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Abstract
Constrained multi-objective optimization problems (CMOPs) exist widely in the real world, which simultaneously contain
multiple constraints to be satisfied and multiple conflicting objectives to be optimized. Therefore, the challage in addressing
CMOPs is how to better balance constraints and objectives. To remedy this issue, this paper proposes a novel dual-population
based constrained multi-objective evolutionary algorithm to solve CMOPs, in which two populations with different functions
are employed. Specifically, the main population considers both objectives and constraints for solving the original CMOPs,
while the auxiliary population is used only for optimization of objectives without considering constraints. In addition, a
dynamic population size reducing mechanism is proposed, which is used to adjust the size of the auxiliary population, so as
to reduce the consumption of computing resoruces in the later stage. Moreover, an independent external archive is set to store
feasible solutions found by the auxiliary population, so as to provide high-quality feasible solutions for the main population.
The experimental results on 55 benchmark functions show that the proposed algorithm exhibits superior or at least competitive
performance compared to other state-of-the-art algorithms.
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Introduction

Manyoptimization problems in the realworld usually contain
multiple objective functions and complex constraints, which
can be collectively referred to as constrained multi-objective
optimization problems (CMOPs) [1–3]. Generally, CMOPs
can be defined by the following formula [4]:

min F(x) = ( f1(x), . . . , fm(x))

s.t. x ∈ �

g j (x) ≤ 0, j = 1, . . . , p

h j (x) = 0, j = p + 1, . . . , q (1)

where F(x) is the objective vector needed to optimize which
consists of m objectives, x is the decision vector with D-
dimension in the decision space �, g j (x) stands for the
j th inequality constraint, and h j (x) represents the ( j − p)th

equality constraint. The constraint violation of x on the j th
constraint is usually defined as:

cv j (x) =
{
max

{
0, g j (x)

}
, j = 1, . . . , q

max
{
0, |h j (x) − θ |} , j = q + 1, . . . , p

(2)
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where θ is a very small constant used to relax the boundary
of equality constraints. The total constraint violation degree
of x needs to consider all equality constraints and inequality
constraints, so it is defined as:

CV (x) =
p∑

j=1

cv j (x) (3)

Based on the above concepts, when CV (x) is equal to
zero, x is called a feasible solution; otherwise, x is called an
infeasible solution.

For two feasible solutions x1 and x2, x2 is dominated by
x1 when the following conditions aremet: F(x1) is not worse
than F(x2) in any objective, and F(x1) is better than F(x2)
in at least one objective [5]. Furthermore, if a solution x∗ is
not dominated by any solution, then x∗ is called a Pareto-
optimal solution. All Pareto-optimal solutions constitute the
feasible Pareto set (PS), and the mapping of PS in objective
space forms the feasible/constrained Pareto front (CPF). The
purpose of solving CMOP is to find a well-distributed CPF.
Obviously, this is not a simple task due to the existence of
conflicting objectives and multiple complex constraints.

In order to deal with the relationship among several con-
flicting objectives, substantial multi-objective evolutionary
algorithms (MOEAs) have been proposed over the past
few decades and shown excellent performance in solving
unconstrained multi-objective optimization problems. These
MOEAs can be classified into three categories based on their
selection mechanisms: the method of dominance-based [6],
the method of decomposition-based [7], and the method of
indicator-based [8], in which the first method have received
a lot of attention due to their simplicity and ease of imple-
mentation. However, none of these methods can be directly
used to solve CMOPs since they cannot effectively handle
constraints. In order to rescue this issue, constraint hand-
ing techniques (CHTs) are designed to compare feasible
and infeasible solutions, which are generally combined with
MOEAs to form constrained MOEAs (CMOEAs) [9].

Indisputably, the combination methods of CHTs and
MOEAs are very important, different combination methods
will produce different effects, which will greatly affect the
performance of the algorithms. If the algorithm favors the
satisfaction of constraints, the population will easily find
feasible solutions, but it will also fall into the local feasible
region; if the algorithm gives priority to the optimization of
objectives, the diversity of the population will be enhanced,
but it may lead to the failure to find feasible solutions for
the population. Therefore, in order to achieve the balance
between objectives and constraints, researchers began to
attempt dual-population and two-stage mechanisms [10,11].
Evidence suggests that these two types of mechanisms can
well balance between the objectives and constraints. In the

two-stage methods, the population generally searches for
unconstrained PF (UPF) in the first stage to utilize the
information of the objectives, and gradually converges to
CPF from UPF in the second stage. But the UPF informa-
tion is ignored in the second stage, so that the population
diversity cannot be maintained well. And if too much com-
puting resources are used in the first phase, the computing
resources in the second phase will not be sufficient, as a
result, the population will not converge to the real CPF. For
the dual-populationmechanisms, the first population as main
population considers both objectives and constraints, which
used to searche CPF and ensure the feasibility of the output
population. The second population as auxiliary population is
employed to explore UPF without considering constraints,
which can help the first population improve diversity. How-
ever, ifUPFandCPFdonot overlap, findingUPFwill provide
less help for themain population in the later stage. Therefore,
the computing resources consumed by the second population
in the later stagewill bewasted. So, it is necessary to consider
the resource allocation for the the auxiliary population.

Based on the above discussion, this paper designs a novel
dual-population algorithm, named DPVAPS. The main con-
tributions of this paper are as follows:

1. A dynamic population size reducing mechanism is pro-
posed, so that the size of the auxiliary population will
gradually decrease during the evolution. When UPF and
CPF do not completely overlap, the proposedmechanism
can reduce the resource consumptionof the auxiliary pop-
ulation in the later stage. Therefore, the main population
will be allocated more computing resources to search for
CPF.

2. An external archive is used to save the feasible solutions
found by the auxiliary population, which can provide
more different feasible solutions for the main population,
thereby increasing the diversity of the main population.

3. Systematic and comprehensive experiments are carried
out on five test suits sets to verify the effectiveness of the
proposed algorithm.

The rest of this paper is organized as follows. the descrip-
tion of the existing CMOEAs are introduced in “Literature
review”. In “The proposed algorithm” describes the proposed
DPVAPS algorithm. The experimental results are given in
“Experimental study”. The conclusion of the paper and future
work are presented in “Conclusion”.

Literature review

In this section, the related work on CMOEAs will be
briefly introduced. Generally speaking, CHTs and the inter-
nal mechanism used by CMOEAs play a decisive role in
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the performance of the algorithms. From this perspective,
CMOEAs can be divided into the following categories: (1)
The penalty function method [12–14]; (2) The methods that
consider constraints and objectives separately [15–17]; (3)
the method of using two-stage [18–20]; and (4) the method
based on dual-population [21–23].

The penalty function method is one of the simplest CHTs,
which constructs a penalty coefficient for the constraint
violation degree of the individual, thus transforming the
constrained optimization problem into an unconstrained opti-
mization problem, and then MOEAs are employed to solve
the transformed problems. Obviously, the penalty coefficient
has a significant impact on the performance of the penalty
function method. Penalty methods are classified into static
and dynamic methods according to whether the penalty coef-
ficient will change with the evolutionary generation. The
weight of objectives and constraints is constant in the static
method, which is very detrimental to the balance of them,
and the performance of the static method will drop dra-
matically once the problem becomes complex. Therefore,
the dynamic method is very popular in solving CMOPs. In
[24], an adaptive dynamic penalty function method based on
threshold is proposed by Jan et al., then it is embedded into
the multiobjective evolutionary algorithm based on decom-
position (MOEA/D) framework to solve CMOPs. Jiao et al.
[25] designed a feasible-guiding strategy, in which a new
fitness value is obtained by using the objective functions
modifiedby the constraint violation degree. In addition,Maet
al. [26] assigned two rankings to each individual, one based
on the objective function value and the other based on the
constraint domination principle (CDP). The two rankings
biased toward the objectives and constraints, respectively,
and then the proportion of feasible solutions in the popula-
tion is used to weight the them. Although the effect of the
dynamic method will be significantly improved compared
with the static method, it is very difficult to set appropriate
change rules.

The methods that consider constraints and objectives sep-
arately mainly include CDP [27], stochastic ranking (SR)
[28], and ε constrained method [29]. For CDP, the domi-
nant relationship between individual x and individual y are
as follows:

(a) x is feasible, but y is infeasible, then individual x domi-
nates y.

(b) Both x and y are feasible, but x has the better objective
function values than y, then x dominates y.

(c) Neither x nor y is feasible, but CV (x) < CV (y), then
individual x dominates y.

CDP is widely used by researchers since it is easy to
implement and free-parameter. The most typical algorithm
is NSGA-II-CDP [27], which can help the population to find

the feasible region quickly and improve the convergence of
the population. However, CDP pays too much attention to
the constraints, as a result, the population is easy to fall into
the local optimum especially in some complex problems. In
an attempt to surmount the shortcomings, SR and ε con-
strained method are designed to consider the information of
objectives. For the former, a probability parameter is used
to determine whether comparisons between individuals are
based on the CDP or the objective function. In this way, the
information of objectives can be used to some extent and the
diversity of population will be enhanced. However, improper
parameter settings will cause the population to encounter
difficulties in convergence. ε constrained method uses the
parameter ε to relax the constraints, and all individuals in the
population whose constraint violation degree is less than ε

are regarded as feasible solutions. ε will gradually decrease
with the evolution process, and the information of the objec-
tives will also be used to guide the population evolution, but
it is difficult to grasp the appropriate change rule, and the
setting of the initial ε value is very challenging.

For the method of using two-stage, it divides the evolu-
tion process of the population into two stages, and different
stages perform different functions. Fan et al. [18] put forward
a push and pull (PPS) framework whose first phase ignored
all constraints and focused on exploring UPF. In the second
stage, the ε constrained method was employed to promote
the population recovery to CPF from UPF. However, if the
UPF is difficult to find for the population, too much comput-
ing resources will be consumed by the first stage, resulting in
insufficient computing resources in the second phase, so that
the complete CPF could not be found. In [30], a two-phase
framework, TOP, was proposed by Liu and Wang. The pur-
pose of thefirst stage is to transformCMOP into a constrained
single-objective optimization problem for finding feasible
regions by weighting all objectives. In the second phase,
the CMOEA was employed to explore the complete CPF.
Nevertheless, the performance of thefirst stage is not satisfac-
tory for the problems with small or discrete feasible regions.
Tian et al. [31] designed a two-stage CMOEA, including
stage A and stage B. Stage A assigns the same priority to
the objectives and the constraints, with the aim of finding
all feasible domains. The constraints have a higher priority
than the objectives in stageB, so as to promote the population
converge to Pareto front. However, some excellent objectives
information will be lost since the priority of the objectives is
not greater than the constraints. Liang et al. [32] explored the
relationship between UPF and CPF at the learning stage, and
then the relationship was used to guide the evolution of the
population at the evolutionary stage. In general, the design of
the two-stage mechanism is very prominent, and the transi-
tion conditions between stages should be reasonable, which
will greatly affect the performance of the algorithm in solv-
ing CMOPs. Moreover, for the current two-stage algorithm,
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the utilization of the objectives information is ignored in the
second stage.

To solve the above issues, some dual-population algo-
rithms have been proposed. In [22], a dual-population
algorithm named CTAEA was proposed. It used two archive
populations, one archive considered both constraints and
objectives, while the other only considered objectives. The
exchange of information between the two archives occured
during the offspring generation and environmental selection.
However, this strong correlation between two populations
leads to the slow search speed of the algorithm. To cir-
cumvent this disadvantage, Tian et al. [21] developed a
co-evolutionary framework (CCMO) using the weak corre-
lation, in which the first population was mainly used to solve
the original CMOPs, and the second population converged to
the UPF by ignoring constraints directly. These two popula-
tions independently produced offspring and only exchanged
information during the environmental selection. Qiao et
al. [33] suggested a evolutionary multitasking-based CMO
framework (EMCMO). Compared with CCMO, EMCMO
considers the types of problems and analyzes the informa-
tion of different individuals. However, the performance of
the algorithm is not satisfactory when solving the problem
whose UPF is far from the CPF. In [23], a dual-population
algorithm named BiCo was proposed, which used two popu-
lations to approximate the CPF from different directions. The
above dual-population algorithms all used two populations
to consider constraints and objectives respectively, and used
information exchange to balance constraints and objectives.
However, when the UPF and CPF do not completely over-
lap, the second population has less auxiliary effect for the first
population in the later stage. At this time, if the auxiliary pop-
ulation and the main population enjoy the same computing
resources, the resource wasted by the auxiliary population
will affect the performance of the algorithm. Therefore, it
is necessary to reduce the resource consumption of the sec-
ond population, so that the main population can use more
resources to find the CPF.

In order to solve the above issues in dual-population
algorithms, this paper proposes a novel dual-population algo-
rithm. In the proposed algorithm, a dynamic population size
reducing mechanism is proposed, which is used to save the
computing resources occupied by the auxiliary population in
the later stage. More detailed description will be presented
in the next section.

The proposed algorithm

The procedure of the proposed algorithm

The overall framework and main procedure of the proposed
algorithm are shown in Fig. 1 and Alogrithm 1, respectively.

First, the two populations are randomly initialized respec-
tively. POP1 is the main population and mainly responsible
for searching for CPF. Meanwhile, the CDP method which
has a strong ability to find feasible solutions is employed by
the main population to improve the feasibility. The second
population POP2 is the auxiliary population, which does not
consider any constraint and adopts the fast non-dominated
sorting method to push the population to approach the UPF,
so as to utilize infeasible solutions to expand search. As
shown in lines 6–9, the two populations use genetic algorithm
(GA) to generate offspring, respectively. More specifically,
the tournament selectionmethod is used to select mating par-
ents from the population, and the simulated binary crossover
(SBX) [34] and the polynomial mutation (PM) [35] are
employed to produce offspring based on the selected mat-
ing parents. The information exchange is achieved between
the two populations mainly by sharing offspring during the
environmental selection as shown in lines 14–15. Since the
auxiliary population ignores all constraints, its convergence
and diversity are better than the main population. Therefore,
the auxiliary population will reach the feasible region earlier
than the main population, which can provide more search
directions to the main population. By this way, the diversity
of the main population will be improved.

As shown in line 15, the dynamic adjustment of the
auxiliary population size is mainly realized by a dynamic
coefficient δ, whichwill decrease as the number of evolution-
ary generation increases. For a CMOP, if theUPF andCPF do
not completely overlap, the information of UPF in the later
stage is not very helpful for the main population to search
for CPF. As the size of the auxiliary population decreases,
the computing resources occupied in the later stage will also
decrease. In this way, more computing resources can be allo-
cated to the main population. As shown in lines 16–19, the
external archive A is mainly used to store feasible solutions
found by the auxiliary population, so as to provide more
information to the main population during the environmen-
tal selection. When the size of A exceeds N P , A will be
truncated [21].

Dynamic population size reducingmechanism

Thedynamicpopulation size reducingmechanism is designed
with the purpose of avoiding the waste of computing
resources in the later evolution stage. During the evolution
of the two populations, the infeasible regions will not hin-
der the evolution of the auxiliary population since it does
not consider any constraints, so it will converge faster than
the main population. At this point, the information of the
auxiliary population will help the main population to cross
those large infeasible regions and reach the optimal feasible
region.Moreover, the auxiliary population will provide more
evolutionary directions for the main population to increase
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Fig. 1 The framework of
DPVAPS
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Algorithm 1 The procedure of DPVAPS
Input: N P (population size)

totalFES(maximum number of function evaluations)
A (external archive)
δ (dynamic coefficient)

Output: POP1 (the main population)
1: POP1 ← RandomInitiali zation(N P);
2: POP2 ← RandomInitiali zation(N P);
3: POP1 and POP2 are evaluated by CDP and fast non-dominated

sorting, respectively;
4: FES = N P ∗ (1 + δ);
5: WhileFES ≤ totalFES
6: Parent1 ← Select N P parents from POP1 by the tournament

method;
7: Parent2 ← Select round(N P ∗ δ) parents from POP2 by the

tournament method;
8: O f f1 ← Generate N/2 offsprings based on Parent1 by the opera-

tors of GA;
9: O f f2 ← Generate round(N P ∗ δ/2) offsprings based on Parent2

by the operators of GA;
10: POP1 ← POP1 ∪ O f f1 ∪ O f f2 ∪ A;
11: POP2 ← POP2 ∪ O f f1 ∪ O f f2;
12: Evaluate POP1 and POP2;
13: FES = FES + N P/2 + round(N P ∗ δ/2);
14: POP1 ← Select N P solutions from POP1 by the CDP method;
15: POP2 ← Select round(N P ∗ δ) solutions from POP2 by the fast

non-dominated sorting method;
16: A ← A∪ The feasible solutions selected from POP2;
17: If |A| > N P
18: A ← Select N P individuals by CDP;
19: End If
20: δ ← Update δ by formula (4);
21: End While

its diversity. However, after the auxiliary population reaches
the UPF, its offspring will also be generated in the vicinity
of the UPF and no more beneficial information will be pro-
duced. Even if more computing resources are given to the
auxiliary population at this time, the help to the main popu-
lation will be very limited. In contrast, the main population
requires more computational resources to explore the CPF.
Therefore, a dynamic population size reducing mechanism
is designed to avoid the waste of computing resources by the
auxiliary population and to allocate more resources to the
main population.

To illustrate the dynamic population size reducing mech-
anism, an example is provided in Fig. 2.

Fig. 2 Schematic diagram of dynamically adjusting population size,
where the black and red curves represent theUPF andCPF, respectively.
The green area represents the feasible region. Thewhite and yellow dots
represent the main population and auxiliary population, respectively

In this case, the auxiliary population can only provide very
limited assistance to the main population in the later stage,
because the information of the auxiliary population cannot
help the main population to improve the diversity on CPF. At
this time, if the same computing resources is still allocated to
the two populations, that is, the auxiliary population is kept
the samepopulation size as themain population, limited com-
puting resources will be wasted by the auxiliary population.
Therefore, a dynamic coefficient δ develpoed to change the
size of the auxiliary population is proposed as follows:

δ = |Gen|
|Genmax | ∗ (δmin − 1) + 1 (4)

where |Gen| and |Genmax | represent the current generation
and the maximum generation, respectively. δmin represents
the minimum of δ. Figure 3 shows the changing rule of
dynamic coefficient δ with the continuous increase of evolu-
tionary generation. Given that the initial size of the auxiliary
population is 100 and the δmin is 0.1, then as δ decreases from
1 to 0.1, the size of the auxiliary population will gradually
decrease and become 10 in the last generation. In this way,
more computing resources can be used by the main popu-
lation in the later stage, thereby improving diversity of the
main population on the CPF. It should be noted that we have
verified that the algorithm can achieve the best performance
when δmin is set to 0.1.
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Fig. 3 The changing trend of δ

External archive

In an attempt to increase the diversity of main population, the
external archive A is created. Figure 4 illustrates the impor-
tance of setting an archive.

Archive A saves the feasible solutions encountered by
POP2 during the evolutionary process. Because the aux-
iliary population does not consider constraints, there is a
high probability that the high-quality feasible solutions in the
auxiliary population will be dominated by those infeasible
solutions, as a result, these feasible solutions are eliminated
in the environmental selection stage. In addition, since these
feasible solutions in the auxiliary population are not exactly
the same as the feasible solutions searched by themain popu-
lation, if these feasible solutions are preserved, theywill form
a complementary effect with the main population, searching
the areas not searched by the main population, which will
be extremely helpful to the diversity of the main population.
Most importantly, it is very helpful to improve the distribu-
tion ability of the main population on the CPF.

Analysis for different evolution stages of DPVAPS

In this paper, the dual-population mechanism is used, and
the size of the second population will decrease with the
increase of evolution algebra. CCMO [21] also uses the dual-
population mechanism, moreover, they both use NSGA-II
as the basic optimizer. Here, their differences are com-
pared:

Similarly, the dual-population mechanism is used in [21].
The purpose of the first population in CCMO is to search
CPF, while the second population mainly focuses on the
exploration of UPF. The size of the second population is
always the same as that of the first population, so these two

Fig. 4 Schematic diagram of the reason for setting external archive,
where the white triangles represent the external archive

populations consume the same computing resources in the
process of evolution. In addition, the second population lacks
the mechanism to save feasible solutions, so the feasible
solutions searched by the second population are not fully
utilized by the first population, resulting in a waste of knowl-
edge. However, the second population of DPVAPS decreases
dynamically during evolution, so more computing resources
will be used by the main population. In addition, the feasi-
ble solutions found by the second population will be saved
to provide effective information for the main population and
help themain population searchCPFmore completely. These
are the two main differences between DPVAPS and CCMO.

In addition, in order to further study the efficiency of the
proposed algorithm, the benchmark problem LIRCMOP8 is
selected for comparative experiments. LIRCMOP8 hasmany
large infeasible regions, these large infeasible blocks will
block the evolution of the population and its UPF is located
in the infeasible region, while the CPF is on the boundary
of feasible region. The populations distribution of NSGA-II,
CCMO, andDPVAPS in the objective space in the early,mid-
dle, and later stages on the problem LIRCMOP8 are listed in
Fig. 5. It can be seen that in the early stage of evolution, the
main populations of the three algorithms begins to converge
towards CPF, and some individuals have reached the vicinity
of CPF. In addition, the distribution of auxiliary populations
of CCMO and DPVAPS is more dispersed due to all con-
straints are not considered. In the middle stage of evolution,
some individuals of NSGA-II reach the CPF, while the other
individuals are blocked by large infeasible blocks and stayed
in the region far away from the CPF. The main populations
of CCMO and DPVAPS are almost all distributed around the
CPF, and their auxiliary populations are all near the UPF. The
main reason is that their auxiliary populations do not con-
sider constraints, which can help the main populations cross
large infeasible blocks to reach the CPF. In the later stage of
evolution, the population of NSGA-II is similar to that in the
middle stage. Some of individuals are distributed on the CPF,
while those blocked by the infeasible region are still stagnant
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Fig. 5 Populations in the early, middle, and later stages of NSGA-II, CCMO, and DPVAPS on benchmark problem LIRCMOP8

away from theCPF. This is becauseNSGA-II lacks themech-
anism to help the population cross the infeasible regions, so
the individuals are easily hindered by the infeasible regions
and cannot reach the optimal feasible region. In contrast, all
individuals in the main populations of CCMO and DPVAPS
can reach CPF. The CPF covered by CMMO is incomplete,
the upper left corner of the CPF is not found. While the main
population of DPVAPS is more evenly and completely dis-
tributed on the CPF. For two auxiliary populations, they have
reached UPF. However, the number of individuals in auxil-
iary populations of DPVAPS is reduced to 10, while the size
of auxiliary population of CCMO is still consistent with the
main population. In this way, more computing resources can
be used by the main population of DPVAPS. Moreover, the
external archive in DPVAPS will save the feasible solutions

in the auxiliary population andmake up the area not searched
by themain population. That is why the convergence and uni-
formity of the main population of DPVAPS is better than that
of CCMO.

Experimental study

In this section, in an attempt to test the performance of the
proposed algorithm, it will be compared with five state-of-
the-art CMOEAs: NSGA-II [27], CCMO [21], BiCo[23],
PPS [18], and ToP [30], in which the NSGA-II is one of
the most classical CMOEAs and it is often chosen as the
optimizer of the main population in the dual-population
mechanism; CCMO and BiCo are classical dual-population
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Table 1 The specific parameter settings of the test sets

Test suits The objective number (m) Dimension (D)

MW m = 3: MW4, MW8, and MW14; m = 2: other problems D = 15

LIRCMOP m = 3: LIRCMOP13-14; m = 2: the rest problems D = 10

DTLZ m = 3 D = 7: C1_DTLZ1, DC1_DTLZ1, DC2_DTLZ1,
and DC3_DTLZ1; D = 12: the remaining problems

CTP m = 2 D = 4

DASCMOP m = 2: DASCMOP1-6; m = 3: DASCMOP7-9 D = 30

algorithms; and PPS and ToP are the representatives of two-
stage algorithms.

The experiments are carried out on five commonly used
test sets, i.e., MW [36], LIRCMOP [37], DTLZ [22], CTP,
and DASCMOP [38]. The specific settings of the number of
objectives and dimensions are shown in Table 1. In addition,
the population size N P is set to 100, the maximum number
of evaluations is set to 60000, and each algorithm indepen-
dently runs 30 times on each benchmark function. For the
sake of fairness, the evolutionary strategies of all compari-
son algorithms are GA, and other parameters are the same
as their original papers. The inverted generational distance
(IGD) [39] and feasible rate (FR) are employed as indicators
to measure the performance of the algorithms. IGD reflects
the convergence and diversity of the algorithm. The smaller
the IGD value of the algorithm is, the better its performance
will be. FRhighlights the ability of the algorithm to search for
feasible solutions. The larger the value, the stronger the algo-
rithm’s ability. All comparative experiments are performed
on the PlatEMO [40] platform.

Verification of the proposedmechanisms

The dynamic population size reducing mechanism and the
external archive are the two main contributions of this paper.
In order to verify the effectiveness of these two mechanisms,
twovariants,DPVAPS_1 andDPVAPS_2, are created as con-
trol groups for comparative experiments in this section, in
which DPVAPS_1 means that only the dynamic population
size reducingmechanism is employed without using external
archive, and DPVAPS_2 means that only external archive is
used. The specific average and standard deviation of IGDval-
ues are shown in Table 2, in which the best result is marked
in bold. “+”, “−”, and “=” indicate that the variant is signifi-
cantly better than, worse than, or comparable to the proposed
algorithm, respectively.

As can be seen from Table 2, DPVAPS achieves the best
IGD average values on 19 out of the 24 functions compared
with DPVAPS_1.What’s more, the performance of DPVAPS
is significantly better than that of DPVAPS_1 on 14 bench-
mark problems, while it is outperformed by it on only 2
benchmark problem. For DPVAPS_1, the external archive is

not employed, thus the feasible solutions in the main popula-
tion are preserved. The disadvantage is that the information
of the promising feasible solutions in the auxiliary population
is ignored. As a result, the diversity of the main population
is lost. Because the auxiliary population does not consider
any constraint, the probability of feasible solutions being
dominated by infeasible solutions is large, so these solu-
tions will be eliminated in the environment selection stage.
While these feasible solutions may be high-quality informa-
tion for the main population. By using the feasible solutions
in the auxiliary population, the evolution direction of the
main population can be increased, more feasible regions can
be searched, and some CPF fragments that are not easy to
search can also be explored. Figure 6 shows the popula-
tions in the early, middle, and later stages of DPVAPS_1 on
benchmark problem LIRCMOP8. Compared with the main
population distribution of DPVAPS, DPVAPS_1 is not com-
pletely distributed on CPF, which is caused by the loss of
diversity, while the external archive can remedy this defect.
Therefore, the performance of DPVAPS is superior to its
variant without external archive.

From the Table 2, DPVAPS achieves the better IGD
average values on 22 out of the 24 problems. In addition,
according to theWilcoxon rank-sum test, DPVAPS performs
significantly better than its variant DPVAPS_1 on 15 func-
tions, but significantly worse than it on only 1 test problems.
Compared with DPVAPS_2, the computational resources
consumed by the auxiliary population of DPVAPS gradually
decrease with the evolutionary process, so that more compu-
tational resources can be used by the main population. For
some complex problems, if only half of the computational
resources are employed by themain population, there is a sit-
uation that the computational resources are exhausted before
the complete CPF is searched. While if the main population
has enough computing resources, it will have the ability to
continue to approach the real CPF after reaching the optimal
feasible region. Therefore, DPVAPS shows more excellent
performance than DPVAPS_2.

In summary, according to the above results and analy-
sis, the two mechanisms in the proposed algorithm are very
effective.
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Table 2 Average IGD values of
DPVAPS_1, DPVAPS_2, and
DPVAPS on LIRCMOP and
DTLZ tests

Problem DPVAPS_1 DPVAPS_2 DPVAPS

LIRCMOP1 2.3707e−1 (8.35e−2) + 3.1181e−1 (1.30e−1) = 2.96798e−1 (9.20e−2)

LIRCMOP2 1.6755e−1 (9.51e−2) + 1.6554e−1 (5.38e−2) = 2.1026e−1 (9.22e−2)

LIRCMOP3 2.6450e−1 (6.93e−2) = 2.8104e−1 (1.23e−1) = 2.8250e−1 (9.08e−2)

LIRCMOP4 2.4162e−1 (9.66e−2) = 2.4403e−1 (7.90e−2) = 2.6383e−1 (7.84e−2)

LIRCMOP5 1.8162e−2 (7.00e−3) − 2.8261e−2 (1.80e−2) − 1.6034e−2 (9.38e−3)

LIRCMOP6 1.8189e−2 (1.08e−2) − 2.1968e−2 (1.63e−2) − 1.2559e−2 (3.71e−3)

LIRCMOP7 1.2483e−2 (4.61e−3) − 1.1806e−2 (4.03e−3) − 9.8116e−3 (2.24e−3)

LIRCMOP8 9.4475e−3 (3.16e−3) = 1.1143e−2 (4.82e−3) − 8.6200e−3 (1.35e−3)

LIRCMOP9 8.4287e−2 (5.80e−2) = 8.0360e−2 (4.67e−2) = 5.3668e−2 (3.46e−2)

LIRCMOP10 9.5758e−3 (4.89e−3) − 7.2114e−3 (9.11e−4) − 6.8317e−3 (1.24e−3)

LIRCMOP11 2.7502e−3 (4.32e−4) − 2.9374e−3 (4.01e−4) − 2.5734e−3 (2.08e−4)

LIRCMOP12 5.6977e−3 (3.36e−3) − 8.8732e−3 (7.06e−3) − 4.2910e−3 (2.48e−3)

LIRCMOP13 9.2905e−2 (1.03e−3) − 9.3265e−2 (9.22e−4) − 9.1558e−2 (8.63e−4)

LIRCMOP14 9.5250e−2 (8.52e−4) − 9.5581e−2 (7.54e−4) − 9.4227e−2 (9.42e−4)

C1_DTLZ1 1.9922e−2 (1.41e−4) − 1.9971e−2 (1.62e−4) − 1.9782e−2 (1.58e−4)

C1_DTLZ3 5.3812e−2 (6.44e−4) − 5.3593e−2 (6.45e−4) = 5.3303e−2 (4.75e−4)

C2_DTLZ2 4.2614e−2 (6.20e−4) = 4.2858e−2 (4.51e−4) − 4.2303e−2 (5.68e−4)

C3_DTLZ4 1.2023e−1 (1.56e−1) = 1.2086e−1 (1.36e−1) = 1.4459e−1 (1.89e−1)

DC1_DTLZ1 1.1442e−2 (8.49e−5) − 1.1508e−2 (1.39e−4) − 1.1393e−2 (7.58e−5)

DC1_DTLZ3 1.1387e−1 (1.09e−3) = 1.1429e−1 (7.01e−4) − 1.1364e−1 (9.02e−4)

DC2_DTLZ1 2.0108e−2 (1.61e−4) − 2.0258e−2 (2.24e−4) − 1.9973e−2 (1.29e−4)

DC2_DTLZ3 1.0656e−1 (1.56e−1) − 5.3762e−2 (2.47e−3) + 7.2399e−2 (9.33e−2)

DC3_DTLZ1 6.9160e−3 (1.36e−4) − 6.9174e−3 (1.33e−4) − 6.8349e−3 (6.56e−5)

DC3_DTLZ3 2.0530e−1 (1.35e−1) = 1.5999e−1 (2.63e−3) = 1.7800e−1 (6.84e−2)

+/−/= 2/14/8 1/15/8
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Fig. 6 Populations in the early, middle, and later stages of DPVAPS_1 on benchmark problem LIRCMOP8

Parameter analysis

In the proposed algorithm, the size of the auxiliary popula-
tion is controlled by parameter δmin . The value of parameter
δmin in the dynamic population size reducing mechanism
is 0.1, indicating that the size of the auxiliary population
gradually decreases to 10 with the increase of evolution. To
verify the suitability of this parameter, several variants are
created, namely DPVAPS_10, DPVAPS_20, DPVAPS_30,

and DPVAPS_40, in which δmin is taken as 0.2, 0.3, 0.4,
and 0.5 respectively, indicating that the size of the auxiliary
population gradually decreases to 20, 30, 40, and 50. The
experiments are conducted on two test sets, LIRCMOP and
DTLZ, and the experimental results are shown in Table 3.

It can be seen from the experimental results that DPVAPS
achieves the best IGD average on 15 out of 24 problems. And
based on theWilcoxon rank-sum test results, DPVAPS is sig-
nificantly better than its variants on 9, 9, 7, and 11 problems
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respectively, while it is only surpassed by its variants on 1,
0, 1, and 1 test peoblems. The reason is that when the size of
the auxiliary population gradually decreases to 10, the main
population will enjoy more computing resources to search
CPF. While the auxiliary population will still give some help
to the main population in the later stage, so it still needs to
enjoy some resources. To sumup, it is quite appropriatewhen
δmin is 0.1.

Experimental results onMW and LIRCMOP problems

Table 4 shows the average and standard deviation of IGD val-
ues of the comparison algorithms on the five test sets, where
the best result is marked in bold. Please note that if the algo-
rithm cannot continuously find the feasible solutions on a
problem, then only the feasibility rate is given in the form
of “NAN (FR)”. “+”, “−”, and “=” indicate that the com-
pared algorithm is significantly better than, worse than, or
comparable to the proposed algorithm, respectively. As can
be seen from the Table 4, DPVAPS outperforms NSGA-II,
CCMO, BiCo, PPS, and ToP on 24, 14, 16, 28, and 23 func-
tions, respectively. In contrast, these compared algorithms
outperform the proposed algorithm only on 0, 2, 3, 0, and
2 functions, respectively. From the perspective of FR, only
CCMO and DPVAPS achieve 100% feasibility rate on all
problems, while other algorithms cannot consistently find
feasible solutions in 30 runs on some problems.

MW and LIRCMOP test suits have small and the dis-
crete feasible regions, which requires a strong diversity of
algorithms. NSGA-II does not outperform DPVAPS on any
problem in these two test set, this is because NAGS-II uses
only CDP to handle the constraints, and the population will
quickly find one of the feasible regions, but this will cause
the population to converge to this feasible domain instead of
spreading to other regions, so its diversity cannot be guaran-
teed. CCMO and BiCo exhibit the similar performance with
DPVAPS on some benchmark problems, the reason is that
they all use the dual-population mechanism, whose auxil-
iary populations can provide beneficial information to the
main population and help the main population find more
feasible areas. This also proves the advantages of the dual-
population mechanism. The auxiliary population of CCMO
always consumes equal computational resources with the
main population, so it does not have the superior performance
exhibited by DPVAPS on most problems. The auxiliary pop-
ulation in BiCo uses an angle-based selection mechanism to
ensure the diversity of the auxiliary population, so it performs
well on some problems with small and multiple feasible
regions, such as MW2, LIRCMOP1, and LIRCMOP3. But
on the whole, DPVAPS performs better than BiCo. PPS and
ToP are two-stage algorithms, the purpose of population is to
find UPF in the first stage of PPS, while the second stage is
to find CPF. But in these complex problems, there is a risk of

the population falling into a local optimum when finding the
UPF, which greatly affects the effect of the second stage. The
first stage of ToP is to find feasible regions, and the second
stage is to search CPF. However, in the first stage, there is
a great probability to search the local feasible region rather
than the optimal feasible region, so the optimal Pareto front
cannot be found. For DPVAPS, the main population can be
allocated more computing resources to search the CPF since
the resources consumed by the auxiliary population gradu-
ally decreases. In addition, external archiving can increase
the diversity of main population, therefore, the main popula-
tion can be more evenly distributed over the CPF.

To sum up, the experimental results on the MW and LIR-
CMOP benchmark function sets can prove that the proposed
algorithm has relatively better performance than other algo-
rithms.

Experimental results on DTLZ, CTP, and DASCMOP
problems

The specific IGD values of DPVAPS and five comparison
algorithms on the DTLZ, CTP, and DASCMOP test sets
are shown in Table 5. The results are blacked out once the
algorithm achieves the optimal average IGD value on this
problem. It can be seen that DPVAPS achieves the best
average IGD values on 22 out of 27 test problems. In addi-
tion, DPVAPS performes significantly better than NSGA-II,
CCMO, BiCo, PPS, and ToP on 23, 14, 22, 26, and 26 prob-
lems respectively based on the rank-sum test, while they only
significantly outperform DPVAPS on 2, 1, 0, 0, and 1 prob-
lems, respectively.

The DTLZ test set has different constraint properties that
can make the UPF become feasible, partially feasible, or
completely infeasible. This makes the problems have dif-
ferent degrees of difficulty. Only CCMO and DPVAPS can
consistently find feasible solutions on all peoblems in 30
runs. While the main population of DPVAPS can use more
computing resources, so it can cover the CPF more com-
pletely. The dimensions of CTP test problems are relatively
small, and their feasible regions are large, so they are rel-
atively easy to solve. All algorithms can achieve the 100%
feasible rates on these problems. The DASCMOP test set has
many constraints, resulting in the large infeasible area blocks
in the search space. This requires that the algorithm has the
ability to cross the infeasible region. The auxiliary popula-
tion of CCMO can ignore the constraints and reach the UPF.
Furthermore, the information exchange in the environmental
selection stage can help the main population cross the infea-
sible regions to reach the optimal feasible region, so it shows
the superior effect. The auxiliary population of BiCo trans-
forms the constraints into the objective, which still has the
risk of falling into a local feasible domain, and thus its results
are worse than those of CCMO and DPVAPS. PPS and ToP
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Table 6 Results obtained by the Wilcoxon test

DPVAPS VS R+ R− P value α = 0.05

NSGA-II 1227.0 95.0 0 YES

CCMO 1059.5 381.5 0.00109 YES

BiCo 1164.5 210.5 0.000003 YES

PPS 1225.0 6.0 0 YES

ToP 624.0 23.0 0 YES

are two-stage algorithms. Since the search engine of PPS is
replaced by GA, resulting in the diversity of the population
is decreased, the population uses too much computational
resources to searchUPF in the first stage, and thus the popula-
tion does not have enough computational resources to search
the true CPF in the second stage. The auxiliary population of
DPVAPS can reach the UPF quickly without considering any
constraint, so it can help themain population to reach the opti-
mal feasible region across the infeasible region.What’smore,
the main population can use more computing resources, and
external archiving can help the main population search more
feasible regions, so it shows excellent performance.

In conclusion, according to the results of the algorithms
on DTLZ, CTP, and DASCMOP test suits, the performance
of DPVAPS in solving simple or complex problems is better
than that of the comparison algorithms.

Statistical results

In this section, all algorithms have carried out two statistical
experiments on all 55 problems:Wilcoxon test and Friedman
test. The experiments are conducted on KEEL software [41].
Table 6 shows the Wilcoxon test results. It can be seen that
all R+ are greater than R−, indicating that DPVAPS is supe-
rior to the comparison algorithms. Furthermore, there are
significant differences between the comparison algorithms
and DPVAPS at the significance level α = 0.05. Friedman
test results are exhibited in the Fig. 7, the smaller the rank-
ing value, the better the performance of the algorithm. It can
be seen that the Rankings of the proposed algorithm is the
smallest, which proves that its performance is superior to
other algorithms. In a word, from the statistical results, the
performance of DPVAPS is also the most superior compared
with other comparison algorithms.

Figure 8 shows the convergence graphs of the average IGD
values of DPVAPS and comparison algorithm for 30 runs on
test questions LIRCMOP5 and LIRCMOP12. Among them,
the LIRCMOP5 has the large infeasible regions, which block
the evolution of the population. Similarly, the LIRCMOP12
also has the large infeasible regions, and its CPF is discrete.
It can be seen from Fig. 8 that CCMO and DPVAPS achieve
similar performance on the test problem LIRCMOP5, while

NSGA-II
CCMO

BiCo PPS ToP

DPVAPS

Algorithms

0

1

2

3

4

5

A
ve

ra
ge

 R
an

ki
ng

s

Fig. 7 Average rankings of all six methods obtained by the Friedman
test on all 55 functions

DPVAPS achieves the fastest convergence speed on the test
problem LIRCMOP12. In a word, DPVAPS has faster con-
vergence speed compared with other algorithms.

Conclusion

This paper proposes a novel dual-population algorithm to
solveCMOPs. Themain population is responsible for search-
ing for CPF, and the auxiliary population is responsible for
searching for UPF. In addition, In order to reduce the waste
of computing resources of the auxiliary population in the
later stage, a dynamic population size reducing mechanism
is designed to change the size of the auxiliary population.
Furthermore, an external archive is used to store feasible solu-
tions found by the auxiliary population, which can provide
more new feasible solutions for the main population, thereby
increasing the diversity of the main population on CPF. In
the experimental stage, the effectiveness of the two mech-
anisms, the dynamic population size reducing mechanism
and external archive, are verified. The rationality of parame-
ter δmin used to control population size is also investigated.
Moreover, the experimental results on 55 test problems prove
that the proposed algorithm is promsing in solving CMOPs.
However, the developed algorithm still has some limitations:
(1) the size of auxiliary population decreases according to the
same change rule on different problems. Therefore, a popula-
tion size reduction mechanism based on the type of problems
should be designed to deal with different problems; (2) the
auxiliary population movement mechanism can be designed
so that it can approach theCPF from the infeasible region side
and explore the CPF with the main population. In the future,
DPVAPS will be further improved to solve these problems,
and can be applied to solve practical problems.
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Fig. 8 Convergence graphs of average IGD values obtained by 30 runs of DPVAPS and other comparison algorithms on two representative functions
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