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Abstract
Simultaneous sensing of metabolic analytes such as pH and O2 is critical in complex and heterogeneous biological environ-
ments where analytes often are interrelated. However, measuring all target analytes at the same time and position is often 
challenging. A major challenge preventing further progress occurs when sensor signals cannot be directly correlated to 
analyte concentrations due to additional effects, overshadowing and complicating the actual correlations. In fields related 
to optical sensing, machine learning has already shown its potential to overcome these challenges by solving nested and 
multidimensional correlations. Hence, we want to apply machine learning models to fluorescence-based optical chemical 
sensors to facilitate simultaneous imaging of multiple analytes in 2D. We present a proof-of-concept approach for simultane-
ous imaging of pH and dissolved O2 using an optical chemical sensor, a hyperspectral camera for image acquisition, and a 
multi-layered machine learning model based on a decision tree algorithm (XGBoost) for data analysis. Our model predicts 
dissolved O2 and pH with a mean absolute error of < 4.50·10−2 and < 1.96·10−1, respectively, and a root mean square error 
of < 2.12·10−1 and < 4.42·10−1, respectively. Besides the model-building process, we discuss the potentials of machine 
learning for optical chemical sensing, especially regarding multi-analyte imaging, and highlight risks of bias that can arise 
in machine learning-based data analysis.

Keywords  Supervised pattern recognition · XGBoost · Decision tree algorithm · Intensity-based sensing · pH · Dissolved 
oxygen

Introduction

Sensing multiple analytes at the same time and space has 
long been a key challenge in sensor development. Especially 
for biotechnological [1, 2], environmental [3-5], and medical 
[6] applications, where entangled biological processes lead 
to analyte transformations and the establishment of chemical 
gradients, multi-analyte sensors based on luminescent opti-
cal chemical sensors (the so-called optodes) have proven to 
be beneficial [7, 8] and are therefore in high demand. For 
instance, in heterogeneous systems such as biofilms, frag-
mented profiling of pH and O2 does not reflect the entire 

heterogeneous distribution within the biofilm, nor would 
monitoring with two individual sensors be able to capture 
the interdependence of these analytes and their combined 
influence on the biofilm [9, 10].

Hence, various approaches for luminescent-based optical 
chemical sensors are currently being investigated, all aim-
ing at the simultaneous detection of multiple analytes at the 
exact same position with less complex and affordable equip-
ment. The approaches span single indicators which show 
sensitivity to multiple analytes [11], to multi-layered systems 
that meet the spectral requirements of a given read-out sys-
tem [12-16] (color camera with 3 to 4 channels), to the fur-
ther development of existing read-out instrumentations [17]. 
However, despite recent progress in the field, certain limita-
tions are inevitable. Specialized indicators normally require 
complex synthesis and are rarely commercially available. 
The combination of multiple indicators into a single sensor 
often leads to interactions between the respective indicators, 
such as energy transfer reactions, or to problems regarding 
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the spectral separation of the respective overlapping emis-
sions. Recently, we have shown that the later issue of over-
lapping emissions can be overcome by using hyperspectral 
imaging systems and spectral unmixing [17]. At the same 
time, we had to realize that while conventional methods in 
statistical data analysis are suitable for simple multi-analyte 
sensor systems where only the luminescence intensity of 
the indicators changes as a function of analyte concentra-
tion [17], these methods fail when indicators also undergo a 
spectral shift at the same time. In this case, the interactions 
and dependencies of the indicators become too complex. 
Analysts are therefore no longer able to deduce an unam-
biguous and universal model that considers all potential 
cross-sensitivities. To overcome this and decipher complex 
and nested datasets, machine learning algorithms (ML) offer 
great potential. ML exploits the ability of computers to learn 
from (training) data, recognize patterns in nested datasets, 
and automate the construction of analytical models. Since 
their emergence in the second half of the twentieth century, 
ML models have been applied in a variety of fields, includ-
ing life and environmental sciences for predicting extreme 
natural events using remote sensing [18], enabling smart 
sensor systems [19], and drug delivery [20, 21]. Some inter-
esting work using ML approaches has already been done 
related to optical sensors [22, 23]. Expanding on this work, 
we now want to apply ML models to enable multi-analyte 
imaging in 2D to visualize the heterogeneity of biological 
environments and the distributions of multiple analytes in 2 
dimensions simultaneously. While other sensing approaches, 
especially fiber-based single-point sensor approaches might 
face an operational challenge of creating large (training) 
datasets, which is, however, a prerequisite for training ML 
models to derive an underlying trend according to the large 
number theorem [24, 25], it is the inherent nature of imaging 
to record hundreds of quality sample data within one single 
image acquisition.

Therefore, we present a novel proof-of-concept approach 
for optical chemical multi-analyte imaging using a machine 
learning (ML) model. Using a dual analyte sensor for pH and 
dissolved oxygen, we demonstrate the potential of ML for 
nested and intercoupled emission spectra of optical chemical 
sensors. Using a hyperspectral camera as the read-out system 
provides us with a sufficiently large amount of data within 
one single image acquisition, where each image pixel con-
tains high-quality information over the entire spectral range 
between 470 and 900 nm. In the following, we first introduce 
the problem of a complex and nested dataset for the dual 
analyte sensor, which cannot be solved with conventional 
statistical models. We then describe the ML model as well 
as its performance and conclude with a discussion about the 
benefits and risks of the novel approach for optical chemical 
multi-analyte sensors.

Material and methods

Refer to the supplementary materials for more information on 
algorithm optimization, validation of the final ML model, or 
its visualization. In addition, examples of the raw calibration 
data for the 2-layered optical chemical sensor as well as a 
spreadsheet containing the prepared calibration data can be 
downloaded from the Mendeley data repository [26]. Due to 
the available space at the repository, we are only able to share 
examples of the original hyperspectral fluorescence images.

Materials

The O2-sensitive indicator dye platinum(II)-meso-tetra-
phenyl-tetrabenzoporphyrin (Pt-TPTBP) and the refer-
ence dye Macrolex Fluorescence Yellow (MFY 10GN) 
were purchased from Frontier Scientific (frontiersci.com, 
Logan; USA) and Lanxess AG (lanxess.com, Köln; Ger-
many), respectively. The lipophilic pH indicator HPTS 
(1-hydroxypyrene-3,6,8-tris-bis(2-ethylhexyl)sulfonamide 
was provided by Dr. Sergey Borisov, Graz University of 
Technology, Austria) [27]. Additional chemicals for sensor 
fabrication and calibration, such as polystyrene (PS. MW 
192.000 g·mol−1), polyurethane-based hydrogel (HydroMed 
D4), sodium sulfite (Na2SO3), ethanol, and toluene, were 
bought from Sigma Aldrich (sigmaaldrich.com, St Louis; 
USA), Advan Source biomaterials (advbiomaterials.com, 
MA; USA), and Merck KGaA (merckgroup.com, Darmstadt; 
Germany). The monocrystalline diamond powder was pur-
chased from Pureon (pureon.com, Lengwil; Switzerland). 
All buffer materials (sodium phosphate monobasic monohy-
drate NaH2PO4 · H2O and dihydrate NaH2PO4 · 2H2O) were 
obtained from Sigma Aldrich (sigmaaldrich.com, St Louis; 
USA). The PET support foil (Lumirror 4001, 125 µm) was 
obtained from Puetz Folien (puetz-folien.com, Taunusstein; 
Germany). All chemicals were used as received.

Optode fabrication

A sensor cocktail was prepared for the fabrication of the 
optodes according to literature [28]. First, the O2-sensitive 
layer was prepared, for which 0.94 mg of the Pt-TPTBP indi-
cator and 0.86 mg of the MFYreference dye were dissolved 
in 1 g of a 10%w/w polymer matrix of PS (in toluene). 
The sensor cocktail was knife-coated onto a dust-free PET 
support foil using a film applicator (Byk-Gardner GmbH, 
Germany) yielding a ~ 12-µm-thick sensor layer after sol-
vent evaporation. For the pH-sensitive layer, 0.95 mg of 
the lipophilic HPTS and 48 mg monocrystalline diamond 
powder, serving as a signal enhancer, were dissolved in 1 g 
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of a 10%w/w solution of D4 (in ethanol:water, 9:1 w/w). 
This sensor cocktail was knife-coated onto the top of the 
well-dried O2-sensitive layer yielding a ~ 10-µm-thick pH 
layer after solvent evaporation. The total thickness of the 
dual analyte optode was thus ~ 22 µm. In addition to the dual 
analyte sensor, single sensors consisting of only one layer, 
sensitive to either pH or O2, were also coated with the same 
cocktail compositions as described previously.

Imaging setup and optode calibration

The setup was built similarly to that described in a previous 
paper of ours with some adaptations to suit the current dual 
analyte sensor [17]. In Fig. 1, a schematic of the imaging 
setup is shown for clarification. In short, the setup consisted 
of a hyperspectral camera (imec SnapScanVNIR camera; 
imec-int.com, Belgium) equipped with a color-corrected 
objective (Apo-Xenoplan lens, f2.0; Schneider-Kreuznach 
GmbH, German). A plastic filter (#10 medium yellow; 
LEEfilters.com, UK) was placed in front of the objective to 
reduce background fluorescence. The camera was connected 
to a PC and controlled using the manufacturers’ hyperspec-
tral image-recording software (HSI Snapscan v1.4.1.0; 
imec-int.com, Belgium). For image acquisition, the camera 
was set to scan the full image frame (1088 × 2048 pixels) 
and the full spectral wavelength range (470–900 nm) with 
a pixel step of 3 nm and an integration time of 5 ms. The 
pixel blur and binning were set to 0 and 1, respectively. 
The dual analyte sensor foil was excited with a high-power 
LED light source (460 nm; LED Hub, Omicron Laserage 
Laserprodukte GmbH, Rodgau, Germany) equipped with 
a 1-m liquid light guide and a collimating lens. The LED 
light source was controlled via a PC running the manufactur-
ers’ software. The dual analyte sensor foil of approximately 
2.5 × 8 cm2 was taped on the inner transparent glass wall of a 
buffer-filled measurement chamber. Excitation and imaging 

of the sensor foil were done frontally through the chamber 
wall.

Calibration of the dual analyte optode was performed 
similarly to as it is described in the literature; however, 
some adjustments were made to suit the dual analyte optode 
[14, 28]. For pH calibration, the pH of the phosphate buffer 
(0.1 mol·L−1 with an ionic strength of 0.377 mol·L−1) was 
adjusted by using 1 mol·L−1 HCl and NaOH solutions. 
Oxygen levels were altered by using compressed O2 and 
N2 (Air Liquide S.A., airliquide.dk; Taastrup, Denmark), 
which were mixed with a gas mixer (Red-y-compact; Vögtlin 
Instruments GmbH; Muttenz, Switzerland). At the lowest 
O2 calibration points, sodium sulfite was added as an extra 
O2 scavenger to ensure fully anoxic conditions. All meas-
urements were performed at the same constant temperature 
(22.5 ± 0.5 °C). A pH meter (PHM210 Meterlab, Radiometer 
Analytical, Lyon, France) facilitated the monitoring of the 
pH throughout the calibration. O2 levels and temperature 
were monitored with a fiber-optic O2 phase-fluorimeter 
(FireSting GO2; PyroScience GmbH, Aachen, Germany) 
equipped with a robust O2 sensor (OXROB3; PyroScience 
GmbH, Aachen, Germany).

Spectral characterization of individual layers 
of the dual analyte optode

For full spectral characterization of the single and dual 
analyte optodes, additional fluorescence and excitation 
spectra were acquired with a ClarioStar Plus plate reader 
(BMG Labtech, Ortenberg, Germany) at room temperature 
and different pH and oxygen conditions. The optodes were 
taped into a 12-well plate and filled with 1 mL of phos-
phate buffer, and the pH was adjusted by using 1 M HCl 
and NaOH solutions. The O2 levels were either reached by 
shaking the buffer solution before filling it into the well or 
by adding a few drops of a 2% solution of sodium sulfite. For 

Fig. 1   Schematic representation of the measurement setup used for measuring and calibrating the optical chemical dual-sensor for pH and dis-
solved O2 (A) and real image of the fluorescence of the dual analyte optode upon excitation with a high-power LED (B)
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the excitation spectra, the excitation wavelength was scanned 
between 350 and 700 nm (slit width 10 nm, increment 2 nm), 
while the emission wavelength was set to 770 nm (slit width 
10 nm). To record the fluorescence spectrum, the emission 
wavelength was scanned between 420 and 840 nm (slit width 
10 nm, increment 2 nm), and the excitation wavelength was 
set to 380 nm (slit width 10 nm).

Image analysis and data processing

Required programming packages

The radiometric correction of the raw hyperspectral image 
is done using a MATLAB script that can be obtained from 
the camera manufacturer upon request (hsisupport@imec.
be). The image analysis, data processing, and the ML model 
were coded in Python 3.7.4 (python.org) using the following 
Python packages: for loading and processing hyperspectral 
images, we used SpectralPython (SPy, spectralpython.net), 
matplotlib (matplotlib.org), and Python Imaging Library 
(PIL; pypi.org/project/Pillow); for spectral fitting and solv-
ing the integration and the optimization problem, SciPy 
(scipy.org) and the nonlinear least-square fitting (lmfit; 
lmfit.githu-b.io) were used. Further packages required are 
NumPy, pandas, math, random, time, glob, pathlib, os, h5py, 
and andxlrd. All libraries required were to date at the time 
the paper was submitted. The Python code can be down-
loaded from GitHub (github.com/silviaelisabeth/ML_for_
pHandO2) and is openly accessible.

Performance analysis

While classification models in ML can be assessed and eval-
uated straightforwardly based on certain performance meas-
ures such as their accuracy, this is not the case for regression 
models. In regression, the model performance is reported as 
its deviation or error from the expected target values. While 
there are various approaches to assessing the regression per-
formance of a model, the commonly used error metrics are 
the root mean square error (RMSE) and the mean absolute 
error (MAE) [29, 30].

Root mean square error (RMSE)  The root mean square error 
is also called root mean square dispersion and measures the 
difference between the estimated (yi) and the expected tar-
get (xi) values. The difference between these values is first 
squared and then averaged across the entire data samples. 
Finally, the square root is calculated. The RMSE determines 
the average magnitude of the error and is a negatively ori-
ented scoring rule, i.e., the lower the error, the better the 
model prediction performance. However, RMSE is less 
robust towards outliers:

with yi being the estimated value and xi being the expected 
value for the ith sample. N is the number of samples in the 
given dataset.

Mean absolute error (MAE)  The mean absolute error instead 
does not take the square of the difference between observed 
and predicted values but the absolute value. It is thus more 
robust towards outliers and does not penalize larger errors 
more than smaller ones:

with yi being the estimated value and xi being the expected 
value for the ith sample. N is the number of samples in the 
given dataset.

Results and discussion

In optical chemical sensing, where changing spectral prop-
erties of an analyte-sensitive indicator are correlated with 
the analyte concentration, the situation can quickly become 
complex. Not only effects such as leaching or bleaching 
may alter the sensor over time, but also due to the inhered 
interaction of individual components within the sensor with 
each other through energy or electron transfer reactions. This 
makes the evaluation of luminescence spectra more complex 
since these alternations and cross-interferences must be con-
sidered when calibrating the indicators, especially if those 
cross-interferences do not remain constant [31].

Figure 2 displays such a complex situation for the simul-
taneous imaging of pH and dissolved O2. The figure depicts 
the spectral excitation/emission characteristics of the indi-
vidual layers of the optical chemical dual analyte sensor for 
pH (Fig. 2A–B) or dissolved O2 (Fig. 2C–D). While the 
two-layered structure of the optode should prevent close-
proximity energy transfer reactions, such as Förster reso-
nance energy transfer (FRET) or photoinduced electron 
transfer (PET), reabsorption of luminescence can still occur 
when the excitation and emission spectra of the indicators 
involved overlap [32].

Figure 2A and D reveal that reabsorption may occur to 
some extent, particularly under basic conditions, as the refer-
ence indicator, macrolex fluorescence yellow emits between 
500 and 600 nm (Fig. 2D), which overlaps with the absorp-
tion of lipophilic HPTS (yellow and green curve in Fig. 2A). 
However, the reabsorption of the O2 sensor layer (combina-
tion of macrolex fluorescence yellow dye and oxygen-sen-
sitive Pt-TPTBP dye) (Fig. 2C) is predominant due to the 

(1)RMSE =
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overlapping excitation of the lipophilic HPTS dye (Fig. 2B). 
In particular under acidic conditions, when the pH indica-
tor emits between 400 and 550 nm, reabsorption by the O2 
sensor layer (Fig. 2C) can occur. However, at higher pH 
values, this resonance and reabsorption are reduced since 
the overlap between emission and absorption is less. The 
complex and nested combination of several different effects 
creates a situation that cannot be predicted and accounted 
for in one or a few polynomial functions as it is required by 
conventional approaches to signal deconvolution.

Figure 3 subsequently illustrates this nested and intercou-
pled situation with spectral cross-interferences when it comes 
to calibrating the different analytes. While Fig. 3A displays 
pH calibration data of the dual analyte optodes at two dif-
ferent O2 concentrations (anoxic and air-saturated), Fig. 3B 
displays O2 calibration data at two different pH values (4 
and 8). The dashed curves in the panels represent hypotheti-
cal calibration curves if respective standard calibration fit 
functions were applied to the calibration data to calibrate 
the individual analytes. As can be seen from the graphs and 
especially from Fig. 3A, the fitted calibration curves fail to 

describe the calibration data well as there is cross-depend-
ence in both calibrations. While most of the calibration data 
might be solved individually by conventional fit functions, 
the pH calibration under anoxic conditions as well as the 
interpolation of all other analyte combinations can hardly 
be solved by applying conventional analysis methods and 
calibration functions. However, it is important to note that 
the indicators chosen in this example show a spectral overlap 
and were specifically chosen to also demonstrate the limita-
tions in selecting commonly used (available) indicators. By 
combining other indicators with less spectral overlap, this 
issue could be eliminated or reduced; this often requires the 
synthesis of specialized indicators, which for various reasons 
is not always possible.

That is the point ML modeling comes into play as an 
alternative approach. The advantage of ML models lies in 
their capability of finding underlying patterns and param-
eter correlations in nested and interconnected datasets whose 
complexity and dimensionality are beyond human imagina-
tion. For the modeling, we decided to use the absolute fluo-
rescence response of the dual analyte optode, as opposed to 

Fig. 2   Spectral characterization of the single optode layers recorded 
on the ClarioStar Plus plate reader under different pH and O2 condi-
tions. The excitation spectra of A lipophilic HPTS as a pH-sensitive 
dye and C Pt-TPTBP as an O2-sensitive dye are shown in the left pan-
els, while the emission spectra of B the pH indicator and D the O2 

indicator are shown in the right panel. Note that the O2-sensitive sen-
sor layer also contains macrolex fluorescent yellow as the reference 
dye. While in A, C, and D, the fluorescence intensity is displayed rel-
ative to the maximum intensity, in B, the intensity is displayed rela-
tive to the isosbestic point at 530 nm
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the usual approach in optical–chemical sensing, which uses 
ratiometric intensity relative to the reference indicator. Our 
decision was based on the fact that, in our tests, the former 
approach yielded slightly better results than the latter one.

In the following, we first explain data extraction and prep-
aration, which are a crucial step in modeling, and describe 
important aspects that can affect model performance. We 
then describe the process of model building and optimiza-
tion, followed by a description and validation of the final 
model for simultaneous imaging of pH and dissolved O2. 
Especially during the validation step, the advantage of ML 
modeling becomes clear, but at each step, we emphasize the 
risks of bias that can impact the overall model performance. 
Scheme 1 provides an overview of the workflow with all 
processes conducted from initial data acquisition to the final 
machine learning model.

Data preparation

The first key step in building a strong ML model is to pro-
vide a suitable dataset on which the algorithm can train and 
deduce an underlying (hidden) pattern. For a well-perform-
ing ML model, a suitable dataset means providing a large 
or even big set of samples that contain balanced and high-
quality information to follow the large numbers theorem [24, 
25, 33]. Although it depends on the individual problem and 
its complexity, computer scientists argue that a rule of thumb 
is at least 1000 samples for a suitable dataset. In some cases, 
when the amount of data is not a limiting factor, researchers 
may apply dimension reduction techniques such as princi-
pal component analysis, factor analysis, or linear discrimi-
nant analysis to enhance information density and remove 

unwanted noise from random variables before applying 
further regression algorithms [34, 35]. However, applying 
dimensional reduction techniques may also filter out relevant 
information for subsequent regression algorithms to find 
the underlying patterns. Therefore, we opted for an outlier 
removal test to ensure data quality instead of a dimension 
reduction technique. In addition, our preliminary tests (not 
shown here) demonstrated that this approach led to better 
results without sacrificing relevant information.

Hence, to match the first requirement and extract a suffi-
ciently large amount of spectral data from the optode image, 
we selected a homogeneous region of interest (RoI) from 
the optode calibration image. However, unlike the usual 
approach in optical chemical imaging, we did not average 
over a larger area of the optode but chose smaller sections of 
5 × 5 pixels for the RoIs, cleaned the data from outliers with 
an interquartile range, and calculated the median average of 
each RoI. In this way, we obtained 7196 oxygen samples and 
6476 pH samples while mitigating the noise of the optode 
images. A table has been compiled from these processed 
data, and the interested reader may download the calibra-
tion data from the publicly accessible repository Mendeley 
data [26].

In the next step, we examined the distribution of sam-
ple points across calibration points to tailor the dataset to 
be balanced, i.e., each calibration point is almost equally 
represented in the dataset. This is critical to avoid bias 
in model accuracy and to prevent the model from being 
trained on a hidden bias that may stem from artifacts but 
has nothing to do with the actual feature correlations 
(overfitting). As can be seen in Fig. 4, the distribution 
of the sample data we obtained for each calibration point 

Fig. 3   pH and O2 calibration of the dual analyte optode under 
constant condition of the respective other analyte. A pH calibra-
tion between pH 4 and 11 under anoxic (0  hPa) and air-saturated 
(195  hPa) conditions. B O2 calibration is displayed as ratiometric 
intensity relative to the reference indicator, macrolex fluorescence 
yellow, while the pH is kept constant at either pH 4 or pH 8. The 

dashed curves in both panels represent the hypothetical calibration 
curves of the analytes if the respective standard calibration functions 
for the individual analytes, i.e., Boltzmann fit for pH calibration and 
simplified Stern–Volmer fit for O2 calibration, were applied to the 
calibration points
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(original dataset shown in bright colors) is highly imbal-
anced notably for the oxygen calibration where calibra-
tions at air saturation and under anoxic conditions are 
prevailing. Thus, we reduced the prevailing samples by 

averaging larger groups of pixels and ultimately obtained 
sample sizes of 2506 samples for oxygen and 4450 sam-
ples for pH, respectively. The distribution of the final data-
set is shown in dark colors in Fig. 4.

Scheme 1   Overview of the workflow conducted to build up the multi-layered machine learning model for simultaneous detection of pH and dis-
solved O2

Fig. 4   Dataset adjustment of the unbalanced calibration dataset by 
reducing the number of data points used where data are prevailing. 
The amount of data points used is adjusted to the general median. 
The adjustment is performed separately for each analyte. For each 

panel, the original distribution of the dataset is shown in light color, 
while the more balanced dataset is shown in dark colors, i.e., (A) in 
orange for pH and (B) in gray for O2



	 Zieger S. E. , K. Koren 

1 3

Machine learning regression model

When screening the literature for an appropriate machine 
learning algorithm, one comes across a great variety of 
machine learning algorithms applied to a wide range of 
topics and problems, including research questions in life 
and environmental sciences [1, 2]. The field is constantly 
evolving, with new algorithms being introduced to solve 
increasingly complex problems in less time. Each of them 
with different strengths and potentials, but not all of them 
are applicable to every research question or sometimes 
even unnecessarily complex in terms of computational 
power or do not match the given data or problem at hand. 
Interested readers can read more about other ML models in 
the referenced publications [29, 33–37]. Subsequently, we 
describe how we selected and optimized an appropriate ML 
model based on the given dataset and validated its ultimate 
performance.

Model identification

The measured calibration dataset is best described as a struc-
tured dataset summarizing the spectral responses of the dual 
analyte sensor along the entire wavelength between 470 and 
900 nm at different pH and O2 conditions. In addition to the 
spectral response of the dual analyte sensor (the so-called 
features of the dataset), the specific pH and O2 concentra-
tions during calibration are known. Thus, the calibration 
dataset can be described as a labeled, structured dataset with 
an additional target vector that allows the use of supervised 
ML algorithms. Another important point is that although 
the structured dataset provides discrete calibration points, it 
must be possible to obtain continuous results in subsequent 
measurements, which hence requires a regression model 
rather than a classification model. However, even though 
the problem can be narrowed down to a supervised regres-
sion problem by the given dataset, there remain a myriad of 

different approaches and algorithms. Moreover, since the 
dual analyte sensor is sensitive to two analytes simultane-
ously, the algorithm should reflect that and output both ana-
lyte information at the same time. Therefore, we decided to 
build a multi-layered ML model that first finds the pH that 
best fits a given spectral response of the dual analyte sensor 
and then iteratively finds a solution for dissolved O2. The 
reason for this order of the multi-layered model was that the 
dual analyte sensor appears to be more sensitive to changes 
in O2 concentration, and cross-interactions that occur, such 
as FRET or alike, impact the overall sensor response more 
than changes in pH (see Fig. 3). Furthermore, please note 
that we used the absolute fluorescence spectra instead of the 
ratiometric ones, as is usually the case in optical chemical 
imaging [12].

To now find the best ML regression algorithm, we have 
assessed different options and determined the performance 
of the overall model for the given data using different loss 
functions. For applied ML, the choice of the loss function 
can be very crucial and can lead to the favoring of different 
algorithms depending on where the focus lies for a given 
problem, i.e., whether, for example, accuracy is more rel-
evant than sensitivity or selectivity of the sensor. One com-
mon way of describing the performance of a regression 
model is to determine its accuracy and dispersion in terms 
of mean absolute error (MAE) and root mean square error 
(RMSE), respectively [30]. However, while the performance 
measures of the dataset describe the overall performance 
of the algorithm for a given set, one cannot rule out that 
the data carry a hidden bias to which the algorithm mainly 
responds and trains. Thus, to prevent overfitting, the dataset 
is typically split into training and validation datasets. The 
former is used to train the model and describe the overall 
model performance, while the latter is used to comprehen-
sively describe its performance on a dataset it has never seen 
before. Splitting the entire dataset is done using the standard 
split function of the Python package lmfit. This split func-
tion divides the dataset into random subsets according to 

Table 1   Performance of 
different ML regression 
algorithms assessed for 
training data as well as for 
validation data for the separate 
identification of pH

Training – MAE Training – RMSE Validation – MAE Validation 
– RMSE

Linear regression 0.395 0.533 0.462 0.639
Lasso regression 1.301 1.562 1.379 1.658
Ridge regression 0.395 0.533 0.462 0.639
Logistic regression 10.469 42.146 39.892 86.761
Random forest regression 0.104 0.171 0.285 0.465
Support-vector machine regression 0.230 0.437 0.596 0.884
K-nearest neighbors regression 0.986 1.274 1.461 1.854
Decision tree regression 0.000 0.000 0.283 0.640
Xgboost regression 0.025 0.034 0.311 0.444
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a user-defined ratio, in our case, a ratio of 80:20. At first 
glance, this may seem counterintuitive compared to con-
ventional validation tests where individual calibration points 
are removed for validation. However, the ML model is not 
based on one single deduced fit function and should thus 
be validated randomly over the entire calibration range. To 
find the optimal regression algorithm, all performance meas-
ures should be as low as possible. Tables 1 and 2 give an 
overview of the performance measures of the different ML 
algorithms and for each individual analyte.

As can be seen from Tables 1 and 2, there is not one 
regression algorithm that is best suited and provides opti-
mal results for both analytes. However, the algorithms that 
perform best for both the training data and the validation 
data are the following regressors: decision tree (DT), ran-
dom forest (RF), and XGBoost (XGB). Consequently, these 
three regressors were selected as potential candidates for 
the ML model, and their respective parameters were further 
optimized.

Model optimization

To fine-tune the algorithm and optimize its performance, 
there are several set screws that define the algorithm, control 
its learning process, and constrain the algorithm in minimiz-
ing a predefined loss function. These so-called hyperparam-
eters can be optimized in a process called hyperparameter 

optimization (HPO). This has been done for all three poten-
tial candidates and each analyte. Traditional approaches to 
HPO are either a parameter sweep, in which parameters are 
optimized by comprehensively enumerating all combina-
tions over a manually specified subset of the hyperparameter 
space or a random search, in which a subset of parameter 
combinations is randomly defined [38]. The supplemental 
information provides a detailed summary of the HPO pro-
cess of all three algorithms and both analytes, while Table 3 
summarizes the final performance of the optimized algo-
rithms using the same performance measures (MAE and 
RMSE) as described previously. Please note that the attached 
Excel file contains a detailed summary of all HPO processes, 
intended as a guide for readers new to ML modeling to be 
able to replicate the steps for model optimization. The Word 
document provides a summary of the most important inter-
mediate results for a quick overview. Note that the Excel 
file provides very detailed information on the HPO process.

As shown in Table 3, the optimal regression algorithm 
for pH prediction is the XGBoost regression algorithm, a 
scalable decision tree-based ensemble ML algorithm that 
uses a gradient boosting framework and provides a parallel 
tree boosting [39]. This is not surprising, since for small- to 
medium-sized structured data, XGBoost like all decision 
tree-based algorithms is considered to be the best perform-
ing. While the performance measures for pH prediction are 
clearly in favor of the XGBoost regression algorithm, this 

Table 2   Performance of different ML regression algorithms assessed for training data as well as for validation data for the separate identification 
of dissolved O2

Training – MAE Training – RMSE Validation – MAE Validation – RMSE

Linear regression 18.106 23.444 18.507 24.092
Lasso regression 18.824 23.696 19.017 24.040
Ridge regression 18.111 23.444 18.511 24.091
Logistic regression 184.928 859.648 335.046 1244.190
Random forest Regression 1.491 3.379 3.680 7.839
Support-vector machine regression 27.695 39.443 30.823 43.895
K-nearest neighbors regression 14.885 23.666 23.162 35.234
Decision tree regression 0.000 0.000 2.556 10.865
Xgboost regression 0.642 0.998 4.474 7.886

Table 3   Performance of 
ML regression algorithms 
optimized in an HPO process. 
Performance is assessed for 
both the training data and for 
the validation data for the 
separate identification of pH 
and O2, respectively

Training – MAE Training – RMSE Validation – 
MAE

Validation – 
RMSE

Random forest regression pH 0.133 0.177 0.205 0.290
O2 0.738 1.934 1.439 3.718

Decision tree regression pH 0.201 0.356 0.251 0.448
O2 0.536 2.681 0.997 4.943

Xgboost regression pH 0.008 0.011 0.170 0.271
O2 0.585 1.068 1.668 4.541
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is less clear for dissolved O2 prediction. We have therefore 
decided to use the XGBoost regression algorithm for the 
prediction of dissolved O2 as well. Table 4 summarizes the 
optimized hyperparameter for each analyte yielding the per-
formance metrics described before (Table 3).

Final ML model and model validation

Upon performing several optimization and screening proce-
dures, the final model for simultaneous detection of pH and 
dissolved O2 using optical chemical sensors now consists 
of a two-layer ML model based on XGBoost algorithms. 
First, the pH value is predicted and, subsequently the O2 
concentration with conditional knowledge of the pH value. 
However, since the prediction of dissolved O2 appeared to 
be rather uncertain, with some outliers and larger uncertain-
ties, an additional ML layer using an XGBoost regression 
algorithm was used to iteratively optimize the O2 predic-
tion. Thus, the final ML model includes three XGBoost 
layers for pH and O2 prediction. The final algorithm can 
be downloaded from GitHub (github.com/silviaelisabeth/
ML_for_pHandO2) and is freely available.

As mentioned several times in this publication, the vali-
dation of an ML model is crucial in the building process to 
ensure its accuracy and to prevent any bias in the dataset. 
Besides validation by one-time sub-sampling, as performed 
previously, another option is cross-validation [36]. Cross-
validation is a resampling method that uses either individ-
ual samples or a larger subsample from the entire dataset to 
validate a model on different iterations. During the valida-
tion process, the subsamples are removed from the train-
ing dataset to avoid a prediction bias. Due to this, however, 
cross-validation requires more computational power than 
validation by one-time sub-sampling; but it also assesses 
the performance of the model much more accurately. An 
extremely accurate but, due to the large size of our dataset, 
computational intense cross-validation would be a leave-
one-out cross-validation in which all possible combina-
tions are trained and tested. Consequently, a good balance 
between these two approaches, validation by one-time sub-
sampling or validation by leave-one-out cross-validation, 
would thus be k-fold cross-validation, a non-exhaustive 

cross-validation in which the dataset is randomly partitioned 
in k equally sized subsamples. While one of the k subsam-
ples is used as validation data, the remaining subsamples are 
used as training data. This process is then repeated k times. 
In ML modeling, it is common practice to perform 10-fold 
cross-validation [36]. Subsequent to cross-validation, MAE 
and RMSE can be determined as performance metrics as 
described before. A summary of the validation process for 
the ML model is listed in Table 5, while detailed informa-
tion about the variance of predicted and target pH and dis-
solved O2, respectively, can be found in the supplemental 
information. In order to illustrate the benefits of iterative O2 
prediction, we listed in Table 5 the performance metrics for 
the initial O2 prediction as well as the performance metrics 
after adding the additional layer for iterative O2 prediction. 
Please note that 10-fold cross-validation indicates the mini-
mum performance of a model, whereas the true performance 
of the model is better and achieves lower dispersions.

As can be seen from Table 5, the iterative process of O2 
prediction leads to particularly small performance measures 
with a mean absolute error of < 4.50·10−2 (compared to < 1.57 
for non-iterative O2 prediction) and a root mean squared error 
of < 2.12·10−1 (< 1.25 previously). This reduces the uncer-
tainty of the O2 prediction on average to the third decimal. 
As described in the supplemental information (cf. Section 4), 
the iterative approach for prediction of dissolved O2 helps 
circumvent potential reabsorption and interference artifacts. 
In contrast, the performance measures for pH prediction are 
significantly worse, with mean absolute error and root mean 
square error of < 1.96·10−1 and < 4.42·10−1, respectively. Thus, 
a prediction of pH is on average less accurate with this model 
and varies in the first decimal. A detailed discussion of the 
deviation of the predicted pH values compared to the target 
pH values can be found in the supplemental information (see 
Section 3). As shown in Fig. 5, as well as in Figure·S2 and 
Figure·S3, the deviations occur mainly at lower pH values 
when reabsorption effects and indicator interactions are more 
dominant. Furthermore, it should be noted that although the 
calibration is performed over the entire pH range, the dynamic 
range of the pH sensing layer is, however, limited to a range 
of ± 2 pH units around the pKa value, i.e., a range between 
5 and 9. pH values outside this range are not considered 

Table 4   Optimized hyperparameter for each XGBoost regressor

pH prediction (1st 
layer)

O2 prediction 
(2nd and 3rd 
layer)

n_estimators 250 250
min_child_weight 3 5
max_depth 9 7
learning_rate 0.05 0.05

Table 5   Performance metrics of the multi-layered ML model for 
simultaneous prediction of pH and dissolved O2 concentration deter-
mined based on a 10-fold cross-validation

10-fold cross-validation Mean absolute 
error (MAE)

Root mean 
square error 
(RMSE)

pH prediction 1.96·10−1 4.42·10−1

O2 prediction, 1st layer 1.57 1.25
O2 prediction, 2nd layer 4.50·10−2 2.12·10−1
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physically reasonable but invalid, even if it would be possible 
for the ML algorithm to find a pattern. However, so far, we 
have not performed any additional experiments to investigate 
the limitations of the ML model in this regard and therefore 
recommend using the pH sensing layer only in the known 
dynamic range. Moreover, where necessary, the performance 
of the pH prediction could be optimized with an additional 
model layer, as has been done for the prediction of dissolved 
O2. However, it should be emphasized again that these values 
are minimum values; the actual performance of the model is 
better.

Conclusion

We have developed a novel approach to multi-analyte opti-
cal chemical imaging in 2D using a machine learning model 
and outlined the building process of the multi-layered ML 
model for complex and coupled data. While the dual analyte 

optode calibration data for simultaneous imaging of pH and 
dissolved O2 cannot be explained by conventional multi-
variate analysis methods, machine learning algorithms have 
proven useful. Consequently, we were able to build a three-
layered model with individual pH and iterative O2 predic-
tion based on a decision tree-based algorithm (the so-called 
XGBoost). Figure 5C–D illustrates the conversion of the 
absolute fluorescence intensity emitted by the optode to the 
corresponding pH and concentration of dissolved O2 in each 
pixel. While the dissolved O2 can thus be predicted with 
an average error of < 0.045 (MAE) and < 0.212 (RMSE), 
pH is predicted with an average error of < 0.196 (MAE) 
or < 0.442 (RMSE), respectively. In other words, the itera-
tive prediction of dissolved O2 works excellently, while the 
pH prediction can be improved, if necessary, as shown in 
the discussion.

While our contribution demonstrates the advantages 
of ML models for nested and intercoupled datasets that 
cannot be solved with conventional statistical models, we 

Fig. 5   Overall model performance for predicting the pH (A) and dis-
solved O2 concentration (B), respectively, assessed against test data 
that the algorithm has never seen before. The main plot compares 
the predicted and the respective target values for the entire calibra-
tion range using the multi-layered ML model based on XGBoost. The 
insets of each panel display the dispersion around the target value as 
black dotted markers. The target value is indicated as an orange solid 

line. C and D display examples of optode images before and after 
data analysis. C shows the absolute fluorescence intensity of the dual 
analyte optode is visualized at 773 nm, whereas D shows the chemi-
cal images in which the absolute fluorescence intensity has been 
translated into the corresponding pH and O2 concentration (in hPa) to 
represent them in each pixel
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also highlighted the risks during the ML model process. 
For each process step during ML model development, we 
highlighted different risks that researchers should consider 
when building their own ML model, including data prepa-
ration (outlier test vs. dimension reduction), establishing a 
balanced training dataset and identifying and validating an 
appropriate ML model for the question at hand. Research-
ers need to be aware that while it is inherent to ML models 
to find patterns, it is our responsibility to not indulge into 
p-hacking or data dredging and follow patterns that in real-
ity do not exist.

Despite the risks that come with ML modeling, we 
should dare and bring data analysis out of its shadowy 
existence. We should give it due attention if we want to 
advance multi-analyte imaging. In particular from a practi-
cal aspect, this approach appears very appealing. ML can 
help construct multi-analyte sensors using already existing 
indicators and circumvents the need to find indicators that 
have limited spectral overlap or other types of interactions. 
Converting acquired images into quantitative data is often 
cumbersome and not simple, especially when additional 
signal deconvolution is required. ML algorithms clearly 
show advantages in deciphering intercoupled datasets 
with high dimensionality and complexity, where human 
imagination and conventional methods fail in finding the 
underlying correlations. However, we must not blindly use 
any ML algorithm but also be aware of the possible biases 
and risks when setting up training and validation data.

Abbreviations  ML :  Machine learning; RoI :  Region of interest; 
MAE : Mean absolute error; RMSE : Root mean square error; XGB 
: XGBoost regression algorithm; DT : Decision tree regression algo-
rithm; RF : Random forest regression algorithm; HPO : Hyperparam-
eter optimization
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