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Abstract
This paper describes first how Euclidian- and Minkowskian–Banach spaces 
are related via the definition of a metric or signature vector. Also, it is discussed 
later on how these spaces can be generated using homothecies of the unit sphere 
or shell. Such possibility allows for proposing a process aiming at the dimension 
condensation in such spaces. The condensation of dimensions permits the account 
of the incompleteness of classical QSPR procedures, independently of whether the 
algorithm used is statistical bound or AI-neural network related. Next, a quantum 
QSPR framework within Minkowskian vector spaces is discussed. Then, a well-
defined set of general isometric vectors is proposed, and connected to the set of 
molecular density functions generating the quantum similarity metric matrix. A 
convenient quantum QSPR algorithm emerges from this Minkowskian mathematical 
structure and isometry.

Keywords  Euclidian- and Minkowskian–Banach spaces · Vector space generation 
via the unit shell · Dimension condensation · Metric or signature vector · Classical 
QSPR · Minkowskian similarity matrices · Minkowskian isometric vectors · 
Quantum QSPR algorithm

1  Introduction

Since the first study on quantum similarity [1], the application of this new way to 
use the geometrical side of quantum mechanics has been ubiquitous; see for instance 
a few references [2–33] as an example. One of the aspects most studied by our 
laboratory has been the connection of quantum similarity with the Quantitative 
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Structure–Properties Relations (QSPR1) technique; see for example the earlier 
references [6, 11, 14, 17, 20, 23–25, 27–29, 31–33], for more information. The 
evolution of these earlier ideas has led to the description of quantum QSPR; see for 
a sample of this development references [34–54].

The present study will provide not only a scheme of quantum QSPR but will be 
associated with the structure of vector spaces to observe their role in the definition 
of both classical and quantum QSPR.

A new perspective of the quantum QSPR framework will be also given, taking 
into account that quantum similarity relies on molecular spaces2 which in general 
are non-Euclidian, but Minkowskian. One can advance the fact that this geometrical 
issue has never been discussed within QSPR literature.

The scheme which will be followed in this paper presents first the study of 
N-dimensional Euclidian spaces. Introducing afterward the Euclidian–Banach 
spaces. Then, leading to the concept of dimension condensation and entering into 
the Minkowskian spaces description. After this, the role of Minkowskian vector 
spaces in quantum similarity is presented, with a well-defined construction of 
an isometric set of discrete vectors. After this, according to the simplicity of the 
present study, a quantum QSPR algorithm will be defined. Along with developing 
ideas connected with quantum similarity and quantum QSPR, there will be a present 
search for the inherent incompleteness of classical QSPR.

2 � N‑dimensional Euclidean vector spaces

Suppose an N-dimensional Euclidean vector space, which is defined over the real 
field: �N(ℝ) , considering that for computational purposes it could be also redefined 
over the rational field, �N(ℚ) . One can also study the elements of the space �N(ℝ) 
as column vectors, and write:

where Dirac’s notation for column vectors has been used. Thus, the supraindex 
T means transposition, and again, vector Dirac’s formalism: ⟨�� =

�
x1, x2, ...xN

�
 

corresponds to the row vectors forming the dual vector space: �∗
N
(ℝ).

Some thoughts have been done on the structure of vector spaces and the nature of 
the spaces where molecules can be described, see for instance [55, 56], as a way to 
adopt new points of view towards the usual literature.

(1)∀��⟩ ∈ �N(ℝ) → ��⟩ =
�
x1, x2,… xN

�T
∧
�
xI�I = 1,N

�
⊂ ℝ,

1  Here will be used the QSPR acrostic, instead of the more restrictive one: QSAR, where the general 
word (Molecular) Properties is transformed into the specific (Biological) Activity.
2  The term molecular space will be used here instead of chemical space, a widespread and somehow 
preposterous terminology. Molecular space means in this work the set of vector spaces, where the molec-
ular representations as discrete vectors are held.
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2.1 � Euclidean–Banach space: Euclidean norm of a vector

Whenever a norm can be defined in Euclidian space �N(ℝ) , then one can admit 
that such space has a Banach structure, thus transforming the Euclidian space into a 
Euclidean–Banach space.

In the case of spaces defined like in the Eq.  (1) and this study, the appropriate 
norm to provide a Banach structure to any Euclidian space is a second-order 
Euclidian norm, which is straightforwardly defined by:

The Euclidian norm e2(��⟩) is in this way a non-negative real number and 
becomes null only when computed with the zero vector: ��⟩ = (0, 0, ...0)

T , that is: 
e2(��⟩) = 0.

It is easy to admit that this second-order norm definition can be associated with 
the squared Euclidean distance from any vector to the zero vector ��⟩ , which in turn 
can be seen as the vector space origin.

The Euclidian norm can be also described first using the inward3 vector product, 
as defined in numerous previous works [57–65], and possess the following form:

followed by a complete sum of (the elements of) a vector of �N(ℝ) , noted as:

Thus, keeping the definitions (3) and (4) in mind, one can write in this case the 
inward square vector of any vector belonging to �N(ℝ) and performing the complete 
sum of such square vector, then the Euclidian norm can be obtained in this way:

2.2 � The Euclidian module of a vector

Once defined the Euclidean norm employing the Eqs. (2) or (5), then the associated 
module of any vector of the Euclidean–Banach space �N(ℝ) is defined as the square 
root of the Euclidean norm:

(2)∀��⟩ ∈ �N(ℝ) → ∃e2(��⟩) =
N�

I=1

x2
I
∈ ℝ

+
.

(3)∀{��⟩, ��⟩} ⊂ �N(ℝ) → ��⟩ = ��⟩ ∗ ��⟩ =
�
x1y1, x2y2, ... xNyN

�T
∈ �N(ℝ),

(4)∀��⟩ ∈ �N(ℝ) → ⟨��⟩⟩ =
N�

I=1

xI .

(5)

∀��⟩ ∈ �N(ℝ) →
����

[2]
�
= ��⟩ ∗ ��⟩ =

�
x2
1
, x2

2
, ..., x2

N

�T
∧ e2(��⟩) =

�����
[2]
��

=

N�

I=1

x2
I
.

3  The inward product mentioned here is also known as entry-wise, diagonal, Hadamard, and Schur prod-
uct.
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which, when chosen as the positive root, corresponds to a Euclidean distance 
between the corresponding vector and the origin of �N(ℝ) , the zero vector ��⟩.

However, nobody seems to have taken into account or discussed the fact that from 
the presence in the Eq. (6) of a square root, then Euclidean vector modules can be 
also assumed to be negative, with the same numerical absolute value as the usual 
positive distance-like use of them.

This property of moduli is of great importance when one wants to associate the 
whole real line ℝ to any vector space canonical direction. Any vector module might 
be thought of as a pair of symmetric ± real values, which for obvious practical and 
classical definition purposes, in current practice is contemplated to be formed by the 
positive part only.

3 � Construction of any Euclidean–Banach space

3.1 � The unit sphere or shell

Once the Euclidean–Banach space is correctly defined as in the previous section, 
then any vector of the Euclidean–Banach space can be normalized. Meaning by this 
statement that any vector can be scaled in such a homothetic way that the vector is 
transformed into another one possessing a unit module.

The usual way to perform such a homothetic scaling, excepting for the zero vector 
which possesses a zero module, corresponds to using the inverse vector module, that 
is:

where, by �N(1) , the unit sphere, the unit shell, or the 1-shell, is noted and named 
the set of all the normalized vectors belonging to �N(ℝ).

That is, the set of all the vectors ���x⟩ of a Euclidean–Banach space bearing unit 
norm, as:

Equation (8), shows in fact that the set of all normalized vectors, the unit sphere 
or 1-shell, �N(1) , has the property consistent in that its elements fulfill:

In the sense shown above, the set �N(1) can be considered as an N-dimensional 
sphere of radius 1, centered at the origin.

(6)∀��⟩ ∈ �N(ℝ) → ∃���⟩� = ±
√
e2(��⟩) → ���⟩� ∈ ℝ,

(7)∀��⟩ ≠ ��⟩ ∈ �N(ℝ) → ∃���x⟩ = ±���⟩�−1��⟩ ∈ �N(1),

(8)e2
����x⟩

�
=

N�

I=1

n2
xI
=���⟩�−2

N�

I=1

x2
I
= e2(��⟩)−1

N�

I=1

x2
I
= e2(��⟩)−1e2(��⟩) = 1.

(9)∀��⟩ ∈ �N(1) ⊂ �N(ℝ) →

N�

I=1

n2
I
= 1.
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3.2 � The spheres of radius r or r‑shells

This is so, because if any N-dimensional r-shell or sphere of radius r centered at 
the origin is noted by the set �N(r) , defined in turn as:

then, all the vectors with a Euclidean norm equal to the same positive real number 
r2 ∈ ℝ+ , belong to the vector set �N(r) , the N-dimensional sphere or of radius r ∈ ℝ , 
or r-shell.

3.3 � Euclidean–Banach vectors as homothecies

The above definition is the same to say that any vector in a Euclidean–Banach 
space �N(ℝ) , is a homothecy of a vector of the unit shell �N(1) with a scale factor 
equal to a given radius r . Therefore, any Euclidean–Banach space �N(ℝ) can be 
constructed from knowing the unit sphere or unit shell vector set �N(1) and the 
real line ℝ.

Such a homothecy is general and can be applied to any Vector Space 
isomorphic to a Euclidean–Banach space. It can be succinctly noted by the 
equation:

which can be written with the rational field, if necessary, when thinking of the 
computational use of the Euclidian–Banach spaces:

Also, this construction is the same to say that the spheres or shells of any 
radius, centered at the origin in any Euclidean–Banach space, are formed by 
the set of module r vectors, initiating at the origin zero vector and ending at the 
surface of the sphere or r-shell: �N(r).

Then, any Euclidean–Banach space can be observed as an infinite sequence 
of spheres or r-shells derived by the infinite sequence of homothecies of the unit 
sphere �N(1) using the real or rational fields.

3.4 � Natural spheres or shells

Among the infinite variety of r-shells possible, one might underline the infinite 
sequence of natural shells, obtained via natural number homothecies, which can 
be noted by means:

(10)∀��⟩ ∈ �N(r) ⊂ �N(ℝ) →

N�

I=1

x2
I
= r2,

(11)∀�N(ℝ) = ℝ ⋅ �N(1),

∀�N(ℚ) = ℚ ⋅ �N(1).

∀�N(ℕ) ⊂ �N(ℝ) = ℕ ⋅ �N(1),
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then with the notation: �N(ℕ) , one can describe the set of all N-dimensional vectors 
possessing a natural Euclidean norm and module. Among these natural spheres or 
shells, the prime spheres are to be highlighted.

4 � Condensing a Euclidean–Banach space

Down to this line, no new information has been provided. However, the way of 
observing the structure of the Euclidian–Banach spaces permits obtaining interesting 
points of view to study and use such spaces in QSPR problems.

4.1 � Direct sum of Euclidian‑Banach spaces

Suppose known two Euclidian–Banach spaces of dimensions P and Q:{
�P(ℝ);�Q(ℝ)

}
 , say; then calling N = P + Q the total dimension of a direct sum 

of both spaces, at that point, one can symbolically write:

4.2 � Condensing one space in the direct sum

Using the information on the shell structure of the Euclidian–Banach spaces one can 
use the Eq. (11) to rewrite the direct sum of the Eq. (12), as:

which might be seen as a new formalism revealing that being the Q-dimensional unit 
shell a constant set, one can simplify the structure of the direct sum in the way of 
condensing the space �Q(ℝ) into a one-dimensional line:

Therefore, condensing into a 1-dimensional structure the infinite variety of spaces 
�Q(ℝ) homothetic to �Q(1) . Using, instead of the whole space, the signed modules 
of the vectors of the r-shells composing it, just forming a real line ℝ.

When observing in a closer way, the Eq. (14) one can place the attention on the 
Euclidian spaces simply defined as direct sums of the real line ℝ:

where the most typical example is the usual three-dimensional space ℝ3 . In this 
structure made of the real line ℝ as the basic building block, one can easily imagine 
that every space direction composed of the set of real elements is just a condensed 
direction of some M-dimensional space, that is:

(12)�N(ℝ) = �P(ℝ)⊕ �Q(ℝ).

(13)�N(ℝ) = �P(ℝ)⊕
[
ℝ ⋅ �Q(1)

]
,

(14)�P+1(ℝ) = �P(ℝ)⊕ℝ.

�N(ℝ) = ℝ
N ≡ N

⊕
I=1

ℝ.
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4.3 � The QSPR framework as a condensed set of Euclidian vector spaces

The result provided by the previous sections indicates that the typical molecular 
space used in the classical QSPR framework can be observed as a set of vectors 
belonging to some Euclidian–Banach space.

This space structure is independent of the procedure employed to obtain a final 
relation between the vectors. QSPR vectors are constructed by rational molecular 
descriptors, which are used in turn to obtain a set of numerical vector images of the 
elements of some molecular set M.

The descriptors leading to the discrete numerical molecular definition, form a 
large volume of parameters which is increasing steadily with time and computational 
facilities.

The dimension of such classical molecular space corresponds to the cardinality of 
the set M, M = Card(M) . Therefore, such molecular space can be generated in the 
way promoted here: �M(ℝ) = ℝ ⋅ �M(1).

However, every direction in �M(ℝ) might be associated with a molecular 
structure belonging to the molecular set M, because every molecule different 
from the rest has to be described as a linearly independent vector, to avoid the 
dimensionality paradox [66, 67].

Therefore, every molecular vector can be considered as the condensation of 
another Euclidian–Banach space of arbitrary dimensions. This point of view has 
never been discussed in the theory of classical QSPR at any level, as far as the 
author is aware; see for example a modern assorted sample of references [68–78].

In this sense, the molecular description as an M-dimensional rational vector, or an 
M-tuple, might correspond to a schematic vector obtained from another arbitrarily 
large Euclidian–Banach space.

This point of view demonstrates that classical QSPR, associated with any 
computational structure: least-squares or AI, will be in any case incomplete, a result 
that has been obtained earlier by other means [79, 80].

5 � Minkowski metric vectors

5.1 � Metric or signature vector

The Eq. (3) applies as a very particular alternative definition of the scalar product, 
when in association with the complete vector elements sum.

This is so because one can define the inward product of two vectors by adding 
a third vector, considering the metric vector ��⟩ of the Euclidian–Banach space in 
question.

It is obvious that using the N-dimensional unity vector as a metric vector:

�M(ℝ) = ℝ ⋅ �M(1) ⇒ ℝ.
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one can write:

5.2 � Minkowskian–Banach spaces

However, using the direct sum of two unity vectors of arbitrary dimensions 
(P,Q) ∧ N = P + Q , in the following way:

if the involved vector pair entering the inward product is expressed as a direct sum 
of two parts,

the scalar product defined under the metric vector ���N⟩ , as defined in the Eq.  (15) 
corresponds to a complete vector sum, which can be also written in two parts:

Such an arrangement permits the definition of the N-dimensional (P,Q) 
Minkowskian–Banach space, where the second-order norms, now one can call them 
Minkowskian, are constructed using the metric vector in the Eq. (15):

5.3 � Special relativistic spacetime as an example

The Minkowski space employed in the special theory of relativity is a (3, 1) 
Minkowski space, according to the nomenclature put forward here, where the P = 3 
three-dimensional part contains the space coordinates 

(
x1, x2, x3

)
 and the Q = 1 

mono-dimensional part bears the time coordinate ct.
Such an example of widespread use is interesting to work with, because one 

can now refer to a spacetime model developed some years ago [57], where a (3, 3) 

��⟩ = ���N⟩ = (1, 1, ..., 1)T ,

∀
{

|�⟩, |�⟩, |�⟩ = |

|

�N⟩
}

⊂ �N (ℝ) → ⟨|�⟩ ∗ |�⟩ ∗ |�⟩⟩

=
⟨

|�⟩ ∗ |�⟩ ∗ |

|

�N⟩
⟩

= ⟨|�⟩ ∗ |�⟩⟩ =
N
∑

I=1
xIyI .

(15)���N⟩ = ���P⟩⊕
�
−
����Q

��
,

���N⟩ = ���P⟩⊕
����Q

�
∧ ���N⟩ = ���P⟩⊕

����Q
�

�
��⟩ ∗ ��⟩ ∗ ���N⟩

�
=
����P⟩ ∗ ���P⟩ ∗ ���P⟩

�
−

�����Q
�
∗
����Q

�
∗
����Q

��
=

P�

I=1

xIyI −

N�

J=P+1

xJyJ

m2

�
��⟩, ���N⟩

�
=
�
��⟩ ∗ ��⟩ ∗ ���N⟩

�
=

�����
2
�
∗ ���N⟩

�
=

P�

I=1

x2
I
−

N�

J=P+1

x2
J
.
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Minkowskian–Banach space was naïvely described. Other related time structure 
models have been also described [81–85].

Such extended spacetime can be easily written, in the light of the present 
discussion, according to the convention put forward here:

In the present vector space structure debate, one can remember the possibility of 
condensing the three-dimensional time part into a monodimensional construction, 
which in the case of special relativistic spacetime can be written as:

5.4 � Dimension condensation in Minkowskian–Banach spaces

Thus, looking for a general point of view, the Eqs. (13) and (14) can be rewritten in 
the case of (P,Q)-dimensional Minkowskian–Banach spaces as:

and in the condensed form as:

Therefore, the spacetime described in the paper [81] could be considered as one 
symmetric (3, 3) Minkowskian–Banach space, which can be condensed into the 
relativistic (3, 1) spacetime as in the Eq. (16).

6 � Quantum similarity Minkowskian spaces

It is well-known that quantum similarity matrices are metric matrices associated 
with a Minkowskian–Banach particularity [2–33] and also for some extensions 
[86–89]. The development of the previous theoretical background is sufficiently 
adequate for further discussion about discrete Euclidian- or Minkowskian–Banach 
spaces.

Though it seems, that when one computes the metric matrix of a set of electronic 
density functions, as is the case in quantum similarity practice, the metric matrix 
is not positive-definite as usually occurs in Euclidian–Banach spaces. Unless a 
metric vector like the one defined in the Eq. (15) is taken into account, instead of 
the implicit unity vector customarily considered in linear algebra, then the algebra of 
quantum molecular similarity spaces is not well-defined.

�6(ℝ) = �3(ℝ)⊕
[
(−ℝ) ⋅ �3(1)

]

(16)�3+1(ℝ) = �3(ℝ)⊕ (−ℝ).

�N(ℝ) = �P(ℝ)⊕
[
(−ℝ) ⋅ �Q(1)

]

�P+1(ℝ) = �P(ℝ)⊕ (−ℝ).
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6.1 � Geometrical incompleteness of classical QSPR procedures

Such a classical panorama, associated with the unity vector ��⟩ , taken as a metric 
vector, is the one that corresponds to the usual QSPR techniques. More than this, 
it occurs when molecular structures are defined with sets of scalar descriptors, 
collected into N-dimensional Euclidian vectors.

One must make clear that this is a situation common to all the procedures aiming 
to obtain structure-properties relations, even if complicated AI neural networks or 
other computational actions are employed to obtain QSAR-like results.

The problem of Minkowskian metric matrices has been previously discussed 
in two papers [90, 91], but without providing a completely satisfactory solution. 
Therefore, some simple algorithmic structure is not well-defined for the 
computational practice, when using such Minkowski non-Euclidian property in 
calculations associated with the development of new methods in quantum similarity 
and quantum QSAR.

The present theoretical mainframe discussion permits a sound solution, and 
thus a further computational development and extension of the quantum similarity 
theoretical background.

The answer is simple: involving the use of a metric vector defined as in the 
Eq. (15).

Moreover, such a solution can be extended into the computational framework 
of the classical QSPR of any type. Just introducing into the attached and 
unavoidable Euclidian–Banach space, a metric vector different from the usual 
unity vector. Therefore, transforming the classical Euclidian–Banach space into a 
Minkowskian–Banach space, whenever scalar products have to be performed.

Perhaps classical QSPR procedures can be optimized in a manner that has never 
been employed, as far as the author knows, transforming the usual Euclidian space 
into a Minkowskian one.

Furthermore, the possibility of enriching classical QSPR procedures with a 
Minkowskian metric, informs everyone that such widespread procedures, besides 
the incompleteness provided by the background of discrete dimensions as discussed 
here before, and elsewhere within information theory [80, 92, 93], there exists an 
additional geometrical incomplete side, based in principle on the classical QSPR 
Euclidian–Banach restriction, where all the computational background is built.

6.2 � Construction of an N‑dimensional isometric Minkowskian vector set

Resuming the problem associated with quantum similarity and quantum QSPR: 
from the knowledge of a (N × N) quantum similarity metric matrix, Z, calculated 
most simply as the set of scalar products of a set of one-electron density functions: 
P =

{
�I(�)|I = 1,N

}
:

(17)� =
{
ZIJ

}
← ZIJ = ∫D

�I(�)�J(�)d� =
⟨
�I

|| �J
⟩
;
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there is needed to find out a set of N-dimensional vectors belonging to a 
Minkowski–Banach space:

whose metric matrix possesses the same metric matrix as the density function set P, 
that is:

If the vector set � in the Eq. (18) possesses the property (19), then the set is said 
to be isometric to the density function set P.

To obtain the vector set P isometric to the set P, one can start first with the secular 
equation of the metric matrix Z, which taking into account the symmetric nature of 
this matrix: �T = � , can be written as:

Equation (20) above can be rewritten in the following way:

and to proceed further the eigenvalues matrix has to be observed, written in a 
manner bearing a well-ordered set of values, separating those positive from the 
negative:

considering that one can write the inward absolute value of a diagonal matrix as:

then, one can suppose that the diagonal matrix of eigenvalues with the aid of 
a Minkowski metric signature �N can be rewritten by means of the following 
expression:

and therefore, by defining a new real diagonal matrix:

Afterward, keeping this in mind, one can rewrite the Eq.  (21) in the following 
way:

consequently, after defining the set of columns of the matrix � = Λ�T:

(18)� =
����I⟩�I = 1,N

�

(19)∀I, J = 1,N ∶
⟨
�I

|| �J
⟩
= ZIJ .

(20)�� = �Θ → �T� = ��T = � ∧ Θ = Diag
(
�I|I = 1,N

)
.

(21)� = �Θ�T
,

ΘN =
{
𝜃1 > 𝜃2 > ...𝜃N

}
→

[
ΘP(+) =

{
𝜃I|I = 1,P

}
⊕ ΘQ(−) =

{
𝜃J|J = 1,Q

}]
∧ P + Q = N

ΘQ(−) = −
|||ΘQ

||| = −Diag
(||�J|||J = 1,Q

)
,

Θ = |Θ|
1

2 �N|Θ|
1

2 ← �N = �P ⊕
(
−�Q

)
,

Λ = |Θ|
1

2 = Diag

(√
||�I|||I = 1,N

)
.

(22)� = �
(
Λ�NΛ

)
�T = (�Λ)�N

(
Λ�T

)
= �T�N�,
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and considering that the column vector set: 
{|||�

[T]

I

⟩
|I = 1,N

}
 is nothing else than 

the columns of the transpose matrix: �T of the eigenvector matrix U.
Thus one can see that the presence of the matrix of the signs of the eigenvalues: 

�N is strictly necessary for the definition of the metric matrix Z, by using the set of 
isometric vectors P, defined in the Eq. (23), as shown in the Eq. (22).

Then, the use of scalar products of the isometric vector set P has to be subject 
to the presence of the Minkowskian signature diagonal matrix in the corresponding 
scalar product expressions.

That is, the sets of (N × N) diagonal matrices and the N-dimensional vectors 
being isomorphic, it can be easily shown that:

and accordingly, one can finally write the scalar products which construct 
isometrically the metric matrix Z, in the form of a triple inward product:

The vector ���N⟩ can be referred to as the metric vector or metric signature vector 
for Minkowskian spaces.

6.3 � Extension of the scalar products in Minkowski–Banach spaces

Once the scalar product of two vectors is defined in addition to the Euclidian norms 
in Euclidian–Banach spaces, one can consider such spaces as Euclidian-metric 
spaces.

The use of the inward product coupled with the complete sum of a vector to 
define scalar products can be considered as the first step to defining higher-order 
scalar products. Some research on this topic has been previously performed, the 
potential reader can peruse references [37, 45, 57, 62–65] for deeper details.

Scalar products as defined in the Eq.  (24) can be considered second-order 
expressions:

that can be extended to any order.
For instance, third-order scalar products, constructed like:

define a third-order tensor, which can be written with the symbol �(3).
In general, one can define a P-th order tensor, �(P) using the construction:

(23)� =
����I⟩�I = 1,N

�
→ ∧I = 1,N ∶ ���I⟩ = Λ

����
[T]

I

�
,

�N ≡ ���N⟩ = ���P⟩⊕
�
−
����Q

��
,

(24)∀I, J = 1,N ∶
�
�I

�� �J
� ≡ ����I⟩ ∗ ���J⟩ ∗ ���N⟩

�
= ZIJ .

∀I, J = 1,N ∶
�
�I

�� �J
�
= ⟨�I ;�J⟩ ≡ ⟨�I ∗ �J ∗ �N⟩ = Z

(2)

IJ
≡ ZIJ ,

(25)∀I, J,K = 1,N ∶
����I⟩;���J⟩;���K⟩

� ≡ ����I⟩ ∗ ���J⟩ ∗ ���K⟩ ∗ ���N⟩
�
= Z

(3)

IJK
,
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Such higher-order scalar products have some interest in developing the theoretical 
background of quantum QSPR as has been described earlier, see for example [64, 
87–89, 93].

The tensor elements of the Eq. (26), possess the extra generalization associated with 
the metric vector ���N⟩ . In the development of previous quantum QSPR, it was ignored, 
or what is the same, used, but in the present development description, taken as the unity 
vector ���N⟩ , which has no effect in the expressions like (24), (25), or (26).

7 � Development of a quantum QSPR algorithm

Quantum QSPR has evolved very much since the first attempts to describe a 
theoretical framework, which could provide basic mathematical background 
elements aimed to dress the empirical classical QSPR procedures with some broader 
point of view, looking for some working computational landscape, whose horizon 
could lie beyond the pure empiricism.

To achieve a sound theoretical setup and connect quantum QSPR with the 
previous development presented here, one can start with the fact that, knowing 
some Hermitian operator Ω(�) and an electronic density function, like those already 
described as forming part of an attached molecular set P =

{
�I(�)|I = 1,N

}
 , then 

according to quantum mechanics, one can obtain a set of expectation values of some 
property associated to the operator, through the integral:

7.1 � The quantum expectation value in the isometric space

Instead of the density functions, it can be used the isometric vector set 
� =

����I⟩�I = 1,N
�
 , as defined before in the Eq.  (18) and the following 

development up to the Eq. (23). Then the integral in the Eq. (27) can be transformed 
into a complete sum of a vector. The Hermitian operator muted into a vector function 
acting on the vectors via an inward vector product. Finally, with the appropriate 
use of the corresponding metric signature vector ���N⟩ , an equation equivalent to the 
expression (27) might be written.

That is:

where the inward vector function, acting now as the Hermitian operator, can be 
developed as a Taylor series, like:

(26)�(P) =

�
Z
(P)

I1I2...IP
=

��
P
∗

K=1

����IK
��

∗ ���N⟩
�
��I1, I2,… IP = 1,N

�
.

(27)∀I = 1,N ∶ �I = ∫D

Ω(�)�I(�)d�.

(28)∀I = 1,N ∶ �I ≈

����F
����I⟩

��
∗ ���I⟩ ∗ ���N⟩

�
,
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with the vector 
{|||�

[K]

I

⟩}
 representing the K-th inward power of the corresponding 

isometric vector, that is:

In this way the properties attached to the inward function and the isometric 
vectors can be evaluated via a system of equations:

which for a set of known properties 
{
�I|I = 1,N

}
 of an involved molecular set, 

permits computing the coefficient set 
{
aK|K = 0,N − 1

}
 . Then the known function 

is determined approximately and can be used to compute values of the property for 
known molecules with an attached isometric vector. The snag in this formalism is 
that using the Eq. (30), has little or not at all predictive power.

7.2 � The appropriate quantum QSPR algorithms

Other computational algorithms have been described so far, see for example 
references [49–54]. The present algorithm in the Eq.  (30) is the simplest that one 
can formulate to solve a quantum QSPR problem though.

The real predictive quantum QSPR procedure consists to set up a molecular 
set with some molecules possessing known properties and some with unknown 
values. An equation of type (30) is set for the known molecular property subset, 
the proposed algorithms use the whole molecular set to determine the values of the 
property for all the structures, see for example references [49–54], or propose new 
applications and algorithms related to chemical problems and QSPR [94–98]

8 � Discussion and conclusions

A schematic description of almost all the nuances associated with the connection of 
quantum similarity background with the QSPR problems has been developed.

On the path to this end, several ancillary problems have been also discussed. The 
structure of vector spaces with a norm defined, Banach spaces, is clarified using 
N-dimensional unit spheres or unit shells.

This vector space feature permits the definition of some condensation process 
of the space dimensions. Resulting in that such a possibility appears to connect 

(29)∀I = 1,N ∶
���F
����I⟩

��
=

∞�

K=0

aK
����

[K]

I

�
,

∀I = 1,N ∶
����

[K]

I

�
=

K
∗

P=1

���I⟩.

(30)∀I = 1,N ∶ �I ≈
�

K

aK

�����
[K+1]

I

�
∗ ���N⟩

�
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classical QSPR procedures with some essential incompleteness, already put in 
evidence from the information theory point of view.

Moreover, the possibility to transform scalar products into inward vector 
products, and these into scalars via a complete vector sum, permits to easily describe 
a general algorithm to construct scalar products, norms, and modules of any order in 
any Euclidian or Minkowskian vector space.

Also, this scalar product alternative option can be seen as establishing the first 
step to build up a general quantum QSPR algorithm.

The similarity matrices, involving scalar products of pairs of density functions, 
can be considered metric matrices, attached to the non-negative definite metric 
space where the density functions belong.

However, generally speaking, such similarity matrices might be not positive 
definite if associated with molecular sets, and consequently, the space of 
molecular density functions shall be studied from a Minkowskian structure point 
of view instead of being Euclidian.

Such a characteristic has impeded up to now the setup of a complete general 
algorithm to find out a vector set, isometric to the set of density matrices, attached 
to a set of molecular structures.

Such a possibility constitutes a sine qua non condition to develop a 
computationally sound quantum QSPR algorithm.

However, the definition of a metric signature vector, isomorphic to a diagonal 
matrix, provides an easy way to construct finite dimension isometric vector sets 
in Minkowskian spaces, like the ones appearing in quantum similarity.

Such a general possibility eases the path to the final construction of a complete 
quantum QSPR algorithm. In such an algorithm are merged the isometric vectors 
inward powers of any order, and a quantum mechanical way to obtain expectation 
values of some Hermitian operator.

Even if quantum QSPR is based on quantum similarity and is set up within 
molecular spaces to avoid the dimensionality paradox, such a framework does 
not forbid that classical QSPR procedures can be also benefit of being associated 
with an equivalent outline, where Minkowskian spaces can be employed as a set 
of extra degrees of freedom.

In any classical QSPR technique, a finite-dimensional image of a set of 
molecules is constructed as a first step. Apart from always presenting the 
dimensionality paradox problem and the inherent extended incompleteness 
discussed in the present paper, one is also facing another very difficult (or perhaps 
impossible) requirement.

It consists of the hard task of taking into account different molecular 
conformations or optical isomers in the molecular description. Because of this 
fact, another element of incompleteness might be added to the previous fuzzy 
bundle of such techniques.

One can conclude that because of all the previously discussed nuances, 
quantum QSPR corresponds to a very general algorithmic procedure, 
encompassing the classical QSPR framework as a schematic particular case.
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