
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization           (2023) 66:99  
https://doi.org/10.1007/s00158-023-03534-8

RESEARCH PAPER

Efficient spline design via feature‑mapping for continuous 
fiber‑reinforced structures

Jannis Greifenstein1,2   · Eloïse Letournel3 · Michael Stingl1,2 · Fabian Wein1,2

Received: 22 August 2022 / Revised: 16 February 2023 / Accepted: 24 February 2023 
© The Author(s) 2023

Abstract
We present a feature-mapping topology optimization approach, in which curved features are parametrized as piecewise linear 
splines smoothly rounded by arcs. The motivation for our contribution to the tool set of feature-mapping methods is the 
optimization of structures manufactured by variable angle continuous fiber-reinforced filaments. For this reason, the feature’s 
geometry should be able to represent long, curved fiber objects satisfying manufacturing constraints, such as minimum 
turning radius. The proposed model has been chosen with special care for rigorous continuous differentiability, as well as an 
efficient analytical evaluation of the signed distance field to the spline. The geometrical description and sensitivity analysis 
of the spline model are developed fully analytically and then mapped to a discretized pseudo-density field for finite element 
analysis. For the fiber-reinforced material formulation, we also present a new combine step for individual features, in which 
the best possible angle for the combined features is searched. The model and results are presented in a two-dimensional 
setting.

Keywords  Topology optimization · Fiber reinforced · Composites · Feature-mapping

1  Introduction

The aim of this work is to extend existing feature-mapping 
methods, with a focus on the optimal design layout for con-
tinuous fiber-reinforced polymers (CFRP). We first give a 
brief overview about current approaches for continuous fiber 
design to motivate our feature-mapping approach.

Owing to their large stiffness to weight ratio, the past 
decades have seen a vast amount of works considering the 
optimization of composite materials. A first area of focus 
was the design of fiber directions within a fixed geometric 
configuration, such as beams or plates (see, e.g., (Nikbakt 

et al. 2018; Venkataraman and Haftka 1999) and the refer-
ences therein). More recent composite manufacturing tech-
niques have allowed for the steering of fiber paths, however 
introducing additional manufacturing constraints. The most 
significant from an optimal design perspective start with a 
prescribed minimum turning radius of the fibers, which is 
needed to prevent process-induced defects. Additionally, 
gaps and overlaps between fiber paths should be avoided, 
meaning that fiber paths should be close to parallel. Lastly, 
it is not possible to lay the fibers in a controlled manner if 
their length is shorter than a certain value called minimum 
cut length. For a comprehensive review on modeling and 
design considerations for fiber-steered composite laminates, 
see (Aragh et al. 2021) and the references therein.

Within the framework of layout optimization for compos-
ite structures with curved fiber paths, one major approach 
has been the so-called continuous fiber angle optimiza-
tion (CFAO), in which the fiber orientations are continu-
ous design variables that can vary throughout the structure. 
These field-based approaches may be seen as a direct exten-
sion of the greatly successful density-based topology opti-
mization (see Bendsøe and Sigmund 2003) for anisotropic 
element densities with local optimal material orientation. 
While these methods provide good results, they also lead 
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to a couple of inherent difficulties. Firstly, due to the exist-
ence of local minima of the strain energy with respect to 
material orientation, angle optimization is rather susceptible 
to local optima, which is well analyzed in Stegmann and 
Lund (2005). Secondly, the angle formulation is 2�-peri-
odic, meaning that, e.g., both 0 and 2� represent the same 
orientation. While this drawback is largely remedied by the 
formulation in Nomura et al. (2015) using Cartesian instead 
of polar coordinates and by Smith and Norato (2022) using 
quaternions, in linear elasticity the material parameters are 
still subject to a �-periodicity as well. A solution to this 
would be to formulate design filtering directly for the mate-
rial tensor as done in Jantos et al. (2020) or averaging the 
material tensors as in Smith and Norato (2021, 2022). How-
ever, this has the disadvantage of requiring a recovery step in 
order to obtain a material orientation angle again. Lastly, it 
is quite challenging to implement manufacturing constraints 
in the CFAO framework, with a couple of works trying to 
tackle this issue. To restrict the maximum curvature, slope 
constraints as well as convolution filters can be used, as 
shown in Greifenstein and Stingl (2016). Nevertheless, 
CFAO results can be still quite far away from fiber printing 
paths, with a number of publications studying different post-
processing techniques to obtain continuous fiber paths from 
orientation fields (see Papapetrou et al. 2020; Boddeti et al. 
2020; Fedulov et al. 2021; Fernandes et al. 2021). Another 
notable method to introduce manufacturing constraints into 
CFAO is detailed in Tian et al. (2019), which uses angular 
constraints similar to slope constraints to mimic gap overlap 
and curvature constraints for tow-steered composite panels. 
Furthermore, Fernandez et al. (2019) suggest a formulation 
including manufacturing constraints for direct ink writing 
which is able to provide toolpaths, however without optimiz-
ing the topology.

The goal of this work will be to develop a formulation, 
which allows for a more direct consideration of 
manufacturing constraints than CFAO, while at the 
same time reducing the gap between optimization result 
and interpretation as fiber paths. Even though we will 
not go all the way to a manufacturable structure yet, the 
advances in this article can still be seen as an important 
intermediate step in this direction. The basic idea of this 
work is the optimization of a set of parallel fiber bundles 
with a prescribed maximum curvature. For the numerical 
evaluation, these sets of parallel fiber bundles will be 
mapped to a pseudo-density field, leading to the class of 
feature-mapping methods.

Feature-mapping methods share the elegance of 
optimizing explicitly parametrized objects (typically 
primitives like circles and bars), thus allowing for close 
control on the designs. On the other hand, mapping the 
features to a fixed pseudo-density discretized on a fixed 
grid allows to benefit from sensitivity analysis as known 

in density-based topology optimization and helps avoid/
handle issues like remeshing and topological changes arising 
in classical shape optimization. The mapping is performed 
by integrating for each finite element the signed distance 
function to the boundary of the geometrical object subject 
to a nonlinear boundary function. This requires the exact 
distance (and its sensitivity) for each integration point. Not 
all geometrical models take care for a strict differentiability 
of the distance function. This sketched hybrid approach 
of analytical objects with late discretization has been 
presented in recent years by several authors with individual 
terminology, we refer to the review article (Wein et al. 
2020). In density-based topology optimization, a specific 
approach needs decisions in kind and parametrization of 
regularization, penalization, and used optimization solver. 
Similarly, a specific feature-mapping optimization needs 
decisions on the determination of the signed distance 
field, shape boundary smoothing, combination of features, 
numerical integration, and elimination of superfluous design 
elements. Our contribution is focused on the signed distance 
field and combination of features issues. For the other topics, 
we apply default variants but refer to more sophisticated 
solutions, e.g., with respect to object elimination.

A formulation of a feature-mapping method has already 
been successfully applied for the optimization of fiber-
reinforced composites in Smith and Norato (2021). There, 
in contrast to our work, the fibers are modeled by a set of 
individual straight bars, while we will model long, curved 
fiber objects. This will also give us control of the fiber 
length following the curved path. We note, however, that an 
accurate representation of minimum cut length constraints 
would further require the rounded shapes to stay entirely 
within the domain, which can be achieved using constraints 
as suggested in Zhang et al. (2018).

In principle, splines, B-splines, and Bézier curves (we 
summarize them as splines here) are a very natural class 
of objects to be applied for feature-mapping, starting with 
Garcia and Gonzalez (2004) (but there without sensitivities). 
However, they generally suffer from an expensive evalua-
tion of a finely resolved signed distance field, as no closed 
analytical distance formula exists for general splines and 
Bézier curves. In Zhu et al. (2021), Bézier curves are used 
in a feature-mapping approach, but the distance needs to be 
computed by an iterative search for every point in space. In 
Guo et al. (2016), curved analytical geometries are mapped 
with X-FEM (among other geometries); however, no closed 
distance function can be given either. In order to obtain an 
efficient and differentiable signed distance field, we choose 
similar to Wein and Stingl (2018) a first-order (piecewise 
linear) spline where the closest distance from arbitrary 
points within the whole spacial domain is trivial to obtain. 
To still generate a sufficiently smooth curvature, in the men-
tioned paper, the first-order spline is parametrized using a 



Efficient spline design via feature‑mapping for continuous fiber‑reinforced structures﻿	

1 3

Page 3 of 14     99 

large number of design parameters. In the present approach, 
we use a small number of parameters, but insert arcs in 
between the straight linear objects to smooth the design 
objects. This allows us to obtain full differentiability of the 
signed distance field while keeping the numerical efficiency 
provided by the linear spline formulation. As a side effect, 
we gain control on the minimum turning radius of the fibers 
demanded from manufacturing.

We chose to term our parametrized design objects 
spaghetti (spaghetto for singular). Alternative formulations 
like feature, design object, or spline object appear in our 
context rather unspecific and generic. Furthermore, we find 
the association suitable of long, slim flexible objects which 
can be aligned and possibly stick against each other.

In Sec. 2, we present the modified spline model and derive 
the corresponding derivatives in Sec. 3. In Sec. 4, we apply 
a standard feature-mapping interface smoothing. Thereafter, 
we state both a classical isotropic and an adapted anisotropic 
material formulation in Sec.  5. For the combination of 
multiple spaghetti, we restate in Sec. 6 classical combination 
techniques for the isotropic material formulation and 
propose a novel approach for the combination of oriented 
anisotropic material. The proposed geometry is described 
by continuous, mesh-independent functions until here and 
we derive the associated mapping to a fixed grid in Sec. 7. 
Finally we present the compliance problem formulation in 
Sec. 8 and a numerical benchmark example in Sec. 9.

The full source code of the presented approach is publicly 
available as part of the academic finite element simulation 
and optimization package openCFS.

2 � Curved feature construction

In this section, we describe the construction of the curved 
feature from a first-order spline. We start out by defin-
ing a straight line between two design points P and Q in 
ℝ

2 . In order to get more design flexibility of a single fea-
ture, we split the line into m ∈ ℕ equidistant sections. For 
these sections, we then define additional design parameters 
ai ∈ ℝ, i = 1,… ,m − 1 representing a vertical deflection 
from the straight line PQ and obtain a piecewise linear 
spline. For the purpose of differentiability and to obtain 
a smoother design appearance, we round out the corners 
between sections using circular arcs. The arcs have a fixed 
prescribed radius r and are fitted to match the tangents 
of the piecewise linear line feature. Finally, for a profile 
width parameter p ∈ ℝ , the smoothed piecewise line 
will be dilated by p/2 in all directions from the center 
line, resulting in rounded ends. This means also that we 
have half circles at the ends, in order to obtain a fully 

differentiable signed distance field. Although this issue is 
neglected in many publications, it is addressed in similar 
fashion by Norato et al. (2015) and other authors. As we 
will see in the following, this construction will allow for 
an efficient distance evaluation to the spaghetti. An illus-
tration of the construction idea is shown in Fig. 1.

For the more technical construction of the exact shape, 
we define a number of quantities derived from the design 
parameters P,Q, ai, i = 1,… ,m − 1 and p, which are also 
depicted in Fig. 1, with their definitions detailed within 
the next paragraphs. Furthermore, in order to check which 
points are part of the dilated spaghetto and to obtain design 
gradients, we will need to derive a formula for the distance 
from the center line.

To this end, we start by introducing a local coordinate 
system u

0
, u⊥

0
 in longitudinal and vertical directions of the 

shape:

With this, the summit points Hi, i = 1,… ,m − 1 can be 
written as

Note that, letting a0 = am ∶= 0 , this formula also yields 
H0 = P and Hm = Q.

Further, we define the normalized vectors ti, i = 1,…m in 
tangential direction of the straight shape segments

u ∶= Q − P =

�
Qx − Px

Qy − Py

�
, u

0
∶=

1

‖u‖
u,

u
⊥

0
∶=

1

‖u‖

�
Py − Qy

Qx − Px

�

Hi = P +
i

m
u + aiu⊥

0
.

Fig. 1   Illustration of a single spaghetto
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For the computation of the center points of the circular 
sections Ci , we first calculate the distance from Hi to Ci by 
calculating the angle �i in the triangle marked in light blue 
in Fig. 2:

where ⋅ denotes the scalar product. Using trigonometric 
identities in the same triangle, we get

Lastly, we know that Ci lies on the bisecting line between ti 
and ti+1 . The vector ti+1 − ti is showing in the direction we 
need, as long as ti+1 ≠ ti . Thus, we obtain

Even though Ci is not well defined for the case of ti+1 = ti , 
the spaghetto still is, as we have a straight line of segments 
and the arc vanished. Although for this case Ci makes a jump 
from one side of the spaghetto to the other when ai changes 
sign, the distance function remains continuous. Using Ci , 
for any point x ∈ ℝ

2 within the circular sector around Ci 
containing the arc segment of the spaghetto, i.e., for

t
i ∶=

1

‖Hi − Hi−1‖
(Hi − Hi−1)

=

1

m
u + (ai − ai−1)u⊥

0

‖ 1

m
u + (ai − ai−1)u⊥

0
‖
.

�i =
1

2
arccos

(
−t

i
⋅ t

i+1
)
, i = 1,… ,m − 1

sin(�i) =
r

‖Ci − Hi‖
.

Ci = Hi + ‖Ci − Hi‖ ti+1 − ti

‖ti+1 − ti‖

= Hi +
r

sin(�i)

ti+1 − ti

‖ti+1 − ti‖
.

we can compute the distance to the center line of the 
spaghetto as

As with the previous definitions of Ei and Hi , we extend the 
definition of Ci using

Finally, the distance of a point x to the beginning and 
endpoint of the spaghetti is

respectively.
In order to compute the distance to the straight line 

segments, we first define the corresponding normal vectors 
to each segment as

This allows us to easily compute the distance d from any 
point x to the line linking Hi and Hi−1 as

However, Hi and Hi−1 are not actually part of the spaghetto’s 
center line as can be seen in 1. This means this distance 
formula to a segment i only holds if the point x lies in 
between the lines perpendicular to ti passing through Ci−1 
and Ci , respectively. This condition can be expressed as

Putting things together, we get as formula for the distance of 
a point x to the center line of a spaghetto

Finally, we need another constraint to ensure that the formu-
lation given above cannot degenerate. While the maximum 
curvature of the center line is prescribed by the radius, it 
might happen that the control polygon oscillates so much 

(x − Ci) ⋅ ti < 0 and (x − Ci) ⋅ ti+1 > 0,

d(x) = �‖x − Ci‖ − r�.

C0 ∶= P, Cm ∶= Q.

d(x) = ‖x − P‖, d(x) = ‖x − Q‖,

n
i ∶=

(
−ti

y

ti
x

)
.

d(x) = |(x − Hi) ⋅ n
i
|.

(x − Ci) ⋅ ti ≤ 0 and (x − Ci−1) ⋅ ti ≥ 0.

(1)

d(x) = min

�
min

i = 1,… ,m ∶

(x−Ci)⋅ti≤0

(x−Ci−1)⋅ti≥0

�(x − Hi) ⋅ ni�,

min
i = 1,… ,m − 1 ∶

(x−Ci)⋅ti<0

(x−Ci)⋅ti+1>0

�‖x − Ci‖ − r�,

‖x − P‖, ‖x − Q‖
�
.

Fig. 2   Computation of Ci
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that the straight line segments disappear and the arc elements 
overlap. Fig. 3 is an example, in which the first two straight 
segments basically disappear. For the limiting case, in which 
a straight segment i exactly vanishes (i.e., it has length 0), we 
know that the circles around the adjacent Ci−1 and Ci touch 
the line Hi−1Hi at the same point. Consequently, (Ci − Ci−1) 
is vertical to (Hi − Hi−1) , i.e., (Ci − Ci−1) ⋅ (Hi − Hi−1) = 0 . 
This can be seen quite nicely in Fig. 3. If the straight seg-
ment now has positive length, we can see that (Ci − Ci−1) tilts 
further in the direction of (Hi − Hi−1) , i.e., the scalar product 
(Ci − Ci−1) ⋅ (Hi − Hi−1) becomes positive. Hence, we can set 
up a constraint for the non-degeneration as

Note that as we defined C0 ∶= P and Cm ∶= Q , the 
inequality may be written this exact same way for the first and 
last segment.

3 � Differentiability and derivatives

The first goal is to differentiate the distance function w. r. t. 
the control variables of the spaghetti spline. In order to get 
there, we start with the derivatives of the different quantities 
appearing either directly or indirectly in the distance 
formula. Firstly, we have stated the primitive derivatives in 
Table 1, which will later be reused in the derivatives of the 
more complex quantities in order to keep them simpler.

In continuation, it is easily seen that

Using these primitives, we can compute the derivatives of 
the more complex expressions. For the segment vectors ti 
we have

as derivatives w. r. t. the control point variables Px,Py,Qx 
and Qy . W. r. t. ai , the non-zero values are

(Ci − Ci−1) ⋅ (Hi − Hi−1) ≥ 0, i = 1,… ,m.

‖Hi − Hi−1‖ =

�
‖u‖2
m2

+ (ai − ai−1).

𝜕ti

𝜕 ⋅
=

1

m

𝜕u

𝜕 ⋅
+ (ai − ai−1)

𝜕u0
⊥

𝜕 ⋅

‖Hi − Hi−1‖

−
(Hi − Hi−1)

‖u‖
m2‖Hi−Hi−1‖

𝜕‖u‖
𝜕 ⋅

‖Hi − Hi−1‖2

Fig. 3   Potential degeneration of the center line, when control points 
oscillate strongly and arcs start touching or even overlapping. The 
straight line segment disappears

Table 1   Derivatives of different 
quantities used in spaghetti 
definition

⋅

u =

(
Q

x
− P

x

Q
y
− P

y

) ‖u‖ u
0
=

u

‖u‖ u
0
⊥ =

(
−u

0
y

u
0
x

)
H

i = P +
i

m
u + a

iu
0
⊥

�⋅

�P
x

(
−1

0

) −u
x

‖u‖ ⎛
⎜
⎜
⎝

−
u
2

y

‖u‖3
u
x
u
y

‖u‖3

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

−
u
x
u
y

‖u‖3

−
u
2

y

‖u‖3

⎞
⎟
⎟
⎠

(
1 −

i

m

0

)
+ a

i 𝜕u0
⊥

𝜕P
x

� ⋅

�P
y

(
0

−1

) −u
y

|u|

� u
x
u
y

�u�3

−
u
2

x

‖u�3

� �
u
2

x

�u�3
u
x
u
y

‖u‖3

� (
0

1 −
i

m

)
+ a

i 𝜕u0
⊥

𝜕P
y

� ⋅

�Q
x

(
1

0

)
u
x

‖u‖ ⎛
⎜
⎜
⎝

u
2

y

‖u‖3

−
u
x
u
y

‖u‖3

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

u
x
u
y

‖u‖3
u
2

y

‖u‖3

⎞
⎟
⎟
⎠

(
i

m

0

)
+ a

i 𝜕u0
⊥

𝜕Q
x

� ⋅

�Q
y

(
0

1

)
u
y

‖u‖

�
−

u
x
u
y

‖u‖3
u
2

x

‖u‖3

� �
−

u
2

x

‖u‖3

−
u
x
u
y

‖u‖3

� (
0
i

m

)
+ a

i 𝜕u0
⊥

𝜕Q
y

� ⋅

�aj

(
0

0

)
0

(
0

0

) (
0

0

) {
u
0
⊥

if j = i

0 else
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By definition, we have

Lastly, the derivatives of �i and Ci are all defined for 
i = 1,… ,m − 1 using the previous quantities:

Note that both ��i

�aj
 and �Ci

�aj
 are only non-zero for 

j ∈ {i − 1, i, i + 1}.
These prerequisites now finally allow us to state the 

derivatives of the distance function to the spaghetti’s center 
line, which has the following piecewise form depending on the 
position of x:

Although we have stated a lot of different sensitivities 
for the constructed properties C,H, t, n , they need to be 
precomputed only once per iteration and can then be inserted 
into the sensitivity formula of the distance function, which 
is evaluated for each integration point and hence much more 
often.

4 � Smooth boundary transition

Up to here, we have described an exact geometry, which 
would have material inside the dilated spaghetti and void 
outside. In order to obtain a differentiable formulation, we 
change this shift from full material (pseudo-density 1) to 

𝜕ti

𝜕ai−1
=
−u

0
⊥‖Hi − Hi−1‖ + (Hi − Hi−1)

ai−ai−1

‖Hi−Hi−1‖

‖Hi − Hi−1‖2

𝜕ti

𝜕ai
=
u
0
⊥‖Hi − Hi−1‖ − (Hi − Hi−1)

ai−ai−1

‖Hi−Hi−1‖

‖Hi − Hi−1‖2
.

�ni
x

� ⋅
=

−�ti
y

� ⋅
,

�ni
y

� ⋅
=

�ti
x

� ⋅
.

��i

� ⋅
=
ti ⋅

�ti+1

� ⋅
+ ti+1 ⋅

�ti

� ⋅

2
√
1 − (ti+1 ⋅ ti)2

�Ci

� ⋅
=
�Hi

� ⋅
+

r
�

�ti+1

� ⋅
−

�ti

� ⋅

�

sin �i‖ti+1 − ti‖

−
r cos �i

(sin �i)2
��i

� ⋅

ti+1 − ti

‖ti+1 − ti‖

−
r
�
ti+1 − ti

�
⋅

�
�ti+1

� ⋅
−

�ti

� ⋅

�

sin �i‖ti+1 − ti‖3
�
t
i+1 − t

i
�
.

(2)�d

� ⋅
=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

sign
�
(x − Hi) ⋅ ni

��
(x − Hi) ⋅

�ni

� ⋅
−

�Hi

� ⋅
⋅ ni

�
x closest to line segment Hi−1Hi

sign
�
‖x − Ci‖ − r

� (Ci−x)⋅
�Ci

� ⋅

‖x−Ci‖ x closest to arc segment around Ci

(P−x)⋅
�P

� ⋅

‖x−P‖ x closest to endpoint P

(Q−x)⋅
�Q

� ⋅

‖x−Q‖ x closest to endpoint Q

void (pseudo-density 0) to a smooth transition introducing 
a transition length h and a polynomial boundary function 
as interpolation as suggested in Wein et al. (2020) (Fig. 4):

with the corresponding derivative

𝜎poly(d(x)) =

⎧
⎪
⎨
⎪
⎩

1
3

4

�
d(x)−p∕2

h
−

(d(x)−p∕2)3

3h3

�
+ 0.5

0

⎧
⎪
⎨
⎪
⎩

if 0 ≤ d(x) ≤ p∕2 − h

if p∕2 − h ≤ d(x) ≤ p∕2 + h

if d(x) > p∕2 + h

 
The effective pseudo-density � can then be defined 

directly as �poly(d(x)) or an additional penalty function 
can be used in order to further discourage overlapping 
boundary regions. For the results in this work, we use the 
so-called RAMP scheme, i.e.,

𝜕𝜎poly(d(x))

𝜕d
=

⎧
⎪
⎨
⎪
⎩

0 if 0 ≤ d(x) ≤ p∕2 − h
3

4

�
1

h
−

(d(x)−p∕2)2

h3

�
else

0 if d(x) > p∕2 + h.

Fig. 4   Illustration of the smooth boundary transition
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with penalty parameter q = 3 . In classical density-based 
topology optimization, for the static case almost any penaliz-
ing interpolation function results in a distinct topology – the 
only requirement is the avoidance of the non-physical lin-
ear weight to density relationship. To approximately model 
the physical relationship, RAMP fits much better than the 
common power law, see (Bendsøe and Sigmund 1999) and 
Wein et al. (2020). However, the impact on the final design 
is minor.

5 � Material formulation

We consider both isotropic as well as anisotropic material 
properties. In the simpler case of isotropic material, the 
effective elasticity tensor generated by our shapes is

for some given isotropic elasticity tensor Ciso.
Furthermore, we would like to use an anisotropic 

material motivated by carbon fiber-reinforced polymers 
(CFRP). For this material, we would like to prescribe the 
carbon fiber reinforcement to be aligned with the direc-
tion of the center line of our spaghetto. Hence, for CFRP, 
we assume a transversely isotropic elasticity tensor, which 
we will rotate using tensor rotation matrices s.t. the fiber 
directions align with the shape. For a point x within or 
closest to an arc section i of the spaghetti, this means the 
fiber direction is vertical to the vector x − Ci , otherwise 
the direction is parallel to the closest segment. Conse-
quently, the fiber direction for a shape s is chosen in the 
direction of

In our approach, we represent this by rotating a given trans-
versely isotropic CFRP tensor CCFRP with fiber direction in 
the x−direction as

�(x) ∶=
�poly(d(x))

1 + q(1 − �poly(d(x)))

C(x) = C
void + �(x)Ciso

⎧
⎪
⎨
⎪
⎩

Hi − Hi−1 x in or closest to segment i

vertical to x − Ci x in or closest to arc i

H1 − P x closest to P

Hm − Hm−1 x closest to Q.

C(x) = C
void + Φ(𝜙(x))⊤𝜌(x)CCFRPΦ(𝜙(x)),

where Φ(�) are rotation matrices (counterclockwise) for 2D 
elasticity tensors in Voigt notation given as

�(x) is computed as

6 � Multiple spaghetti and shape 
combination

6.1 � Combining pseudo‑densities

We now consider a set of multiple spaghetti denoted by a 
subscript s and constructed in the same way as previously 
described. More precisely, the set of spaghetti is 
determined by 

{
Ps,Qs, ps, a

i
s
, i = 1,… ,ms − 1

}
 and results 

in a number of effective pseudo-densities

where ds denotes the distance function to shape s. In order 
to obtain a single global pseudo-density, we subsequently 
combine the different shapes using a smooth approximate 
maximum function (map-then-combine approach):

Commonly used types for this smooth maximum include the 
p-norm and the Kreisselmeier–Steinhauser (KS) function

as well as the softmax function (Goodfellow et al. 2016; 
Smith and Norato 2021)

For the results presented in this work, we chose to use the 
softmax as smooth maximum with p = 8 . The value of p 

Φ(�) =

⎛
⎜
⎜
⎝

cos(�)2 sin(�)2 − sin(2�)

sin(�)2 cos(�)2 sin(2�)
sin(2�)

2
−

sin(2�)

2
cos(2�)

⎞
⎟
⎟
⎠
.

�(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

atan2(Hi

y
− H

i−1
y

,Hi

x
− H

i−1
x

) x in or closest to seg. i

atan2(Ci

y
− x

y
, x

x
− C

i

x
) x in or closest to arc i

atan2(H1
y
− P

y
,H1

x
− P

x
) x closest to P

atan2(Hm

y
− H

m−1
y

,Hm

x
− H

m−1
x

) x closest to Q.

�s(x) ∶= �poly(ds(x)),

𝜌̄(x) = max
s
𝜌s(x)

max
s

p
�s(x) ∶=

(
∑

s

�s(x)
p

) 1

p

max
s

KS
�s(x) ∶=

1

p
log

∑

s

ep�s(x)

max
s

sm
�s(x) ∶=

∑
s �s(x)e

p�s(x)

∑
s e

p�s(x)
.
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determines the sharpness of the interpolation between 
primitives in overlapping boundary regions.

6.2 � Anisotropy for multiple shapes

Using a smooth maximum function for the angle � to 
determine a dominant material direction is unfortunately 
less straightforward than it is for the pseudo-density � . 
Specifically, the challenge of averaging orientation angles 
of linear elastic material is that the material tensors are 
invariant to 180◦ rotations. Effective material properties 
would be the same for 0◦ as for 180◦ , while a direct averaging 
of these two angles would result in a 90◦ angle.

One way to circumvent this problem is to average the 
coefficients of the material tensor directly instead of the 
orientation angles. However, to do this without changing 
the effective material stiffness, a smooth maximum function 
is required which provides weights forming a convex 
combination, effectively leaving only the softmax. In fact, 
in Smith and Norato (2021) the softmax function is used 
and the elasticity tensors produced by the different shapes 
are averaged using their respective softmax weights. Apart 
from the restricted choice of the smooth maximum function, 
after averaging the elasticity tensors, a directional variable is 
not directly available anymore to be used for interpretation 
as fiber printing paths. Note that for a strongly anisotropic 
CFRP tensor, this direction might be recovered retroactively. 
However, this would require a separate post-processing 
step searching for the maximum directional stiffness of 
the effective elasticity tensor as described in Jantos et al. 
(2020) for filtered tensor coefficients. This is why we chose 
to investigate a different method, which is able to directly 
provide an effective directional variable throughout the 
optimization process.

To achieve this, at a point x we start by considering the 
angle variables as vectors

A 180◦ change in material orientation angle, which would 
result in identical material properties, now leads to a vector 
flipped in the opposite direction in this polar coordinate 
system:

Consequently, when trying to find the average angle coin-
ciding best with overlapping shape’s material orientation 
independent of 180◦ rotations, we can consider the sum of 
all combinations of (un)flipped vectors 

∑
s ±v(�s(x),�s(x)) 

and look for the maximum norm (i.e., the smallest cancela-
tion when considering flipped orientations as equivalent). 

v(�s(x),�s(x)) =

(
�s cos�s

�s sin�s

)
.

v(�s(x),�s(x) + �) =

(
−�s cos�s

−�s sin�s

)
.

An illustration of this method is shown in Fig. 5. Using this 
approach, the formula for the average angle for a number 
of shapes is

Note that the scaling by �s not only weighs the angles 
but also ensures that only angle variables inside the 
shape and its transition zone are considered, as �s(x) = 0 
for ds(x) > p∕2 + h . Hence, it suffices to consider active 
shapes when determining the maximum sum. We further 
note that this formula is not strictly differentiable, as an 
average of 0◦ and 90◦ can either be 45◦ or −45◦ because 
90◦ is equivalent to −90◦ . This discontinuity may lead to a 
finite difference gradient check failing at times. However, 
as the analytical derivatives always remain bounded and 
will be summed up for the whole shape with most deriva-
tives being well defined, the effects of this should be mar-
ginal. As discussed in Sect. 6.2, averaging the material 
tensors of the different shapes instead of the angles would 
lead to a rigorously differentiable formulation. Neverthe-
less, we chose to investigate this novel angle combination 
in order to keep a material orientation available without 
post-processing steps and in fact could not observe any 
problems during optimization.

If we want to be even closer to the physical importance 
of the respective shape’s angle variables, we can also 
define the vectors as

(3)𝜙̄ ∶= atan2

�
argmax

±

‖
�

s

±v(𝜌s(x),𝜙s(x))‖
�

Fig. 5   Illustration of weighted angle average for two over-
lapping shapes with v

1
∶= v(�

1
,�

1
) and v

2
∶= v(�

2
,�

2
) . As 

‖v
1
− v

2
‖ > ‖v

1
+ v

2
‖ , we get 𝜙̄ = atan2(v(𝜌

1
,𝜙

1
) − v(𝜌

2
,𝜙
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where w(⋅) weighs the angles according to the corresponding 
pseudo-density. Choosing w(�s) = �s would match the 
previous definition, while another suitable formulation 
would be choosing the weights corresponding to the shape’s 
fraction in the used smooth maximum formula:

Note that this works quite nicely not only for the softmax 
function but also for the p-norm. While for the KS smooth 
maximum this could be done in principle as well, the 
drawback here is that the angle average would become global 
due to the associated weights wKS(�s) = ep�s not vanishing 
for �s = 0 , potentially leading to a drastically increased 
computational cost for computing the angle average.

Putting things together, the final formula for the 
parametrization can be written as

7 � Geometry mapping to a fixed grid

Up to here we have defined the high-level geometry using 
a pseudo-density approach in a continuous setting. For the 
numerical analysis, we will now project this continuous 
feature onto a fixed finite element mesh. We do this by 
integration and assign each element a constant pseudo-
density and material orientation angle. For the integration, 
oftentimes a simple midpoint evaluation is used. However, 
in Wein et al. (2020) it is shown that this low integration 
precision may lead to problems in accurately approximating 
the compliance of the geometry. Because our transition 
function �poly is only piecewise polynomial, we use a simple 
average of evenly distributed function values for integration 
instead of weighted quadrature rules. Specifically, the 
domain is partitioned into finite elements e ∈ E  , where E  is 
the set of element numbers. Then for each element e,

where xi
e
 are the integration points and Nip denotes their 

total. For this work, we used 5 × 5 evenly distributed inte-
gration points.

As the continuous orientation angle �(x) does not change 
as quickly as the pseudo-density, in this case we use the 
computed element pseudo-density as input for the angle 
average (3), but evaluate the formula only at the midpoint in 
order to improve computational efficiency, i.e.,

v(�s(x),�s(x)) =

(
w(�s) cos�s

w(�s) sin�s

)
,

wp(�s) = �p
s
, or wsm(�s) = �se

p�s .

C(x) = C
void + Φ(𝜙̄(x))⊤max

s
𝜌s(x)C

CFRPΦ(𝜙̄(x)).

𝜌̄e =
1

Nip

Nip∑

i=1

max
s
𝜌s(x

i
e
),

where xC denotes the center point of element e. The effective 
material tensor in the discretized setting hence is

in the isotropic case and

for anisotropic material.

8 � Discretized optimization problem

The full, discretized optimization setting is denoted as

where F and U are the global force and displacement 
vectors, L is the output vector in mechanism design and 
L = F for compliance, K is the global stiffness matrix, Ve 
the volume of element e, and v̄ is the prescribed upper limit 
on the volume fraction. The last constraints ensure that 
the single spaghetti sections do not overlap. Simple box 
constraints are not explicitly stated, but can be easily added 
to the problem formulation. Furthermore, approximate 
length constraints may be defined on PsQs or along the linear 
spline and even accurate length constraints along the center 
line may be considered. We note, however, that a rigorous 
implementation of length constraints would further require 
constraints ensuring the entire primitives stay within the 
design domain. A possibility to achieve this is given by 
Zhang et al. (2018), where a ghost layer around the domain 
is introduced, for which the mapped density field is restricted 
to zero values.

9 � Numerical case study

In comparison to a pure pseudo-density optimization, for 
feature-mapping methods it is not as straightforward to 
choose a starting value. Intuitively, simply distributing 
a large number of features comes to mind. While this 
works well w. r. t. obtaining a good compliance value, this 
approach can also lead to numerous regions with multiple 

(4)𝜙̄e = atan2

�
argmax

±

‖
�

s

±v(𝜌e
s
,𝜙s(xC))‖

�
,

(5)C
e = C

void + 𝜌̄eC
iso

(6)C
e = C

void + Φ(𝜙̄e)⊤𝜌̄eCCFRPΦ(𝜙̄e)

(7)

min
{Ps,Qs,ps,a

i
s
,i=0,…,ms}

c = L⊤U

s.t.: KU = F
∑

e 𝜌̄eVe∑
e Ve

≤ v̄

(Ci
s
− Ci−1

s
) ⋅ (Hi

s
− Hi−1

s
) ≥ 0, i = 1,… ,ms
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overlapping spaghetti. Consequently, the advantage of 
deliberately chosen features more easily interpretable as 
fiber paths is diminished, as can be observed in the results 
of the second example in Sect. 9.2. In the first example, we 
will therefore follow a different methodology. Specifically, 
for a given loading scenario we will first optimize the 
setting using an established CFAO algorithm. More 
precisely, we use the formulation given in Greifenstein and 
Stingl (2016) optimizing topology and material angle for 
a given anisotropic material. We will then loosely match 
the resulting topology with a suitable number of spaghetti 
shapes. Lastly, using this starting value we solve problem 7.

9.1 � Bridge

As first numerical example, we choose a setting that is 
known for a good performance advantage using strongly 
anisotropic material, as was shown in Smith and Norato 
(2021). Specifically, we study the loading scenario of a 
bridge with a distributed load and an aspect ratio of 1:4. 
Since the problem is symmetric, we only model the left 
half of the domain. The geometry is detailed in Fig. 6. 
As described in the last paragraph, we start by solving a 
CFAO problem with density filter for this problem. The 
resulting optimal topology and angle design is shown in 
Fig. 7. Next, this topology is loosely interpreted using five 
spaghetti shapes as depicted in Fig. 6. The resulting inter-
pretation has a total of 35 optimization variables. Using 
this starting value, we run a number of different material 

scenarios. We start by running the full anisotropic model 
using the CFRP material constants (Figs. 9 and 10). For 
the tensor CFRP, we use the same values as in Smith and 
Norato (2021) and a transversely isotropic material model 
(equivalent to orthotropic material in 2D). Secondly, we 
perform the optimization using two different fictitious 
isotropic materials to obtain a baseline performance as 
comparison. One has the same overall stiffness (i.e., the 
same trace of the elasticity tensor / trace of the Voigt 
tensor with the shear modulus values weighted double) 
and the other has the same Young’s modulus as the fiber 
direction modulus of CFRP (maximum stiffness). For the 
concrete engineering coefficients, see Table 2.

Finally, for the result of the isotropic optimization (Fig. 8), 
we replace the material with the CFRP tensor to see whether 
there is a noticeable performance advantage in using the more 
complex anisotropic model as compared with simply orienting 
the fibers along the features optimized in the isotropic setting. 
The problems in this section were solved using a volume frac-
tion of 0.4 and equal parameters for transition zone and void. 
All problems were solved using the SQP algorithm SNOPT 
(Gill et al. 2005) with the forces being scaled such that the 
objective values are in a numerically reasonable range. The 
compliance values for the numerical experiments can be found 
in Table 3 and the convergence history in Fig. 11.

When comparing the results, we first note the big gap 
between the compliance of the CFRP optimization and the 
isotropic result with the same overall material stiffness. Hav-
ing the stiffness directed almost entirely along the principal 
spaghetti direction proves to be greatly beneficial in this case. 
Even the compliance for the isotropic case with stiffness equal 
to the fiber stiffness but in all directions shows only a 30% 
advantage compared to CFRP, despite the drastically larger 
overall material stiffness. Lastly, evaluating the isotropic 

Fig. 6   Bridge design region ( 2 × 1 meter, 200×100 finite elements). 
Support and loading scenario. A minimum of material is prescribed 
along the top edge. For the anisotropic material settings, the fiber 
angles are aligned with the edge. In light gray, the starting value of 
the spaghetti optimization based upon a CFAO result (see Fig. 7) is 
shown

Table 2   Material coefficients 
used in numerical examples

Material E
x
 [GPa] E

y
 [GPa] �

xy
G

xy
 [GPa]

Carbon epoxy (CFRP) 113.6 9.650 0.334 6.0
Isotropic (same overall stiffness) 42.39 42.39 0.300 16.30
Isotropic (same maximum stiffness) 113.6 113.6 0.300 43.69

Fig. 7   Optimal topology (CFAO result)
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optimal design using CFRP material aligned with the spaghetti 
shows a 28% worse performance than the actual anisotropic 
design, even though the two topologies appear largely similar. 
Consequently, performing the optimization using the aniso-
tropic model proves clearly advantageous. Furthermore, the 

result satisfies the parallelism of fiber orientations and mini-
mum curvature in most of the domain, even though in inter-
secting regions with overlapping shapes these manufacturing 
constraints might still be violated.

9.2 � MBB beam

Next, we apply the method using a generic starting value 
and the design of a Messerschmitt–Bölkow–Blohm (MBB) 
beam and anisotropic material as in Table 2. The setting 
is given in Fig. 12, the results in Figs. 13 and 14, and the 
convergence plot in Fig. 15. Even though this is not the use 
case we devised the method for, it still yields reasonable 
results. As the primitives can only become very small but 
not disappear in the current formulation, they can only be 
moved on top of each other in order to not use up volume 
though. One feature actually remains surrounded fully by 
void without information in which direction to hide. Here, 
we can see the general susceptibility of feature-mapping 
methods to local minima. One possibility to improve the 
convergence of the method for the use of a generic starting 
value would be to introduce a size variable as in Smith and 
Norato (2021), which allows the shapes to vanish in place. 
We further see that the primitives are aligned as straight 
bars, which is expected for this type of problem. Finally, 
we note that with these many shapes the desired properties 
of the underlying primitives are lost in large parts of the 
composite structure, hence further complicating a possible 
interpretation to fiber paths.

9.3 � Force inverter

As last example, we consider the design of a compliant 
mechanism. We again use the anisotropic material param-
eters as in Table 2. For this design problem, using a generic 
starting value easily leads to getting stuck in local minima 
for which the design does not connect input force and output, 
which shows close to zero output. Consequently, we use a 

Fig. 8   Isotropic spaghetti optimization result

Fig. 9   Anisotropic spaghetti optimization result

Fig. 10   Visualization of fiber orientations for anisotropic spaghetti 
optimization result

Table 3   Optimal compliance results for different settings

setting compliance

CFRP 0.225
isotropic (same overall stiffness) 0.465
isotropic (same maximum stiffness) 0.173
result iso evaluated with CFRP 0.289
result CFRP evaluated with iso equal 0.473
result CFRP evaluated with iso max 0.176

Fig. 11   Convergence plot for bridge design problem
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starting value roughly resembling the common SIMP result, 
which already exhibits a negative output. The setting and 
starting value are given in Fig. 16, the results in Fig. 17, 
and the convergence plot in Fig. 18. However, in order to 
prevent the formation of hinges, we start with a single shape 
connecting support and output. For the springs, we use equal 
values of kin = kout = 50.  

We observe that slightly rounded shapes appear again to 
be optimal for this example.

10 � Conclusion and future work

We presented a feature-mapping approach to optimize 
a design suitable for carbon fiber-reinforced filament 

f

Fig. 12   MBB beam design region ( 2 × 1 meter, 100× 50 finite ele-
ments). In light gray, the starting value is shown

Fig. 13   Optimal result of MBB beam design problem

Fig. 14   Visualization of fiber orientations for MBB beam result

Fig. 15   Convergence plot for MBB beam design problem

uoutf
kin kout

Fig. 16   Support and loading scenario for compliant mechanism 
(force inverter). 100 × 100 elements. In light gray, the starting value 
is shown

Fig. 17   Optimal result of force inverter design problem
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printing. The design parametrization can serve as a 
blueprint for final printing path generation. The proposed 
method advances existing feature-mapping methods 
by introducing a curved geometric primitive, which 
still allows for a closed-form calculation of the signed 
distance to a boundary and hence an efficient evaluation. 
Furthermore, a number of critical manufacturing 
constraints in carbon fiber-reinforced filament printing 
are addressed, namely parallelism of fibers and minimum 
turning radius, even though this still cannot be guaranteed 
in intersecting regions. Additionally, minimum cut length 
constraints may also be characterized more accurately.

Nevertheless, the current work can clearly only constitute 
an intermediate step toward manufacturability. An open 
problem of the proposed method is that the fiber orientation 
field may violate the manufacturing constraints in 
intersecting areas. This would hamper a direct interpretation 
to printing paths in carbon fiber-reinforced printing. A 
solution to this would be to prevent overlaps, e.g., applying 
the formulation given in Smith and Norato (2022). However, 
we postpone this problem to a three-dimensional extension 
of the model, where structures are able to bypass each 
other without overlapping. Furthermore, feedback from 
manufacturers suggests that for best performance it might 
actually be preferable to have different carbon fibers 
continuing across all directions of an intersection.
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