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Abstract 

Compared with acceleration-based modal analysis, displacement can provide a more reliable and robust identifica-
tion result for output-only modal analysis of long-span bridges. However, the estimated displacements from accelera-
tion records are frequently unavailable due to unrealistic drifts. Aiming at obtaining more accurate and stable results 
for determining the modal parameters, this study develops a multi-rate weighted data fusion approach for estimating 
displacement responses in dynamic monitoring of structures based on global navigation satellite system (GNSS) and 
acceleration measurements. The approach initially derives the local estimations from displacement and acceleration 
sensors via a Kalman filter algorithm with colored measurement noise, and later uses a weighted fusion criterion of 
scalar linear minimum variance to fuse the results of local estimations. Then, structural modal pamameters are identi-
fied by employing data-driven stochastic subspace identification (SSI) algorithm. The proposed approach is validated 
in a four degree-of-freedom numerical model and then applied to a long-span bridge in engineering practice. The 
results illustrate that the proposed approach can reduce the error of GNSS-obtained displacement and expand recog-
nizable frequency range by introducing dynamic displacement component from acceleration measurement.
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Introduction
With the rapid development of new technologies and 
materials, a substantial number of long-span bridges have 
sprung up, e.g. Russky Bridge, Sutong Bridge, Hongkong-
Zhuhai-Macau Bridge etc. These bridges are generally 
flexible and sensitive to ambient excitations such as wind, 
traffic, tidal currents, and their combination. Therefore, 
monitoring the dynamic deformation in these structures 
under ambient excitations via using field measurement 

techniques is an extremely important task. Excessive 
deformation can cause structural damage and or even 
destruction [1–3].

At present, accelerometer is widely employed as an 
effective monitoring technique to derive the dynamic 
responses of bridges [4–6]. It has the advantages of high 
measurement accuracy, high sampling frequency and 
good sensitivity. However, the displacement information 
obtained by carrying out the operation of double inte-
gral to the acceleration signal will deviate from the true 
value, which is difficult to meet the requirements of dis-
placement measurement accuracy [7, 8]. Subsequently, 
the emergence of GPS (Global Positioning System) 
overcomes this problem better. GPS can monitor the 
three-dimensional coordinate information of bridges for 
all-weather in real time. Real Time Kinematic (RTK) is 
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a positioning method based on the carrier phase double 
difference model, which is an important development to 
aid GPS real-time dynamic measurement [9]. Especially, 
the advent of multi-constellation Global Navigation Sat-
ellite System (multi-GNSS) makes this technique get a 
better development. Nevertheless, it is noteworthy that 
GNSS sensors are insensitive to the high frequency vibra-
tion of structures, and it is difficult to track the target 
even with high sampling rate. Meanwhile, the existence of 
various error sources, including troposphere delay, iono-
sphere delay, troposphere error, satellite clock difference, 
multipath effect, etc., results in the limited positioning 
accuracy of GNSS. Although several errors can be elimi-
nated in RTK mode, the multipath effect is still a main 
problem to be addressed for GNSS-RTK measurement.

Considering GNSS and accelerometer sensors have 
their own advantages and disadvantages, an integrated 
approach can be employed to increase the accuracy of 
the monitoring system. In this context, Smyth and Wu 
[10] put forward a multi-rate Kalman filtering approach 
to fuse acceleration and displacement data sampled at dif-
ferent frequencies. They demonstrated that the proposed 
algorithm can accurately estimate the displacement and 
velocity from noise contaminated measurements of dis-
placement and acceleration via various numerical exam-
ples. Enlightened by this study, Kim et  al. [11] presented 
a new algorithm of the multi-rate Kalman filtering via 
introducing acceleration measurement bias. Experimental 
verification was that the proposed algorithm can improve 
the accuracy of displacement estimation compared with 
reference in the previous literature [10]. Subsequently, Xu 
et al. [12] proposed a novel step of employing maximum 
likelihood estimation (MLE) to determine the necessary 
noise parameters required by the Kalman filter algorithm. 
Their study validated that MLE is an effective method for 
accurately estimating the noise parameters of measure-
ment signals via a numerical example and a field measure-
ment test. In the aforementioned studies, the correlated 
process and measurement noises were deemed to white 
Gaussian noises. However, this assumption does not in 
accordance with the general case. Hence it can only derive 
the suboptimal fusion estimation. Previous studies have 
indicated that the multipath error is the main factor affect-
ing the positioning accuracy of GNSS-RTK sensors, which 
is mainly distributed in the low frequency range of GNSS 
signal [13]. Furthermore, Górski [14] has verified that the 
low frequency background noise of GNSS sensors does 
not follow Gaussian distribution via a stability test. Due to 
the vibration forms of a large number of long-span bridges 
belong to low frequency vibration, the low frequency 
noise of GNSS has a more significant influence on moni-
toring results than that of high frequency noise. Based on 
the above-mentioned analysis, considering the influence 

of colored measurement noise, incorporating dynamic 
displacement from acceleration into GNSS-derived dis-
placement can be seen promising in achieving accurate 
displacement measurement.

An principal goal of accurate displacement measurement 
is to extract structural modal parameters (i.e. natural fre-
quencies, mode shapes and damping ratios). These param-
eters are important indicators for evaluating the safety and 
stability performances of bridges [15–17]. They are bound 
up with material characteristics, structural stiffness, mass 
distribution, foundation types, etc., hence their predictions 
are sophisticated. Nowadays, the frequently used meth-
ods for modal parameter identification can be divided into 
two types, i.e. traditional modal analysis (TMA) [18, 19] 
and operational modal analysis (OMA) [20–22] methods. 
TMA requires to measure excitation forces and responses 
of structures simultaneously. This method needs expensive 
excitation equipment and requires interrupting the normal 
operation of structures. Moreover, artificial excitation is 
often applied to the local position of the structure, which 
can easily cause damage to the structure. Whereas OMA 
can identify the modal parameters of the structure without 
artificial excitation and only rely on the response informa-
tion of the structure, hence, this method is used more often 
[23–25]. Based on accurate displacement measurement, 
the OMA method is used to accurately extract structural 
modal parameters, which is an important task in structural 
health monitoring (SHM) for long-span bridges.

Inspired by the above research, this study pre-
sents a multi-rate weighted data fusion approach with 
colored measurement noise for estimating displace-
ment responses of long-span bridges under operational 
conditions. The developed approach can derive a high-
sampling rate displacement with improved accuracy 
via fusing the GNSS signal and the acceleration signal. 
Compared with the structural modes extracted by GNSS-
derived displacement, higher-order modes can be deter-
mined from the estimated displacement. A numerical 
model and a practical bridge test are conducted to verify 
the performance of the developed approach.

Methodology
This study develops a multi-rate data fusion approach, 
as illustrated in Fig. 1. This approach involves two parts: 
(1) Local estimation: the Kalman filter algorithm with 
colored measurement noise is used to derive the results 
of local estimation of each sensor. (2) Fusion estimation: 
a weighted fusion criterion of scalar linear minimum var-
iance is employed to fuse the local estimations for obtain-
ing accurate displacement measurement. Then, structural 
modal parameters are determined by using data-driven 
stochastic subspace identification (SSI) algorithm based 
on accurate displacement measurement.
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Displacement estimated based on data fusion
This section presents the proposed data fusion approach 
based on the Kalman filter with colored measurement 
noise. The presence of colored noise is likely to lead to 
incorrect analysis of bridge deformation signals and 
affect the estimation of modal parameter [26, 27]. Ignor-
ing the impact of colored noise may degrade the perfor-
mance of identification algorithms [28].

Assuming that the sampling interval of acceleration is 
Ta, and the sampling interval of displacement is Td. They 
have the following relationship, i.e., Td

/

Ta = M . βd and 
βa the associated measurement noise of displacement 
and acceleration with covariance r and q; βd ∼ N (0 R) ; 

βa ∼ N (0 Q) ; Q =
0 0

0 q
 ; R = r . The measurement 

process can be modeled by using the following equation:

where A =

[

1 Ta

0 1

]

 ; B =

[

T 2
a

/

2

Ta

]

 ; H = [1 0] ; ωk and 

ηk are uncorrelated white noise sequences with zero 
mean value, which satisfy the following conditions:

where Qk and Rk are the variance matrix of system noise 
and measurement noise respectively. The whole process 
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Fig. 1 Flow chart of displacement estimation and operational modal analysis based on data fusion and SSI algorithms
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of the traditional Kalman filtering can be described as the 
following five equations [26, 27]:

where x̂k|k−1 is the prior estimation; x̂k−1|k−1 is the pos-
teriori estimation; Pk−1 is the state error covariance 
matrix; K k is the Kalman filter gain matrix; If the initial 
values of x̂0 and P0 are known, the system state x̂k can be 
estimated via employing the measured value zk . If the 
measurement noise ηk is of a colored noise, 
cov

(

ηk , ηj

)

 = 0
(

k  = j
)

 . In this case, ηk in Eq. (1) can be 
expressed as [29, 30]:

where ψk is the measurement noise transfer matrix. The 
pseudo-measurement is introduced to whiten the colored 
measurement noise, as follows:

where Ck = HA − ψkH ; νk = Hωk + ζk ; Rk = ��k�
T
+ �k . 

The decorrelation analysis method can be used to filter 
out the correlation between stochastic noise and meas-
urement noise [30], as follows:

where Qk = Qk + J kRk J
T
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 ; Dk = A − J kCk ; 
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After the above treatment, we can get the new state 
space model:
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Then, the Kalman filter algorithm with colored meas-
urement noise can be described as:

Time update:

Measurement update:

Kalman gain matrix:

Note that the measured displacements are unavail-
able between the times kTd, only the time update based 
on Eq.  (11) is performed. When the measured displace-
ments are available at times kTd, both the time update 
and measurement update should be performed.

Thus, a series of local estimations are derived (i.e., 
displacement: X̂1,k|k , X̂2,k|k , · · · , X̂M,k|k ; and covari-
ance: P1,k|k , P2,k|k , · · · , PM,k|k ). If the local estimation 
errors are uncorrelated, the optimal fusion estimation 
results X̂k|k can be derived via using a weighted fusion 
criterion of scalar linear minimum variance. It can be 
written as:

where X̂ j,k|k is the local estimation value obtained after 
Kalman filter by the j-th sensor; αj is the weight coeffi-
cient, which can be expressed in the following form:

where � =

(

1
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+
1
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+⋯ +
1

trP j,k|k

+⋯ +
1

trPM,k|k

)−1

 . The cor-
responding covariance matrix P0,k|k of the estimation 
error has the following form:

Operational modal analysis algorithm
The SSI is a widely used OMA approach for estimating 
structural modal parameters because it combines a good 
robustness and a high estimation accuracy [31, 32]. It is 
divided into two sub methods, i.e. data-driven SSI and 
covariance-driven SSI. In particular, data-driven SSI can 
identify modal parameters directly from the measured 
data, unlike covariance-driven SSI where one needs to 
derive the covariance matrix relating all of the measured 
outputs. Hence, data-driven SSI approach is employed 
in this study. Its basic principle (shown in Fig.  2) can 
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consult the literature [33, 34]. Once the system matrix 
A* and output matrix H* of state-space model of a struc-
ture are determined, the modal frequency and damping 
ratio can be identified by conducting eigenvalue decom-
position of matrix A* while the mode shape coefficients 
can be derived by the eigenvectors multiplied based on 
matrix H*.

The eigenvalue decomposition of matrix A* can be 
expressed as:

where � is eigenvector matrix in discrete time. 
� = diag(�) , � is the eigenvalue in discrete time. It is 
related to the eigenvalue �c in continuous time, as follows:

The modal frequency f  and damping ratio ξ can be com-
puted as:

The corresponding mode shape ϕ is computed as:

(17)A* = ���−1

(18)�c =
ln(�)

�t

(19)f =

√

Re2(�c)+ Im2(�c)

2π

(20)ξ = −
Re(�c)

2π f

Preliminary validation of proposed approach 
on numerical model
The purpose of this section is to evaluate the perfor-
mance of the proposed data fusion algorithm with a sim-
plified numerical model. Considering a four-DOF linear 
time-invariant spring-mass-damper model (shown in 
Fig. 3):

Assume that the basic parameters of this model are

The damping factors for mass proportional damping 
were set to α = 0.1 , β = 0 . Colored noise was employed 
to excite the model with four-DOF. The responses 
of displacement and acceleration of the model were 
derived via using Newmark method, as shown in 
Fig.  4(a) and (b). The sample rate is taken as 50  Hz 
for measured displacement and 100  Hz for measured 
acceleration. This displacement obtained directly from 
the model is the real displacement of the system. It can 
be used as the reference to evaluate the working per-
formance of the proposed approach. To simulate the 
field measurement data, a colored noise is added into 
the true displacement and acceleration responses. First, 
a Gaussian white noise with signal-to-noise ratio (SNR) 
of 5 dB is generated. Then, a shaping filter is designed 
to filter the generated white noise to derive a colored 
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Fig. 2 The working principle of data-driven SSI

Fig. 3 Four degree-of-freedom linear spring-mass-damper model
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noise of non-uniform power spectral density (PSD). 
This is a relatively weak level of noise. Figure  4(c) and 
(d) show the displacement and acceleration responses 
after adding colored noise. In particular, a comparative 
study was carried out to investigate the performance 
of the following six cases. Cases 1–3 process the simu-
lated signal with colored noise based on the assumption 
of white noise, while cases 4–6 consider the impact of 
colored noise. The purpose of implementing these cases 
is, on the one hand, to reveal the influence of white 
noise and colored noise on the estimation results, and 
on the other hand, to compare the estimation accuracy 
of single sensor with that of multi-sensor fusion.

• Case 1: Displacement estimation was derived 
based on only displacement measurement by using 
Kalman filter method with white measurement 
noise;

• Case 2: Displacement estimation was derived based 
on only acceleration measurement by using Kalman 
filter method with white measurement noise.

• Case 3: Displacement estimation was derived based 
on combined measurements by using Kalman filter 
method with white measurement noise;

• Case 4: Displacement estimation was derived based 
on only displacement measurement by using Kalman 
filter method with colored measurement noise;

• Case 5: Displacement estimation was derived based 
on only acceleration measurement by using Kalman 
filter method with colored measurement noise;

• Case 6: Displacement estimation was derived based 
on combined measurements by using the proposed 
approach.

Figures  5(a)-(f ) indicate the results of displacement 
estimation under different cases. To quantify the accu-
racy of the estimated results, the normalised root 
mean square error (NRMSE) was introduced. It can be 
expressed as the following form:

where xi and x̂i represent the real and estimated value at 
time step i , n is the number of sampled data points.Table 1 
lists the NRMSE values under six different cases based on 
Eq. (22). It can be seen that the estimated results of cases 4, 
5 and 6 are better than cases 1, 2 and 3 respectively. This is 
mainly because the simulated signal contains colored noise. 
If it is processed as white noise, the estimation accuracy is 
relatively low. Additionally, it can be found that when the 
(100  Hz) acceleration data is combined with the (50  Hz) 
sampled displacement, the estimation results have a drastic 
improvement. In other words, the estimated result of multi-
sensor fusion is better than that of single sensor when the 
measurement noise is given. Specially, the estimated result 
of case 6 is superior to other cases. This implies that the 
proposed approach is an effective method for estimating 
the real displacement of the system with a higher accuracy.

(22)
NRMSE =

√

1
n

n
∑

i=1

(

x̂i − xi
)2

max (xi)−min (xi)

Fig. 4 Displacement and acceleration of a four-DOF model under colored noise excitation: (a) original displacement response; (b) original 
acceleration response; (c) displacement response with added noise; (d) acceleration response with added noise
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Next, the SSI algorithm was used to calculate the modal 
parameters of the model. Figure  6 shows the identified 
mode shapes. The modal frequencies and damping ratios 

were presented in Table 2. The modal assurance criterion 
(MAC) is used to evaluate the accuracy of mode shapes, 
as follows:

Fig. 5 Displacement estimation of a SDOF system under different cases

Table 1 NRMSE values of estimated displacements under six different cases

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NRMSE 0.0626 0.0667 0.0475 0.0512 0.0570 0.0320
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where �a and �b represent the theoretical and estimated 
mode shapes, respectively. It can be found that the results 
have a good agreement with the theoretical values.

Application to a long‑span cable‑stayed bridge
In this section, the proposed approach was applied to dis-
placement estimation and modal identification of a long-
span cable-stayed bridge named Tianjin Yonghe (shown 
in Fig. 7), located in Tianjin, China, from the GNSS and 
accelerometer monitoring data. The bridge was built in 
1983 and opened to traffic at the end of 1987, and it is 
a pre-stressed concrete cable-stayed bridge with three-
span, couple tower and couple cable. The total length of 
the bridge is 510 m, and the main span and each side span 
are 260 m and 125 m respectively. It is noted that several 
damage patterns, i.e. cracks at the bottom of the mid-
span girder and corroded cables, were detected in 2005. 
Therefore, the bridge was closed and repaired between 
2005 and 2007. Subsequently, the bridge was reopened 
to traffic at the end of 2007 with a sophisticated health 
monitoring system. The bridge has been in operation for 

(23)MAC =

(

�T
a ·�b

)2

(

�T
a ·�a

)(

�T
b ·�b

)

approximately 15 years, and the structural modal param-
eters may have changed. Notably, the position accuracy 
of GNSS under RTK mode was limited. Therefore, before 
the field measurement, a stability experiment of GNSS 
was performed.

FE analyses of the target bridge
Before the field measurement, a Finite Element (FE) 
model of the bridge was established via using ANSYS 14.5 
software. The purpose of establishing the FE model is to 
optimize the layout of the measured points and compare 

Fig. 6 Identified and theoretical mode shapes: (a) The 1st mode; (b) The 2nd mode; (c) The 3rd mode; (d) The 4th mode

Table 2 Estimated modal parameters of the numerical example

Mode Frequency (Hz) Damping ratio (%) MAC

Theoretical value Estimated value Theoretical value Estimated value

1 2.0069 2.0059 0.51 0.54 1.00

2 4.2930 4.2885 0.25 0.23 1.00

3 6.2148 6.2150 0.12 0.09 1.00

4 7.6691 7.6552 0.40 0.26 1.00

Fig. 7 Panoramic schematic of Tianjin Yonghe Bridge
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it with the experimental results. In this model, there are 
475 nodes and 566 elements. The bridge towers and the 
main girder were modelled via employing BEAM44 ele-
ment. The concrete transverse beams were individually 
simplified as the mass element MASS21 every 2.9  m 
along the bridge. The stay cables were modelled via 
employing LINK10 element. The bridge deck was simu-
lated via employing SHELL63 element. The main girder 
was modelled as floating on the main tower, and all of 
the towers were fixed to the ground. The longitudinal 
restriction effect of the rubber supports was modelled 
via employing COMBIN14 elements. The Young’s mod-
uli of the towers and girder are 3.55× 1010 N

/

m2 , and 
their material densities are 2, 550 kg

/

m3 . The Young’s 
modulus of the cables is 2.0× 1011 N

/

m2 , and its mate-
rial density is 7, 850 kg

/

m3 . The mass of a single concrete 
transverse beam is 6, 932.8 kg

/

m3 . The Young’s modulus 
of the bridge deck is 2.85× 1010 N

/

m2 , and its material 
density is 2, 500 kg

/

m3 . It is noteworthy that the status 
of the bridge has changed after a long time of operation. 
Several damage patterns, i.e. cracks at the bottom of the 
mid-span girder and corroded cables, were detected 
in 2005. Therefore, the bridge was closed and repaired 
between 2005 and 2007. Subsequently, the bridge was 
reopened to traffic at the end of 2007 with a sophisti-
cated health monitoring system. This study established 
a benchmark finite element model based on the design 
value, and then further modified this model by using pre-
liminary measurements. Based on the FE modal analysis 
results, the first to eighth vertical vibration frequencies 
(i.e., 0.3996  Hz、0.5522  Hz、0.9332  Hz、1.0559  Hz、1
.4217  Hz、1.5961  Hz、1.6662  Hz and 1.7231  Hz) and 
the corresponding mode shapes were derived, as shown 
in Fig. 8(a)-(h).

Experimental scheme and measurement
Based on the FE analysis results from Fig.  8, it can be 
seen that the largest deformation of the bridge are pre-
sented at 1/4, 1/2 and 3/4 of the main span, and 1/2 of 
the side spans. The sensors arranged at these positions 
can effectively reveal the vibration characteristics of the 
structure. Therefore, this experiment used six GNSS 
receivers (Sampling rate: 50  Hz) and five accelerometer 
sensors (Sampling rate: 100 Hz) to monitor the vibration 
response of the bridge. One GNSS receiver was placed 
on a stable ground as the reference station and approxi-
mately 50 m away from the bridge, as shown in Fig. 9(a). 
From Fig.  9(b), five GNSS receivers in association with 
five accelerometers were fixed at 1/4, 1/2 and 3/4 of the 
main span, and 1/2 of the side spans as the rover stations. 
Figure 9(c) depicts the specific locations of the measuring 
points (i.e., C1-C5). This experiment lasted for 9 h from 
9:00 a.m. to 6:00 p.m. on 12 July 2019 local time.

Data processing and analysis
In section "Preliminary validation of proposed approach 
on numerical model", the superiority of the proposed 
approach has been verified by a numerical example. This 
section reports the results of employing the proposed 
data fusion approach to the field data recorded on Tianjin 
Yonghe Bridge.

Figure 10 depicts the original GNSS data of Point C3, 
and the corresponding PSD function. It can be seen 
that there are two notable peaks (i.e., 0.4150  Hz and 
0.5981 Hz) corresponding to the first two vertical modes 
of the bridge from PSD distribution. Moreover, It can also 
be found that the modal frequencies identified via PSD 
function are agree with the results of FE analysis with a 
little difference. Figure 11 presents the original accelera-
tion data of Point C3, and the corresponding PSD func-
tion. It can be observed that there are five obvious peaks 
(i.e., 0.4150  Hz, 0.5859  Hz, 0.9644  Hz, 1.0860  Hz and 
1.4530  Hz) corresponding to the first five modal infor-
mation of the bridge. In particular, it is noteworthy that 
Figs. 10 and 11 only show the 200  s vibration response, 
and the corresponding PSD and the follow-up modal 
calculation are calculated with 1000 s sample data. From 
Fig. 10, there were no apparent peaks about the third to 
fifth modes based on GNSS data. This implies that com-
pared with acceleration sensors, GNSS can only detect a 
few number of low order modes even with a high sam-
pling rate. Theoretically, the GNSS measurement has the 
chance to detect the higher vertical modes but in fact it 
has failed to do so. This is mainly because the positioning 
accuracy of GNSS is limited while the dynamic compo-
nent of displacement is relatively small and easily con-
taminated by the measurement noise.

Next, the proposed multi-rate weighted data fusion 
approach was used to fuse the GNSS and accelera-
tion data. However, it is worth noting that the meas-
ured GNSS data includes not only the dynamic part of 
displacement but also the quasi-static part. This study 
mainly focused on investigating the dynamic displace-
ments of bridges under ambient excitation. Hence, a 
second-order type 1 Chebyshev high-pass digital filter 
with the cut-off frequency of 0.05  Hz was first adopted 
to remove the quasi-static part of displacement. Then, 
the remained dynamic part of GNSS and acceleration 
were fused via the developed approach. In addition, pre-
vious studies have proved that smoothing can produces 
a much better estimation after fusion [10, 35]. There-
fore, a smoothing technique named Savitzky-Golay (SG) 
approach was used in this section [36]. The SG approach 
was a data smoothing approach depended on local least-
squares polynomial approximation. It has been demon-
strated that least-squares smoothing reduces noise while 
ensuring the height and shape of waveform peaks [37]. 
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The final estimated displacements from GNSS, accelera-
tion and data fusion and their PSD functions were illus-
trated in Fig. 12. It can be found that the estimated result 
based on GNSS data can identify first three modes of 
the bridge, but before that, only the first two modes can 
be detected. This implies that the filtering and smooth-
ing approaches reduce the noise and make the dynamic 
components of GNSS clear. However, it was still failed 
to extract the fourth and fifth modes of the bridge. From 
Fig. 12(b), it was also seen that five distinct modes were 
identified via using the developed data fusion approach. 
Furthermore, the identified results of modal frequen-
cies were consistent with the acceleration-derived dis-
placement. To some extent, the problem that GNSS is 
insensitive to high frequency vibration of structures is 
alleviated. Note that the sampling rate of the estimated 

displacement via using the proposed approach is 100 Hz. 
The standard deviations of three different estimation 
results were calculated (i.e., GNSS-derived displacement: 
0.0104 m; Acceleration-derived displacement: 0.0101 m; 
Data fusion-derived displacement: 0.0089 m).

The data-driven SSI algorithm is performed on the 
estimated displacements. The modal frequencies and 
the corresponding damping ratios were listed in Table 3. 
It can be seen that the modal frequencies identified via 
GNSS-derived displacement, acceleration-derived dis-
placement and data fusion-derived displacement are con-
sistent. However, there is a large deviation in the damping 
identification results. The accurate estimation of damping 
is difficult because the bridge contains several sources of 
energy dissipation, and their lesser known combinations. 
Figure  13 illustrates the extracted results of the mode 

Fig. 8 Finite element modal analysis results of the Bridge: (a) The 1st mode; (b) The 2nd mode; (c) The 3rd mode; (d) The 4th mode; (e) The 5th 
mode; (f) The 6th mode; (g) The 7th mode; (h) The 8th mode
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Fig. 9 Schematic figure for the field measurement: (a) GNSS reference station; (b) GNSS rover station and accelerometer sensor; (c) The position of 
measuring points

Fig. 10 GNSS signal and its PSD function

Fig. 11 Acceleration signal and its PSD function
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shapes. It can be observed that the identified results are 
in good agreement with the theoretical values based 
on the FE analysis. The MAC values (shown in Table 4) 

confirmed that the mode shapes identified based on 
data fusion-derived displacement were better than those 
GNSS-derived and acceleration-derived displacements. 

Fig. 12 Estimated displacements and the corresponding PSD functions

Table 3 Estimated modal parameters for Tianjin Yonghe Bridge based on field measurement

Mode Frequency (Hz) Damping ratio (%)

FE model GNSS Acceleration Data fusion GNSS Acceleration Data fusion

1 0.3996 0.4150 0.4152 0.4152 1.53 1.46 1.38

2 0.5522 0.5981 0.5860 0.5862 1.26 1.22 1.20

3 0.9332 0.9643 0.9644 0.9640 1.08 0.91 0.95

4 1.0559 – 1.0855 1.0853 – 0.86 0.90

5 1.4217 – 1.4533 1.4536 – 0.80 0.85

Fig. 13 Identified first five vertical mode shapes
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This further proves that the developed approach has an 
accuracy advantage to those of the local estimations from 
single type sensors. Thus far, all the modal parameters of 
the structure were successfully obtained.

Conclusions
In this study, a multi-rate weighted data fusion approach 
based Kalman filter with colored measurement noise was 
developed to estimate dynamic displacement of a long-
span bridge based on GNSS and acceleration measure-
ments. Then, the data-driven SSI method was employed 
to identify modal parameters of the bridge from the 
estimated displacement. The method is tested using a 
four-DOF system and an actual long-span bridge. The 
following conclusions are summarized:

• The proposed data fusion approach is capable of 
accurately estimating structural dynamic displace-
ments. The feasibility and effectiveness of the 
approach were validated by a comparative study of 
a spring-mass-damper model. On the premise of a 
given measurement noise, the estimated result of 
multi-sensor fusion performs better than that of sin-
gle sensor. Moreover, the proposed approach with 
considering colored measurement noise is supe-
rior to the general approach with considering white 
measurement noise. The corresponding NRMSE 
index decreased from 0.0475 to 0.0320.

• The proposed approach can improve the accuracy 
of GNSS-derived displacement and expand rec-
ognizable frequency range by fusing acceleration 
information. Based on raw GNSS data, only the first 
two modes of the bridge were detected even with 
high sampling rate. However, the third mode of the 
bridge became distinct based on GNSS local esti-
mation obtained by Kalman filtering. This is mainly 
because the noise reduction makes the dynamic 
components of displacement clear. Importantly, the 
fourth and fifth modes of the bridge can be extracted 

if the measured displacement from GNSS was fused 
with accelaration information using the developed 
approach. In other words, the developed fusion strat-
egy alleviates the problem of low dynamic tracking 
accuracy of GNSS.

• The identified modal frequencies based on GNSS-
derived, acceleration-derived and data fusion-
derived displacements are consistant. Meanwhile, 
they are in agreement with the theoretical values 
based on the FE analysis. Moreover, the MAC 
values demonstrated that the modes identified 
via fusion-derived displacement are better than 
GNSS-derived and acceleration-derived displace-
ments. This further reveals that multi-sensor 
fusion has an accuracy improvement over single 
type of sensors.
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