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Abstract
This paper proposes a density-based topology optimization method for natural convection problems using the lattice Boltz-
mann method (LBM). As the LBM can be developed as a completely explicit scheme, its attractive features over the tradi-
tional ones, such as the finite element method, are (1) suitability for solving unsteady flow problems and (2) scalability for 
large-scale parallel computing. We develop an LBM code for solving unsteady natural convection problems and provide its 
sensitivity analysis based on the so-called adjoint lattice Boltzmann method. Notably, the adjoint equation is derived from 
the discrete particle velocity Boltzmann equation and can be solved similarly to the original LBM concerning unsteady 
natural convection problems. We first show that the proposed method can produce similar results to the previous work in a 
steady-state natural convection problem. We then demonstrate the efficacy of the proposed method through 2D numerical 
examples concerning unsteady natural convection. As a large-scale problem, we tackle a 3D unsteady natural convection 
problem on a parallel supercomputer. All the developed codes written in C++ are available at https://​github.​com/​PANFA​
CTORY/​PANSL​BM2.​git.
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1  Introduction

Natural convection is a fluid phenomenon driven by tem-
perature-dependent buoyancy force. This phenomenon is 
widely known as a heat transfer mechanism that does not 
require cooling fans and plays a vital role in designing high-
performance cooling devices such as heat sinks in electronic 
systems. Since natural convection is often beyond the extent 
of human intuition when considering complex systems, 
research on mathematical optimization concerning natural 

convection has been studied for more than a half-century. 
Elenbaas (1942) discussed a maximum diffusion problem of 
natural convection in vertical plates. Bahadur and Bar-Cohen 
(2005) summarized various performance indices of pin fin 
heat sinks. Yu et al. (2011) proposed a surrogate-based opti-
mization method for designing radial heat sinks. Although 
these traditional methods—the so-called sizing optimiza-
tion—can provide improvements compared with existing 
devices, the obtained results are strongly dependent on the 
initial guesses in general and, therefore, limited in terms of 
the degree of design freedom.

Topology optimization (Bendsøe and Kikuchi 1988) is 
one of the methodologies in structural optimization to gener-
ate novel solutions under a high degree of design freedom. 
One of the most attractive features of topology optimization 
is that an optimized configuration can be generated from 
a fixed design domain even if the initial guess is quite far 
from an optimum. So far, topology optimization has been 
applied to various structural optimization problems and 
demonstrated its applicability on multiphysics, multiscale, 
practical engineering applications, and so on (Bendsøe and 
Sigmund 2003). Borrvall and Petersson (2003) pioneered the 
methodology of topology optimization for fluid problems, 
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in which dissipation energy minimization problems are 
formulated under the Stokes flow assumption. After that, 
this has been applied to optimization problems concerning 
various fluid regimes, such as Navier–Stokes laminar flow 
(Gersborg-Hansen et al. 2005; Olesen et al. 2006), forced 
convection (Yoon 2010; Matsumori et al. 2013), chemi-
cal transport systems (Okkels and Bruus 2007; Chen et al. 
2019), turbulence (Kontoleontos et al. 2013; Dilgen et al. 
2018). Additionally, machine learning-based frameworks 
have been recently proposed for solving complex flow opti-
mization problems (Yaji et al. 2022; Hammond et al. 2022)

As mentioned in a recent review paper (Alexandersen 
and Andreasen 2020), the application to natural convection 
problems has been limited in the research community of 
topology optimization. One of the representative difficul-
ties is that natural convection requires dealing with the 
two-way coupling; fluid and temperature fields interfere, 
whereas forced convection is the one-way coupling. This 
fact implies that the numerical simulation of natural con-
vection is relatively more challenging and requires higher 
computational cost under the same degree of freedom as 
a case of forced convection. Alexandersen et al. (2014) 
pioneered topology optimization for 2D natural convec-
tion problems. After that, more detailed investigation on 
parameters of the 2D natural convection problems (Li 
et al. 2022b), large-scale 3D problems (Alexandersen et al. 
2016), simplified models (Asmussen et al. 2019; Pollini 
et al. 2020), multiobjective problems (Ramalingom et al. 
2019), and a combination with an adaptive mesh refine-
ment scheme (Li et al. 2022a) have been reported. How-
ever, it should be noted that most previous works focus 
on steady-state natural convection. At the same time, the 
unsteady state is more practical in considering the natural 
convection phenomena. Furthermore, it may have applica-
bility for designing practical and interesting optimization 
problems such as rapid cooling system design.

Coffin and Maute (2016) proposed topology optimization 
concerning unsteady natural convection and discussed the 
specific feature of the optimized design in the unsteady case 
comparing with the steady one. Besides, topology optimiza-
tion of unsteady natural convection has been successfully 
applied to designing energy storage systems (Pizzolato et al. 
2017; Vogel and Johnson 2019; Xie et al. 2019; Zhao et al. 
2020). These previous works have been limited in 2D prob-
lems due to the massive computational cost for sensitivity 
analysis, as mentioned in Coffin and Maute (2016). Such 
a full-scale 3D topology optimization may be realized by 
using a large-scale parallel computer. However, since the 
previous works mainly use implicit schemes such as the 
finite element method (FEM), it is challenging to exploit 
its parallel performance compared to explicit schemes that 
do not require matrix operations. On the other hand, since 
an explicit scheme generally requires a lot of time steps 

compared to an implicit scheme, the memory requirement 
may be strict because the adjoint method for time-dependent 
problems requires preserving the state variable field for each 
time step. Hence, it cannot be concluded that an explicit 
scheme is more efficient than an implicit scheme, but we 
believe that a topology optimization approach based on an 
explicit scheme is a promising option for solving unsteady 
natural convection problems if a parallel computer could 
be used.

Among the many explicit schemes, the lattice Boltz-
mann method (LBM) (Chen and Doolen 1998; Aidun and 
Clausen 2010; Krüger et al. 2017) is one of the representa-
tive schemes of the computational fluid dynamics (CFD). 
The LBM is inspired by the analogy of molecular fluid 
mechanics and can compute fluid regimes from fluid par-
ticles’ so-called velocity distribution functions governed 
by the Boltzmann equation. In general, the LBM does not 
require solving the Poisson equation that is the majority of 
the computational cost in the other standard CFD methods 
based on a segregated approach in terms of the fluid veloc-
ity and pressure. Hence, the LBM can be coded as a simple 
numerical algorithm that realizes high-performance paral-
lel computing. Besides, many researchers have reported the 
applicability of the LBM for computing natural convection 
fields (Dixit and Babu 2006; Mohamad and Kuzmin 2010; 
Li et al. 2016).

Pingen et al. (2007) have opened the door of topology 
optimization using the LBM and first indicated that the opti-
mized configurations are similar to those of the case using 
the FEM in pressure drop minimization problems. After that, 
their method has been applied to Tesla valve design (Pingen 
et al. 2008), scalar transport problems (Makhija et al. 2012) 
and so on. However, since these previous works use the tra-
ditional discrete adjoint sensitivity analysis, large-scale and 
asymmetric matrix needs to be treated due to the feature of 
velocity distribution functions.

Yaji et  al. (2014) proposed a topology optimization 
method based on the adjoint lattice Boltzmann method 
(ALBM) (Krause et al. 2013), in which not only the forward 
problem but the adjoint problem are solved using the LBM. 
The basic idea of the ALBM is that the adjoint equation 
is derived in the continuous fashion from the continuous 
Boltzmann equation. Then the adjoint equation is discretized 
using the LBM. Hence, the adjoint problem can be solved by 
a completely explicit scheme without any matrix operations. 
This method has been applied to pressure drop minimiza-
tion problems (Yaji et al. 2014; Xie et al. 2021), convection 
problems (Yaji et al. 2016; Dugast et al. 2018; Luo et al. 
2022), chemical transport problems (Dugast et al. 2020), 
and unsteady flow problems (Chen et al. 2017; Yaji et al. 
2018; Nguyen et al. 2020). Besides, there is another way to 
formulate the adjoint problem using the LBM, in which the 
original discrete equation—lattice Boltzmann equation—is 
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used for deriving the discrete adjoint equation (Tekitek et al. 
2006). This method has also been applied to steady-state 
problems (Liu et al. 2014; Łaniewski-Wołłk and Rokicki 
2016) and unsteady problems (Nørgaard et al. 2016, 2017). 
Yonekura and Kanno (2015) proposed a radical method 
based on a one-shot approach, in which solving the adjoint 
problem can be avoided under a low Reynolds number con-
dition. Notably, these LBM-based topology optimization 
methods are suitable for large-scale parallel computing as 
the adjoint problem has the feature of the explicit scheme in 
the LBM. In addition, except Yonekura and Kanno (2015), 
these methods can be naturally applied to unsteady problems 
by a slight change from the steady-state case, since the LBM 
is originally a numerical scheme for solving time-dependent 
flows.

In this study, based on Yaji et al. (2014, 2016), we pro-
pose a topology optimization method for unsteady natural 
convection problems. We derive the adjoint problem in a 
general formulation, in which the ALBM based on discrete 
velocity Boltzmann equations is employed for reflecting the 
LBM boundary conditions to the adjoint problem (Yaji et al. 
2016). It should be noted that the ALBM in this study is 
a semi-continuous adjoint method concerning continuous 
time and space and discrete particle velocities. Then, we 
provide the concrete optimization algorithm as the numeri-
cal implementation. In numerical examples, we validate the 
developed code by solving a steady-state case (Alexandersen 
et al. 2014) as a benchmark. We then tackle two cases of 
unsteady natural convection problems. The objective func-
tion of the first example is a time-averaged temperature at a 
heated boundary, and that of the second is a weighted sum 
of time-averaged flow rate and the deviation for designing 
a natural convection-driven pump. As a large-scale prob-
lem, we tackle a 3D unsteady natural convection problem 
on a parallel supercomputer. Lastly, we summarize what we 
found in this study as the conclusion.

2 � Formulation

2.1 � Topology optimization

Here, we briefly review the basic concept of topology opti-
mization in a general expression. Let us consider a structural 
optimization problem to determine the boundary of a design 
domain Ω . The basic concept of topology optimization is 
the introduction of a fixed design domain D ⊂ ℝd (d: spatial 
dimension) that includes the original domain, i.e., Ω ⊆ D . 
Then, a characteristic function �Ω ∶ D → {0, 1} is intro-
duced to replace the original optimization problem with a 
material distribution problem in D. Herein, the characteristic 
function is defined as:

where x represents a position in D. Since the discrete nature 
of �Ω makes it hard to solve such a 0–1 optimization prob-
lem directly, relaxation or regularization techniques are 
typically essential. One of the most popular methods is the 
so-called density approach (Bendsøe and Sigmund 2003), 
whose basic concept is to replace �Ω with a continuous func-
tion, i.e., � ∶ D → [0, 1] , where � is termed a design variable 
field. Using � , a general form of the topology optimization 
problem based on the density approach can be expressed as 
follows:

where J is an objective functional, and G is a constraint 
functional. Besides, U represents the state variable field that 
is typically given as the solution of partial differential equa-
tions for physical fields. In this study, U corresponds to the 
fluid velocity, pressure and temperature in natural convec-
tion systems. After some discretization treatments, such as 
the FEM for each field, the optimization problem (2) can be 
solved using a gradient-based optimizer.

2.2 � Governing equations

In this study, the state variable field U in (2) is given as the 
solution of an unsteady natural convection system. The time 
interval is defined as I = [t0, t1] where t0 and t1 are the initial 
and final times, respectively. We consider an analysis domain 
O = D ∪ Ωnon with D ∩ Ωnon = � in which Ωnon represents the 
non-design domain. We assume that the analysis domain is 
composed of the fluid domain Ωf and the solid domain Ωs . In 
addition, let us consider that the design variable field is defined 
as � = 0 for Ωs and � = 1 for Ωf , respectively. Note that the 
grayscale region, 0 < 𝛾 < 1 , is regarded as a porous medium 
based on the density approach.

Consider the following natural convection system based 
on the Boussinesq approximation for the fluid velocity 
u ∶ Ωf × I → ℝd , pressure (divided by the fluid density), 
p ∶ Ωf × I → ℝ and temperature T ∶ O × I → ℝ in the fluid 
domain:

(1)�Ω(x) =

{
1 if x ∈ Ω

0 if x ∈ D�Ω,

(2)
minimize

�
J(� ,U(�))

subject to G(� ,U(�)) ⩽ 0,

0 ⩽ �(x) ⩽ 1, ∀x ∈ D,

(3)∇ ⋅ u = 0,

(4)
�u

�t
+ (u ⋅ ∇)u = −∇p + �∇2u + eg�

(
T − Tref

)
,

(5)
�T

�t
+ u ⋅ ∇T = Kf∇

2T ,
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where � is the kinematic viscosity, e is the unit vector of the 
gravitational direction, g is the gravitational acceleration, 
� is the volumetric expansion coefficient, Tref is a reference 
temperature which depends on the analysis problem, and 
Kf is the thermal diffusivity of the fluid. Additionally, the 
temperature T satisfies the following equation in the solid 
domain:

where Ks is the thermal diffusivity of the solid.
Since our concern is to determine the distribution of Ωf 

and Ωs in D, the governing equations in (3–6) need to be 
expanded so that the state variable fields belong to both 
domains using the design variable field � . For this, we 
employ a Brinkman approach (Borrvall and Petersson 2003), 
in which u belongs to not only the fluid domain but the solid 
domain, by replacing (4) with

Herein, �� is a design-dependent parameter expressed using 
� , as follows:

where the parameter 𝛼̄ has a sufficiently large positive num-
ber for expressing the solid domain in D, and q𝛼 > 0 is a tun-
ing parameter to control the convexity of �� . As the similar 
way in (8), the governing equations for T in (5) and (6) are 
combined for expressing the temperature field by a single 
equation in D, as follows:

where the design-dependent thermal diffusivity K� is defined as

Herein, qK > 0 is a parameter for controlling the convexity 
of K� . Note that these governing equations can be solved 
under appropriate boundary conditions.

2.3 � Lattice Boltzmann method (LBM)

In this study, the lattice Boltzmann method (LBM) is used to 
obtain the macroscopic variable fields discussed in Sect. 2.2. 
The basic idea of LBM is that the fluid regime is represented 
as an aggregation of fictitious particles, which makes it pos-
sible to obtain macroscopic variable fields such as the fluid 

(6)
�T

�t
= Ks∇

2T ,

(7)
�u

�t
+ (u ⋅ ∇)u

= −∇p + �∇2u − ��u + eg�
(
T − Tref

)
.

(8)𝛼𝛾 = 𝛼̄
q𝛼(1 − 𝛾)

q𝛼 + 𝛾
,

(9)
�T

�t
+ u ⋅ ∇T = ∇ ⋅

(
K�∇T

)
,

(10)K� = Kf +
(
Ks − Kf

)qK(1 − �)

qK + �
.

velocity, pressure and temperature from the moments of the 
velocity distribution functions.

Based on the basic idea of the LBM (Krüger et al. 2017), 
we consider a modeled thermal fluid composed of identi-
cal particles whose velocities are restricted to a finite set 
of Q vectors, c0, c1,⋯ , cQ−1 ∈ ℝd , where the number of Q 
depends on the lattice model discussed later.

Let us now discuss how to solve the governing equations in 
(3, 7 and 9) by the LBM. We assume that the fluid pressure and 
velocity are given by the moments of the velocity distribution 
functions fi ∶ O × I → ℝ with i = 0, 1,⋯ ,Q − 1 , as follows:

where � is the fluid density. Similarly, the temperature 
is given by using another velocity distribution function 
gi ∶ O × I → ℝ:

Note that although (13) needs not to be defined using the 
same Q with (11 and 12), we use the same value in this study 
for brevity. From the Bhatnagar-Gross-Krook (BGK) model 
in the kinetic theory, fi and gi respectively satisfy the follow-
ing discrete velocity Boltzmann equations:

Here, both equations are nondimensionalized as with the 
previous work (Yaji et al. 2016), and Sh is the Strouhal num-
ber given by the ratio of reference values of the flow speed 
and the particle speed. Besides, �f  and �g are dimensionless 
parameters of the same order as the Knudsen number. Note 
that the design-dependent terms in (14 and 15) are equal 
to zero in Ωnon . In addition, f eq

i
 and geq

i
 represent the local 

equilibrium distribution functions given by

(11)p =
�

3
=

1

3

Q−1∑

i=0

fi,

(12)u =
1

�

Q−1∑

i=0

cifi,

(13)T =

Q−1∑

i=0

gi,

(14)

Sh
�fi

�t
+ ci ⋅ ∇fi = −

1

�f

(
fi − f

eq

i

)

− 3wici ⋅ ��u + 3wici ⋅ eg�
(
T − Tref

)
,

(15)Sh
�gi

�t
+ ci ⋅ ∇gi = −

1

�g

(
gi − g

eq

i

)
.

(16)f
eq

i
= wi�

{
1 + 3ci ⋅ u +

9

2

(
ci ⋅ u

)2
−

3

2
|u|2

}
,

(17)g
eq

i
= wiT

(
1 + 3ci ⋅ u

)
.
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The parameter wi in (14, 16 and (17) denotes a weight in 
each lattice grid and its value is given in each lattice model. 
In this study, two kinds of lattice models are used with 
the nine-velocity (D2Q9) model for 2D problems and the 
fifteen-velocity (D3Q15) model for 3D problems. Figure 1 
shows the schematic of the lattice models and the exact val-
ues of the weights wi are given by

for D2Q9 model, and

for D3Q15 model.
Consider a discretized equations for (14 and 15), in terms 

of the position x and the time t using a lattice spacing Δx and a 
time step Δt . In the following, we assume Δx = Δt = 1 . Based 
on the discretization way in (Inamuro et al. 2002), we obtain the 
so-called lattice Boltzmann equations for fi and gi as follows:

(18)wi =

⎧
⎪
⎨
⎪⎩

4∕9 (i = 0)

1∕9 (i = 1, 2, 3, 4)

1∕36 (i = 5, 6, 7, 8)

,

(19)wi =

⎧
⎪
⎨
⎪⎩

2∕9 (i = 0)

1∕9 (i = 1, 2, 3, 4, 5, 6)

1∕72 (i = 7, 8, 9, 10, 11, 12, 13, 14)

(20)

fi
(
x + ciΔx, t + Δt

)
= fi(x, t)

−
1

�f

{
fi(x, t) − f

eq

i
(x, t)

}

− 3Δxwici ⋅ �� (x)u(x, t)

+ 3Δxwici ⋅ eg�
{
T(x, t) − Tref

}
,

(21)
gi
(
x + ciΔx, t + Δt

)
= gi(x, t)

−
1

�g(x, t)

{
gi(x, t) − g

eq

i
(x, t)

}
.

Besides, �f = �f∕Δx and �g = �g∕Δx are the dimensionless 
relaxation time.

From the asymptotic expansion theory in the LBM, the 
dynamic viscosity � and the thermal diffusivity K� in the 
LBM can be given as follows:

Herein, the relaxation times �f  and �g in (20 and 21) are 
determined so that (22 and 23) are satisfied. Besides, �g is 
the function of � from the definition of K� in (10).

2.4 � Initial and boundary conditions

In order to solve the lattice Boltzmann equations in (20 and 
21), appropriate initial and boundary conditions are needed 
for the thermal-fluid problem.

As for the initial condition, we assume that the initial val-
ues of fi and gi are equal to those of f eq

i
 and geq

i
 , as follows:

On the other hand, as for the boundary condition, many 
equations are proposed for thermal-fluid problems. Let us 
consider how to determine the boundary condition in the 
D2Q9 model in Fig. 1a as an example, in which fi and 
gi ( i = 2, 5, 6 ) are unknown at the lower boundary in the 
y-direction. As for the no-slip condition, we apply the so-
called bounce-back condition:

In addition, as for the free-slip condition, we apply the mir-
ror-reflection condition:

(22)� =
1

3

(
�f −

1

2

)
Δx,

(23)K� =
1

3

(
�g −

1

2

)
Δx.

(24)fi
(
x, t0

)
= f

eq

i

(
x, t0

)
,

(25)gi
(
x, t0

)
= g

eq

i

(
x, t0

)
.

(26)f2 = f4, f5 = f7, f6 = f8.

Fig. 1   Lattice models. The 
particle velocity vectors ci are 
represented by arrows starting 
from the center of square/cube. 
Note that c0 is defined as the 
zero vector in both cases
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As for the prescribed temperature and heat flux condi-
tions, we use the following equations (Inamuro et al. 2002; 
Yoshino and Inamuro 2003):

where T ′ is given by

for the constant temperature condition and

for the constant heat flux condition. Herein, Tw is the pre-
scribed temperature at the intended boundary, and uy and qy 
are the velocity and heat flux in the y-direction, respectively. 
Herein, the heat flux q can be calculated by

Note that the boundary conditions for the other boundaries 
and the case of the D3Q15 model in Fig. 1b can be treated 
as the similar way discussed above.

2.5 � Adjoint lattice Boltzmann method

Here, we discucss a strategy based on the adjoint lattice Boltz-
mann method (ALBM) (Krause et al. 2013) to derive design 
sensitivities for our topology optimization problems. The basic 
idea of the ALBM is that the adjoint equation is derived in the 
continuous fashion from the continuous Boltzmann equation and 
then is discretized using the LBM. Hence, the discretized adjoint 
equation can be solved in an explicit manner without any matrix 
operations. Although the original ALBM is supposed to use a 
fully continuous Boltzmann equation for the adjoint analysis, 
we use the discrete velocity Boltzmann equation for reflecting 
the practical LBM boundary conditions to the adjoint equation 
(Yaji et al. 2016). In the following, we discuss the derivation 
procedures for the adjoint equation based on the ALBM in the 
natural convection system described in Sects. 2.2–2.4.

Assuming that the objective functional J is given by the fol-
lowing multiple integrals with respect to the analysis domain 
O or its boundary �O and time interval I:

(27)f2 = f4, f5 = f8, f6 = f7.

(28)fi = wi

(
1 + 3ci ⋅ u

)
T �,

(29)T � =
6
{
Tw −

(
g0 + g1 + g3 + g4 + g7 + g8

)}

1 + 3uy
,

(30)T � =

6
(

qy�g

2�g−1
+ g4 + g7 + g8

)

1 − 3uy
,

(31)q =

(
1 −

1

2�g

) Q−1∑

i=0

(
ci − u

)
gi.

(32)J = ∫
I
∫
O

jOdΩdt + ∫
I
∫
�O

j�OdΓdt,

where jO ∶ O × I → ℝ and j�O ∶ �O × I → ℝ represent the 
general expressions of the functions to be integrated. Let jO 
and j�O be functions of (fi, gi) in this study.

Following the ALBM procedure, the Lagrangian L given 
by J and the governing equations in (14) and (15) can be 
expressed as

where  f̃i ∶ O × I → ℝ  and  g̃i ∶ O × I → ℝ  w i t h 
i = 0, 1,⋯ ,Q − 1 are the Lagrange multipliers correspond-
ing to the adjoint variable fields in the ALBM.

The sensitivity of L with respect to the design variable 
field � is identical to that of J since the governing equations 
must be zero in the analysis domain. The functional deriva-
tive of L with respect to � is given by

(33)

L = J + ∫
I
∫
O

Q−1∑

i=0

f̃i

{
Sh

𝜕fi

𝜕t
+ ci ⋅ ∇fi +

1

𝜀f

(
fi − f

eq

i

)

+3wici ⋅ 𝛼𝛾u − 3wici ⋅ eg𝛽
(
T − Tref

)}
dΩdt

+ ∫
I
∫
𝜕O

Q−1∑

i=0

g̃i

{
Sh

𝜕gi

𝜕t
+ ci ⋅ ∇gi

+
1

𝜀g

(
gi − g

eq

i

)}
dΩdt.

(34)

⟨L�, 𝛿𝛾⟩ =

∫
I
∫
O

Q−1�

i=0

𝜕jO

𝜕fi
𝛿fidΩdt + ∫

I
∫
𝜕O

Q−1�

i=0

𝜕j𝜕O

𝜕fi
𝛿fidΓdt

+ ∫
I
∫
O

Q−1�

i=0

𝜕jO

𝜕gi
𝛿gidΩdt + ∫

I
∫
𝜕O

Q−1�

i=0

𝜕j𝜕O

𝜕gi
𝛿gidΓdt

+ ∫
O

Q−1�

i=0

f̃i𝛿fi

������t1
dΩ + ∫

I
∫
𝜕O

Q−1�

i=0

ci ⋅ nf̃i𝛿fidΓdt

+ ∫
I
∫
O

Q−1�

i=0

�
−Sh

𝜕f̃i

𝜕t
− ci ⋅ ∇f̃i +

1

𝜀f

�
f̃i − f̃

eq

i

�

+3

�
𝛼𝛾m̃ −

T

𝜀g
q̃

�
⋅

�
ci − u

𝜌

��
𝛿fidΩdt

+ ∫
O

Q−1�

i=0

g̃i𝛿gi

������t1
dΩ + ∫

I
∫
𝜕O

Q−1�

i=0

ci ⋅ ng̃i𝛿gidΓdt

+ ∫
I
∫
O

Q−1�

i=0

�
−Sh

𝜕g̃i

𝜕t
− ci ⋅ ∇g̃i +

1

𝜀g

�
g̃i − g̃

eq

i

�

−3eg𝛽 ⋅ m̃}𝛿gidΩdt + ∫
I
∫D

3
𝜕𝛼𝛾

𝜕𝛾
u ⋅ m̃𝛿𝛾dΩdt

− ∫
I
∫D

3

𝜀g
2

�
Q−1�

i=0

g̃i
�
gi − g

eq

i

�
�

𝜕K𝛾

𝜕𝛾
𝛿𝛾dΩdt,
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where �fi = (�fi∕��)�� and �gi = (�gi∕��)�� . Besides, n 
represents the outward normal vector on the boundary, and 
m̃ =

∑Q−1

i=0
wicif̃i . Let us now define the macroscopic adjoint 

variable fields using f̃i and g̃i:

Using (35)–(38), f̃ eq
i

 and g̃eq
i

 in (34) that correspond to the 
local equilibrium distribution functions can be written as

It should be noted that although the derivation of the Lagran-
gian L contains its partial derivative with respect to � in 
general, we drop it for simplicity because J does not explic-
itly contain � in this paper. In addition, boundary condition 
terms should be included to L, but it becomes complicated 
and depends on the lattice model. Hence, we also drop the 
boundary condition terms for simplicity.

To determine f̃i and g̃i as the adjoint variable field from 
(34), we consider the following equations:

Note that the adjoint equations closely resemble the original 
discrete velocity Boltzmann equations in (14) and (15) and 
therefore can be solved using the LBM, as follows:

(35)𝜌̃ =

Q−1∑

i=0

wif̃i

{
1 + 3ci ⋅ u +

9

2

(
ci ⋅ u

)2
−

3

2
|u|2

}
,

(36)j̃ =

Q−1∑

i=0

wif̃i
{
ci + 3

(
ci ⋅ u

)
ci − u

}
,

(37)T̃ =

Q−1∑

i=0

wig̃i,

(38)q̃ =

Q−1∑

i=0

wicig̃i.

(39)f̃
eq

i
= 𝜌̃ + 3

(
ci − u

)
⋅ j̃,

(40)g̃
eq

i
= T̃ + 3u ⋅ q̃,

(41)

−Sh
𝜕f̃i

𝜕t
− ci ⋅ ∇f̃i = −

1

𝜀f

(
f̃i − f̃

eq

i

)

− 3

(
𝛼𝛾m̃ −

T

𝜀g
q̃

)
⋅

(
ci − u

𝜌

)
−

𝜕jO

𝜕fi
,

(42)
−Sh

𝜕g̃i

𝜕t
− ci ⋅ ∇g̃i = −

1

𝜀g

(
g̃i − g̃

eq

i

)

+ 3eg𝛽 ⋅ m̃ −
𝜕jO

𝜕gi
.

Similar to treating the lattice Boltzmann equation, the initial 
and the boundary conditions are needed for solving (43 and 
44). Due to the nature of the time-dependent optimization 
problem, the above adjoint equations need to be solved back-
ward in time from the final time t1 to the initial time t0 in the 
original time interval I  . These terminal conditions can be 
derived from the fifth and eighth terms of the right-hand side 
in (34), as follows:

Besides, the boundary conditions can be determined from 
the second, fourth, sixth and nineth terms of the right-hand 
side in (34). Here, we notice that the velocity distribution 
functions for particles flowing outside on the prescribed 
boundary must be applied since the direction of the fictitious 
particles for the ALBM is opposite to those for the LBM. In 
the following, we will discuss briefly how to determine the 
boundary conditions for the 2D problem by using the D2Q9 
model as an example. Assuming that the boundary is located 
at the lower side in the y-direction, which is the same man-
ner to solve the lattice Boltzmann equation. For the case of 
the no-slip condition, the following equation can be derived 
by applying the bounce-back condition to (34) as

For the case of free-slip condition, the following equation 
can be derived by considering the mirror-reflect condition as

In addition, as for the constant temperature condition, the 
following equations can be derived by substituting (28) with 
(29) into (34) as

(43)

f̃i(x − Δx, t − Δt) = f̃i(x, t) −
1

𝜏f

{
f̃i(x, t) − f̃

eq

i
(x, t)

}

− 3Δx𝛼𝛾 (x)

{
ci − u(x, t)

𝜌(x, t)

}
⋅ m̃(x, t)

+
3ΔxT

𝜏g(x, t)

{
ci − u(x, t)

𝜌(x, t)

}
⋅ q̃(x, t) − Δx

𝜕jO

𝜕fi
(x, t),

(44)

g̃i(x − Δx, t − Δt) = g̃i(x, t) −
1

𝜏g(x, t)

{
g̃i(x, t) − g̃

eq

i
(x, t)

}

+ 3Δxeg𝛽 ⋅ m̃(x, t) − Δx
𝜕jO

𝜕gi
(x, t).

(45)f̃i
(
x, t1

)
= 0,

(46)g̃i
(
x, t1

)
= 0.

(47)f̃4 = f̃2, f̃7 = f̃5, f̃8 = f̃6.

(48)f̃4 = f̃2, f̃7 = f̃6, f̃8 = f̃5.
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As for the constant heat flux condition, the following equa-
tions can be derived by substituting (28) with (30) into (34) 
as

Consequently, the sensitivity L� = J� can be obtained from

Note that the sensitivity for a constraint, G′ , can also be 
obtained from the same way by replacing J with G, where 
jO and gO are respectively replaced by j�O and g�O in (32). 
Besides, when setting a prescribed heat flux condition, the 
gradient of the thermal diffusivity K� must be considered 
in the sensitivity equation. Hence, when the value of the 
prescribed heat flux on the boundary is not equal to zero, 
the following term must be added into (51).

where Γq is the boundary at which the heat flux qn = q ⋅ n 
is applied.

2.6 � Dimensionless parameters

The previous study (Alexandersen et al. 2014) reported that the 
balance between the convection-dominated heat transfer and 
the diffusion-based heat transfer would affect the optimized 
shape significantly in topology optimization for natural con-
vection problems.

In this study, the Rayleigh number and the Prandtl number 
are introduced to describe the thermal-flow state. The defini-
tions of these dimensionless parameters are given as follows:

(49)
g̃4 = g̃7 = g̃8

= −
1

6

(
4g̃2 + g̃5 + g̃6

)
−

ux

1 + 3uy

(
g̃5 − g̃6

)
.

(50)

g̃2 =g̃5 = g̃6

=
1 + 3uy

6
(
1 − 3uy

)
(
4g̃2 + g̃5 + g̃6

)

+
ux

2
(
1 − 3uy

)
(
g̃5 − g̃6

)
.

(51)

⟨L�, 𝛿𝛾⟩ = ∫
I
∫D

�
3
𝜕𝛼𝛾

𝜕𝛾
u ⋅ m̃

−
3

𝜀g
2

Q−1�

i=0

g̃i
�
gi − g

eq

i

�𝜕K𝛾

𝜕𝛾

�
𝛿𝛾dΩdt.

(52)

⟨S�
q
, 𝛿𝛾⟩ = ∫

I
∫
Γq

qn

36
�
1 − 3uy

�
K2
𝛾

𝜕K𝛾

𝜕𝛾

��
1 + 3uy

��
4g̃2 + g̃5 + g̃6

�
+ 3uy

�
g̃5 − g̃8

��
𝛿𝛾dΓdt,

(53)Ra =
g�ΔTL3

�Kf

for the Rayleigh number which describes the ratio between 
the buoyancy force and the thermal diffusivity, and

for the Prandtl number which describes the relative spread-
ing of viscous and thermal effects. In the above, ΔT  is the 
reference temperature difference, L is the reference length 
scale, and � is the kinematic viscosity of the fluid.

3 � Numerical implementation

3.1 � Optimization algorithm

The numerical procedure of our proposed method is 
described as follows: 

Step 1	� The design variable field � is initialized on the anal-
ysis domain discretized using square lattice mesh.

Step 2	� The state variable fields � , u , T, q are computed 
using the LBM.

Step 3	� The values of the objective functional J and the 
constraint functional G are computed.

Step 4	� The adjoint variable fields 𝜌̃ , j̃ , T̃  , q̃ are computed 
using the ALBM.

Step 5	� The design sensitivities J′ and G′ are computed 
from the state and adjoint variable fields.

Step 6	� The design variable field � is updated using the 
method of moving asymptotes (MMA) (Svanberg 
1987).

Step 7	� The procedure returns to the Step 2 of the iteration 
loop until the following criterion is met: 

 where superscript k represents the number of iterations car-
ried out during the process. In this study, the criterion is set 
to �opt = 0.01 for all numerical examples in Sect. 4.

As for the MMA, it is widely known that the algorithm 
is suited for nonlinear optimization problems with a large 
number of design variables and few constraints. In this 
study, the move limit is set to 0.2, and the otherwise, the 
default values are set in our calculation.

(54)Pr =
�

Kf

(55)
‖‖‖�

k+1 − �k
‖‖‖L∞(D)

⩽ �opt,
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3.2 � Approximate procedure for a steady‑state 
problem

Although the main focus of this study is unsteady natural 
convection problems, we will solve a steady-state natural 
convection problem for the verification of the proposed 
framework in Sect. 4.1. It is known that the computational 
cost can be reduced in LBM-based topology optimization for 
steady-state problems (Yaji et al. 2014; Liu et al. 2014). The 
basic idea of this reduction technique is that the converged 
state and adjoint variable fields at each optimization step are 
used as an initial value for solving the time evolution equa-
tions in the next optimization step.

As for the state variable field, we use the following con-
vergence criteria for the steady-state condition:

where �u and �q represent the criteria for the steady-state 
condition of fluid velocity and heat flux, respectively. Here-
inafter, the state variable fields for the density, velocity, tem-
perature and heat flux under the steady-state condition are 
denoted as �∗ , u∗ , T∗ , q∗ , respectively. At the first optimiza-
tion step ( k = 0 ), (24) and (25) are used as initial conditions, 
and the second step onwards, the converged values of �∗ , u∗ , 
T∗ , q∗ at the former step are used as the initial conditions for 
the current step. In other words, we use the following equa-
tions as the initial conditions:

As for the adjoint variable fields, �∗ , u∗ , T∗ , q∗ are used for 
(41) and (42), and the adjoint variable fields are calculated 
until they converge. The convergence criteria for the steady-
state condition of the adjoint variable fields are defined as 
follows:

where 𝜖j̃ and 𝜖q̃ represent the criteria for the steady-state 
condition of j̃ and q̃ , respectively. Note that since the direc-
tion of the time evolution of the ALBM is opposite with the 

(56)
‖u(x, t + Δt) − u(x, t)‖L2(D)

‖u(x, t)‖L2(D)
⩽ �u,

(57)
‖q(x, t + Δt) − q(x, t)‖L2(D)

‖q(x, t)‖L2(D)
⩽ �q,

(58)fi
(
x, t0

)
= f

eq

i
(x, �∗, u∗),

(59)gi
(
x, t0

)
= g

eq

i
(x, T∗, u∗).

(60)
‖‖j̃(x, t − Δt) − j̃(x, t)‖‖L2(D)

‖‖j̃(x, t)‖‖L2(D)
⩽ 𝜖j̃,

(61)
‖q̃(x, t − Δt) − q̃(x, t)‖L2(D)

‖q̃(x, t)‖L2(D)
⩽ 𝜖q̃,

LBM, the convergence criteria in (60) and (61) are different 
from (56) and (57), in terms of the time step. Using the simi-
lar notation with the state variable fields, the adjoint variable 
fields under the steady-state condition are denoted by 𝜌̃∗ , 
j̃
∗ , T̃∗ , q̃∗ , respectively. Besides, at the second step onwards 

in the optimization process, 𝜌̃∗ , ũ∗ , T̃∗ , q̃∗ calculated at the 
former step are used as the final time values that corresponds 
to the initial condition for the adjoint equations. Hence, we 
employ the following equations for f̃i and g̃i at t = t1:

Finally, the sensitivities for the steady-state problem can be 
expressed as

3.3 � Approximate procedure for a periodic problem

In Sect. 4.3, we will investigate an unsteady natural convec-
tion problem, in which the state variable fields are periodi-
cally steady-state. Ideally, the state variable fields must be 
recorded for all time steps, including the developing phase 
that does not achieve the periodically steady-state, and the 
adjoint equations are then solved using the results of the 
state variable fields. However, it results in prohibitive mem-
ory requirements in large-scale problems.

To suppress the amount of required memory, we 
divide I  into two intervals, namely, the developing inter-
val I0 = [t0, t

†) and the periodically steady-state interval 
I1 = [t†, t1] . In I0 , the state variable fields are stored at the 
final time step only, as our interest is periodically steady-
state. On the other hand, all the state variable fields are 
stored for solving the adjoint equations in I1 . In practice, 
we skip to calculate the state variable fields in I0 and their 
initial conditions at (k + 1)-optimization step are defined as 
those of the final time at k-optimization step. That is, each 
initial condition for the state variable fields are given by

The advantage of using (65) and (66) is that the state vari-
able fields are expected to rapidly achieve periodically 
steady-state, as long as drastically topological changes are 

(62)f̃i
(
x, t1

)
= f̃

eq

i

(
x, u∗, 𝜌̃∗, j̃

∗)
,

(63)g̃i
(
x, t1

)
= g̃

eq

i

(
x, u∗, T̃∗, q̃∗

)
.

(64)

⟨L�, 𝛿𝛾⟩ = ∫D

�
3
𝜕𝛼𝛾

𝜕𝛾
u∗ ⋅ m̃∗

−
3

𝜀g
2

Q−1�

i=0

g̃∗
i

�
g∗
i
− g

eq

i
(T∗, u∗)

�𝜕K𝛾

𝜕𝛾

�
𝛿𝛾dΩ.

(65)f k+1
i

(
x, t†

)
= f k

i

(
x, t1

)
,

(66)gk+1
i

(
x, t†

)
= gk

i

(
x, t1

)
.
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disallowed, in comparison with the case in which the state 
variable fields are initialized every optimization step. Note 
that I0 with t† = t1 is used for computing the state variable 
field at the initial optimization step ( k = 0 ). Additionally, 
the adjoint variable fields are computed in the same manner 
discussed above, and their initial conditions can be given by

Herein, (67) and (68) are used in Sect. 4.3 and are given 
under the assumption that drastically topological changes are 
disallowed. In addition, we define t† as a reasonable value 
for each optimization problem by preliminary computation.

4 � Numerical examples

4.1 � 2D steady‑state problem

We first conduct a verification check of the proposed 
method through comparison with results of the previ-
ous research on a 2D heat sink design problem concern-
ing steady-state natural convection (Alexandersen et al. 
2014). Fig. 2 shows the dimensions and boundary condi-
tions for the analysis domain. Herein, the reference length 
is defined as the height of the analysis domain, namely, 
L = 160Δx . Since the proposed method is developed for 
unsteady flow problems, we suppose that the natural con-
vection is driven by a heat source and finally converges to 
the steady-state flow.

The objective functional is defined as the average tem-
perature at the heated boundary ΓSC:

(67)f̃ k+1
i

(
x, t1

)
= f̃ k

i

(
x, t†

)
,

(68)g̃k+1
i

(
x, t1

)
= g̃k

i

(
x, t†

)
.

Besides, we consider a volume constraint in terms of the 
solid region, given by

where we set vs = 0.5 that corresponds to impose the 50% 
allowable solid volume as a constraint.

The heat flux at ΓSC is set to q0 = 1.0 × 10−2 . The Prandtl 
number Pr and the reference temperature Tref are set to 
6.0 and 0, respectively. The thermal conductivity of the 
solid is set to Ks = 10Kf , where that of the fluid is given 
by Kf = �∕Pr from (54). The kinematic viscosity is set to 
� = 0.1 for all numerical examples in this study. The initial 
configuration is defined as a uniform distribution, � = 0.5 . In 
addition, the parameters �u , �q , 𝜖ũ , 𝜖q̃ relating the convergence 
criteria are all set to 1.0 × 10−6 . It should be noted that the 
parameters mentioned above are different from the previous 
work (Alexandersen et al. 2014) since the LBM used in this 
study is difficult to realize the same � , Kf and Ks settings 
due to the limitation of the BGK model. Other riched LBM 
models, such as the multi-relaxation time (MRT)-LBM (Li 
et al. 2016), may achieve those, but it is beyond the scope 
of this paper.

To avoid generating the checkerboard pattern, we employ 
the density filter (Bourdin 2001), in which the filter radius is 
set to 2.4Δx in this study. Furthermore, we use a Heaviside 
projection (Wang et al. 2011) to remove the grayscale gener-
ated by the density filter, where the threshold parameter � 
is set to 0.5 and the sharpness parameter � is doubled every 
100 optimization steps from 1 to 16.

Let us now discuss the dependency of the optimized 
shapes with respect to the Rayleigh number Ra. Figure 3 
shows the optimized designs for Ra = 2.0 × 103 , 1.0 × 104 
and 5.0 × 104 , respectively. The iteration numbers to achieve 
each optimized design are 893 (Fig. 3a), 565 (Fig. 3b), and 
449 (Fig. 3c), respectively.

As mentioned in the previous work (Alexandersen et al. 
2014), a branched tree-like structure is obtained as the opti-
mized design under a small Ra setting; on the other hand, a 
simple structure composed of smaller and shorter branches 
is obtained under a larger Ra setting. This is because that 
conduction and convection are respectively dominant when 
low and high Ra settings. In fact, as shown in Fig. 4, it can 
be confirmed that the effect of natural convection in terms 
of the magnitude of the fluid velocity is stronger when set-
ting larger Ra.

Table 1 shows the objective functional values of the opti-
mized designs under different Ra settings for a crosscheck. 

(69)J =
∫
ΓSC

TdΓ

∫
ΓSC

dΓ
.

(70)G =
∫
D
(1 − �)dΩ

vs ∫D dΩ
− 1,

Fig. 2   Design settings of the 2D heat sink. The gray region represents 
the fixed design domain D 
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The result indicates that each optimized design is reason-
able as they perform better than the others for its particular 
Ra settings. Consequently, it can be confirmed that the pro-
posed framework can provide appropriate solutions under 
the investigated steady-state condition.

4.2 � 2D transient problem

As the second numerical example, we tackle a 2D heat sink 
design problem concerning transient natural convection, 
which is regarded as an expansion of the steady-state case 
discussed in Sect. 4.1. In Sect. 4.2, we demonstrate that the 
optimized designs considering the undeveloped phase of 
natural convection achieve different shapes in comparison 
with those of the steady-state case.

We consider that the objective functional for the transient 
problem is defined as the time-averaged one of (69):

where, the time interval is set to I =
[
0, t1

]
 , in which we 

investigate the effect of the optimized results with respect 
to t1 . Otherwise, the dimensions and parameter settings are 
same with those of the steady-state problem in Sect. 4.1. 
Note that, for forced convection problems, Zeng et al. (2020) 
demonstrated a transient formulation is effective for instan-
taneous chip cooling problems rather than a steady-state 
formulation.

Figure 5 shows the optimized configurations, and Fig. 6 
shows the velocity magnitude and temperature for three cases 
of t1 . Here, the Rayleigh number is set to Ra = 2.0 × 105 . It 
can be confirmed that the temperature field concentrically 
propagates along with the undeveloped velocity field when 
a small t1 setting. On the other hand, when a large t1 setting, 
the temperature field propagates to the upper region with the 
developed velocity field. Notably, although Ra = 2.0 × 105 
in Fig. 5 is a convection-dominant setting for the steady-state 
case disucussed in Sect. 4.1, conduction-dominant struc-
ture that has many needle-like structure is obtained under a 
small t1 setting. This is because the objective functional in 
this optimization problem is defined as the time integral in 
terms of 

[
0, t1

]
 . Therefore, the undeveloped phase occupies 

the majority of the interval if a small t1 setting.
Table 2 shows the objective functional values of the 

optimized configuration under different t1 settings for a 

(71)J =
∫
I
∫
ΓSC

TdΓdt

∫
I
dt ∫

ΓSC
dΓ

,

Fig. 3   Optimized configurations of the 2D steady-state heat sink

Fig. 4   Distribution of ‖u‖ 
(
×10−3

)
 and T on optimized configurations in the 2D steady-state heat sink

Table 1   Crosscheck of objective functional values for the 2D steady-
state heat sink shown in Fig. 3

Analysis Ra Optimization Ra

2.0 × 103 1.0 × 104 5.0 × 104

2.0 × 10

3 1.0383 1.0643 1.1475
1.0 × 10

4 1.0383 1.0249 1.1011
5.0 × 10

4 0.99462 0.89390 0.85165
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crosscheck. As can be confirmed in Table 2, each optimized 
configuration is reasonable as they perform better than the 
others for its particular t1 settings.

Figure 7 shows the optimized configurations for three 
cases of the Rayleigh number Ra = 5.0 × 104 , 1.0 × 105 and 
2.0 × 105 , respectively. Here, t1 is set to 1.5 × 105 for both 
cases. Similar to the case in the steady-state problem, the 
optimized configuration in the transient problem appears to 
have large convection cells when setting the larger Ra.

Let us discuss the dependency of the optimized configu-
ration with respect to t1 and Ra from the perspective of the 
dominant heat transfer mechanism for the transient prob-
lems. For this, we introduce the cumulative norm of flow 
velocity, Ucn , given by

(72)Ucn = ∫
t1

0

‖u(x, t)‖L2(D)dt.

We use Ucn to evaluate the magnitude of convection in terms 
of the accumulation of the velocity norm at each optimized 
configuration.

Figure 8 shows the relationship between t1 and Ucn for 
three Ra settings, including the optimized shapes at each 
t1 setting. As discussed in Sect. 4.1, since convection plays 
a significant role in the heat transfer when larger t1 and Ra 
settings that correspond to a larger Ucn , it can be confirmed 
that the optimized shapes tend to be simpler. Interestingly, 
around Ucn = 100 in Fig. 8, it can be confirmed that both 
optimized configurations look similar, as can be also seen 
in Figs. 5b and 7b. This result indicates that Ucn can be a 
dominant factor to determine the optimized shape for any 
t1 and Ra settings.

It should be noted that the optimized designs in Figs. 5c 
and 7c contain small grayscale islands. Their effect on per-
formance is negligible since the relative error between the 
optimized design and its binarized one is 0.45%.

To further investigate the obtained result on a different per-
spective, we conduct a high-fidelity analysis using the body-
fitted mesh on the boundary of the optimized designs. Figure 9 
shows comparison results on fluid velocity and temperature 
between the high-fidelity and the original analyses at the final 
time step in the case of t1 = 1.0 × 105 . It can be observed that 
the distributions are similar to each other. On the other hand, 
the relative infinity norms based on each original result, in 
terms of fluid velocity and temperature, are 16.3% and 5.56%, 
respectively. Table 3 shows the crosscheck of the objective 
functional values of the high-fidelity analysis for Fig. 5. The 

Fig. 5   Optimized configurations of the 2D transient heat sink

Fig. 6   Distribution of ‖u‖ 
(
×10−3

)
 and T on optimized configurations in the 2D transient heat sink

Table 2   Crosscheck of objective functional values for the transient 
2D heat sink shown in Fig. 5

Bold type indicates the minimum value for each row

Analysis t1 Optimization t1

5.0 × 104 1.0 × 105 1.5 × 105

5.0 × 10

4 0.49224 0.49445 0.49850
1.0 × 10

5 0.57778 0.57559 0.57568
1.5 × 10

5 0.63970 0.62768 0.61915
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maximum relative error, based on Table 2, is 6.02% between 
the high-fidelity and the original results.

Since the exact boundary is given in the body-fitted model, 
the heat transfer coefficient h can be precisely obtained from 
the high-fidelity analysis. As a useful dimensionless number 
using h, let us now check the Biot number:

where k is the thermal conductivity of the solid, and h is 
calculated as its average in terms of time between 0 and 
1.5 × 105 . According to the previous work on the optimal 
shape of a fin in natural convection (Alexandersen and Sig-
mund 2021), the length of the optimal fin at smaller Bi is 
longer. The Biot numbers of the optimized design for Fig. 5 
are Bi = 0.2903, 0.3351, 0.7550 , respectively. Hence, it 
can be confirmed that our results also have the relationship 
between Bi and the fin length corresponding to the perimeter 
of the solid.

4.3 � 2D periodic problem

As the third example, we treat a 2D micropump design prob-
lem. Figure 10 shows the layout and boundary conditions of 
the micropump design problem, in which the fluid motion 
is driven by the heated boundary condition on the lower left 
side. A similar design setting has already been investigated 
by Alexandersen et al. (2014) for a steady-state problem; on 

(73)Bi =
hL

k
,

Fig. 7   Optimized configurations of the transient 2D heat sink

Fig. 8   Cumulative norm of flow velocity, Ucn , with respect to the end-
ing time t1 , calculated on an initial configuration in the 2D transient 
heat sink. Each optimized shape is displayed on the graph

Table 3   Crosschek of objective functional values for the transient 2D 
heat sink shown in Fig. 5 using the body-fitted mesh

Bold type indicates the minimum value for each row

Analysis t1 Optimization t1

5.0 × 104 1.0 × 105 1.5 × 105

5.0 × 10

4 0.46747 0.46837 0.47130
1.0 × 10

5 0.54470 0.54287 0.54547
1.5 × 10

5 0.60117 0.59357 0.59043

Fig. 9   Velocity(×10−3 ) (left) and temperature (right) distributions on original and body-fitted analyses
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the other hand, we consider an unsteady problem in which the 
temperature is periodically changed as

where, Tl represents the temperature on the lower right 
side, and Th (> Tl) represents the amplitude of the tem-
perature variation. Besides, tp denotes a time for the one 
cycle. In this study, Tl and Th are set to 0 and 1, respectively. 
Note that the reference temperate difference is defined as 
ΔT = Th − Tl = 1 for calculating Ra. The reference tempera-
ture Tref in (7) is given by 

(
Th + Tl

)
∕2 = 1∕2 . In addition, 

the values of Prandtl number and Rayleigh number are set 
to Pr = 1.0 and Ra = 1.0 × 103 , respectively.

Let us introduce the following objective functional for 
designing an unsteady micropump under the periodically 
steady-state interval I1 = [t†, t1] discussed in Sect. 3.3, as 
follows:

where,

and � represents a weight parameter varying from 0 to 1. 
Note that (76, 77) has the negative sign to replace the maxi-
mization problem with the minimization one. Here, the first 

(74)T(t) =
(
Th − Tl

){
1 − cos

(
2�t

tp

)}
+ Tl,

(75)J = �
1

t1 − t† ∫I1

jt(t)dt + (1 − �)

√
V
[
jt(t)

]
,

(76)jt(t) = − ∫
ΓMF

u(t) ⋅ ndΓ,

(77)V[x] =
1

t1 − t† ∫
t1

t†
x(t)2dt −

(
1

t1 − t† ∫
t1

t†
x(t)dt

)2

,

term on the right-hand side in (75) represents the time-aver-
aged mass flow through the boundary ΓMF , and the second 
term represents the standard deviation of the mass flow. 
Therefore, minimizing (75) intends to enhance the mass flow 
as well as to reduce its fluctuation.

Since it is difficult to identify a periodic steady-state con-
dition, we used a fixed t† = 1.0 × 106 determined by our pre-
liminary investigation for this numerical example. As shown 
in Fig. 11, it can be confirmed that the mass flow jt achieves 
the periodic steady-state.

As a constraint, we introduce

where the upper bound of the fluid volume rate is set to 
vf = 0.5 . Besides, the initial configuration is set to � = 0.5.

In contrast to the heat sink design problem discussed 
in Sects. 4.1 and 4.2, we do not use the filter and projec-
tion scheme to the miropump design problem, as there is 
no chance to occur checkerboard pattern in the obtained 
designs. On the other hand, to reduce the intermediate 
relative densities, the parameter q� in (8) is initially set to 
1.0 × 10−6 and multiplied by 10 at every 100 optimization 
steps or until the convergence criterion in (55) is satisfied. 
This procedure is repeated until q� = 1.0 × 10−2 and (55) 
are met.

Figure 12 shows the comparison result of the optimized 
configurations for three cases of the weight parameter, i.e., 
� = 0.25, 0.50, 0.75 . Here, the time of the one cycle is set to 
tp = 5.0 × 104 . The influence of � on the obtained configu-
rations can be interpreted as follows. When the parameter 
� is a relatively small value, J in (75) tends to emphasize 
the standard deviation of the mass flow across ΓMF . There-
fore, more solid parts should be located around the heated 
boundary to reduce the fluctuation of the mass flow through 
ΓMF . On the other hand, when the parameter � is a relatively 

(78)G =
∫
D
�dΩ

vf ∫D dΩ
− 1,

Fig. 10   Design settings of the 2D periodic micropump. The gray 
region represents the fixed design domain D 

Fig. 11   The behavior of mass flow jt overall time in the 2D periodic 
micropump at ζ = 0.25
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large value, J in (75) tends to emphasize the amount of the 
mass flow across ΓMF . In this situation, the flow channel 
must be heated quickly to boost the upwind flow by natural 
convection to enhance the amount of the mass flow through 
ΓMF . Consequently, the optimized shape of the flow channel 
becomes symmetrical about the vertical midplane.

Figure 13 represents the variation of the mass flow jt(�) , 
in which � = t − t† is defined, observed at the cross-section 
ΓMF in the optimized configuration for the one cycle tp . In 
addition, the dashed lines in Fig. 13 represent the time-aver-
age value of jt(�) for the three cases and are given by

As shown in Fig. 13, the oscillation jt(�) and each average 
value jt increase as the weight parameter � increases.

Figures 14 and 15 show variations of the temperature dis-
tribution with the velocity vectors in the optimized configu-
rations for two cases of weight parameter � = 0.25 and 0.75, 
respectively. For the case of the lower weight � = 0.25 , the 
flow channel is located to circumvent the heated boundary. 
This is because the main purpose of the case of � = 0.25 is 
to reduce the variation of jt , which corresponds to avoiding 
the region of the large fluctuated T. Consequently, almost a 
uniform norm of the flow velocity can be observed through-
out the channel, as shown in Fig. 14. On the other hand, 
for the case of the higher weight � = 0.75 , the fluid pass-
ing through the channel is heated effectively, and a large 
amount of mass flow is transformed to the observation line 
ΓMF . It should be noted that the biases on the temperature 
are observed in Figs. 14 and 15, since the distribution of the 

(79)jt =
∫ tp

0
jt(�)d�

tp
.

Fig. 12   Effect of � settings on optimized configurations in the 2D 
periodic micropump

Fig. 13   Variation of the mass flow jt with respect to � = t − t† 
observed at the cross-section ΓMF in Fig. 10b

Fig. 14   Temperature distribution along with flow velocity vectors on an optimized configuration for � = 0.25
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design variable field slightly contains grayscale at the lower 
left region shown in Fig. 12.

Table 4 shows the crosscheck for Fig. 12, and it can be 
confirmed that the optimized configurations for the periodic 
problem perform better than other for its particular values 
of �.

Figure 16 shows the comparison result of the optimized 
configurations for three cases of time of the one cycle, i.e., 
tp = 1.0 × 105, 2.5 × 104, 5.0 × 103 . Here, the weight param-
eter is set to � = 0.5 . As shown in Fig. 16, the obtained con-
figuration becomes symmetry about the vertical midplane 
as tp decreases, which is close to the configuration for the 
higher case of � as seen in Fig. 12c. This result indicates that 
tp would affect the ratio of the standard deviation of the mass 
flow jt(t) to the time-average of jt(t) . In fact, the ratio of the 
second term to the first term in (75) for the three cases of 
tp , i.e., 1.0 × 105, 2.5 × 104 and 5.0 × 103 are 0.238, 0.0867 
and 0.0135, respectively. Such a response can be understood 
from the physical point of view as follows. As tp decreases, 
the boundary condition applied on the lower left side is close 
to the constant temperature condition, which corresponds to 
a steady-state problem. As a result, the standard deviation of 

the mass flow decreases. On the other hand, as tp increases, 
much time is given for developing convection, so the stand-
ard deviation of the mass flow increases. Table 5 shows the 
crosscheck for Fig. 16, and it can be confirmed that the opti-
mized configurations for the periodic problem perform better 
than other for its particular values of tp.

4.4 � 3D transient problem

As the last example, we investigate the applicability of the 
proposed method for a 3D heat sink design problem con-
cerning transient natural convention, while the 2D case 
has already been discussed in Sect. 4.2. In addition, we 

Fig. 15   Temperature distribution along with flow velocity vectors on an optimized configuration for � = 0.75

Table 4   Crosscheck of objective functional values ( ×10−5 ) for the 2D 
unsteady micropump shown in Fig. 12

Bold type indicates the minimum value for each row

Analysis � Optimization �

0.25 0.50 0.75

0.25 − 2.4820 −2.1288 −1.2494
0.50 −6.1628 −6.5770 −6.2584
0.75 −9.8436 −11.025 −11.267

Fig. 16   Effect of tp settings on optimized configurations in the 2D 
periodic micropump
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demonstrate that our transient formulation is effective for 
rapid cooling concerning natural convection, as discussed in 
the previous work on forced convection (Zeng et al. 2020). 
The objective functional J and the related parameter set-
tings are similar to those of the 2D problem. The volume 
constraint in (70) is imposed using vs = 0.05 , and the initial 
configuration is set to � = 0 that corresponds to the fulfilled 
solid in D and is effective in quickly spreading the tempera-
ture distribution to the entire analysis domain. Herein, the 
heat flux applied to ΓSC is set to q0 = 1.5 × 10−2 . Figure 17 
shows the problem layout with dimensions and boundary 

conditions for the analysis domain. Note that a similar prob-
lem has already been investigated by Alexandersen et al. 
(2016) for steady-state problems. The different setting of our 
study compared with that of the previous work is the design 
domain in contact with the bottom boundary. This is because 
we suppose that the 3D problem is a natural expansion from 
the 2D problem setting shown in Fig. 2.

For effectively solving the 3D problem concerning 
unsteady natural convection, we use a supercomputer, 
SQUID (Supercomputer for Quest to Unsolved Interdis-
ciplinary Datascience), owned by Osaka University. This 
study uses 128 CPU nodes with 64 cores per 1 node, and 
the LBM and the ALBM are implemented using the mes-
sage passing interface (MPI) for parallel computing. For 
reference regarding the computational time in the following 
numerical examples, one optimization step takes about 35 s 
for t1 = 5.0 × 104 case and 90 s for t1 = 1.0 × 105 case. In 
this 3D problem, the maximum memory requirement for 
deriving the sensitivity is approximately 16TB, under about 
1.1 × 106 lattice points. Due to the usable computational 
resources, the maximum number of optimization iterations 
is set to 500. In addition, the calculation domain is given as 

Table 5   Crosscheck of objective functional values ( ×10−5 ) for the 2D 
unsteady micropump shown in Fig. 16

Bold type indicates the minimum value for each row

Analysis tp Optimization tp

1.0 × 105 2.5 × 104 5.0 × 103

1.0 × 10

5 − 5.8284 −5.7328 −5.3677
2.5 × 10

4 −7.0354 −7.2249 −6.8729
5.0 × 10

3 −7.5206 −7.8380 −7.9645

Fig. 17   Design settings of the 
3D heat sink. The gray region 
represents the fixed design 
domain D 
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the quarter block of the analysis domain in Fig. 17, using the 
symmetrical boundary condition.

Figure 18 shows the optimized configurations with the 
temperature distribution on a x-y plane for different Ra 
and t1 settings. Besides, Fig. 19 shows the temperature 
distribution along with the streamlines developed around 
the optimized heat sink, and Fig. 20 is top views of the 
temperature distribution on each optimized configuration. 
From these results, it can be confirmed that the optimized 
shape changes significantly with increasing Ra and t1 . In 
fact, when the observation time t1 is large or the number 
Ra increases, the number of branches decreases, which can 
be found by comparing Figs. 20a and b, and the optimized 
shape forms higher vertical plates with a larger surface 
area standing along with the upwind flow. In other words, 

a leaf-like shape can be obtained as the optimized design 
under the larger Ra and t1 settings.

Figure 21 shows the relationship between t1 and Ucn 
determined by (72) for two Ra settings, including the opti-
mized shapes at each t1 setting. Similar to the 2D problem 
discussed in Sect. 4.2, the optimized designs depend on 
the magnitude of the heat convection effect. That is, the 
branched tree-like structure is obtained for the smaller set-
tings of Ra and t1 that correspond to a situation on the heat 
conduction dominant. On the other hand, for the larger 
settings of them, the leaf-like structure is obtained owing 
to the heat convection dominant.

Next, let us compare with the result of a steady-state 
case. Figure 22 shows the result of steady-state case for 
Ra = 1.0 × 105 setting. Herein, the common parameters 
with the transient case are identical, and the specific ones 

Fig. 18   Optimized configurations of the 3D transient heat sink

Fig. 19   Temperature distribution on streamlines in optimized configurations
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for the steady-state problem are similar to the 2D problem 
in Sect. 4.2. The volume of both the optimized designs is 
almost the same since the volume constraint is active.

Figures 23 and 24 show the time-variation of the average 
temperature on the heated boundary ΓSC located at the centre 
bottom of the heat sink. Here, “Steady” represents the result 
for the optimized design obtained on the steady-state condi-
tion, and “Unsteady” is the transient problem under the same 
Ra settings with the steady-state case.

Figure 23 and 24 show that the average temperature 
is converged around 50,000–75,000, namely, 50–75% of 
the maximum time steps in the transient problem. From 
these results, it can be found that the average temperature 
T for the transient case is always smaller than that for the 
steady-state case up to t = t1 . On the other hand, these 
results are close to each other when t > t1 , and the mag-
nitude relationship is finally reversed. This result implies 
that if one wants to lessen the temperature on a heated 

Fig. 20   Temperature distribution on the solid domain of optimized configurations

Fig. 21   Cumulative norm of flow velocity, Ucn , with respect to the 
ending time t1 , calculated on an initial configuration in the 3D tran-
sient heat sink. Each optimized shape is displayed on the graph

Fig. 22   Optimized configurations of the 3D steady-state heat sink

Fig. 23   Average temperature at the heat source boundary of opti-
mized configurations for Ra = 1.0 × 105 in the 3D steady-state and 
unsteady heat sinks. The ending time of the unsteady case is set to 
t1 = 5.0 × 104
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plate quickly, a heat sink composed of slender trees with 
branches is effective to enhance the heat transfer via con-
duction; on the other hand, if one wants to lessen the tem-
perature gradually but sufficiently, a heat sink composed 
of wider leaves is effective to enhance the heat transfer by 
convection.

5 � Conclusion

In this study, we proposed a topology optimization method 
using the LBM for unsteady natural convection problems. 
We introduced the ALBM, in which the discrete velocity 
Boltzmann equations are employed to derive the design 
sensitivities. In addition, we presented detailed numerical 
implementation strategies, including approximate proce-
dures to solve efficiently. As a verification check for our 
proposed method, we solved a steady-state problem and 
confirmed characteristics of the result being as same as 
those in previous works using the FEM. To demonstrate 
the efficacy of the proposed method, we tackled several 
examples concerning unsteady natural convection and 
achieved the following: 

(1)	 In a 2D transient problem, we showed that the cumula-
tive norm of flow velocity could be used to explain the 
dominant heat transfer mechanism on each optimized 
configuration. That is, the larger the Rayleigh number 
or the longer the observation time is considered, the 
more dominant mechanisms change from conduction 
to convection in optimized configurations.

(2)	 We proposed an objective functional defined as a 
weighted sum of the time-averaged flow rate and the 

deviation to solve a 2D periodic problem. Under using 
the proposed objective functional, we revealed that the 
weight parameter affects the optimized configurations, 
whose shapes can be explained from the physical view-
point.

(3)	 We demonstrated the applicability of the proposed 
method in a 3D transient problem, in which the analy-
sis domain is discretized using about one million grid 
points with up to one hundred thousand time steps. Fur-
thermore, we showed that the proposed method could 
lead to better results than the steady-state case in terms 
of the cooling speed.
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