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Abstract
Some biologically active substances are unstable and poorly soluble in aqueous media, at the same time exhibiting low 
bioavailability. The incorporation of these biologically active compounds into the structure of a lipid-based lyotropic liquid 
crystalline phase or nanoparticles can increase or improve their stability and transport properties, subsequent bioavailability, 
and applicability in general. The aim of this short overview is (1) to clarify the principle of self-assembly of lipidic amphi-
philic molecules in an aqueous environment and (2) to present lipidic bicontinuous cubic and hexagonal phases and their 
current biosensing (with a focus on electrochemical protocols) and biomedical applications.
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Introduction

Surfactants and amphiphilic substances (lipids) are not only 
basic biomolecules of the human body, but they are also one 
of the main components of pharmaceutical, cosmetic, and 
food industry products. As a class of biomolecules, they are 
a source of energy, and play a number of vital functions, 
such as cell differentiation, signal transduction, organ pro-
tection and barrier functions, and the synthesis of essen-
tial biomolecules including hormones and bile acids [1]. 
Lipids are amphiphilic substances that contain hydrophilic 
and hydrophobic moieties in their molecular structure. The 
non-polar bonds of the hydrophobic part of the molecule 
are the reason for their limited solubility in aqueous media. 
The solubility of lipids and other amphiphilic molecules is 

characterized by a critical micellar concentration (CMC) [2]. 
When the CMC of individual monomers is exceeded, higher 
lipidic structures such as micelles, liposomes, lipidic nano-
particles, and lipidic lyotropic liquid crystals are formed in 
an aqueous medium [3].

At the turn of the nineteenth and twentieth centuries, the 
Czech-Austrian biologist Reinitzer [4] discovered that the 
cholesteryl ester of benzoic acid passes into a liquid state at 
a temperature of 145 °C; up to 179 °C, it has a milky colora-
tion; and from 179 °C upwards, it is a clear liquid. His pilot 
studies were followed by the physicist Lehmann [4], who 
called these states of mater/substances “mesophases” (later, 
liquid crystals). Liquid crystals are a transition between 
liquid and solid crystalline states, and thus, they have the 
properties of both solid substances (ordered and oriented 
molecules) and liquids (mobility, fluidity). Liquid crystals 
can be obtained by dissolving a solid substance in a solvent 
(lyotropic liquid crystals) or by melting (thermotropic liq-
uid crystals). Liquid crystals can also form in an aqueous 
medium from some lipids [4].

A lipid-based lyotropic liquid crystalline phase is a 
material that imitates biological membranes. Thus, it 
represents a suitable matrix for stabilizing hydrophilic, 
hydrophobic and amphiphilic biologically active com-
pounds, which are often relatively unstable with limited 
or no solubility in aqueous media. The incorporation of 
these relatively unstable molecules into carrier media 
expands the range of possibilities for their stabilization, 
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transport, and controlled (frequently targeted) release. The 
techniques for nanoencapsulation are constantly evolving, 
providing new options for the preparation and application 
of targeted formulations [5].

Over the last few decades, there has been a focus on 
developing new ways of targeted drug administration. 
Ideally, the transport and delivery system of such drugs 
should meet several prerequisites. It should have a high 
capacity for incorporating substances, be stable and 
biocompatible, allow for the controlled release of sub-
stances, and be targeted at the site of action [6]. Current 
conventional forms of medication, including controlled 
dosage release, do not meet all of these preconditions. On 
the other hand, a number of nanoforms (including poly-
mer nanoparticles and nanocapsules, liposomes, solid 
lipidic nanoparticles, phytosomes, nanoemulsions, and 
others) have significant advantages, including increased 
solubility and bioavailability, stability, and improved tis-
sue distribution. Nanoforms with incorporated biologi-
cally active substances thus have the potential to increase 
the bioavailability and stability parameters of drugs and 
biologically and pharmacologically active substances 
in general. Moreover, the combination of drugs can be 
delivered in one cubosome or hexosome, lipidic cubic 
phase (LCP)-based nanoforms, and by adding special 
groups to the nanoform, addressable delivery vehicles 
can be achieved.

In addition to drug delivery systems, the use of lipid 
membranes and functional layers in biosensors is frequently 
discussed today [7, 8]. Biosensors based on lipid membranes 
make it possible to investigate the properties of membranes 
and membrane proteins, but also investigate the influence 
of biologically active substances on their function and sta-
bility. The stability of lipid membrane-based biosensors 
limits their practical use [9]. There are several approaches 
to achieving stable lipid membranes on electrode surfaces: 
solid supported lipid bilayers, polymer cushioned bilayers, 
hybrid lipid bilayers or multilayers, the classical black lipid 
membrane, and others [10]. The above-mentioned instabil-
ity could also be overcome by using LCP-based layers or 
nanoforms. In addition, the multifunctionality of cubosomes/
hexosomes could open up new possibilities, as was recently 
reported with loading enantiomeric ligands, which resulted 
in the preparation of chiral LCP systems [11, 12].

The aim of this review is to briefly describe the prepa-
ration, classification and application of lipid mesophases, 
the incorporation of proteins into LCP, and the formation 
and applications of lipid nanoparticles (cubosomes and 
hexosomes). The future directions of this research are also 
highlighted, including a strategy towards lipid-based object 
detection at polarized liquid–liquid interfaces.

Lipidic mesophase

The spontaneous arrangement of amphiphilic molecules into 
organized structures is one of the features of many biologi-
cal systems such as the cell plasma membrane, endoplas-
mic reticulum, Golgi apparatus, and the densely convoluted 
mitochondrial membrane. This is the inspiration for the 
development of new biomimetic materials [5]. The goal of 
self-assembled formations is to achieve an energy-advan-
tageous state. One of the main drivers of the formation of 
these supramolecular structures is the hydrophobic effect. 
However, there are many factors that determine and influence 
the structure and stability of individual self-assembled for-
mations. In this regard, a decisive role is played by the con-
centration and shape of the amphiphile. If the concentration 
of the amphiphile is equal to or higher than the CMC, and 
the temperature is higher than the critical micellar tempera-
ture (also known as the Krafft temperature), the formation of 
micelles occurs. Amphiphiles differ mainly in the size and 
shape of the hydrophilic and hydrophobic molecular moie-
ties, which is reflected in their spatial arrangement (Fig. 1).

Surfactants tend to form self-assembled cone-shaped 
type 1 structures, while molecules that have a smaller polar 
part, such as lipids, tend to form inverse micellar phases of 
type 2. Biological membranes composed of a wide range of 
molecules of varying shapes form dynamic self-assembled 
formations, including local planar/lamellar structures [15]. 
The shape of self-assembled formations can be qualitatively 
described according to Israelachvili et al. [2]. This theory 
is based on a dimensionless parameter, the so called critical 
packing parameter (CPP). The CPP is defined according to 
the following equation:

where v is the volume of the hydrophobic tail, a0 is the area 
of the head group, and lc is the length of the hydrophobic 
tail. Spherical and cylindrical micelles are formed both in 
the self-arranged phase of type 1 and in the inverse micellar 
arrangement of type 2.

Amphiphiles in an aqueous medium have a spatial 
arrangement, with the basic lipidic phases designated as 
lamellar, hexagonal, and bicontinuous cubic phases. With 
specific components added to the system, other phases can 
also form [15]. Most common mesophase lipidic structures 
are based on 1-monoacylglycerol (1-monoolein) and phytan-
triol, and these are shown in Fig. 2.

1-Monoolein (1-(cis-9-octadecenoyl)-rac-glycerol, MO) 
is a clear viscous substance with a characteristic odor [16]. 
MO is insoluble in water, but dissolves well in oil and lower 
hydrocarbons such as chloroform. In particular, due to its 

CPP =
v

a
0
lc
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high solubility in oil, MO is used as a food emulsifying 
agent. It is non-toxic, biodegradable, and biocompatible 
[13]. The properties of amphiphilic molecules are crucial 
for the final composition and structure of the individual 
phases, of which a bicontinuous cubic phase in particu-
lar has a high degree of spatial organization [17, 18]. An 
important condition for the reproducibility of the formation 
of these spatially ordered phases is the precise definition of 
the default components used and their ratio. A lipidic cubic 
phase (LCP) is one of the many liquid crystalline phases 
that spontaneously form when lipids are mixed with water 
under appropriately selected conditions: water-to-lipid ratio 
and temperature range. A schematic presentation of the pro-
cedure used for the preparation of LCP is shown in Fig. 3A. 
LCP is a thermodynamically stable, self-assembled lipidic 

phase with unique properties and structure. The cubic phase 
consists of two continuous phases, one of which is a lipid 
bilayer, and the other is formed of aqueous channels. The 
LCP is characterized by a crystallographic spatial arrange-
ment with Im3m (primitive), Pn3m (double diamond), or 
Ia3d (gyroid) symmetry [13]. In the Im3m phase, the water 
channels meet in six-way junctions at an angle of 90°. The 
Pn3m phase is characterized by a four-way crossing of 
water channels at an angle of 109.5°. Cryo-TEM images 
of LCP nanoparticles based on MO and phytantriol, both 
with Pn3m symmetry, are shown in Fig. 3B, C. Three-way 
junctions intersecting at an angle of 120° are typical for the 
Ia3d phase [13]. The cubic phase is an attractive tool for 
a number of different biosensing, biomedicine, and food 
industry applications (Fig. 4).

Fig. 1  A Shape and B type of self-assembly systems of amphiphilic molecules (schematically) after contact with water. Modified as described in 
refs [13, 14]

Fig. 2  Structure of A 1-monoolein and B phytantriol
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Integration of proteins into the lipidic cubic 
phase

The cubic phase has been used for more than two decades as 
a matrix for the crystallization of integral membrane proteins. 
Landau and Rosenbusch were the first to use a LCP for the crys-
tallization of a membrane protein in 1996 [22]. Today, there are 
more than 700 proteins in the protein databank (PDB) that have 
been crystallized in a LCP (crystallization in meso) [25–31]. 
These include a number of enzymes, transporters [32], chan-
nels, receptors [33], and structural proteins [34]. Protein crys-
tallization in a LCP made it possible to elucidate the structures 
of several microbial rhodopsins and receptors associated with 
G-proteins. Biomimetic membranes such as LCPs provide pro-
teins with a more natural membrane environment, as opposed to 
the artificially created environment associated with the presence 
of detergents [27, 35, 36]. An example of the use of a LCP for 
the crystallization of polar, water-soluble proteins is lysozyme. 
Unlike membrane bacteriorhodopsin [37, 38], lysozyme crys-
tallizes independently of the lipidic phase type [23]. LCP tech-
nologies for structural studies of membrane proteins such as 
bacteriorhodopsin or gramicidin were reviewed by Cherezov 
[39]. The most common cubicon method for the incorporation 
of membrane proteins was described by Ma et al. [40]. The 
organization of proton pumps, lipids, and water in cubic meso-
phase crystals was discussed by Belrhali et al. [41].

The functional properties of the proteins are retained in the 
lipidic environment, as shown in several reports [42]. They can 
therefore be used as active components of lipid-liquid-crystal-
line films, e.g., deposited on solid surfaces. A viscous, stable 
three-dimensional lipid bilayer with incorporated membrane 
proteins/redox probes is easily applied to an electrode surface 
[43]. Less recent applications in sensing are presented in refs 
[10, 44]. Fructose dehydrogenase (FDH) was reconstituted in 
a monoolein cubic mesophase and used for the electrochemical 
determination of fructose [45]. Mezzenga et al. confirmed in a 
spectrophotometric study that in meso-immobilized FDH has 
improved stability compared to other matrices or solutions [46].

In a recent study, we reconstituted and showed the activity 
of the  Na+/K+-ATPase (sodium–potassium pump, NKA) in a 
MO-based LCP for the first time [47]. The reconstitution and 
chloride transport of the chloride transporter protein EcClC in 
the LCP were described by Speziale et al. [48] and by our-
selves [49], and the efficiency of chloride transport was studied 
using inhibitors and activators of the protein. Active gating was 
demonstrated for the glucose transporter protein [50]. Lipidic 
liquid-crystalline mesophases are also used for protein biochip 
development [51].

Fig. 3  A Pure lipidic cubic phase (left) and lipidic cubic phase loaded 
with P and M enantiomers of flavo[7]helicene (right); for more details, 
see ref. [12]. Cryo-TEM images of B 1-monoolein- and C phytantriol-
based cubosomes as described in more detail in refs [19, 20]
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Polar analytes reside in the aqueous channels of lipidic 
mesophases, providing free access to the electrode surface 
and proteins. These substances easily communicate with the 
electrode directly or via an electroactive probe [10]. In 1994, 
Razumas et al. [52] were the first to report on the preparation 
of LCP biosensors. The first biosensors based on enzymes 
incorporated into a LCP were designed to determine glucose, 
lactate, urea, and creatinine. Current responses dependent 
on  H2O2 oxidation were detected amperometrically. Table 1 
summarizes published electrochemical enzyme biosensors 
based on a LCP.

These studies show that proteins can be incorporated 
into the lipidic phase at relatively high concentrations, and 
they readily interact with the surface of the electrode. How-
ever, what should be taken into account is the influence of 
physico-chemical factors such as the ratio of water to lipid 
in the mesophase, temperature, pressure, lipid composi-
tion, and the presence of other substances. These factors 
could influence the phase transition of the LCP, lead to 

its destabilization, and promote the subsequent release of 
incorporated enzymes due to the transition of the LCP to a 
hexagonal or lamellar phase.

In addition to protein crystallization and biosensor con-
struction, a LCP can also be used as a matrix for research 
into the stability, activity, and interaction of proteins with 
ligands [47, 62, 63]. One example is a stability study of the 
above-mentioned NKA. NKA carries sodium and potassium 
ions against their concentration gradient using energy from 
ATP hydrolysis. In this experiment, after 14 days, the NKA 
activity in the LCP was still 60% of its maximum activity, 
while it was no longer active in the parallel experiment incu-
bated in an aqueous environment [47]. A model example of 
research on the redox behavior of proteins incorporated into 
a LCP are studies conducted using cytochrome c [63–65]. 
The interaction of cytochrome c with a LCP mimicking 
the environment of the inner mitochondrial membrane was 
investigated using FTIR spectroscopy, differential scanning 
calorimetry, and electrochemical techniques. The diffusion 

Fig. 4  Scheme depicting prop-
erties and applications of LCP 
(lipidic cubic phase). Based on 
recent reviews in the field: drug 
delivery [21], crystallization 
[22, 23], biosensors [10], and a 
very recent review [24]

Table 1  Electrochemical enzyme biosensors based on LCP

CV, cyclic voltammetry; SWV, square wave voltammetry; DPV, differential pulse voltammetry; #discussed with Rowinski et al

Enzyme/protein Method Electrode Ref.

Glucose oxidase, ceruloplasmin Amperometry Platinum disk [53]
Hemoglobin CV, amperometry Glassy carbon electrode [54]
Glucose oxidase, lactate oxidase, urease, 

creatinine deiminase
Amperometry, potentiometry Platinum electrode,

pH electrode
[52]

Glucose oxidase, pyranose oxidase, laccase CV Glassy carbon electrode [55]
Glucose oxidase CV Carbon electrode [56]
Na+/K+-ATPase SWV Glassy carbon electrode [47]
Ethanol dehydrogenase CV, DPV Glassy carbon electrode [57]
Laccase # Chronoamperometry, CV, AC impedance Modified glassy carbon electrode [58]
Cellobiose dehydrogenase CV, DPV Modified glassy carbon electrode [59]
Cholesterol oxidase CV Glassy carbon electrode, gold electrode [60]
Bilirubin oxidase CV Carbon rotating disk electrode [61]
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coefficient of cytochrome c was determined using electro-
chemical methods, and it showed very limited protein mobil-
ity in the lipid environment; more details can be found in a 
relatively recent review [36].

Electroactive probes and lipidic cubic phase

Barauskas et al. [66] prepared an electrochemically active 
cubic phase containing various types of amphiphilic sub-
stances (ferrocenes). A fold decrease in the diffusion 
coefficient of amphiphiles incorporated into the LCP was 
observed compared to the diffusion coefficient determined 
in acetonitrile solutions. Rowinski et al. [43] investigated the 
behavior of hydrophilic probes in a cubic phase using cyclic 
voltammetry, differential pulse voltammetry, and chrono-
coulometry. The diffusion coefficients for [Ru(NH3)6]3+ and 
benzoquinone in the LCP were found to be lower and in 
accordance with the diffusion coefficient determined in solu-
tion. Similarly, Kostela et al. [67] determined the diffusion 
coefficient of hydrophilic, hydrophobic, and amphiphilic 
electroactive probes in a LCP. The diffusion coefficients for 
these electrochemically active species were also determined 
in a hexagonal phase using electrochemical and impedance 
methods [68]. In-depth experimental and theoretical stud-
ies of diffusion in a LCP have been reported more recently 
[69, 70].

Lipidic nanoparticles, general aspects

New lipid-based nanocarriers are constantly being sought 
and developed for the design of biosensors and the devel-
opment of transport and application systems. One of the 
key advantages of using lipidic nanoparticles is the effective 
solubilization of poorly water-soluble substances, as demon-
strated, for example, with curcumin [71] and quercetin [72]. 
The most explored lyotropic nanostructure carriers include 
cubosomes and hexosomes, which are defined as colloidal 
nanoparticles with internal bicontinuous cubic and hexago-
nal structures. This group of colloidal dispersions is called 
ISAsomes (internally self-assembled “somes” or particles). 

In addition to cubosomes and hexosomes, ISAsomes include 
micellar cubosomes [73]. The first mention of the existence 
of cubosomes dates back to the 1980s, when Larsson dis-
covered that the dispersion of LCPs produces submicron 
particles with an identical internal arrangement to the parent 
cubic structure [74]. Cubosomes are highly stable nanoparti-
cles formed from a lipidic cubic phase and stabilized by the 
outer layer. Compared to liposomes, cubosomes and hex-
osomes provide a significantly larger surface area (up to 400 
 m2/g) for the incorporation of membrane proteins and small 
hydrophilic or hydrophobic molecules [75]. In general, there 
are two main approaches to the preparation of cubosomes, 
the “top-down” and “bottom-up” approach, both of which 
require the use of a suitable stabilizer (Fig. 5).

The “top-down” method, the most widely used and old-
est technique used for the preparation of cubosomes [16], 
involves two main steps. First, the LCP is prepared, which 
is then homogenized/sonicated using high-energy pulses. 
Cubosomes prepared by the “top-down” method are stable 
against aggregation for up to 1 year. The disadvantage of 
this method is however the use of high-energy pulses, which 
can affect the activity of incorporated biologically active 
substances sensitive to elevated temperature [75].

The second method, commonly called the “bottom-up” 
method, involves the dispersion of a mixture containing 
lipid, stabilizer, hydrotrope, and an excess of water (Fig. 5) 
[76]. The hydrotrope is a key factor in this process and 
helps to solubilize lipids [77]. The most frequently used 
hydrotropes are urea, sodium alginate, sodium benzoate, or 
ethanol. The advantage of this approach is the use of less 
energy, so that it can also be applied for the preparation 
of cubosomes with thermounstable substances such as pep-
tides and proteins [16]. The same preparation procedure 
can be used for hexosomes [78]. The LCP phases dispersed 
into nanoparticles used as drug nanocarriers were recently 
reviewed by Angelova et al. [79], Murgia et al. [80], and 
Tenchov et al. [81].

To prevent the aggregation of ISAsomes, stabilizing com-
ponents have to be added during the synthetic procedure. 
Over the last decade, various types of stabilizers have been 
proposed for the preparation of cubosomes and hexosomes. 
The most common and effective of these surfactants is 

Fig. 5  Schematic representation 
of “top-down” and “bottom-
up” general approaches for 
preparation of cubosomes and 
hexosomes
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Poloxamer 407, which is commercially available under the 
name Pluronic F127 [82, 83]. In addition to Pluronic F127, 
other stabilizing agents have been proposed, including vari-
ous co-polymers such as F128, F108 [84, 85], PEGylated 
lipids, or β-casein [86]. The choice of stabilizer for the 
preparation of ISAsomes is critical, as stabilizers can also 
affect the internal lipidic nanostructure and thus the affinity 
towards the cargo [87].

Liquid crystalline phases and their corresponding aqueous 
dispersions are characterized primarily by two techniques, 
namely, SAXS (small-angle X-ray scattering) and SANS 
(small-angle neutron scattering) [88]. Studies are mainly 
focused on describing the influence of physico-chemical fac-
tors on the structural properties of nanoparticles, including 
lipid composition, temperature, pH, pressure, and the effect 
of target substance incorporation. In addition to SAXS and 
SANS, cryo-TEM [89] and AFM [90] are also used for mor-
phological characterization. Dynamic light scattering (DLS) 
is frequently employed for monitoring particle size. To dem-
onstrate the use of nanocarriers for biosensor construction, 
we present work based on phytantriol-based cubosomes 
stabilized with F127. The solid gold surface of the sensor 
was modified through biotinylated lipids that were part of 
the cubosomes. The second set of cubosomes enriched with 
glycolipid (GM1) was then applied to the modified surface, 
and this led to the specific binding of cholera toxin B from 
solution [91].

Applications of cubosomes and hexosomes

These days, we are seeing a growing interest in the use of 
ISAsomes, especially cubosomes and hexosomes, as nano-
carriers for sensing strategies and for drug incorporation, 
imaging probes, and antimicrobial peptides. Particular 
attention is paid to the solubilization and stabilization of 
biologically active substances, the influence of lipid com-
position, and the type and concentration of the stabilizer on 
the structural and morphological properties of these nano-
forms. On the other hand, there have been few studies on 
the release of substances from cubosomes/hexosomes and 
factors affecting the stability of these structures, especially 
in a living organism [92, 93]. There is increasing interest in 
the influence of incorporated substances or cubosomes/hex-
osomes themselves on cell signaling pathways. The release 
of doxorubicin from the cubic lipidic phase depending on 
the change in pH (with respect to differences in pH of tumors 
vs. non-malignant tissue) was studied using electrochemical 
methods [94]. The bioavailability (cell uptake kinetics) and 
cytotoxicity of cubosomes have been investigated mainly in 
vitro on cell lines [83, 95, 96]. Cubosomes and hexosomes 
are beginning to be applied in theranostics. DLS, SAXS, 
and cryo-TEM methods have shown that hexosomes are able 
to incorporate both a fluorescent probe and the anticancer 

drug camptothecin into their structure. Fluorescence micros-
copy has shown that the HeLa cell line is able to accumu-
late modified hexosomes. For fluorescence microscopy, 
non-toxic concentrations of modified hexosomes were used 
[97]. Cytryniak et al. [19, 98] were the first to demonstrate 
the use of cubosomes in radiotherapy in combination with 
chemotherapy. MO-based cubosomes were modified by 
incorporating the anticancer drug doxorubicin and a com-
monly used radionuclide. The cytotoxicity of the modified 
cubosomes was tested on HeLa cells. Cubosomes modi-
fied with doxorubicin and the radionucleotide were shown 
to be more toxic than cubosomes alone or cubosomes with 
an incorporated chemotherapeutic/radionucleotide. The 
combination of cryo-TEM and SAXS methods was used to 
examine the impact of blood plasma on the size, structural, 
and morphological properties of cubosomes over time [99]. 
However, few other studies have focused on the stability 
of lipidic cubic and hexagonal nanoparticles in the blood-
stream, structural transformations of cubosomes/hexosomes 
after contact with cell membranes, blood cells, or proteins, 
or their cell uptake. The structural arrangement of bicontinu-
ous cubic and hexagonal phases allows for a gradual release 
of incorporated substances. Bicontinuous cubic nanostruc-
tures have also been shown to have mucoadhesive proper-
ties [100, 101]. The use of these 3D-nanolipidic structures 
was mainly intended for the oral, subcutaneous, transdermal, 
and periodontal administration of biologically active sub-
stances. Lipidic liquid crystalline phases are highly viscous 
and therefore have limited use as intravenous nanocarriers. 
Cubosome/hexosome suspensions are much less viscous and 
therefore much more convenient for drug delivery. The most 
important aspect of these drug delivery studies is related 
to the degradation of lipidic nanoparticles in the biological 
environment as a result of interactions with, e.g., enzymes 
and macrophages or other species present in the biological 
medium [102]. An interesting future direction of research 
could also be the use of lipidic vehicles for the incorpora-
tion of biologically active fatty acids and lipids [103]. A 
more detailed overview of the use of cubosomal/hexosomal 
lipidic structures based on MO or phytantriol for targeted 
drug delivery systems is provided in the following publica-
tions [5, 16, 73, 75, 78, 104].

Future directions: lipid‑based objects 
and polarized liquid–liquid interfaces

Electrochemical studies of lipid-based objects, including 
lipidic nanoparticles and micelles, should go beyond con-
figurations involving the utilization of solid electrodes [105]. 
We postulate that the concept introduced by Laborda et al. 
[106] and further studied by a few other groups [107–109], 
which describes the single fusion events of an emulsion 
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droplet hitting a polarized liquid–liquid interface, can be 
further developed and adapted to study the interactions of 
lipid-based objects with soft interfaces. This aspect is visual-
ized in Fig. 6. One can imagine that the lipidic object, e.g., 
a liposome, when placed next to the electrified liquid–liquid 
interface (either bare or modified with a lipid monolayer 
[110]), can undergo fusion and the release of its cargo. 
When the Galvani potential difference ( Δaq

org� ) is fixed to 
a value higher than Δaq

org�A+ and Δaq
org�B− (see Fig. 6, ii), it 

is expected that cationic species will transfer to the organic 
phase, whereas anions will remain in the aqueous phase. 
When Δaq

org� is lower than Δaq
org�A+ and Δaq

org�B− (see Fig. 6, 
iii), it is only the anion that should transfer to the organic 
phase; cations will stay in the aqueous phase. Both species 
are expected to undergo interfacial ion transfer when Δaq

org� 
is higher than Δaq

org�A+ and lower than Δaq
org�B− (see Fig. 6, 

iv). The opposite situation, i.e., when Δaq
org� is lower than 

Δ
aq
org�A+ and higher than Δaq

org�B− , restricts partitioning. In 
this way, a full range of electrochemical techniques can be 
applied to either study or control the ionic partitioning of 
the molecular cargo carried by lipid-based objects. Moreo-
ver, we believe that properly designed experiments, in which 
lipidic objects carry an ionic cargo, can be used to follow the 
impacts of the lipid-based objects with a liquid–liquid inter-
face-, fusion efficiency-, and potential-dependent adsorption 

of the lipid objects to a polarized junction. A polarized junc-
tion is a biointerface that mimics a real cell membrane with 
established cell potential. The impacts are detected in the 
form of changes in the electric properties of the interfacial 
region that follow the ionic currents originating from the 
interfacial charge transfer reaction involving the encapsu-
lated molecular cargo.

Conclusions

Highly organized 3D-lipidic architectures can be used 
as matrices for the crystallization of integral membrane 
proteins or in the development of new lipidic nanoforms 
for both analytical applications and the targeted transport 
and stabilization of biologically active molecules. Knowl-
edge of the optimal internal lipid arrangement and selec-
tion of suitable agents for the stabilization of nanocar-
riers is essential for designing a specific usable lipidic 
matrix. Although we understand the unique properties 
of cubosomes and hexosomes, there are still a number of 
questions about the fate of nanocarriers after their in vivo 
administration. Similarly, there is limited knowledge in 
the field of cell testing, including a deeper understanding 
of the mechanism of interaction with cell membranes and 

Fig. 6  i Schematic representa-
tion of concept assuming that 
liposome approaching liquid–
liquid interface, upon interfacial 
adsorption, will fuse and release 
its cargo. ii–v are possible 
lipid-based object cargo—salt 
dissociated into ions/charged 
chemical species—interfacial 
ion transfer reactions
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receptors, the actual entry into cells, and the release of 
biologically active substances from nanocarriers. As for 
sensing and the development of LCP-modified electrodes 
or microarray detection surfaces, fundamental research of 
interfacial behavior would be an important direction in 
the future.
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