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Abstract
The paper presents a rigorous formulation of adjoint systems to be solved for a robust design optimization using the first-order 
second-moment method. This formulation allows to apply the method for any objective function, which is demonstrated 
by considering deformation at certain point and maximum stress as objectives subjected to random material stiffness and 
geometry, respectively. The presented approach requires the solution of at most three additional adjoint systems per uncertain 
system response, when compared to the deterministic case. Hence, the number of adjoint systems to be solved is independ-
ent of the number of random variables. This comes at the expense of accuracy, since the objective functions are assumed to 
be linear with respect to random parameters. However, the application to two standard cases and the validation with Monte 
Carlo simulations show that the approach is still able to find robust designs.

Keywords  Robust topology optimization · Optimization under uncertainties · First-order approximation

1  Introduction

Design optimization under uncertainty has become a broad 
field in structural optimization. The fact that the variability 
of input parameters affects the optimal design has motivated 
a large variety of approaches embedding uncertainty quan-
tification into design optimization. An overview of differ-
ent approaches is, for instance, given by Park et al. (2006), 
Schuëller and Jensen (2008), and more recently by Kanno 
(2020).

The current paper focuses on a probabilistic consideration 
of uncertainties, which, depending on the problem formu-
lation, is referred to as robust design optimization (RDO) 
or reliability-based design optimization (RBDO). While 
RBDO approaches constrain the probability of failure, RDO 
approaches typically aim at minimizing the mean and the 
standard deviation of an objective function. Both types of 

problems can be solved with sampling-based approaches, 
such as Monte Carlo (Schevenels et al. 2011) or stochastic 
collocation methods (Lazarov et al. 2012a). However, even 
when boosting such an approach with surrogate models, the 
computational cost is significantly higher than in a determin-
istic optimization, especially for high-dimensional optimiza-
tion problems.

Probabilistic methods that are based on a Taylor series 
expansion offer more computational efficiency. For RBDO 
problems, the First-Order Reliability Methods, also referred 
to a Hashofer–Lind method, is often employed. It is based on 
an approximation of the limit state function, which divides 
the random space into a failure region and a safe region. 
Finding the relevant limit state(s) requires the solution of an 
optimization problem. Due to the computational cost caused 
by embedding this optimization into the design optimization, 
a sequential approach is often used (Schuëller and Valdebe-
nito 2010).

Here, a Taylor expansion at the mean vector of the ran-
dom parameters is employed to estimated the stochastic 
moments and their gradients. When considering only the 
linear therms, this approach is referred to as first-order 
second-moment (FOSM) method (Elishakoff et al. 1987), 
mean centered FOSM (Der Kiureghian 2022) or mean value 
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FOSM approach (Haldar and Mahadevan 1999).1 A similar 
approach is the perturbation technique, where the state equa-
tion (i.e., static equilibrium) is expanded at the mean vector 
instead of the objective function. In any case, the approaches 
based on a Taylor expansion at the mean vector require only 
one evaluation of the objective function. However, deter-
mining the gradients of the objective and the gradients of 
the stochastic moments can be computationally expensive.

The first approach for RDO using the adjoint method in 
conjunction with the perturbation technique was presented 
by Doltsinis and Kang (2004); Doltsinis et al. (2005). Here, 
a Taylor series expansion of the equilibrium condition is 
carried out, which yields the adjoint systems to be solved to 
get all information for the gradients of mean and variance of 
the objective function. The number of system of equations 
to be solved and hence, the computational cost, increases 
quadratically with the number of random parameters.

In topology optimization, one design and often one ran-
dom variable is usually related to each finite element. Dif-
ferent approaches for topology optimization emerged over 
the last decades (Sigmund and Maute 2013). In this work, 
the authors focus on the well-known solid isotropic mate-
rial penalization (SIMP) approach (Bendsøe 1989). Lazarov 
et al. (2012b) applied the perturbation technique to topology 
optimization, considering random geometry. The geometric 
randomness is modeled via spatially scattering projection 
threshold, which is considered as a random field. Hence, 
the number of random parameters obtained from discretiz-
ing the random fields equals the number of finite elements. 
In order to reduce computational cost, the number of ran-
dom parameters are reduced using discrete Karhunen–Loève 
transformation.

Kriegesmann and Lüdeker (2019) used the first-order 
second-moment (FOSM) method for robust design optimiza-
tion, which is also based on a Taylor expansion. In difference 
to the perturbation technique, here the objective function 
itself is expanded. By applying the adjoint method directly 
to the variance obtained by the FOSM method, only one 
additional adjoint system needs to be solved per iteration. 
Hence, the computational cost is less than two times the 
deterministic analysis. However, the approach of Krieges-
mann and Lüdeker (2019) is only applicable for the compli-
ance as objective obtained from a linear analysis.

The current paper provides a generalized framework 
for RDO using FOSM. Thereby, the approach can easily 
be applied to different objective functions. This is dem-
onstrated by considering a displacement (other than load 
introduction point) and maximum stress as objective func-
tions subjected to random material stiffness and geometry, 

respectively. Stresses are of special interest, due to their 
local nature which causes sensitivities with respect to small, 
local variations. da Silva and Cardoso (2017) considered 
stress constraints in robust topology optimization (RTO), 
but subjected to spatially scattering material stiffness and 
applied the augmented Lagrangian method to handle the 
high number of stress constraints. Random geometry is also 
considered in conjunction with stresses (see da Silva et al. 
2019), but here the geometric uncertainty is modeled by 
an uniform variation of the projection threshold (compare 
to Wang et al. 2011). In the current paper, the focus is on a 
maximum stress approximation subjected to spatially scat-
tering projection threshold.

The work is organized as follows. In Sect. 2, the general-
ized first-order approach is described. Sect. 3 briefly recapit-
ulates the state-of-the-art topology optimization framework, 
stress calculation, and optimization algorithm. Followed by 
numerical results of the two mentions use cases in Sect. 4. 
A conclusion is drawn in Sect. 5. Details on derivatives and 
stress aggregation are given in the Appendix.

2 � Generalized first‑order approach for RDO

Structural optimization is almost always strongly connected 
to numerical methods (e.g., finite elements), which approxi-
mate the solution of partial differential equations (PDE) rep-
resenting a physical state variable u (deformation, velocity, 
temperature, etc.). These methods result in a non-linear alge-
braic system of equations R = 0 , called state equilibrium. 
A general structural optimization setup seeks to minimize 
a certain objective function f  regarding the inequality con-
straints ci , lower and upper bounds for the design variables 
v , and the state equation.

This problem can be solved efficiently by gradient-based 
optimization algorithms, if analytical sensitivity information 
is provided (Sigmund 2011).

Many programs or software libraries exist for solution 
preparation of the extremely problem depended equilibrium 
R . Therefore this constraint is usually not handed to the opti-
mization algorithm, but is considered within the gradient 
information of any other design response Φ . The later may 
be any objective f or constraint ci , which depend on the phys-
ical state variable u . In topology optimization one usually 
prefers an adjoint sensitivity analysis (see Michaleris et al. 
1994; van Keulen et al. 2005) resulting in

(1)

min
v

f (v, u) v ∈ ℝ
nv

s.t. ci(v, u) ≤ 0 i = 1,… , nI
0 ≤ v ≤ 1

R(v, u) = 0 ⇒ u(v) u ∈ ℝ
nu

1  Considering quadratic terms, the method is, for instance, referred to 
as second-order fourth-moment method.
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The Lagrange multiplier �Φ can be computed by the solution 
of a single system of equations:

Thereby the optimization algorithm is restricted to solutions 
u(v) that satisfy R = 0.

2.1 � RDO using FOSM

RDO is considering a probabilistic system g(�, �,�) depend-
ing on design, state, and random variables � . In structural 
mechanics g may represent typical system responses like com-
pliance, stress, or deformation.

FOSM is an efficient possibility to perform a rough proba-
bilistic analysis, that only approximates mean �g and variance 
�2
g
 of g (Kriegesmann and Lüdeker 2019):

Here, �� is the mean of the random vector and �� its sym-
metric covariance matrix. RDO utilizing FOSM considers 
at least one probabilistic design response Φg in problem (1), 
which depends on the mean �g and/or the variance �2

g
 of 

the probabilistic function. The total sensitivity of Φg with 
respect to the design variables has to be determined for the 
gradient-based optimization algorithm and can be computed 
as

A typical choice for the probabilistic design response Φg 
considered in RDO is given by a weighted sum of the mean 
�g and the standard deviation �g:

Then, Eq. (6) can then be specified to

(2)
DΦ

Dv
=

�Φ

�v
− �T

Φ

�R

�v
.

(3)�R

�u

T

�Φ −
�Φ

�u
= 0.

(4)�g ≈g(��)

(5)�2
g
≈
Dg

D�

T

��

Dg

D�
.

(6)
DΦg

Dv
=

�Φg

��g

D�g

Dv
+

�Φg

��2
g

D�2
g

Dv
.

(7)Φg = �g + ��g.

(8)
DΦg

Dv
=

D�g

Dv
+

�

2�g

D�2
g

Dv
.

2.2 � Generalized sensitivty analysis of FOSM 
approximations

The focus is now on the terms D�g∕Dv and D�2
g
∕Dv . The 

sensitivity of the approximated mean equals the sensitivity of 
the probabilistic function and can be computed equivalently 
to any deterministic response function using Eqs. (2) and (3).

Now, the discrete equilibrium and therefore also the state 
variable may also depend on the random variables, i.e., 
R(v,u,�) with u(v,�).

The sensitivities with respect to the random variables 
within Eq. (5) are determined in the same way as the sensi-
tivity with respect to the design variables:

Hence, the approximated variance (5) can be rewritten:

The direct differentiation of the approximated variance 
involves the derivative of the Lagrange multiplier �g with 
respect to the design variables. In order to circumvent its 
computation, we introduce a new residuum, defined as

The sensitivity of the approximated variance with respect to 
the design variables is obtained by introducing the following 
Lagrangian:

Here, we introduced two additional Lagrange multipliers �u 
and �� . Differentiation of L yields

In order to avoid the direct differentiation of the unknown 
terms Du∕Dv and D�g∕Dv in Eq. (14), the Lagrange mul-
tipliers �u and �� are derived from the following adjoint 
system.2 

(9)
D�g

Dv
≈

Dg

Dv
=

�g

�v
− �T

g

�R

�v
.

(10)
Dg

D�
=

�g

��
− �T

g

�R

��
.

(11)�2
g
≈

(
�g

��
− �T

g

�R

��

)T

��

(
�g

��
− �T

g

�R

��

)

(12)Rg ∶=
�R

�u

T

�g −
�g

�u
= 0.

(13)L(v,�u,��) = �2
g
− �T

u
R − �T

�
Rg.

(14)

DL

Dv
=

��2
g

�v
− �T

u

�R

�v
− �T

�

�Rg

�v

+

[
��2

g

�u
− �T

u

�R

�u
− �T

�

�Rg

�u

]
Du

Dv

+

[
��2

g

��g
− �T

�

�Rg

�g

]
D�g

Dv

.

2  The second row is solved first to eliminate the second column of 
the first row. Hence, DR∕Du is the only matrix that has to be factor-
ized for the entire probabilistic sensitivity analysis. Furthermore, this 
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Then, the sensitivity of the approximated variance with 
respect to the design variables reads:

An overview of the required partial derivatives (details are 
given in Appendix) for the total sensitivity analysis of the 
FOSM approximated variance is summarized in Table 1. 
Depending on the actual choice of the probabilistic function 
and the random variables, some of the second-order deriva-
tives may be non-sparse large matrices. None of those has to 
be factorized or inverted. Nonetheless, it has to be empha-
sized, that even storing these matrices and/or performing 
the according multiplications to set up the adjoint system 
(15) may be computational extremely demanding and can 
even end up dominating the computing time for the entire 
procedure.

The equations provided so far include the case that the 
distribution of the random variables may be a function of the 
design variables. For the FOSM approximation it means that 
�� and �� may be functions of v . For a detailed discussion on 
the design dependency of the random parameter distribution 
refer to Kriegesmann (2020).

(15)

�
�R

�u

T �Rg

�u

T

0
�R

�u

��
�u

��

�
=

⎡⎢⎢⎣

��2
g

�u
��2

g

��g

⎤⎥⎥⎦

(16)
D�2

g

Dv
≈

��2
g

�v
− �T

u

�R

�v
− �T

�

�Rg

�v
.

3 � Topology optimization and structural 
response functions

In the remainder of the paper, the first-order approach for 
robust design optimization is applied to topology optimiza-
tion. In this section, a brief recapitulation of the considered 
and established methods is given. Additionally, two differ-
ent combinations of structural response function and ran-
dom parameter are selected for demonstration in Sect. 4 and 
described in the following.

3.1 � Topology optimization

The design variables considered are the pseudo elemental 
densities vi ∶= �e , each related to one element of the design 
domain. Those densities are then filtered using the com-
monly known variable filter (described by Bourdin (2001) 
and Bruns and Tortorelli (2001). These, filtered densities 𝜌̃e 
are projected to the variable 𝜌̄e , using the simplified formula-
tion by Wang et al. (2011) originating from (Xu et al. 2010).

Projected densities 𝜌̄e are also referred to as physical den-
sities, since they are used to scale the elemental stiffness 
matrix Ke = EeK

0
e
 by employing the modified SIMP scheme 

(Sigmund 2007).

with Emin = 1e − 9 and p = 3 . K0
e
 is the elemental stiffness 

matrix for unit Young’s modulus. E0 is the actual material 
stiffness parameter to be varied or predefined.

3.2 � Optimization algorithm

For all results shown, we apply the MATLAB implemen-
tation of the method of moving asymptotes (MMA) for 
the design variable update (Svanberg 1987). To ensure 
convergence for stress-based optimization, we use exter-
nal move limits. Based on numerical experience, we find 
a design variable change in the range of ±0.05 is a good 
compromise between speed and stable convergence. Further-
more, the internal move limits are set as ������� = 0.01 , 
������� = 1.2 , and ������� = 0.7.

3.3 � Nodal displacement as objective function

The first structural response considered is the nodal dis-
placement uk , which can be expressed as

(17)𝜌̄e =
tanh (𝛽𝜂) + tanh

(
𝛽
(
𝜌̃e − 𝜂

))
tanh (𝛽𝜂) + tanh (𝛽(1 − 𝜂))

(18)Ee = Emin + (E0 − Emin)𝜌̄
p
e

(19)uk = eT
k
u

Table 1   Necessary partial derivatives for the sensitivity analysis of 
the variance

*Aleady required for deterministic analyis
⋆Only required if random variables are design dependend
†Zero for linear equilibrium

1st g 2nd g 1st R 2nd R 1st �

�g

�v

∗ �R

�v
∗ 𝜕��

𝜕v

⋆

�g

�u

∗ �2g

�u�u

�R

�u
∗ �2R

�u�u

†

�g

��

�R

��

�2g

�v�u

�2R

�v��

�2g

�v�u

�2R

�v�u

�2g

���u

�2R

���u

Footnote 2 (continued)
factorization does not require any further computation, since it has 
been computed to obtain the physical state variables already.



A generalized approach for robust topology optimization using the first‑order second‑moment…

1 3

Page 5 of 13     98 

with eT
k
 being the kth unit vector, where k is the degree of 

freedom corresponding to the desired output displacement 
to be minimized.

Since uk is only explicitly depending on u the only non-
zero partial derivative from Table 1 is given in Eq. 20. This 
is true for all considerable random parameters.

3.4 � Compliance as objective function

The often-used structural response compliance c can also 
be employed as objective function and is included in this 
section due to its popularity.

with f  being the load vector.
The compliance c is only explicitly depending on u and f  . 

Thus, the only non-zero partial derivative from Table 1 are

The later is only to be considered if random load is studied. 
The fact that compliance is self-adjoint makes it so popular 
and easy to implement. Making use of this fact, the pro-
posed generalized framework could be further simplified, 
increasing the efficiencies for a compliance objective. As 
derived in Kriegesmann and Lüdeker (2019) this means, the 
state equation and one adjoint system need to be solved, 
whereas for the general approach two additional adjoint 
systems are required. Nonetheless, the main purpose of this 
work is generalization. Simplification is left to the inter-
ested reader. Still, compliance can easily be applied to the 
proposed approach.

3.5 � Elemental von Mises stress as objective 
function

Elemental von Mises stresses qe are calculated at the ele-
ment’s centroid

with M being the constant von Mises matrix. Assuming 
plane strain/stress state

(20)
�uk

�u
= eT

k
.

(21)c = fTu

(22)
�c

�u
= f

(23)
�c

�f
= u.

(24)qe =

√
uT
e
BT
e
CT
e
MCeBeue

Be is the strain–displacement matrix and Ce = EeC
0 is the 

constitutive of element e, where C0 is similar to K0
e
 the con-

stitutive matrix for unit Young’s modulus. Ee contains the 
scale factor for actual material stiffness E0 and the RAMP-
interpolation scheme3 (Stolpe and Svanberg 2001).

with an interpolation parameter of p = −0.5 . Corresponding 
partial derivatives of qe are given in Appendix . Note, for 
stresses all required derivatives stated in Table 1 are non-
zero and need to be determined.

3.6 � Stress aggregation

Typically, the maximum stress is the quantity of interest in 
stress-based optimization, but since the max function is non-
differentiable, the maximum stress is approximated by the 
upper bound KS function (Kreisselmeier and Steinhauser 
1979).

where qmax = max(q) . Due to a rapidly changing design and 
maximum stress value during optimization, the aggregation 
parameter is updated every iteration, to ensure a constant 
approximation quality. As proposed by Jansen et al. (2013) 
the numerator in � = 15∕qmax is predefined and kept constant 
during optimization. The aggregation parameter is updated 
accordingly. Note, during the first iterations, the predefined 
value is set to 40 and the aggregation parameter is kept con-
stant until 𝛾∕qmax < 15 . Values are chosen based on numeri-
cal experiments and are a good trade-off between a stable, 
converging optimization and a good maximum approxima-
tion. Initially the value is increased, since it does not com-
promise the convergence and helps to avoid local minima, 
where, for e.g., stress singularities at sharp corners are not 
rounded of. All needed derivatives of the KS function can 
be found in Appendix . Also here, all required derivatives 
stated in Table 1 are non-zero and needs to be determined.

(25)M =

⎡⎢⎢⎣

1 −
1

2
0

−
1

2
1 0

0 0 3

⎤⎥⎥⎦
.

(26)Ee = Emin + (E0 − Emin)
𝜌̄e

1 + p(1 − 𝜌̄e)

(27)qKS = qmax +
1

�
log

[
ne∑
e=1

exp�(qe−qmax)

]
,

3  Stress interpolation is performed to help with the singularity phe-
nomenon associated to stress functions.(Le et al. 2009).
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4 � Numerical results

In this section, the well-known inverter (see Fig. 1) and the 
common benchmark example for stress-related problems, 
the L-Beam (see Fig. 2), are chosen for demonstration 

purpose. The proposed generalized FOSM approach is 
applied to a displacement objective considering random 
Young’s modulus and maximum stress with variations 
in the projections threshold � (17), respectively. In both 
cases, robust designs are obtained. Validation is performed 
by means of the Monte Carlo method. Shared parameters 
for the depicted demonstrators are given in Table 2. For all 
results shown, the volume is constrained to a fraction of 
the whole design domain. The inverter’s volume fraction 
is constrained to 35% and the L-Beam’s is 40%.

In the following section, a linear finite element model 
( R = Ku − f  ) is considered and a regular mesh with quad-
rilateral, bi-linear, isoparametric continuum elements, and 
isotropic material is chosen. Derivatives of R are given in 
Appendix. Plain stress condition is assumed.

4.1 � Inverter and spatially scattering Young’s 
modulus

The inverter is a popular example also in RTO (see (Lazarov 
et al. 2012a) and da Silva et al. (2019) for instance). The 
optimization objective is the minimization of the horizontal 
displacement uh (see Fig. 1). The design should be sym-
metric, but still take into account an asymmetric spatially 
scattering material stiffness. For that, the whole model is 
calculated, but symmetry is enforced for the design vari-
ables during optimization. Due to the asymmetric random 
field the vertical displacement uv ≠ 0 , which is the reason 
we included its standard deviation �v in the robust objective:

with �h and �h being the mean and standard deviation of uh 
, respectively. The weighting factor � = 10 for all inverter 
examples. Note that � can be interpreted as the reliability 
index related to the chosen distribution type and the prob-
ability of failure, as explained in Kriegesmann and Lüdeker 
(2019) in Sect. 3.3. Here, the value is increased to provoke 
a visual effect due to the low coefficient of variation, as will 
be explained in the following. Furthermore, the mean value 
and standard deviation are only approximated values, which 
might differ from the real counterparts. Thus leaving room 
to adjust � for finding a good trade-off between final robust-
ness and mean value. Usually, the displacement in horizon-
tal direction has a positive value at first, approaches zero, 
and then starts to become negative until converging to some 
value of uh < 0 . Numerical experiments showed if the initial 
weighting factor � is set too high, the MMA is not able to 
reduce uh below zero. Thus, the initial value of �int = �∕1000 
is kept constant for the first 10 iteration and then increased 
in each step until it reaches its predefined value 40 iterations 
later. For the deterministic case only uh is to be minimized.

(28)f = �h + �(�h + �v)

Fin

kin kout
uh

uv

24
24

300

Fig. 1   Inverter model

F

300

18
0

Fig. 2   L-Beam model. Load distribution area marked in red

Table 2   General model 
parameters

Parameters Value

Young’s modulus E 1
Poisons ratio � 0.3
Filter radius r 16
Model size (HxW) 300x300
Element size 2
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Load input is set to Fin = 2 . kin = 1 and kout = 0.01 are the 
input and output spring stiffness, respectively. The optimi-
zation objective and constraint values are scaled by a factor 
of 100 to gain well-posed function values. As in Silva and 
Cardoso (2016), da Silva and Cardoso (2017), and Lazarov 
et al. (2012a), the spatially scattering elemental Young’s 
modulus is modeled as a random field using the parameters 
given in Table 3.

From an engineering perspective, scattering material stiff-
ness might especially be relevant for additive manufacturing. 
Thillaithevan et al. (2022) showed that tolerances could lead 
to spatially degenerated material properties for microscale 
geometry. In the case of fiber-reinforced composites, local 
varying fiber orientations lead to a significant impact on the 
material stiffness as investigated by Rauter and Lammering 
(2020) or in the field of civil engineering variations in soil 
stiffness can even be measured in areas considered as homo-
geneous (see Grabe 1994).

The resulting physical density fields are depicted in Fig. 3. 
Figure 3 shows the deterministically optimized inverter with 
bulk material agglomerated at the input node, which is con-
nected to the rest of the structure via two hinges. The robust 
designs avoid this by directly connecting the input node. 
Removing �v from the robust objective yields designs simi-
lar to the deterministic one. Thus, obviously avoiding those 

two hinges and directly connecting the input node helps to 
reduce the variation in vertical displacements. This is further 
proven by the reduced standard deviation of horizontal dis-
placement �v (see Table 4). As can be observed, �v is reduced 
by 48.4% comparing deterministic and FOSM postprocess-
ing values. Monte Carlo benchmark shows an improvement 
of 67.2. Note, Monte Carlo optimization is performed with 
1000 realizations. The increased robustness comes at the 
expense of around 4% less horizontal displacement, which 
is to be expected in robust design optimization.

Evaluating the proposed approach, the approximation 
quality of FOSM is very good, if optimization and post-
processing values for the horizontal displacement values �h 
and �h are compared. The approximation of �v on the other 
hand is close to a factor of three worse, but still a more 
robust design is obtained. Note, the coefficient of variation 
of the deterministic design CoV v = �v∕�h ≈ 0.5% , which is 
a quite low scatter, compared to the chosen Young’s modulus 
variation CoV E = 10%.

4.2 � L‑Beam and spatially scattering projection 
threshold

The L-Beam is a standard benchmark for stress-based topol-
ogy optimization (to name a few, see (da Silva and Cardoso 
2017; Giraldo-Londoño and Paulino 2021). For the L-Beam 
example, the maximum aggregated stress qKS is considered 
as objective (as described in Sec. 3.5 and 3.6). The beam 
is loaded by a force F = 10 , which is distributed along the 
horizontal and vertical edge (see Fig. 2) to help reduce stress 
peaks. The robust objective is given by

with � = 3 . Note that the weighting factor had to be relaxed 
due to numerical reasons. To properly scale the optimization 

(29)f = �q + ��q

Table 3   Random field properties of the spatially scattering Young’s 
modulus

Parameters Value

Autocorrelation type Gaussian
Correlation length lC 30
Stochastic distribution Gaussian
Mean value �E 1.0
Standard deviation �E 0.1

(a) Deterministic (b) FOSM (c) Monte Carlo

Fig. 3   Deterministic and robust compliance inverter designs
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problem for design variable update, both objective and vol-
ume constraint function values are multiplied by a factor of 
10. To model geometric uncertainties in the topology opti-
mization framework (Lazarov et al. 2012b) and Schevenels 

et al. (2011) considered the projections threshold � (17) as 
random parameter. Properties applied to set up correspond-
ing random fields are listed in Table 5.

Figure 4 shows the obtained designs and corresponding 
nominal von Mises stress plots. FOSM shows the lowest 
nominal stress, otherwise only minor differences are spotted. 
Note, nominal stresses plotted represent only postprocess-
ing values which are not considered during optimization. 
In general, the nominal objective value should be lowest 
for the deterministic case. From the optimizer’s perspective 
this is also the case. Considering column “Optimization” 
in Table 6 it can be observed that the objective value for 
the deterministic case is 2.08 and for FOSM it is slightly 
increased to 2.08 + 3 ⋅ 0.001 . The higher value in 4a can thus 
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qmax = 1.67

(a) Deterministic

qmax = 1.60

(b) FOSM

qmax = 1.72

(c) Monte Carlo

0.00

0.50

1.00

1.50

1.72

Fig. 4   Deterministic and robust L-Beam designs and nominal von Mises stress plots

Table 4   Numerical results of 
the compliance inverter

∗Postprocessed with Monte Carlo and 104 realizations

Type Optimization Postprocessing

f, �h �h �v �∗
h

�∗
h

�∗
v

Determ. −2.37 – – −2.36 0.326 0.0114
FOSM −2.25 0.0227 0.0175 −2.24 0.0226 0.0059
Monte C. −2.28 0.0240 0.0037 −2.27 0.0243 0.0037

Table 5   Random field properties of the spatially scattering projection 
threshold

Parameters Value

Correlation type Gaussian
Correlation length lC 30
Probabilistic distribution Uniform
Bounds [upper,lower] of � [0.45, 0.55]
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be explained by a local minima. This may happen due to 
the aggregation and is thus not completely unexpected nor 
avoidable. It is also important to notice that stresses are very 
sensitive to little changes in geometry. For instance, the top 
strut running from the loaded tip to left is slightly thicker for 
the robust designs. The sensitivity of stresses with respect to 
small geometry changes can also be seen in Table 6. A uni-
form distribution of � in the interval [0.45, 0.55] corresponds 
to a coefficient of variation of CoV � = 6% , resulting in a 
CoV q̂ ≈ 22% , where q̂ is the non-aggregated true maximum 
von Mises stress qmax.

It is observed, that FOSM decreases the standard devia-
tion of the true maximum stress 𝜎q̂ by more than 12%. Also 
the mean value is slightly reduced, which still yields a 
CoV q̂ ≈ 20% . For Monte Carlo a significant reduction of 𝜎q̂ 
by more than 84% is achieved, resulting in a CoV q̂ ≈ 4% . 
Comparing the standard deviation estimated by the FOSM 
approach with the Monte Carlo postprocessing of the same 
design (see Table 6) reveals that the linear approximation is 
very inaccurate in this case. Consequently, the RDO with 
FOSM method by far not exploit the same optimization 
potential as the RDO using Monte Carlo sampling. Still, 
the FOSM approach provides a more robust design than the 
deterministic optimization.

Note that the computational time is very high if aggre-
gated stresses are considered for the proposed generalized 
FOSM approach. It even exceeds Monte Carlo run time for 
very fine discretized models. For Monte Carlo, 1000 mod-
els are solved in parallel on 24 cores, thus making a direct 
comparison unfair, but still only three adjont systems need 
to be solved for the proposed generalized FOSM approach 
per iteration. For coarse discretizations FOSM is much faster 
in any case. The reason for this increasingly high compu-
tational time can be traced down to gradient calculation of 
aggregated stresses (compare Appendix). Many required 
partial derivatives are not only non-zero and some non-
sparse ( �2qe∕�ui�uj in (52) for instance), but also simple 
matrix operations on those non-sparse and big matricies take 
up much computing time. Generally, calculation of second-
order partial derivatives for aggregated stresses takes up 
most of the computational time.

5 � Concluding remarks

A generalized approach for robust topology optimization is 
derived based on a linear Taylor series expansion, namely 
generalized FOSM, and applied to two commonly used 
objective functions, nodal displacement and maximum 
aggregated von Mises stress. In both cases, a robust design 
could be found with the proposed method. As expected, due 
to the inaccurate linear approximation, performance is below 
Monte Carlo benchmark.

For a displacement objective subjected to spatially scat-
tering material stiffness, a low sensitivity with respect to 
the random quantity is observed. Here, a good robust design 
with a significant increase in robustness is achieved.

The stress objective showed a high sensitivity with respect 
to random geometry variations. Even though the standard 
deviation is reduced, the Monte Carlo benchmark showed a 
much better robustness. Additionally, the von Mises stress 
objective requires all second-order partial derivatives to be 
set up, which results in a very high computational effort due 
to big non-sparse matrices and operations on those. Espe-
cially the aggregation and corresponding gradient calcula-
tion takes up a significant amount of computational time.

Nonetheless, for single valued or low number aggre-
gated objective functions, the proposed generalized FOSM 
approach is computationally very efficient, since only two 
additional adjoint system needs to be solved compared to the 
deterministic case. For self-adjoint objectives, e.g., compli-
ance, the run time is improved. Furthermore, the proposed 
approach is independent of the number of random variables, 
which is a big benefit compared to other robust topology 
optimization approaches.

In future work improvements for stress-based robust opti-
mization are the main focus. First, the run time for second-
order derivative calculation needs be reduced or possibly 
bypassed completely. Second, since stresses are highly non-
linear, a reciprocal extension seems promising to increase 
approximation accuracy for FOSM (compare to Krieges-
mann and Lüdeker (2021).

Table 6   Numerical results of 
the L-Beam

∗ Postprocessed with Monte Carlo and 104 realizations

Type Optimization Postprocessing

Aggregated True max.

f, �q �q �∗
q

�∗
q

𝜇∗
q̂

𝜎∗
q̂

Determ 2.08 – 2.29 0.333 2.09 0.454
FOSM 2.08 0.001 2.24 0.240 1.97 0.399
M.C 2.17 0.002 2.17 0.002 1.73 0.071
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Appendix

Partial derivatives of variance and adjoint 
equation

General partial derivatives of �2
g
 from Eq. (5) are as follows:

General partial derivatives of Rg from Eq. (12) are as 
follows:

Derivatives for robust topology optimization 
using linear analyses

This appendix summarizes the derivatives required for 
applying the FOSM-based RDO approach to topology 
optimization. Here, we consider linear analyses and stand-
ard element densities as design variables, resulting in the 
well-known residuum in (36). It is assumed that the distri-
bution of random parameters is independent of the design 
variables and that the load f  is design independent.

Furthermore, partial derivatives with respect to random vari-
ables ( � and E ) are required. Considering random � , first-
order derivatives are determined below. Note, due to the 
way the proposed generalized approach is formulated (see 
Sec. 2), only explicitly depending terms are differentiated.

(30)

��2
g

�v
= 2

(
�2g

���v
− �T

g

�2R

���v

)T

��

Dg

D�
+

Dg

D�

T ���

�v

Dg

D�

(31)
��2

g

�u
= 2

(
�2g

���u
− �T

g

�2R

���u

)T

��

Dg

D�

(32)
��2

g

��g

= −2
�R

��

T

��

Dg

D�

(33)
�Rg

�v
=

�2R

�u�v

T

�g −
�2g

�u�v

(34)
�Rg

�u
=

�2R

�u�u

T

�g −
�2g

�u�u

(35)
�Rg

��g

=
�R

�u

T

(36)R(�̄, �, u(�̄, �) = K(�̄, �) u − f .

with 𝜕�̄∕𝜕� being the derivative of Eq. 17 with respect to �.
Second-order derivatives are obtained as follows:

Kriegesmann and Lüdeker (2019) already derived the sec-
ond-order partial derivative of K , but Eq. (28) on page 274 
is incorrect. The second-order partial derivative of K in (40) 
cannot directly be determined by differentiating �K∕�� with 
respect to �̄ , since �̄ is just a simple substitution in terms of 
differentiation. Thus, K is differentiated with respect to the 
filtered variable 𝜌̃j and rewritten as follows:

In line two of the above equation, the partial derivative �̄∕�̃ 
is placed outside the brackets causing the inverse �̃∕�̄ for the 
second therm to occur.

Derivatives for random � are obtained accordingly, 
without the need to differentiate �K∕�E with respect to �̃ , 
since it is directly differentiable with respect to E and �̄..

So far derivatives with respect to the physical densities �̄ 
are derived for the objective function f. Applying the chain 
rule yields the derivatives with respect to the design vari-
ables �.

(37)
𝜕R

𝜕�̄
=

𝜕K

𝜕�̄
u

(38)
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Stress derivatives

Here, all required derivatives of the von Mises elemental 
equivalent stresses are given with respect to the projected 
design variables �̄ and the random parameter � (compare to 
(17). Dependencies are as follows:

First-order derivatives are given below. Note, due to the 
way the proposed generalized approach is formulated (see 
Sec. 2), only explicitly depending terms are differentiated.

Second-order derivatives are obtained as follows:

with

(45)
qe(𝜌̄e, 𝜂e, ue(𝝆̄, 𝜼)) =

√
uT
e
BT
e
Ce(𝜌̄e, 𝜂e)MCe(𝜌̄e, 𝜂e)Beue.
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The second-order partial derivative of Ce in (57) is deter-
mined the same way as the second-order derivative of K 
(for details see (43).

General KS aggregation

First- and second-order derivatives of the upper bound KS 
function (compare to Eq. 27) are as follows:

where f0 is considered constant during differentiation as 
derived in Kranz et al. (2021).

The first-order derivative of f KS with respect to an arbi-
trary variable x1 , assuming the function value fi = f (x1) and 
substituting Σe =

∑ne
i=1

exp�(fi−f0) yields

The second derivative with respect to another arbitrary vari-
able x2 , which can be the same variable as x1 or a different 
one, again assuming the function value fi = f (x1, x2) yields

All partial and final derivatives are checked by means of 
finite differences.
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