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Abstract
In-situ visual observations of marine organisms is crucial to developing behavioural understandings and their relations to their
surrounding ecosystem. Typically, these observations are collected via divers, tags, and remotely-operated or human-piloted
vehicles. Recently, however, autonomous underwater vehicles equipped with cameras and embedded computers with GPU
capabilities are being developed for a variety of applications, and in particular, can be used to supplement these existing
data collection mechanisms where human operation or tags are more difficult. Existing approaches have focused on using
fully-supervised tracking methods, but labelled data for many underwater species are severely lacking. Semi-supervised
trackers may offer alternative tracking solutions because they require less data than fully-supervised counterparts. However,
because there are not existing realistic underwater tracking datasets, the performance of semi-supervised tracking algorithms
in the marine domain is not well understood. To better evaluate their performance and utility, in this paper we provide (1)
a novel dataset specific to marine animals located at http://warp.whoi.edu/vmat/, (2) an evaluation of state-of-the-art semi-
supervised algorithms in the context of underwater animal tracking, and (3) an evaluation of real-world performance through
demonstrations using a semi-supervised algorithm on-board an autonomous underwater vehicle to track marine animals in
the wild.
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1 Introduction

This work proposes the use of semi-supervised visual track-
ing (SST) algorithms on autonomous underwater vehicles
(AUV) to track marine animals with no prior training. Semi-
supervised algorithms have shown remarkable success in
generic tracking benchmarks, but these benchmarks do not
provide sufficient evidence of their performance in the
underwater domain. This work aims to first establish the
effectiveness of semi-supervised trackers in marine tracking
tasks through domain-specific benchmarking, and in addi-
tion, demonstrate the use of a semi-supervised tracker in
the real-world. Our contributions are thus to provide (1) a
unique and underwater-specific dataset consisting of videos
of mobile marine animals in their natural environment taken
by following them with a moving camera system, (2) an
evaluation of current state of the art semi-supervised track-
ing algorithms on this dataset using metrics relevant to the
problem of marine animal tracking, and (3) a novel robotic
demonstration of using a semi-supervised tracker in the real-
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Fig. 1 We present an initial dataset for evaluating performance of
visual semi-supervised trackers for tracking marine animals in the wild.
This dataset attempts to capture difficulties (and sometimes benefits) in
tracking across species, environments, and behaviors. It consists of 33

densely-labelled sequences, collected by both divers and AUVs in real
marine animal tracking scenarios, averaging over 1-min in length (Color
figure online)

world by deploying it on an AUV to track a marine animal
in the wild.

1.1 Visual Tracking of Marine Animals

In-situ visual observations of marine organisms can provide
valuable insights into their biology that can be difficult to dis-
cern using other modes of observations. These observations
can be used to characterize details of animal behavior and
their interactions within that ecosystem. However, gathering
in-situ observations using current approaches, especially in
the case ofmarine animals, can be expensive, time-restrictive
due to depth effects, and often dangerous. To achieve these
observations, marine biologists have long relied on diver-
based operations (Hanlon et al., 1999; Hanlon & McManus,
2020), tags (Kukulya et al., 2015; Mooney, 2020), and occa-
sionally using human-occupied vehicles (HOVs) (Priede et
al., 2020) or remotely operated vehicles (ROVs) (Katija et al.,
2021) to gather visual observations. Each of these approaches
is uniquely suited depending on the animal, environment,
costs, hazards, and equipment that are present.

Quantifying behavior requires long sequences of behav-
ioral interactions and this becomes increasingly difficult with
mobile animals. One of the most productive methods of
measuring behavior is known as “focal animal sampling”
in which video is acquired in a very disciplined manner by
continually filming either a single animal, or pairs of animals

for long periods to enable quantification and statistical anal-
yses (Bateson & Martin, 2021). The reason for this is that
key behaviors are not predictable and thus large video data
sets over long continuous periods are required to capture both
ongoing and episodic events. Divers become exhausted and
cold with this demanding method, and the animal tracking
can lead them to deeper water or beyond safe retreat to the
surface vessel. Moreover, the bubbles from SCUBA and the
changing shape of the diver can bias the target species’ behav-
ior, thus negatively influencing the natural interactions of
the target species. Manually controlled ROVs can assist to a
degree but they are prone to being pulled by currents that push
the tether and visually lose track of the target species. More-
over, ROVs often cannot be deployed close to the seafloor in
complex coral reef like environments which can pose signif-
icant danger to both the robot (entanglement) and the reef.
ROVs have been adapted to record static benthic animals
with a regimented sampling routine (Williams et al., 2009)
but the ability to follow mobile animals is far more challeng-
ing. AUVs have the potential to follow and record mobile
animals without the tether problem.

Autonomous underwater vehicles (AUVs) equipped with
cameras and higher powered computers have potential to
greatly supplement visual observations of animal behaviors
in more difficult to access regions of the ocean, or to provide
longer term observations in cases with limited human sup-
port. However, fully autonomous AUVs can currently only
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track a limited set of organisms in a small set of environments.
Currently, trackable animals (i) are either tagged (Kukulya
et al., 2015), meaning a device must be physically attached
to them that emits an acoustic signal to localize against, (ii)
are found in relatively simple visual situations (such as the
deep midwater column) (Yoerger et al., 2021), or (iii) have
significant amounts of labelled visual data available (Katija
et al., 2021). These can be limiting in many circumstances
because tags are difficult to install, most marine animals live
in visually complex environments ranging from coral reefs
to hydrothermal vents, and the underwater community gen-
erally has limited labelled data available for many species of
interest.

1.2 Semi-supervised Trackers

Semi-supervised trackers have been proposed as alternatives
to fully-supervised trackingmethods because they require no
target-specific pretraining, are able to run in real-time, and
have shown high accuracy on a number of difficult visual
object tracking benchmarks. Semi-supervised tracking algo-
rithms, at run-time, only require an initial bounding box of
the target to be provided by a human, and then the algo-
rithm autonomously localizes the target in all subsequent
frames. Their performance on existing benchmarks suggests
they may be useful to the AUV community, by providing an
alternative strategy to enable mostly autonomous visual data
gathering without the need of significant visual training data
or additional tracking equipment. This means AUVs could
track a more diverse set of animals and in a wider range of
environments. However, these methods have only been eval-
uated on generic datasets, which have few realistic examples
of tracking animals fully underwater, so their effectiveness
in these environments is not well known.

1.3 Challenges Unique to the Underwater Domain

Underwater environments have many unique visual charac-
teristics that are under-represented in generic datasets that
are used to evaluate semi-supervised trackers. Some exam-
ples include: depth and distance dependent color absorption,
presence of marine snow, extreme deformations and body
shapes ofmarine animals, camouflaging, and large variations
in visual complexity of underwater habitats forming the back-
ground. Hence a dedicated evaluation of their effectiveness
specifically in realistic underwater settings is necessary. For
instance, while the largest existing generic dataset, LaSOT
(Fan et al., 2020), containsmany examples of underwater ani-
mals, these sequences are primarily taken above-water or in
aquariums with idealized lighting. Although there are a few
underwater tracking sequences, they contain mostly turtles
in relatively clear and simple cases.

The most immediate visual distinctions are caused by
water as a medium itself, which causes light distortion and
absorption. In the former, following Snell’s law, light travel-
ing between media of varying densities causes light to bend,
this is prevalent in cases where a camera is placed inside a
waterproof housing, and so light must pass from water, to
glass or plastic, and then air before reaching the camera lens.
In addition,water absorbs different frequencies of light at dif-
ferent rates (Akkaynak & Treibitz, 2019), red light being the
most easily absorbed and blue light the last to be absorbed.
This causes significant loss of color-based information in
environmentally-lit situations, especially deeper underwater.
Underwater caustics near the surface, where light refracts
and reflects underwater causing bright and constantly mov-
ing patterns, can also serve as significant distractors.

In deeper waters or at night, where environmental light is
less of a concern, active lighting from a diver or vehicle can
simplify the color absorption problem. Unfortunately, such
relatively bright lights override the dark adaptation of the
target animals night vision, and thus affect its behavior. In
addition, again due to light absorption, visible distances are
typically short. Furthermore, marine snow, small biological
particulate matter, is prevalent in the ocean (Wang et al.,
2021), and active light reflects off of these particles. This can
cause either general haziness or become sharp and ubiquitous
visual features.

The types of habitats and the animals themselves are also
unique and present significant challenges. Habitats such as
coral reefs, mid-water, hydrothermal vents, kelp forests, sea
grass, etc. provide various visual challenges, several ofwhich
are shown in Sect. 3. Marine organisms exhibit a variety of
different swimming, foraging and defensive behaviors that
can disrupt the capabilities of imaging to follow them. Cam-
ouflage by many marine animals is highly advanced and
diverse. An extreme example among invertebrates are octo-
puses, cuttlefish and squid which can instantly change their
camouflage pattern, and even their body shape aswell as their
skin 3D texture, all of which is exceptionally difficult to dis-
cern with digital imagery. These animals as well as many
fishes have specific behaviors to actively avoid detection and
tracking, through camouflage, inking, darting, hiding, and so
forth.

Finally, collection of raw data can be especially difficult
underwater, and so too is the development of large databases
of imagery. Although extensive datasets exist from the under-
water domain, they are either aiming a stationary camera to a
stationary subject, or aiming at characterizing fish biodiver-
sity with wide angle lenses and thus not focusing on single
target tracking.

Depending on depth and distance from shore or the haz-
ards of the environment or animals themselves, significant
equipment, extensive training, and labor could be required.
Even in relatively shallow water, below 10m, longer-term

123



International Journal of Computer Vision (2023) 131:1406–1427 1409

tracking of marine animals requires a SCUBA certification
and specific camera housings. If the animal varies its depth
quickly, this can be dangerous to the diver. In other instances,
only rare vehicles are capable of collecting data, for instance
in the deep sea.

In this paper, we review related works in Sect. 2, present
the dataset and evaluation results in Sect. 3, present the real-
world AUV tracking results in Sect. 5, and discuss the results
and their implications in Sect. 6 and finally give concluding
remarks in Sect. 7.

2 RelatedWork

This work is most closely related to works in autonomous
vision-based tracking for marine animals and the develop-
ment of datasets for evaluating real-time, semi-supervised
tracking methods. In the following section we discuss how
this work is situated in these contexts.

2.1 AutonomousVision-BasedMarine Animal
Tracking

We focus on the current use of AUVs for marine animal
tracking. We first discuss passive video tracking of animals.
In passive contexts, video cameras collect data of marine ani-
mals, but the images themselves are not used to informAUVs
where to look. These strategies tend to fall in two categories:
surveys and acoustic tag-based tracking. In the former, vehi-
cles such as the MBARI i2MAP Dorado or the Seabed AUV
(Williams et al., 2009) perform pre-programmed surveys
in ocean, collecting video along the pre-determined track,
which is analysed afterwards. Other passive visual observa-
tion gathering by AUVs is accomplished through acoustic
tags. Animals such as sharks, cetaceans, penguins, turtles,
some larger fish, etc. can be outfitted with an acoustic tag
that an AUV can then use to localize its position relative to
the vehicle. TheseAUVs, such as theREMUS series, are then
equipped with cameras, often many oriented in several direc-
tions, that record video to a memory card and again analysed
after the mission (Kukulya et al., 2016). Tags are only able
to be attached to specific species of animals, and typically
require significant deployment effort and training to affix. In
addition, videos collected in this manner have less quality
guarantee, and animals may not stay in the frame of a single
camera for very long.

AUVs equipped with active visual tracking capabili-
ties have recently been developed. The Mesobot platform
(Yoerger et al., 2021) is developed to track slow-moving
animals in the mesopalegic zone (300–1000m depths), also
knownas theOceanTwilightZone,which has very little light.
This system consists of a grey-scale, stereo-camera system
for tracking and provides its own light. Animals are tracked

through established color segmentation and blob-tracking
methods, and theMesobot was used to successfully track jel-
lyfish and larvaceans in-situ for several hours.However, these
methods only work in very simple tracking scenarios, which
is unique to the mesopalegic zone and the types of animals
that live there, where jellyfish illuminated by on-board lights
are easily distinguished from the dark ocean backdrop. Katija
et al. (2021) introduced the use of tracking-by-detection and
deep learning strategies to increase robustness and track in
more complicated scenarios and demonstrated its effective-
ness on-board the MBARI MiniROV. In this case, a deep
convolutional neural network, RetinaNet (Lin et al., 2017)
is pre-trained on the target(s) of interest. During run-time,
the network is used to detect targets, and a data association
strategy is used to determine which detections correspond to
the appropriate target. In both of these scenarios, once the
target is localized in each frame, the vehicle is commanded
to update its position to center the target in the camera frame.

These systems have provided invaluable insights for
researchers, however, Mesobot is only able to track simple
organisms in the deep sea and theMBARIMiniROVcan only
track animals for which they have significant training data
already collected. Our work aims to show if semi-supervised
trackers can enable AUVs to track a much larger range of
animals and in more varied habitats where significant target-
specific training data for fully supervised neural networks is
not available.

2.2 Underwater Visual Datasets for Marine Animal
Tracking

Due to the popularity of machine learning methods for land-
based animal classification, several datasets have recently
been developed for marine animal classification as well.
Most prominent among these are FathomNet, VIAME,AIMs
Ozfish, MBARI VARS, and DeepFish (Katija et al., 2022;
Dawkins et al., 2017; Schlining & Stout, 2006; OzFish
Dataset, 2022; Saleh et al., 2020). All of these datasets are
useful for training deep learning-based networks for classifi-
cation and can be incorporated into fully-supervised trackers.
However, each is highly localized to a specific set of animals.
For instance, AIMs Ozfish and DeepFish both are collected
from nearby Australia, and primarily contain images of ver-
tebrate fish. VIAME is a more general underwater animal
dataset, but mostly contains imagery from smaller organ-
isms that visit baited camera traps. In addition, these types of
sequences are insufficient for evaluating tracking scenarios
with moving cameras, or for organisms in the open ocean.
FathomNet and the MBARI VARS datasets are perhaps the
only datasets that explicitly attempt to capture data useful
for evaluating active tracking tasks. However, the MBARI
VARS dataset is difficult to access publicly, and Fathom-
Net’s dataset, at the time of this writing, only includes deep
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ocean species such as jellyfish, larvaceans, and slow-moving
seafloor organisms found off the coast of Monterey Bay in
California.

None of these datasets is large enough to provide robust
training for fully-supervised tracking methods to work on
the full range of marine animals of interest, such as those
illustrated in Table 2, though they are invaluable starts. Fur-
thermore, none provide longer video sequences that allows
evaluation of semi-supervised trackers on realistic tracking
tasks where there is significant camera motion, high-frame
rates of at least 10 fps, which are necessary to enable rea-
sonable feedback control in AUVs, and a realistic set of
behaviors where baited traps are not used.

2.3 Deep Learning Approaches for Semi-supervised
Tracking

While semi-supervised visual tracking has a fairly long lit-
erature, only recently has it started to gain more widespread
attentionwith the introduction of deep learning-based feature
extractors and classifiers. One of the first deep learning-based
SSTs, MDNet (Nam & Han, 2016), achieved the highest
performance on an early generic object tracking benchmark
VOT (Kristan et al., 2013). However,MDNet could not run in
real-time. Since then, several innovations, especially in deep
learning-based trackers, have enabled SSTs to achieve real-
time tracking speeds while continuing to consistently be top
performers in accuracy on multiple generic object tracking
benchmarks.

Of these innovations, two architectures, which we will
refer to as either Siamese-based and online discriminator-
based, in particular have dominated the most recent bench-
marks. Tao et al. (2016) first introduced Siamese-based
networks as a way to achieve the accuracy of deep learning-
based trackers with real-time speed. In these architectures, a
pre-trained deep neural network backbone is used to extract
features from an initial template image of the target. Then
using the backbone network, features are extracted from
subsequent images, and the region (in the extracted feature
space) that is most similar to that of the features of the tem-
plate image, is labelled as the target of interest in that frame.
Subsequent Siamese-based trackers innovated on the types
of backbone networks used for feature extraction or down-
stream optimization tasks such as providing full masks or
selecting between distractors (Li et al., 2019; Wang et al.,
2018; Li et al., 2019).

Siamese-based networks suffer in performance however
during object appearance changes, since they rely only on
the appearance of the object in the first frame for reference.
Later, Danelljan et al. (2019) introduced an online learning
component in ATOM, where recent frames, in addition to
the first frame, are used to train a discriminator that is then
used to classify subsections of the current tracking frame as

the target or not. This further improved performance in the
case of appearance changes, and many later trackers added
post-processing steps to gain additional performance boosts
(Bhat et al., 2019; Danelljan et al., 2015, 2017; Chen et al.,
2021; Wang et al., 2021).

It is interesting to note, as described inWang et al. (2021),
that Siamese-based networks are effectively special cases of
online discriminator-based architectures, where the online
learning step is removed, which may be important in how
they are analysed. In particular, Siamese-based networks
are generally robust in the long-term, meaning if the target
appearance returns to something similar to the first frame,
the tracker can recover. In contrast, in the online discrimina-
tor case, because later frames are not labelled, small errors in
appearance-learning accumulate, and can cause the tracker to
drift from focusing on the correct features resulting in lower
long-term robustness (Mueller et al., 2016). However, when
this tradeoff is carefully addressed, the online visual tracking
problem seems to tend towards online learning approaches,
because the best predictor of an object’s appearance at time
t is its appearance at t − 1.

In some of these cases, trackers can catastrophically fail
either from appearance change or from self-drift, even when
the object remains in the sequence at all times. We thus
believe it is important for evaluation datasets to contain
longer (in duration) sequences, where object appearances
change over time, in order to verify these issues.

2.4 Generic Benchmarks for Semi-supervised
Tracking

Many general purpose semi-supervised tracking datasets and
benchmarks exist, such as LaSOT, GOT10K, VOT2020,
DAVIS, OxUvA, OTB100, TrackingNet, Youtube-BB, NfS,
and UAV123 (Fan et al., 2020; Huang et al., 2021; Kris-
tan et al., 2020; Wu et al., 2015; Caelles et al., 2019; Xu et
al., 2018; Mueller et al., 2016; Galoogahi et al., 2017; Val-
madre et al., 2018). However, as noted in LaSOT, many of
these datasets such as OxUvA, TrackingNet, and Youtube-
BB, are only labelled intermittently, so many frames are not
guaranteed to have a human-checked ground truth. This is
not well-suited for evaluating trackers that need to run on
vehicles where high-frame rates are required. As in LaSOT,
we thus focus on comparing against the following densely
labelled datasets, also noted in Table 1.

OTB100 (Wu et al., 2015),VOT2020 (Kristan et al., 2020),
Need for Speed (NfS) (Galoogahi et al., 2017) are smaller
standard datasets, OTB and VOT are some of the earliest
benchmarks to have been introduced, with VOT2020 being
a slightly updated version of VOT, using a different bound-
ing box methodology and swapping out a few sequences.
NfS was developed for evaluating extremely fast frame-rate
systems, with frames at 240 fps. However, in all 3 of these
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Table 1 Comparison of densely-labelled and high-fps benchmark datasets for evaluating semi-supervised trackers

OTB100 VOT2020ST NfS GOT-10K LaSOT UAV123 UAV20L VMAT (Ours)

Num sequences 100 60 100 9695 1550 123 20 33

Frame rate 30 30 240 10 30 30 30 30

Min duration (s) 2.4 1.4 0.7 2.9 33.3 3.6 57.2 14.6

Mean duration (s) 19.7 11.1 16.0 14.9 83.4 30.5 97.8 74.9

Max duration (s) 129.1 50.0 86.1 141.8 379.9 102.8 184.2 248.2

Fully underwater animal sequences No Only 1 Only 1 Yes Only 1 species No No Yes

Realistic tracking sequences Yes Yes Yes No Yes Yes Yes Yes

Here we consider fully underwater animal sequences where both the camera and animal are underwater in nature, and not in an aquarium or similarly
artificial setting. Here we consider realistic tracking sequences those that are aimed at longer duration, densely-labelled, and >10 fps (for vehicle
control purposes) sequences

datasets combined, only 2 sequences are of underwater ani-
mals at all, both in fairly ideal lighting conditions.

GOT-10K (Huang et al., 2021) was developed to have by
far the most sequences of other current datasets, to be used
for both training and evaluation purposes. Some of these
sequences also include underwater animal tracking. How-
ever, these sequences are very short, on average only 14.9 s
in duration across the whole dataset, or only 9.5 s in duration
when considering animal classes. These are too short to effec-
tively evaluate performance for longer-term deployments on
real vehicles.

UAV123 and UAV20L (Mueller et al., 2016) are part of the
same dataset, developed to evaluate tracking of humans and
vehicles from on-board unmanned aerial vehicles (UAVs).
UAV20L consists of 20 sequences that are longer in length
than the rest of the UAV123 sequences, and is most like
our dataset in terms of its overarching goals. However, this
dataset is only focused on humans and ground vehicles.

LaSOT (Fan et al., 2020) contains 1550 sequences that are
densely labelled, at 30 fps, and capture many realistic track-
ing scenarios, and is likelymost useful for evaluations similar
to ours. However, among those sequences, while many are
taken of underwater situations, most occur in artificial envi-
ronments such as aquariums, or are above the surface of the
water. We found only 12 sequences that were consistent with
our goals, but do not have species diversity, as 11 are of turtles
and 1 of an alligator.

For instance, LaSOT focused on longer sequences,
GOT10K increased number of classes, OxUvA provided sig-
nificant numbers of fully occluded or fully lost targets, etc.
Our approach most resembles UAV20L, which aims to pro-
vide a more domain-specific dataset with longer tracking
sequences that are realistic to the overall tracking problem
on a mobile platform.

While LaSOT and UAV20L closely resemble our tracking
evaluation goals, they do not have sufficient coverage of the
underwater tracking domain to provide convincing evalua-
tions of the range of underwater-specific issues.

3 The Visual Marine Animal Tracking Dataset

3.1 Design Principles

In order to evaluate expectedperformanceof semi-supervised
trackers in a variety of challenging marine tracking tasks,
we needed to develop a new evaluation dataset. Our dataset,
which we refer to as the Visual Marine Animal Tracking
(VMAT) dataset, is used for evaluation only, and is domain-
specific, similar to the UAV20L dataset (Mueller et al., 2016)
in terms of size and scope, but targeted at AUV deployments
for tracking underwater animal targets.We thus focus on col-
lecting data that is diverse across animals, habitats, behaviors,
and tracking scenarios as possible, whichwe show in Table 2.
We also aim for each sequence to be as realistic as possible,
where a camera is actively tracking an animal, sequences are
densely-labelled, where every frame is labelled, and are in as
long duration as possible (without loss of sight). We ensure
frame rates are over 10 fps which we believe is the minimum
frame rate necessary to perform reliable feedback control of
most underwater vehicles, though higher is better.

3.2 Data Collection, Processing, and Annotation

To build a diverse dataset, we gathered sequences from
several different existing scientific sources, in addition to
collecting our own sequences in the field. All sequences in
the dataset were collected in active tracking scenario, where
a single target is the focus for the entirety of the track. From
each source, we selected the longest contiguous sequences
that did not have full occlusions or loss-of-sight.

We began by collecting existing videos from nearby sci-
entists. These consisted of difficult sequences of octopuses
exhibiting a variety of behaviors (from highly conspicuous
to effectively camouflaged) in seagrass, coral, and sandy
habitats; these were filmed via SCUBA in Puerto Rico by
co-author Roger Hanlon using a Panasonic HD HVX200.
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Table 2 List of sequences in the
dataset and the corresponding
sequence ID, animal, habitat,
and behavior contained within
the sequence

ID Animal Habitat Motion/Behavior # Frames

0 Octopus Seabed, sand and grass Stop and go, fast 1340

1 Octopus Seabed, sand and grass Slow crawl 1129

2 Octopus Seabed, dense seagrass Slow crawl 2971

3 Octopus Seabed, dense seagrass Stop and go, slow 2042

4 Shark Midwater, shallow, clear Constant swim 438

5 Shark Seabed, near-bottom Constant swim 1092

6 Shark Midwater, deep, marine snow Fast swim 750

7 Dolphin Midwater, turbid Fast swim 690

8 Larvacean Midwater, deep, marine snow Slow swim 601

9 Larvacean Midwater, deep, marine snow Slow swim 901

10 Jellyfish Midwater, deep, marine snow Slow swim 512

11 Jellyfish Midwater, deep, marine snow Slow swim 511

12 Striped Fish Coral Fast darting 750

13 Parrotfish Coral Medium swim 2610

14 Parrotfish Coral Medium swim 1080

15 Parrotfish Coral Medium swim 1680

16 Lionfish Coral Stationary 4770

17 Angelfish Coral Medium swim 3870

18 Boxfish Coral Medium swim 2580

19 Blue Tang Coral Fast swim 1350

20 Blue Tang Coral Fast swim 600

21 Squid Rocky Seabed Medium swim 2550

22 Squid Rocky Seabed Medium swim 5550

23 Octopus Rocky Seabed Crawling 2190

24 Snapper Coral Fast swim 3180

25 Shark Coral Medium swim 2490

26 Shark Coral Medium swim 5514

27 Shark Coral Medium swim 1566

28 Stingray Seagrass Medium swim 7448

29 Jack Coral Medium swim 3960

30 Barracuda Coral Fast swim 2363

31 Sea turtle Midwater Slow swim 3180

32 Jellyfish Seagrass Slow swim 1920

These sequences were obtained via a focal animal sampling
routine for a study of adaptive camouflage.

To add midwater tracking scenarios with significantly
larger and faster animals, Amy Kukulya and Roger Stokely,
from the Woods Hole Oceanographic Institution, provided
sequences of sharks and dolphins. These sequences were all
collected byREMUSvehicles (Kukulya et al., 2015) tracking
tagged animals. In these cases, even though the vehicles were
actively tracking an acoustic beacon physically attached to
the animals, they were only passively collecting visual data.
This meant that the animals rarely stayed in frame, so the
sequences are relatively short. These sequences also show
variation in lighting at different depths, as shallower tend to
be blue, deeper are black, andwater that is high in chlorophyll

tends to be very green. It is also important to note the sim-
pler backgrounds in these midwater examples. The deeper
of these sequences also show significant marine snow. These
can be seen in the second column of Fig. 1.

We also then sought to add deeper ocean tracks. The
Mesobot team, from their expeditions in the Pacific Ocean
as published in Yoerger et al. (2021), were able to provide
long tracks of midwater organisms in the ocean twilight zone
(100–3000m depths). These samples were collected fully
autonomously byMesobot via a standard blob tracking algo-
rithm.WhileMesobot sequences were longer in length, there
do not include as much visual diversity, and so the included
sequences are the ones that capture the most diverse motion
instances.
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Finally, to represent a larger range of species, the authors
Levi Cai, YogeshGirdhar, andAranMooney from theWoods
Hole Oceanographic Institution, performed several SCUBA
dive operations in the U.S. Virgin Islands, St. John in Octo-
ber 2021 and October 2022. We used GoPros in off-the-shelf
underwater housings and followed a variety fish in coral reef,
seagrass, and sandy environments. For each sequence, we
track a single organism for as long as possible while mini-
mizing occlusions. We found a new organism when it was no
longer possible, and repeated this until our dive times were
complete. Through these tracks, we collected 20 additional
sequences across several species, including squid, an octo-
pus, reef sharks, a stingray, a squid, and 9 types of reef fish.

All videos were then reviewedmanually by the author and
the longest continuous sequences, without loss of sight and
with continuing novel viewpoints or appearance changes, of
each organism were selected. Because many tracker evalu-
ation metrics are sensitive to differences in both spatial and
temporal resolution we standardize all videos to a minimum
common standard that is still usable for active AUV track-
ing. Specifically, we subsample frame rates down to 30 fps
and scale resolutions of all videos to 854× 480 pixel (480p)
using ffmpeg.

Finally, to produce dense ground-truth labels of each
target, the authors manually labelled axis-aligned bound-
ing boxes using LabelBox (Labelbox, 2022) with manual
labelling (adding a keyframe) or explicit review no less than
every 15 frames. LabelBox then linearly interpolates between
labels, and the authors do a last verification by watching the
whole sequences. All sequences were labelled by Levi Cai
and Yogesh Girdhar, and reviewed by Levi Cai.

3.3 Dataset Attributes and Statistics for Evaluation

The overall dataset contains 33 sequences, with a total of
74K frames. On average, the sequences are 75s long, with a
longest sequence duration of 248s.We emphasize the impor-
tance of longer duration sequences to capture variability in
animal behaviors. This is different from the NfS philosophy
which focuses on extremely fast behaviors. More general
statistics and comparisons are shown in Table 1.

After the selection process, the final dataset consists of 17
different types ofmarine animal: octopuses, sharks, dolphins,
larvaceans, jellyfish, squid, turtle, stingray, and 9 species of
fish (striped fish, parrotfish, lionfish, angelfish, boxfish, snap-
per, barracuda, jack, and blue tangs). They are distributed
over several visually distinct marine habitats including coral
reefs, sea grass, the shallowmid-water column, the deepmid-
water column, and near sandy and rocky seabeds. And finally
exhibit several types of swimming behaviors such as fast,
medium, and slow constant swimming, darting, crawling,
and stop and go maneuvers.

It is common to label sequences with attributes that may
cause tracker difficulties and group evaluations by those
attributes in order to determine which attributes cause issues
during tracking. For this, we select 6 standard attributes
including: scale variation (SV), low resolution (LR), par-
tial occlusions (PO), difficult backgrounds (DB), and similar
objects (SO), with a description of each and how they are
determined inTable 3.Because of the inherent physical active
tracking scenario and longer durations, all or most of the
sequences in this dataset have camera motion, in-plane rota-
tion, and show object appearance changes from rotation or
deformation.

In order to evaluate metrics that are more specific to the
underwater domain and habitats, we include 7 additional
attributes that were manually determined. These are mid-
water (MW), seabed (SB), coral reef (CR), seagrass (SG),
intermittent sand or rocks (IS), and active lighting (AL) or
passive lighting (PL). The descriptions of these attributes are
also listed in Table 3. We note that CR, SG, and IS are all
subsets of SB and are more notable for having DB. Because
these environments are more typical in shallow regions, and
because data was collected during the day, these also have
PL. Likewise, MW environments tend to have simple back-
grounds (they are generally blue or black), butmayhavemore
foreground clutter due to marine snow. In deeper MW envi-
ronments, it is common to use AL, which amplifies the visual
clutter due to marine snow, and so there is coupling inherent
in these attributes that may be difficult to separate. A distri-
bution of the sequences and associated attribute labellings is
shown in Fig. 2.

4 Evaluation of State-of-the-Art
Semi-supervised Trackers

4.1 Tracker Selection

Here we discuss which trackers we selected for comparison.
We focus on semi-supervised single-object trackers because
we intend to use these on vision-based AUVs for tracking
of individual marine organisms where large training datasets
do not exist. In real-time, semi-supervised object tracking,
given a video or live-stream of images, an initial target is
determined from a user-specified bounding box in the ini-
tial frame. Only based on this information, the tracker must
predict the target bounding box on all subsequent frames, in
real-time, without further user input.

While semi-supervised trackers have a long history with
many types of architectures, performance in all recent bench-
marks such as LaSOT, GOT10K, UAV20L, TrackingNet,
and more, are all dominated by those based on deep-
learned neural networks. We thus focus on those trackers.
We selected 13 recent trackers who self-report highest scores
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Table 3 Attributes selected for benchmarking

Attr. Name Description

SV Scale variation (Auto) Ratio of bbox px exceeds [0.5, 2] from initial bbox

ARC Aspect ratio change (Auto) Ratio of bbox aspect ratio exceeds [0.5, 2] from initial bbox

LR Low resolution (Auto) Bbox is less than 1000px in area

PO Partial occlusion (Manual) Object is partially occluded for more than 1 frame

DB Difficult background (Manual) Bbox overlaps with complex background

SO Similar objects (Manual) Similar looking objects are nearby target object

Env. Attr. Name Description

MW Midwater Target does not overlap with seafloor

SB Seabed Target overlaps with seafloor at least half the sequence

CR Coral Reef Target overlaps with coral reef at least half the sequence

SG Seagrass Target overlaps with seagrass at least half the sequence

IS Intermittent sand/rocks Target overlaps with sand/rock at least half the sequence

AL Active lighting Scene is predominantly illuminated by AUV/diver

PL Passive lighting Scene is predominantly illuminated by environment (sun)

The first six attributes are common to all object tracking datasets and the latter seven are peculiar to the underwater environment. SV, ARC, and
LR were automatically computed from characteristics of the labels of the corresponding video sequences. The remaining attributes were derived
manually because they require some qualitative interpretation

Fig. 2 Distribution of sequences with each attribute in our dataset. On the left are standard generic attributes that we evaluate on and on the right
are environmental-based attributes unique to our dataset (Color figure online)

on previous benchmarks, discussed in Sect. 2, with vary-
ing underlying architectures. As an additional baseline, we
include older top-performing trackers as reported by the offi-
cial LaSOT benchmark. We further select trackers that are
capable of running in real-time (above 10 fps) on currently
available hardware and are used specifically for single-
object tracking tasks. As described in Sect. 2, we also focus
on two primary architectures, Siamese-based and online
discriminative-based trackers. For evaluations we have thus
selected: SiamRPN++ (Li et al., 2019), DaSiamRPN (Zhu et
al., 2018), SiamMask (Wang et al., 2018), ECO (Danelljan et
al., 2017), ATOM (Danelljan et al., 2019), DiMP (Bhat et al.,
2019), PrDiMP (Danelljan et al., 2020), SuperDiMP, which
is a combination of DiMP and the regressor from PrDiMP,

KeepTrack and KeepTrackFast (Mayer et al., 2021), TransT
(Chen et al., 2021), TrSiam (Wang et al., 2021), and TrDiMP
(Wang et al., 2021). For abbreviations and properties we
consider refer to Table 4. As is common practice, we run
each algorithm as provided (Fan et al., 2020), because the
following reasons: they may require different training strate-
gies, they are sensitive to training settings, and as-is trackers
are typically already optimized. There are many subtle dif-
ferences between each tracker that are difficult to list and
enumerate, but broadlywe can characterize them as Siamese-
based: SiamRPN++,DaSiamRPN,SiamMask, ECO,TransT,
and TrSiam, or online-discriminator based: DiMP, PrDiMP,
SuperDiMP, KeepTrack, and TrDiMP. All these algorithms
utilize pre-trained (using generic datasets) deep convolu-
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Table 4 Overview of selected
trackers, the abbreviations we
use to denote them, their source
year, general architecture
(siamese-based vs. online
discriminator based), and an
inclusion of a transformer
network for additional attention
processing

Tracker Abbrev. Source Arch. (S/OD) Trans. layer?

ECO (Danelljan et al., 2017) EC CVPR17 S N

DaSiamRPN (Zhu et al., 2018) DS ECCV18 S N

ATOM (Danelljan et al., 2019) AT CVPR19 S N

SiamRPN++ (Li et al., 2019) SR CVPR19 S N

SiamMask (Wang et al., 2018) SM CVPR19 S N

DiMP (Bhat et al., 2019) DP ICCV19 OD N

PrDiMP (Danelljan et al., 2020) PR CVPR20 OD N

SuperDiMP SD 2020 OD N

KeepTrack (Mayer et al., 2021) KT ICCV21 OD N

KeepTrackFast (Mayer et al., 2021) KF ICCV21 OD N

TransT (Chen et al., 2021) TT CVPR21 S Y

TrSiam (Wang et al., 2021) TS CVPR21 S Y

TrDiMP (Wang et al., 2021) TD CVPR21 OD Y

Note that SuperDiMP is a combination of PrDiMP and DiMP provided by Danelljan et al. (2020) without
further publication, and KeepTrackFast uses slight changes in parameters, but is the same architecture as
KeepTrack, and is provided in Mayer et al. (2021)

tional neural networks to perform feature extraction. In most
cases,weuse theResNet-50 (He et al., 2016) feature extractor
when available, though older networks such as ECO relies
on VGG-M (Chatfield et al., 2014), and ATOM relies on
ResNet-18 (He et al., 2016).

Vaswani et al. (2017) introduced Transformers as a new
type of network architecture that produced state-of-the-art
results on a variety of neural network related classification
and decisionmaking tasks. Only recently however have these
innovations been applied into the tracking domain, and are
presented in TransT, TrDiMP, and TrSiam. Their perfor-
mance has not been characterized by a standardized dataset
yet, and so we include them here as well. For further details
on all trackers, please refer to each respective publication
(Table4).

4.2 Results of Evaluation andMetrics

We ran all trackers across the VMAT dataset for evalua-
tion, for a qualitative sample of these runs, refer to (Fig. 3).
We adopt standardized metrics for evaluating state-of-the-art
trackers on our benchmark dataset. Namely e consider the (1)
success rate, (2) precision, and normalized precisionmetrics
accumulated across all frames in each sequence, and aver-
aged across the entire dataset and over each attribute subset.
Many of the trackers are stochastic, and sowe average results
over 5 runs, as in many other benchmarks (Fan et al., 2020;
Müller et al., 2018). These metrics are well-established and
described in detail in Müller et al. (2018). For complete-
ness, we give brief descriptions of each here. The success
rate, or overlap, for each frame and tracker is computed by
taking the intersection-over-union (IoU), which is a value
between 0 and 1, of the groundtruth bounding box and the

predicted bounding boxof the tracker. To generate reasonable
visualizations and rankings, the IoU is subject to thresholds
spanning 0–1, a frame is considered a “success” if the IoU
exceeds the threshold or not. The percentage of “successful”
frames can then be computed for each threshold as shown in
Fig. 4. Rankings are then taken by estimating the area under
the success curve (AUC). Because some trackers may have
reasonably predicted overlapping bounding boxes but focus
on the incorrect region of an object, it is standard practice to
also consider the precision metric as well. Precision is com-
puted by taking the distance of the center of the groundtruth
bounding box to the center of the predicted bounding box,
this is measured in pixels. For precision, a different thresh-
old, measured using number of pixels distance, is applied to
generate meaningful visualizations and rankings. For overall
precision rankings in Fig. 4, rather than computing an AUC-
like metric for precision, it is standard practice to report the
precision for a threshold of 20px, which we do here as well.
Since distances are measured in pixels, precision is subject to
resolution of the target, and so normalized precision accounts
for image resolution. More details about these metrics can be
found in Müller et al. (2018).

Some benchmarks, such as Fan et al. (2020), do not report
speed,which is a critical evaluationmetric if these algorithms
are to be used in real-world active tracking systems. We thus
ensure to provide a baseline measurement of speed in Fig. 7.

The results for the full dataset can be found in Fig. 4,
results along standard attributes are in Fig. 5, and results
along the unique underwater attributes are in Fig. 6. To
enable consistent comparisons, especially related to speed,
all results are run on the same desktop with a Nvidia GeForce
1080 GPU, Intel Core i7-6900K CPU, and 64GB RAM.
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Fig. 3 Sample representative results on difficult sequences of a bluetang, angelfish, squid, shark, and octopus (from top to bottom) (Color figure
online)

5 Real-World Experiments: Tracking in the
Wild Using an AUV

Solely evaluating performance of semi-supervised trackers
on pre-recorded videos is insufficient to fully estimate their
benefits and issues when operating in real-world conditions.
Pre-recorded videos mask issues where real-time decision-
making on the AUVs can cause additional problems. For
instance, if the tracker focuses on the wrong object even
momentarily, it could cause the entire platform to further
point away from the target. This creates a positive feedback
loop that likely results in catastrophic failure of the tracker. In
pre-recorded videos however, trackers can often re-identify
targets because it is likely they will re-center in the video
eventually given the nature of the recording. Thus, in order to
better understand in-situ performance, we deployed a semi-
supervised visual tracker to actively control a real AUV and
track a marine animal in the wild. We describe our system

implementation and experiment details below and provide
some qualitative evaluation of the field trials afterward.

5.1 SystemOverview

Our goal was to test semi-supervised tracking of a complex
organism in-situ and in real-time on an AUV. To do this we
used a custom AUV developed at the Woods Hole Oceano-
graphic Institution, known as CUREE (Girdhar et al., 2023),
rated to 100m, equipped with a camera, a high-bandwidth
connection to an on-board Nvidia Jetson Xavier which had
direct control of the thrusters over a ROS interface (ROS,
2022). All image processing and control action selection was
performed on the AUV itself. The vehicle is equipped with 3
wide-angle cameras looking 30◦ down from the horizon. The
middle camera provides a 720p RGB stream at 15 fps, while
the two side cameras provide 1080p monochrome streams
and can be used for stereo. We used KeepTrackFast because
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Fig. 4 Results of all trackers on the full dataset using success AUC, precision, and normalized precision metrics (Color figure online)

it was both the best performing algorithm on VMAT while
also able to run at roughly 7–9 fps continuously on the edge
device Nvidia Jetson Xavier, which is at the bare minimum
speed to enable real-time feedback control. Note that this
device is significantly less powerful than the system used
in Fig. 7, but is necessary for use on smaller autonomous
vehicles. This on-board computing limitation is also why the
resolution and speed of the video processing was low. The
camera is mounted at a 30◦ downward angle from the hori-
zon in order to better track animals along the sea-floor, which
is also typically a more complex environment. The AUV is
also equipped with a WaterLinked DVL A50, or a Dopper
Velocity Log, which provides capabilities to accurately esti-
mate 3D vehicle velocities and altitudes, which can in turn be
integrated to estimate positions via dead-reckoning. Finally,
the AUV has 6-thrusters capable of full 6-DOF control.

5.2 Real-World Deployment Details

We deployed our system in parallel to our dataset collection
efforts in the U.S. Virgin Islands in October 2022. A human
operatorwas stationed on a boat andwas tethered to theAUV.
The operator had a high-bandwidth tether connection to the
AUV in order to perform remote control of the vehicle for the
initial target search and specification step of the experiment.
This connection also provides the operator with a live stream
of the video from the AUV. Once a target is identified by
the operator, they draw a bounding box over the target using

a GUI developed for this task. After the bounding box is
specified, the AUV goes into a fully autonomous tracking
mode. While this may be considered an ROV setup, once
the initial bounding box has been specified, the tether can
be disconnected, and the goal is for these algorithms to be
adopted on full AUVs.

In fully autonomousmode, theAUVperforms closed-loop
visual servoing control using the bounding boxes provided
by KeepTrackFast. Because of the monocular setting, and
because there is no known information about the target a pri-
ori, we cannot compute a target size or distance estimate.
Consequently, we command the vehicle to maintain constant
width of the bounding box. Qualitatively, we found this met-
ric to bemore stable than height or area. The resultant control
loop guides the robot closer to the target if the width of the
bounding box grows, and vice versa. The AUV also yaws
accordingly to center the target in its field of view. If the cen-
ter is above or below, the vehicle rises or sinks in the water
column. All these parameters are controlled via a series of
PID loops running at least at 9Hz, which is the speed of
KeepTrackFast running on the Jetson Xavier. For additional
safety, to prevent damaging coral reefs, using theDVL’smea-
surement of altitude, we disallow the vehicle from moving
below 0.5–1m from the bottom.
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Fig. 5 Success results of all trackers on sequences containing the specified generic attributes (Color figure online)

5.3 Results of Demonstrations

Wewere able to successfully track several organisms, includ-
ing a barracuda (Fig. 8),multiple jellyfish (Fig. 10), and some
smaller fish like jacks (Fig. 11).

The barracuda was tracked for nearly 10min across a
trajectory of roughly 100m in length out and back. The bar-
racuda swam from an initial point next to a particular species
of coral, known as dendrogyra, had multiple encounters with
other organisms along its track, and eventually returned to the
same coral before the AUV lost track. The AUV was able to
autonomously follow the barracuda for the majority of the
track, however, there were short instances where the human
operator needed to manually control the AUV when Keep-
TrackFast lost the target. Overall, the tracker was able to
maintain track of the animal across a wide range of terrains,

as it swam over coral, sand, seagrass, and nearby several
other fish, turtles, and other organisms. However, at around
10min, it swam near coral that also resembled it, and Keep-
TrackFast and the human operator as well were unable to see
it afterwards. Because of the DVL and depth sensor on-board
the AUV, we are able to estimate a full 3D trajectory of the
vehicle in real-time, which can serve as a proxy of the tra-
jectory of the barracuda. The AUV also has stereovision, so
with further processing, we would be able to recover a more
accurate 3D trajectory of the barracuda itself by computing
the 3D offset of the barracuda from the vehicle, however,
that is out of scope for this paper. The resulting trajectory
estimates, and time periods when human intervention was
required, are shown in Fig. 9. We needed to manually align
the vehicle compass, due to a compass miscalibration while
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Fig. 6 Success results of all trackers on sequences containing the specified environmental attributes (Color figure online)
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Fig. 7 Frame rate vs. AUC over the full VMAT dataset for each tracker.
With the exception of KeepTrackFast, SiamMask, and DiMP, most
trackers appear to tradeoff speed for accuracy. Results run using a desk-
top with Nvidia GeForce 1080 GPU, Intel Core i7-6900K CPU, and
64GB RAM (Color figure online)

we were tracking the barracuda, in order to post-process the
map overlay in Fig. 9.

We further initially tested the capability of these algo-
rithms to replicate results such as Yoerger et al. (2021) and
Katija et al. (2021) to track jellyfish in more visually com-
plex scenarios. To do this, we tracked multiple jellyfish, the
resulting vehicle depth plots, which again, roughly estimate
the depth profiles of the jellyfish, are shown Fig. 10. While
we were unable to test in situations with large clusters of
jellyfish as in Katija et al. (2021), we were still able to track
jellyfish in more visually complex scenarios for reasonable
time lengths. The tracks ended because the vehicle is teth-
ered to the boat of the human operator, which is in turned
moored, and once the jellyfish reached beyond the length of
the tether it was no longer possible to continue. However, in
the case of the jellyfish tracks, once the initial bounding box
was specified, the entire track was fully autonomous.

Finally, we attempted tracks of many smaller organisms,
of which we show one demonstration of a track of a jack in
a small school of three in Fig. 11. In this track, three jacks
were swimming together and we commanded the vehicle to
track one. We were able to track at least one jack for several
minutes, though the human operator needed to intervene for
a few seconds several times in cases where the tracker or the
vehicle was unable to maintain the track because either the
tracker got confused and tracked a coral, or the vehicle itself
was physically slower.

6 Discussion

6.1 Tracker Evaluation

In Fig. 4, we see that the KeepTrack algorithm (Keep-
TrackFast is the same underlying algorithm, just slightly
different parameters to improve speed) the best perform-

ing algorithm over the entire dataset and, in Figs. 3 and
6, along most attributes by a fairly wide margin, having a
53.6 and 52.7 success overall and 66.7 and 66.6 precision
overall for KeepTrackFast and KeepTrack, respectively. The
next best performing is SuperDiMP, achieving 48.5 and 60.9
AUC and precision scores respectively. This makes sense
because KeepTrack is based on SuperDiMP, and is specifi-
cally designed to handle distracting objects and backgrounds,
which make up over 35% and 70% of the dataset. Surpris-
ingly, transformer-based networks (TrDiMP, TrSiam, and
TransT), which are mostly based on SuperDiMP, perform
marginally worse than SuperDiMP in most cases. The only
cases where these seem to exceed performance is in the mid-
water and active lighting results,where all trackers performed
exceptionally well, likely because the backgrounds are much
less challenging relative to the targets in our dataset. Also,
online discriminative style trackers tend to perform better
than Siamese-based ones.

In terms of the standardized attributes shown in Fig. 5,
the rankings are mostly stable, suggesting that some of these
attributes are either heavily correlated or that certain inno-
vations seem confusing across multiple of these dimensions,
making themstill difficult to analyse fully.However, it is clear
that low-resolution frames are still a significant concern, with
the best performing tracker only achieving 47.7 success rate.
These are exacerbated in many marine animals, such as sev-
eral fish species or in the case of darting octopuses, where
their bodies become extremely narrow and difficult to track
purely from appearance. We believe these situations can be
mitigated with a more probabilistic handling of search area,
which none of the current algorithms address. These can take
approaches from the multi-object tracking community, as in
DeepSORT (Wojke et al., 2017), where appearance uncer-
tainty and localization and motion modelling are both taken
into account for estimating the next location.

The underwater-specific attributes, in Fig. 6, however are
more insightful. In the midwater and active lighting scenar-
ios, which as previously noted are highly correlated in this
dataset (that could be mitigated by collecting shallow night-
time data), most trackers perform exceptionally well. This
suggests that it may be reasonable to deploy semi-supervised
trackers in deepermidwater environments that are actively lit,
especially if the animals tend to be solitary. It is also inter-
esting to note that the transformer-based architectures also
perform dramatically better under those conditions, perhaps
because of better appearance representations.

By contrast, complex environments such as coral reefs
and sea grass still pose exceptional challenges, as shown by
Fig. 6 in the seabed (SB), coral reef (CR), and seagrass (SG)
environments. The results are especially skewed downward
in the case of seagrass. Across these attributes, online dis-
criminators, especially KeepTrack and SuperDiMP, still are
the most accurate.
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Fig. 8 We spontaneously and mostly autonomously tracked a bar-
racuda at Joel’s Shoal, St. John, U.S. Virgin Islands, USA on Nov.
3rd, 2022, for roughly 10min using a semi-supervised visual tracker
on an AUV. Tracking was performed at roughly 7–9 fps at 720p resolu-
tion on-board a Nvidia Jetson Xavier using KeepTrackFast (Mayer et
al., 2021). Images are taken from the AUV perspective. The UTC time
is listed in the upper left of each image. The provided bounding box
is shown in the 1st frame, it is not well-centered because the operator
had to click-and-drag the box while on-board an oscillating boat, and

the rest are automatically generated during tracking and used to visual
servo the AUV. In the last frame, the barracuda is actually a few pixels
to the upper right of the predicted bounding box, which highlights in
extraordinary challenges of this environment, as even a human cannot
separate the barracuda from the background, even though it is mini-
mally occluded. The AUV loses the barracuda here and we ended the
track. For the full track video, please refer to supplementary video S1
(Color figure online)

In many cases, such as most of the fish species in CR
environments, or the squid in rocky terrain, as can be seen in
Fig. 3, we found that all trackers were likely to fail when the
animal was both in (A) specific orientations or body config-
urations (such as compressed body profiles in squid) and (B)
nearby complex backgrounds or similar objects. For exam-
ple, most fish in the dataset are extremely thin when viewed
from the back or top, in these perspectives they lack any dis-
tinguishing visual characteristics. The homogeneous colors
in these settings, due to color absorption, and similar textures
from the backgrounds, in the case of fish in reefs or squids
in rocky terrain, tend to cause all the trackers to fail. This
can be seen in the bluetang, angelfish, and squid examples in
Fig. 3.

One reason that the seagrass examples are difficult is that
we have several octopus sequences, as shown in the fifth row
of Fig. 3, that were showing some amount of camouflage.

Our experiments suggest that the grand challenge in
the domain of marine animal tracking problems corre-
sponds to tracking octopuses, both in fully-supervised or
semi-supervised tracking contexts, because of their extreme
adversarial nature to tracking. They have evolved stealth
behaviors and unequalled rapid adaptive camouflage. On a
typical forage, an octopus might change its camouflage more
than 170 time/h (Hanlon et al., 1999). Moreover, the octopus
can change its body shape dramatically with its 8 malleable
arms, and it can also change its 3-D skin texture to match fine
or course texture of adjacent corals, sponges, tunicates, algal
epiphytes, etc. so that its ability to blend in is exceptional,
even very experienced diving biologists are fooled. In our
dataset however, the human annotators are still able to pick
them out in the lower resolution dataset, so they present a
clear target for future innovations.

We believe onemajor explanation for the success of online
discriminative networks is to consider the problem from

123



1422 International Journal of Computer Vision (2023) 131:1406–1427

Fig. 9 Here we show the full
3D trajectory estimates of the
barracuda track from Fig. 8,
which swam roughly 100m out
and back. On top is the AUV
real-time estimate of its
trajectory, achieved via
dead-reckoning by integrating
DVL measurements, as it
follows the barracuda (which
required manual post-processing
to align it with the GPS map).
Finally, on the bottom, we show
the vehicle depths during
tracking, along with red
highlights indicating when the
KeepTrackFast algorithm was
unable to stay focussed on the
correct target and the operator
needed to briefly, manually
control the vehicle until
KeepTrackFast was able to
re-acquire the target. The
beginning section required
manual control due to the initial
training time of KeepTrackFast,
and intermittent areas when the
barracuda resembled the corals
underneath, similar to the last
frame in Fig. 8. Note that these
position estimates can serve as
proxies for animal positions and
velocities. Using stereo, we can
generate true animal position
and velocity estimates, but is out
of the scope of this paper (Color
figure online)

a perspective on long-term robustness vs. short-term accu-
racy. In the visual tracking problem, the best predictor of
the appearance of an object at frame t is its appearance at
t − 1. And so having a representation of this appearance
model increases short-term accuracy. However, because only
at time t = 0 do we have a ground truth label, this is the
most robust appearance model. This means that all decisions
made on later object appearances are based on weak labels
provided from the algorithm itself, this is prone to what is
called concept drift in the online learning community (Mit-
tal & Kashyap, 2015). All the online discriminative-based
trackers attempt to combat this issue by training not only
on the most recent appearance, but also a history of appear-
ances as well as augmentations of the initial image. However,
many of these approaches are not well-principled. This trade-
off is perhaps most easily seen in the shark track shown in
Fig. 3. Here, the Siamese-based networks are able to recover
because they are robust to concept drift, whereas most track-
ers end up learning the appearance of the AUV that partially
occludes the shark for a short time, even though the AUV
was not specified in the original object appearance.

Though our dataset is relatively small, we hope to con-
tinue to contribute to it withmore sequences in the future.We
believe it provides a necessary and sufficient first step towards
understanding performance of semi-supervised trackers in a
variety of conditions specific to underwater domains.We can
begin to distinguish between simpler and more difficult envi-
ronments, species, and behaviors, so that AUV practitioners
and the semi-supervised tracking community can begin to
take more educated directions in their use in the wild.

6.2 Challenges in Real-World Marine Animal
Tracking

Overall, the real-world tracking results shown in Figs. 8,
10, and 11 illustrate the exciting potential, but also some of
the remaining challenges, of using semi-supervised trackers
on vision-capable AUVs to perform longer-term marine ani-
mal tracking and monitoring, without the need for extensive
labelled datasets. To the authors’ knowledge, these demon-
strations are among the first attempts to track complexmarine
animals with an AUV, in a difficult underwater setting, using
only a visual semi-supervised tracker. There were no a-priori
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Fig. 10 We tracked 3 separate jellyfish at 2 different reefs in St. John,
USVI, USA. From top to bottom they were at Tektite, Booby Rock, and
Booby Rock for roughly 12, 7, and 25min respectively. Once the initial
bounding box was specified, the remainder of the tracks were com-
pletely autonomous. The tracks ended because the vehicle was tethered
and the jellyfish drifted beyond the tether range. The vehicle depth pro-

files are shown on the right, which can approximate the depth of the
jellyfish, and their initial bounding boxes and images are on the left,
which have been cropped for space. Videos of the jellyfish tracks are
available in the Supplementary materials S2–S4, respectively (Color
figure online)

training of the targets or tagging, and most of the tracking
was autonomous. The results from Figs. 9 and 10 especially
highlight the benefits of applying these techniques to gen-
erate high-resolution data about animal trajectories in both
novel environments and species, and even more so if stereo-
vision can be incorporated in the near-term. For future tracks,
it would be possible to generate reasonable 3D trajectories all
in real-time.With stereo,marine biologists can then use these
to estimate velocity and animal size, and in turn quantities
such as energetics.

However, many challenges still exist before these can be
used more reliably in other scenarios. We discuss some of
our findings here based on our tracks of other animals, such
as the jack in Fig. 11, and even in some cases for Fig. 8.
While in some instances, while the jack was alone and swim-
ming around the axis of the robot, as in Pane 1 in Fig. 11, the
tracker had no issues, though the robotwas sometimes unable
to rotate fast enough. In others, the tracker would either track
another jack, as in Pane 2 and 3, because of their very simi-
lar appearance. Finally, the tracker would occasionally latch
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Fig. 11 We autonomously track a type of jack that was swimming with
two others. KeepTrackFast oscillated between the three, even though it
is designed tominimize these confusions. This also caused the vehicle to
jerk between all three, and frequently lose track. The issue is especially
highlightedwhen the fish turn to face away from the camera, as in the 4th
frame. The thin profile of the fish and homogeneous colors from color

absorption makes the fish difficult to distinguish from the background
and surrounding corals. These situations triggerKeepTrackFast to oscil-
late even more between targets and occasionally background regions.
Refer to the Supplementary material S5 for the jack track video (Color
figure online)

onto coral reefs, as in Pane 4 of Fig. 11 or the last frame of
Fig. 8, when the fish were rotated such that they faced away
from the camera, their profile would become thin and resem-
ble much of the fan corals around them. In these cases, the
tracker would often, incorrectly, latch onto the corals.

In both the barracuda and jack tracks, we found many
problems could be summarized by the following limitations:

• Limitations of the tracker

– Initialization issues—importantly, as shown in the
manual control plot of Fig. 9, though also present
in the jack track as well, we often had to manu-
ally control the robot for the first several seconds
of the track. This is because KeepTrackFast (and all
the KeepTrack and DiMP-based trackers) have an
initial training phase that can last several seconds
on edge computing devices like the Jetson Xavier.
In these cases, it is impossible to track the ani-
mal, and for smaller fish which rotate quickly, we
often could not continue tracking after initialization.
Additionally, initially selecting the bounding box is
challenging. The human operator was using a mouse
on a non-stationary and small boat and also experi-
encing latency over the tether, the human operator
was unable to perfectly select the target while also
maintaining sight of the animal unless it was mostly
stationary to start. These issues are only experienced
through real-world testing.

– Track-time issues—many of these issues were high-
lighted previously and discovered through our analy-
sis on the VMAT dataset. Specifically, in cases where
the tracked animals rotated or compressed into thin
perspectives and were surrounded by either simi-
lar objects or complex backgrounds (such as other
fish or corals), the trackers were unable to distin-
guish between the other objects and the target, and
often failed in these cases. Extremely fast darting
maneuvers, associated with both immediate changes
in position and appearance, also tended to cause
the tracker to fail. We believe that some investiga-
tion into improving speed on edge devices and more
probabilistic localization techniques that rely less on
appearance in these cases, as proposed in Sect. 6.1,
would be helpful.

• Limitations of vehicle dynamics and other sensing—the
vehicle itself was often too slow to track some species of
highly dynamic organisms such as smaller fish or sharks.
In addition, many smaller fish spend most of their time
close to, or in crevices of, the reef, which the vehicle
is unable to approach for coral safety reasons. Many of
these issues require hardware changes to the vehicle, or
additional sensing techniques to better estimate distance
from sensitive boundaries, such as the coral reefs, in order
to better avoid them and navigate around them during
tracking.
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Our analysis of these algorithms on our VMAT dataset
also helped both select an appropriate algorithm in terms of
both accuracy and speed. It is important to note that Keep-
Track was not useable on our AUV because it ran at only
2–4 fps in our bench tests, which we believe is insufficient
for real-world autonomous tracking, compared to 7–9 fps of
KeepTrackFast.

7 Conclusion

Behavior of marine animals are inherently hard to study
due to lack of availability of datasets characterizing their
behavior in their natural environment. In this work we pro-
pose the use of a semi-supervised tracker on underwater
robots to rapidly collect large datasets with minimal prior
knowledge. Our contributions are on three fronts. First,
we introduced a marine animal tracking dataset with 33
video sequences captured by mobile camera systems while
following a marine animal. Second, we evaluate current
state-of-the-art semi-supervised tracking algorithmsover this
dataset using novel evaluation metrics, specific to the under-
water domain, which allow marine practitioners to better
distinguish application-specific tradeoffs and capabilities of
different trackers. Finally, we have, to the best of our knowl-
edge, demonstrated the first use of a semi-supervised tracker
onboard an AUV to track a wide variety of marine ani-
mals (barracuda, jellyfish, jacks,..) spontaneously, in visually
complex underwater environments. These demonstrations
provides encouraging evidence towards the use of these tech-
nologies for marine animal tracking.

8 Supplementary information

The full dataset is available at http://warp.whoi.edu/vmat/.
We also include the following supplemental videos for the
AUV tracks:

• S1 barracuda tracking video.
• S2 jellyfish tracking video, 2022-10-31 at Tektite.
• S3 jellyfish tracking video, 2022-10-31 at Booby Rock.
• S4 jellyfish tracking video, 2022-11-1 at Booby Rock.
• S5 jack tracking video.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01762-
5.

Acknowledgements Special thanks toAmyKukulya andRoger Stokey
at the Woods Hole Oceanographic Institution for the shark videos, the
Mesobot team (Yoerger et al. 2021) for the solmissus and larvacean
videos. Thanks to the WHOI WARPLab members Seth McCammon,

John San Soucie, Stewart Jamieson, Daniel Yang, and Jessica E. Todd,
Ethan Fahnestock for editing, and Cynthia Becker, Prajna Jandial,
Nadège Aoki, Nathan Formel, and Sierra Jarriel for species identifi-
cation and support in the USVI data collection efforts. This work is
supported in part by The Investment in Science Fund at WHOI, and
NSF NRI awards # 1734400, 2133029. Levi Cai was supported by the
NDSEG Fellowship. Also thanks to the NVIDIA Hardware Grant for a
GPU for running evaluations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Akkaynak, D., & Treibitz, T. (2019). Sea-thru: A method for removing
water from underwater images. In IEEE CVPR.

Bateson, M., & Martin, P. (2021). Measuring behaviour: An introduc-
tory guide.

Bhat, G., Danelljan, M., Van Gool, L., & Timofte, R. (2019). Learning
discriminative model prediction for tracking. In 2019 IEEE/CVF
international conference on computer vision (ICCV) (pp. 6181–
6190). IEEE. https://doi.org/10.1109/ICCV.2019.00628. https://
ieeexplore.ieee.org/document/9010649/ Accessed 19 April 2021.

Caelles, S., Pont-Tuset, J., Perazzi, F., Montes, A., Maninis, K.-K., &
Van Gool, L. (2019). The 2019 DAVIS challenge on VOS: Unsu-
pervised multi-object segmentation. arXiv:1905.00737. Accessed
23 March 2021.

Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014).
Return of the devil in the details: Delving deep into convolutional
nets. In British machine vision conference (BMVC). Accessed 29
April 2022.

Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., & Lu, H. (2021).
Transformer tracking. In 2021 IEEE/CVF conference on com-
puter vision and pattern recognition (CVPR) (pp. 8122–8131).
IEEE. https://doi.org/10.1109/CVPR46437.2021.00803. https://
ieeexplore.ieee.org/document/9578609/. Accessed 25 April 2022.

Danelljan, M., Bhat, G., Khan, F. S., & Felsberg, M. (2017). ECO:
Efficient convolution operators for tracking. arXiv:1611.09224.
Accessed 14 December 2020.

Danelljan, M., Bhat, G., Khan, F. S., & Felsberg, M. (2019). ATOM:
Accurate tracking by overlap maximization. arXiv:1811.07628.
Accessed 20 February 2021.

Danelljan, M., Gool, L. V., & Timofte, R. (2020). Probabilistic
regression for visual tracking. In 2020 IEEE/CVF conference
on computer vision and pattern recognition (CVPR) (pp. 7181–
7190). https://doi.org/10.1109/CVPR42600.2020.00721. ISSN:
2575-7075.

Danelljan, M., Hager, G., Khan, F. S., & Felsberg, M. (2015). Con-
volutional features for correlation filter based visual tracking. In
2015 IEEE international conference on computer vision workshop
(ICCVW) (pp. 621–629). IEEE. https://doi.org/10.1109/ICCVW.
2015.84. http://ieeexplore.ieee.org/document/7406433/ Accessed
2019-07-22

123

http://warp.whoi.edu/vmat/
https://doi.org/10.1007/s11263-023-01762-5
https://doi.org/10.1007/s11263-023-01762-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICCV.2019.00628
https://ieeexplore.ieee.org/document/9010649/
https://ieeexplore.ieee.org/document/9010649/
http://arxiv.org/abs/1905.00737
https://doi.org/10.1109/CVPR46437.2021.00803
https://ieeexplore.ieee.org/document/9578609/
https://ieeexplore.ieee.org/document/9578609/
http://arxiv.org/abs/1611.09224
http://arxiv.org/abs/1811.07628
https://doi.org/10.1109/CVPR42600.2020.00721
https://doi.org/10.1109/ICCVW.2015.84
https://doi.org/10.1109/ICCVW.2015.84
http://ieeexplore.ieee.org/


1426 International Journal of Computer Vision (2023) 131:1406–1427

Dawkins, M., Sherrill, L., Fieldhouse, K., Hoogs, A., Richards, B.,
Zhang, D., Prasad, L., Williams, K., Lauffenburger, N., & Wang,
G. (2017). An open-source platform for underwater image and
video analytics. In 2017 IEEEwinter conference on applications of
computer vision (WACV) (pp. 898–906). https://doi.org/10.1109/
WACV.2017.105

Fan, H., Bai, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Harshit,
Huang, M., Liu, J., Xu, Y., Liao, C., Yuan, L., & Ling, H. (2020).
LaSOT: A high-quality large-scale single object tracking bench-
mark. arXiv:2009.03465. Accessed 25 April 2022.

Galoogahi, H. K., Fagg, A., Huang, C., Ramanan, D., &
Lucey, S. (2017). Need for speed: A benchmark for higher
frame rate object tracking. In 2017 IEEE international
conference on computer vision (ICCV) (pp. 1134–1143).
IEEE. https://doi.org/10.1109/ICCV.2017.128. http://ieeexplore.
ieee.org/document/8237390/ Accessed 29 April 2022.

Girdhar, Y., McGuire, N., Cai, L., Jamieson, S., McCammon, S., Claus,
B., Soucie, J. E. S., Todd, J. E., & Mooney, T. A. (2023). CUREE:
A curious underwater robot for ecosystem exploration. In IEEE
international conference on robotics and automation (ICRA) [To
appear].

Hanlon, R. T., Forsythe, J.W., & Joneschild, D. E. (1999). Crypsis, con-
spicuousness, mimicry and polyphenism as antipredator defences
of foraging octopuses on indo-pacific coral reefs, with a method of
quantifying crypsis fromvideo tapes.Biological Journal of theLin-
nean Society, 66(1), 1–22. https://doi.org/10.1006/bijl.1998.0264.

Hanlon, R. T., &McManus, G. (2020). Flamboyant cuttlefish behavior:
Camouflage tactics and complex colorful reproductive behavior
assessed during field studies at Lembeh Strait, Indonesia. Jour-
nal of Experimental Marine Biology and Ecology, 529, 151397.
https://doi.org/10.1016/j.jembe.2020.151397.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In 2016 IEEE conference on
computer vision and pattern recognition (CVPR) (pp. 770–
778). https://doi.org/10.1109/CVPR.2016.90. http://ieeexplore.
ieee.org/document/7780459/. Accessed 29 April 2022.

Huang, L., Zhao, X., & Huang, K. (2021). GOT-10k: A large high-
diversity benchmark for generic object tracking in the wild. IEEE
Transactions on Pattern Analysis andMachine Intelligence, 43(5),
1562–1577. https://doi.org/10.1109/TPAMI.2019.2957464.

Katija,K.,Orenstein, E., Schlining,B., Lundsten, L.,Barnard,K., Sainz,
G., Boulais, O., Cromwell, M., Butler, E., Woodward, B., & Bell,
K. C. (2022). FathomNet: A global image database for enabling
artificial intelligence in the ocean. arXiv:2109.14646. Accessed 29
April 2022.

Katija, K., Roberts, P. L. D., Daniels, J., Lapides, A., Barnard, K., Risi,
M.,Ranaan,B.Y.,Woodward,B.G.,&Takahashi, J. (2021).Visual
tracking of deepwater animals using machine learning-controlled
robotic underwater vehicles. In IEEE WACV

Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R.,
Kamarainen, J.-K., Danelljan, M., Zajc, L. C., Lukezic, A.,
Drbohlav, O., He, L., Zhang, Y., Yan, S., Yang, J., Fernandez, G.,
Hauptmann, A., Memarmoghadam, A., Garcia-Martin, A., Robin-
son, A., Varfolomieiev, A., Gebrehiwot, A. H., Uzun, B., Yan, B.,
Li, B., Qian, C., Tsai, C.-Y., Micheloni, C., Wang, D., Wang, F.,
Xie, F., Lawin, F. J., Gustafsson, F., Foresti, G. L., Bhat, G., Chen,
G., Ling, H., Zhang, H., Cevikalp, H., Zhao, H., Bai, H., Kuchib-
hotla, H. C., Saribas, H., Fan, H., Ghanei-Yakhdan, H., Li, H.,
Peng, H., Lu, H., Li, H., Khaghani, J., Bescos, J., Li, J., Fu, J.,
Yu, J., Xu, J., Kittler, J., Yin, J., Lee, J., Yu, K., Liu, K., Yang, K.,
Dai, K., Cheng, L., Zhang, L., Wang, L., Wang, L., Van Gool, L.,
Bertinetto, L., Dunnhofer, M., Cheng, M., Dasari, M. M., Wang,
N., Wang, N., Zhang, P., Torr, P.H.S., Wang, Q., Timofte, R., Gor-
thi, R. K. S., Choi, S., Marvasti-Zadeh, S. M., Zhao, S., Kasaei, S.,
Qiu, S., Chen, S., Schön, T. B., Xu, T., Lu, W., Hu, W., Zhou, W.,
Qiu, X., Ke, X., Wu, X.-J., Zhang, X., Yang, X., Zhu, X., Jiang, Y.,

Wang,Y., Chen,Y., Ye,Y., Li, Y., Yao,Y., Lee,Y., Gu,Y.,Wang, Z.,
Tang, Z., Feng, Z.-H.,Mai, Z., Zhang, Z.,Wu, Z., &Ma, Z. (2020).
The eighth visual object tracking VOT2020 challenge results. In
A. Bartoli, & A. Fusiello (Eds.) Computer vision—ECCV 2020
workshops (pp. 547–601). Springer. https://doi.org/10.1007/978-
3-030-68238-5_39

Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F.,
Cehovin, L., et al. (2013). The visual object tracking VOT2013
challenge results. In IEEE international conference on computer
vision workshops (pp. 98–111). https://doi.org/10.1109/ICCVW.
2013.20.

Kukulya, A. L., Stokey, R., Fiester, C., Padilla, E. M. H., & Skomal, G.
(2016). Multi-vehicle autonomous tracking and filming of white
sharks carcharodon carcharias. In 2016 IEEE/OES autonomous
underwater vehicles (AUV) (pp. 423–430). https://doi.org/10.
1109/AUV.2016.7778707. ISSN: 2377-6536.

Kukulya, A. L., Stokey, R., Littlefield, R., Jaffre, F., Padilla, E. M.
H., & Skomal, G. (2015). 3d real-time tracking, following and
imaging of white sharks with an autonomous underwater vehi-
cle. InOCEANS 2015–Genova (pp. 1–6). https://doi.org/10.1109/
OCEANS-Genova.2015.7271546.

Labelbox: The leading training data platform for data labeling. https://
labelbox.com/. Accessed 29 April 2022.

Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., & Yan, J. (2019).
SiamRPN++: Evolution of siamese visual tracking with very deep
networks. In 2019 IEEE/CVF conference on computer vision
and pattern recognition (CVPR) (pp. 4277–4286). IEEE. https://
doi.org/10.1109/CVPR.2019.00441. https://ieeexplore.ieee.org/
document/8954116/. Accessed 22 March 2021.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal
loss for dense object detection. In IEEE ICCV.

Mayer, C., Danelljan, M., Pani Paudel, D., & Van Gool, L. (2021).
Learning target candidate association to keep track of what
not to track. In 2021 IEEE/CVF international conference on
computer vision (ICCV) (pp. 13424–13434). IEEE. https://
doi.org/10.1109/ICCV48922.2021.01319. https://ieeexplore.ieee.
org/document/9710884/. Accessed 29 April 2022.

Mittal, V., & Kashyap, I. (2015). Online methods of learning in
occurrence of concept drift. International Journal of Computer
Applications, 117(13), 18–22.

Mooney, T. A. (2020). Biologging ecology and oceanography: Inte-
grative approaches to animal-bourne observations in a changing
ocean. In Ocean sciences meeting 2020

Mueller,M., Smith,N.,&Ghanem,B. (2016).Abenchmark and simula-
tor for UAV tracking. In B. Leibe, J. Matas, N. Sebe, &M.Welling
(Eds.), Computer vision–ECCV 2016. Lecture notes in computer
science (pp. 445–461). Springer. https://doi.org/10.1007/978-3-
319-46448-0_27.

Müller, M., Bibi, A., Giancola, S., Alsubaihi, S., & Ghanem, B. (2018).
TrackingNet: A large-scale dataset and benchmark for object
tracking in the wild. In European conference on computer vision
(ECCV) (vol. 11205, pp. 310–327). https://doi.org/10.1007/978-
3-030-01246-5_19. Accessed 23 April 2021.

Nam, H., & Han, B. (2016). Learning multi-domain convolutional neu-
ral networks for visual tracking. In 2016 IEEE conference on
computer vision and pattern recognition (CVPR) (pp. 4293–4302).
IEEE. https://doi.org/10.1109/CVPR.2016.465. http://ieeexplore.
ieee.org/document/7780834/. Accessed 29 April 2022.

OzFish Dataset—Machine learning dataset for baited remote under-
water video stations. https://apps.aims.gov.au/metadata/view/
38c829d4-6b6d-44a1-9476-f9b0955ce0b8. Accessed 29 April
2022.

Priede, I. G., Drazen, J. C., Bailey, D. M., Kuhnz, L. A., & Fabian, D.
(2020). Abyssal demersal fishes recorded at stationm (34 50n, 123
00w, 4100 m depth) in the northeast pacific ocean: An annotated
check list and synthesis. Deep Sea Research Part II: Topical Stud-

123

https://doi.org/10.1109/WACV.2017.105
https://doi.org/10.1109/WACV.2017.105
http://arxiv.org/abs/2009.03465
https://doi.org/10.1109/ICCV.2017.128
http://ieeexplore.ieee.org/document/8237390/
http://ieeexplore.ieee.org/document/8237390/
https://doi.org/10.1006/bijl.1998.0264
https://doi.org/10.1016/j.jembe.2020.151397
https://doi.org/10.1109/CVPR.2016.90
http://ieeexplore.ieee.org/document/7780459/
http://ieeexplore.ieee.org/document/7780459/
https://doi.org/10.1109/TPAMI.2019.2957464
http://arxiv.org/abs/2109.14646
https://doi.org/10.1007/978-3-030-68238-5_39
https://doi.org/10.1007/978-3-030-68238-5_39
https://doi.org/10.1109/ICCVW.2013.20
https://doi.org/10.1109/ICCVW.2013.20
https://doi.org/10.1109/AUV.2016.7778707
https://doi.org/10.1109/AUV.2016.7778707
https://doi.org/10.1109/OCEANS-Genova.2015.7271546
https://doi.org/10.1109/OCEANS-Genova.2015.7271546
https://labelbox.com/
https://labelbox.com/
https://doi.org/10.1109/CVPR.2019.00441
https://doi.org/10.1109/CVPR.2019.00441
https://ieeexplore.ieee.org/document/8954116/
https://ieeexplore.ieee.org/document/8954116/
https://doi.org/10.1109/ICCV48922.2021.01319
https://doi.org/10.1109/ICCV48922.2021.01319
https://ieeexplore.ieee.org/document/9710884/
https://ieeexplore.ieee.org/document/9710884/
https://doi.org/10.1007/978-3-319-46448-0_27
https://doi.org/10.1007/978-3-319-46448-0_27
https://doi.org/10.1007/978-3-030-01246-5_19
https://doi.org/10.1007/978-3-030-01246-5_19
https://doi.org/10.1109/CVPR.2016.465
http://ieeexplore.ieee.org/document/7780834/
http://ieeexplore.ieee.org/document/7780834/
https://apps.aims.gov.au/metadata/view/38c829d4-6b6d-44a1-9476-f9b0955ce0b8
https://apps.aims.gov.au/metadata/view/38c829d4-6b6d-44a1-9476-f9b0955ce0b8


International Journal of Computer Vision (2023) 131:1406–1427 1427

ies in Oceanography, 173, 104648. https://doi.org/10.1016/j.dsr2.
2019.104648.

ROS: Home. https://www.ros.org/. Accessed 29 April 2022.
Saleh, A., Laradji, I. H., Konovalov, D. A., Bradley, M., Vazquez, D., &

Sheaves,M. (2020).A realistic fish-habitat dataset to evaluate algo-
rithms for underwater visual analysis. Nature Scientific Reports,
10(1), 14671. https://doi.org/10.1038/s41598-020-71639-x.

Schlining, B. M., & Stout, N. J. (2006). MBARI’s video annotation and
reference system. In OCEANS 2006 (pp. 1–5). https://doi.org/10.
1109/OCEANS.2006.306879. ISSN: 0197-7385

Tao, R., Gavves, E., & Smeulders, A. W. M. (2016). Siamese instance
search for tracking. arXiv:1605.05863. Accessed 29 April 2022.

Valmadre, J., Bertinetto, L., Henriques, J. F., Tao, R., Vedaldi, A.,
Smeulders, A., Torr, P., & Gavves, E. (2018). Long-term track-
ing in the wild: A benchmark. in IEEE ECCV Accessed 22 March
2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you
need. In Advances in neural information processing systems (vol.
30). Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
Accessed 29 April 2022.

Wang, N., Zhou, W., Wang, J., & Li, H. (2021). Transformer meets
tracker: Exploiting temporal context for robust visual tracking. In
2021 IEEE/CVF conference on computer vision and pattern recog-
nition (CVPR) (pp. 1571–1580). IEEE. https://doi.org/10.1109/
CVPR46437.2021.00162. https://ieeexplore.ieee.org/document/
9578157/ Accessed 25 April 2022.

Wang, Q., Zhang, L., Bertinetto, L., Hu,W., & Torr, P. H. S. (2018). Fast
online object tracking and segmentation: A unifying approach. In
IEEE CVPR. Accessed 22 March 2021.

Wang, Y., Yu, X., An, D., & Wei, Y. (2021). Underwater image
enhancement and marine snow removal for fishery based on inte-
grated dual-channel neural network.Computers and Electronics in
Agriculture, 186, 106182. https://doi.org/10.1016/j.compag.2021.
106182.

Williams, S. B., Pizarro, O., How,M., Mercer, D., Powell, G., Marshall,
J., & Hanlon, R. (2009). Surveying noctural cuttlefish camouflage
behaviour using an AUV. pp. 214–219. https://doi.org/10.1109/
ROBOT.2009.5152868. ISSN: 1050-4729.

Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and real-
time tracking with a deep association metric. arXiv:1703.07402.
Accessed 09 January 2021.

Wu, Y., Lim, J., & Yang, M.-H. (2015). Object tracking benchmark.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 37(9), 1834–1848. https://doi.org/10.1109/TPAMI.2014.
2388226.

Xu, N., Yang, L., Fan, Y., Yue, D., Liang, Y., Yang, J., & Huang, T.
(2018). YouTube-VOS: A large-scale video object segmentation
benchmark. arXiv:1809.03327. Accessed 29 April 2022.

Yoerger,D.R.,Govindarajan,A. F.,Howland, J.C., Llopiz, J.K.,Wiebe,
P. H., Curran, M., Fujii, J., Gomez-Ibanez, D., Katija, K., Robison,
B. H., Hobson, B. W., Risi, M., & Rock, S. M. (2021). A hybrid
underwater robot for multidisciplinary investigation of the ocean
twilight zone. InAAAS science robotics. American Association for
the Advancement of Science. https://doi.org/10.1126/scirobotics.
abe1901

Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., & Hu, W. (2018).
Distractor-aware siamese networks for visual object tracking.
arXiv:1808.06048. Accessed 15 March 2021.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.dsr2.2019.104648
https://doi.org/10.1016/j.dsr2.2019.104648
https://www.ros.org/
https://doi.org/10.1038/s41598-020-71639-x
https://doi.org/10.1109/OCEANS.2006.306879
https://doi.org/10.1109/OCEANS.2006.306879
http://arxiv.org/abs/1605.05863
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/CVPR46437.2021.00162
https://doi.org/10.1109/CVPR46437.2021.00162
https://ieeexplore.ieee.org/document/9578157/
https://ieeexplore.ieee.org/document/9578157/
https://doi.org/10.1016/j.compag.2021.106182
https://doi.org/10.1016/j.compag.2021.106182
https://doi.org/10.1109/ROBOT.2009.5152868
https://doi.org/10.1109/ROBOT.2009.5152868
http://arxiv.org/abs/1703.07402
https://doi.org/10.1109/TPAMI.2014.2388226
https://doi.org/10.1109/TPAMI.2014.2388226
http://arxiv.org/abs/1809.03327
https://doi.org/10.1126/scirobotics.abe1901
https://doi.org/10.1126/scirobotics.abe1901
http://arxiv.org/abs/1808.06048

	Semi-supervised Visual Tracking of Marine Animals Using Autonomous Underwater Vehicles
	Abstract
	1 Introduction
	1.1 Visual Tracking of Marine Animals
	1.2 Semi-supervised Trackers
	1.3 Challenges Unique to the Underwater Domain

	2 Related Work
	2.1 Autonomous Vision-Based Marine Animal Tracking
	2.2 Underwater Visual Datasets for Marine Animal Tracking
	2.3 Deep Learning Approaches for Semi-supervised Tracking
	2.4 Generic Benchmarks for Semi-supervised Tracking

	3 The Visual Marine Animal Tracking Dataset
	3.1 Design Principles
	3.2 Data Collection, Processing, and Annotation
	3.3 Dataset Attributes and Statistics for Evaluation

	4 Evaluation of State-of-the-Art Semi-supervised Trackers
	4.1 Tracker Selection
	4.2 Results of Evaluation and Metrics

	5 Real-World Experiments: Tracking in the Wild Using an AUV
	5.1 System Overview
	5.2 Real-World Deployment Details
	5.3 Results of Demonstrations

	6 Discussion
	6.1 Tracker Evaluation
	6.2 Challenges in Real-World Marine Animal Tracking

	7 Conclusion
	8 Supplementary information
	Acknowledgements
	References




