagnostic results
with a 10% mixed training sample are described in Fig. 10.

Figure 9 shows that the average accuracy of IDS–ESN
is higher than that of DS–ESN. This can be attributed to
the paradoxical evidence that the traditional D–S method
fails at fusion, while our improved IDS fusion algorithm
does not. In Fig. 10, three statistical parameters are selected
(max, min, and average) according to the 100 statistical tests.
After fusing multiple ESNmodule output results via our IDS
approaches, the final average accuracy values of fault diag-
nosis based on multiple sensors and mixed training data can
reach 96.92% and 92.66% in the 1 → 2 and 2 → 1 cases.
Comparedwith the individual ESN results in Fig. 6, increases
of 9.64% and 13.55% are observed.

In summary, the proposed IDS–ESN improves the accu-
racy of mechanical fault diagnosis of HVCBs and has many
other advantages.On one hand, the reported IDS–ESNmodel
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is more flexible and can deal with more complicated fault
diagnosis issues, as extra ESNmodules can be directly added
and will not affect other ESN modules. On the other hand,
the IDS–ESNmodel has stronger robustness. Even if several
ESNmodules suffer from strong interruption or disturbance,
leading to the wrong output, through the fusion of IDS–ESN,
the correct result can still be guaranteed with a certain
probability in the end. Accurate mechanical fault diagnosis
of HVCBs is crucial for the safety of electric power sys-
tems, and it requires a diagnosis model with high reliability
and robustness under all environmental conditions. The pro-
posed IDS–ESN model makes up for the weakness of single
classifiers. Therefore, it can improve mechanical diagnosis
accuracy, reduce accidents, and eventually bring significant
economic benefits to electric power systems.

Last but not least, the main limitations of our model
come from two aspects. One is state-related feature extrac-
tion. A signal processing approach named VMD with centre
frequency observation is adopted to extract the energy distri-
bution of vibration as the state-related feature. It belongs to
the frequency domain feature extraction method. Hybrid fea-
tures from the time domain and frequency domain combing
feature selection algorithm are considered for fault diagnosis
in some recent works, which improves diagnostic accuracy.
Another limitation is the issue of unbalanced input, it is not
analyzed currently. Therefore, in future work, hybrid state-
related features andmodel performance in case of unbalanced
input would be evaluated by the proposed methodology.

Conclusions

IDS–ESN is newly proposed in this study, and it consists
of an ensemble classifier with multiple ESN modules and
an improved DS evidence theory approach. Compared with
other existing machine learning methods, it is first indicated
that individual ESNs can achieve promisingmechanical fault
diagnosis of HVCBs. Then, an effective information fusion
approach is explored. Multiple ESN modules are employed
as sub-classifiers, whose fault classification output is fused
to stabilize the classifier’s diagnostic accuracy. The raw evi-
dence in IDS–ESN is rectified by evidence credibility, which
helps to address the paradoxical evidence fusion issue of
the conventional DS technique. Comparative results show
that our IDS–ESN model can fuse complementary evidence
from different ESN modules and sensors for fault diagno-
sis. In addition, when the number of adopted ESN modules
increases to 50, the final output of IDS–ESN is stable, and the
largest accuracy difference of 100 statistical tests is within
4%. Therefore, the model output of IDS–ESN is not sen-
sitive to the network parameters of a single ESN module.
In other words, the proposed fault diagnosis approach has
good robustness and does not rely heavily on expert prior

knowledge for parameter setting. In future work, reservoir
optimization of ESN modules in our IDS–ESN model will
be explored to further enhance the feature mapping ability
for more complex fault diagnosis tasks.
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