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Abstract
Contemporary HPC hardware typically provides several levels of parallelism, e.g. 
multiple nodes, each having multiple cores (possibly with vectorization) and accel-
erators. Efficiently programming such systems usually requires skills in combining 
several low-level frameworks such as MPI, OpenMP, and CUDA. This overburdens 
programmers without substantial parallel programming skills. One way to overcome 
this problem and to abstract from details of parallel programming is to use algo-
rithmic skeletons. In the present paper, we evaluate the multi-node, multi-CPU and 
multi-GPU implementation of the most essential skeletons Map, Reduce, and Zip. 
Our main contribution is a discussion of the efficiency of using multiple paralleliza-
tion levels and the consideration of which fine-tune settings should be offered to the 
user.

Keywords  Parallel programming · Skeleton programming · Heterogeneous 
computing environments · High-level frameworks · Usability

1  Introduction

The field of High Performance Computing (HPC) is growing. Typical HPC hard-
ware offers multiple computing nodes, central processing units (CPUs) and graph-
ics processing units (GPUs) to speed up computations. Programmers have to deal 
with multiple low-level frameworks to exploit those levels of hardware where exper-
tise for the single frameworks and the combination of those frameworks is required. 
Examples for those frameworks are Message Passing Interface (MPI) [1], OpenMP 
[2], and CUDA [3].
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Constructing a program with those frameworks is time-consuming and error 
prone. Even if a functioning program was constructed, the lack of knowledge leads 
to poor design decisions such as not using specific memory spaces, a bad distribu-
tion of workload to computational units, or choosing an inappropriate number of 
threads. Consequently, most programmers have no other option than to rely on high-
level parallel programming approaches or to require excessive computation time. 
Most high-level approaches have multiple benefits such as portable code for differ-
ent hardware architectures and requiring less maintenance for the end-user as the 
framework is updated.

Cole introduced algorithmic skeletons as one of the major high-level approaches 
to abstract from low-level details [4]. Algorithmic skeletons enclose reoccurring 
parallel and distributed computing patterns, such as Map and Reduce. This concept 
is wide-spread and beside others implemented as libraries [5–7], domain-specific 
language (DSLs) [8], and general frameworks [9, 10]. These approaches rarely sup-
port the combination of all levels of parallel hardware simultaneously, namely multi-
ple nodes with multiple CPUs (possibly with vectorization) and accelerators.

In the present paper, we will first discuss related high-level frameworks contribut-
ing to the parallelization on multiple hard-ware levels in Sect. 2. Section 3 describes 
the design of our chosen high-level approach, the Muenster Skeleton Library 
(Muesli), while Sect. 4 presents the implementation of some added features, in par-
ticular distributed cubes. The run-times of exemplary programs are shown and dis-
cussed in Sect. 5. Finally in Sect. 6, we conclude and point out future work.

2 � Related Work

Closest to our work is the skeleton framework SkePU3. In combination with StarPU, 
it works on heterogeneous clusters. However, it does not (yet) support the combined 
use of all possible levels of parallelism. Either the program is executed on one node 
with multiple cores and GPUs [11] or the programs are executed on multiple nodes 
with single backends (either GPU (OpenCL) or CPU (OpenMP)) [9]. SkePU sup-
ports one, two, three, and four-dimensional data structures. Other skeleton frame-
works which are in continuous development also do not consider all three layers of 
parallelization (e.g. FastFlow [10], SkelCL [12], Musket [13]). Hybrid execution of 
programs on CPUs and accelerators has been the topic in multiple approaches such 
as SkePU [11], Marrow [14] and Qilin [15]. SkePU and Marrow distribute the load 
statically between the CPU threads and the GPUs, while Qilin dynamically distrib-
utes the working packages. Findings regarding the optimal partitioning of work and 
data are often hardware and problem-dependent and rarely comparable. Noteworthy, 
skeletal programming is also used for commercial products such as Intel TBB for 
multicore CPU parallelism.

In the present paper, we will discuss the distribution of data and computations 
on multiple nodes, CPUs and GPUs. Our goal is to provide a starting point to auto-
matically distribute workload between different computational units, relieving the 
programmer from estimating suitable partition ratios. To the best of our knowl-
edge, other approaches either distribute the workload dynamically, which produces 
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communication overhead, or leave the choice to the programmer, who might not 
have the expertise to decide on a reasonable split.

3 � The Muenster Skeleton Library Muesli

Originally, skeletal parallel programming was mainly implemented in functional 
languages since it derives from functional programming [4]. Today, the majority 
of skeleton frameworks are based on C/C++ [e.g. 7, 9, 10, 16], since the language 
is known for good performance and interoperability with low-level parallel frame-
works such as CUDA, OpenMP, and MPI. Although Python has become popular in 
many natural science applications, as packages can be easily written and integrated, 
this does not apply to calculation intense applications as the language entails a major 
slowdown. Therefore, especially in the HPC context, C/C++ is still the first choice.

The C++ library used for this work is called Muesli [6]. Muesli provides task- 
and data-parallel skeletons such as Fold, multiple versions of Map, Gather, and mul-
tiple versions of Zip. These operations can be used to write programs for clusters of 
multiple nodes with multicore processors and GPUs. Internally, it is based on MPI, 
OpenMP, and CUDA. Muesli relieves the programmer from tasks which require 
expertise in parallel programming, such as the number of threads started and copy-
ing data to the correct memory spaces and helps to avoid common errors in paral-
lel programming such as race conditions when accessing data structures. Although 
the additional abstraction causes some overhead, it does not increase the execution 
time significantly. In contrast to previous versions, Muesli now supports not only 
distributed arrays (DA) and matrices (DM) but also distributed cubes (DC) as data 
structures. Especially in the scientific context, e.g. in computational fluid dynamics, 
cubes are essential to model 3D objects. A distinctive feature of Muesli is that for 
Map and Zip, there are in-place variants and variants where the index is used for 
calculations. Additionally, the MapStencil skeleton allows to update each matrix ele-
ment depending on its neighbors.

Listing 1 shows a simple program for calculating the scalar product of the dis-
tributed arrays a and b (in a slightly simplified syntax). Firstly, a distributed array is 
created in line 6 of Listing ??. A skeleton typically gets a user function as argument, 
which can be either a C++ function or a C++ functor. We enable currying, i.e. the 
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arguments of a user function can be supplied one by one rather than all together. 
For instance, the MapIndex skeleton in line 7 of Listing 1 automatically adds the 
considered array element and its index as additional parameters to the sum functor.

4 � Data Distribution and Data structures in Heterogeneous 
Computing Environments

Previous work on Muesli discussing stencil computations already provided the foun-
dation for distributing matrices between computational nodes. This approach is now 
also used for Map, Zip, Fold and variants of them. This section introduces the data 
distribution mechanism and the metrics which are used to determine the workload 
allocated to the computational nodes.

4.1 � Distributed Cubes

The added data structure cube is similarly designed to previous data structures in 
Muesli which makes the syntax easy for programmers. For constructing a distrib-
uted cube, at least three arguments have to be passed to define the cube’s dimen-
sions. Optionally, a default value can be passed to be filled into all elements of the 
cube. Listing 2 creates two distributed cubes a and b, filled with the default values 0 
and 1, respectively. The mapIndexInPlace skeleton in line 11 adds to each ele-
ment its row-index, column-index, and its index of the third dimension. In line 12, 
each value of b is added to the corresponding value of a.

4.2 � Segmentation of Data Structures

A simplified version of the approach chosen for the mapStencil skeleton applied to a 
matrix can be seen in Fig. 1. Each node is responsible for multiple rows of the data 
structure, and within each node, the data structure is again split between the avail-
able CPUs and GPUs in a row-wise manner.
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In the context of stencil calculations, it was reasonable to distribute complete 
rows or rectangles of data to minimize the required data transfers for communicating 
border values. Therefore, always complete rows were distributed. For skeletons such 
as Map and Zip, where the calculation does not depend on neighbor values, it is not 
necessary to distribute complete rows, as incomplete rows do not degrade the execu-
tion time. Data transfers are rarely needed. Therefore, it is assumed that distributing 
complete rows is less important than equally splitting the workload. Figures 2 and 3 
demonstrate how incomplete rows are distributed and how the concept is transferred 
to a cube. This presentation also portions the amount of work (elements calculated) 
unequally for the two GPUs. Prospectively, Muesli automatically calculates suitable 
workload splits to relieve the programmer from the fine-tuning the splitting work.

4.3 � Work‑Load Partitioning

The current implementation uses the number of cores of the used GPU to allocate 
more elements to GPUs, which can start more threads concurrently. This relieves 
the user from some low-level details for exploiting the available hardware. More 

Fig. 1   Data distribution

Fig. 2   Intra-node distribution using multiple accelerators

Fig. 3   Intra-node distribution 
of a Cube
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precisely, CUDA provides DeviceProperties which, amongst others, state the 
number of multiprocessors available. To calculate the number of cores the function 
_ConvertSMVer2Cores(props.major, props.minor) * props.
multiProcessorCount; has to be used as the number of multiprocessors is 
dependent on the version of the GPU. However, a good approximation of the maxi-
mum possible parallelism can be calculated with this reference number. In the 
future, this number might also be dependent on the version of the GPU to prefer 
newer GPUs. Besides splitting the workload between multiple GPUs the fraction 
which is calculated by the CPU has to be automatically chosen by the library. The 
experimental results section evaluates which partition is reasonable for different 
skeletons, determining good default values for different calculation patterns.

5 � Experimental Results

We have tested varying distribution possibilities with the distributed cubes for the 
skeletons Map, MapInPlace, MapIndex, MapIndexInPlace, Fold, Zip, ZipIndex, 
ZipInPlace and ZipIndexInPlace. The distributions include multi-node multi-GPU 
set-ups and different fractions of calculations which are assigned to the CPU. The 
run-times of all experiments are the result of calling skeletons multiple times. For 
the experiments, the HPC machine Palma II1 and, for comparison, an ordinary 
8-core PC with two different GPUs were used  (Table 1). With Palma, we used the 
GeForce RTX 2080 Ti GPUs partition equipped with 2 nodes each with 4 GPUs 
and a Zen3 (EPYC 7513) CPU. Each node has 24 CPU cores. To provide generaliz-
able results, each skeleton was tested on a stand-alone basis. For this purpose, we 
used multiple sizes and CPU-fractions. For running the sequential version on the 
HPC, a single Broadwell (E5-2683 v4) CPU was used. We let each skeleton run 25 
times (without data transfers between them) to produce meaningful run-times for the 
calculations. The PC was used to have a comparison for the discussion of a suitable 
CPU-fraction. GPUs with fewer streaming multiprocessors can start fewer threads 
concurrently, making the use of the CPU more reasonable. The PC is equipped with 
one Quadro K620, one GeForce GTX 750 Ti, and an eight core Intel(R) Core(TM) 

Table 1   Overview of used Hardware

Type Number 
Nodes

Per Node

GPU-type GPUs CPU-type CPUs

Local 1 Quadro K620 1 Intel(R) Core(TM) 1
GeForce GTX 750 Ti 1 i7-4790 CPU 8 cores

Cluster 2 GeForce RTX 2080 Ti 4 Zen3(EPYC 7513) 1
24 cores

1  https://confluence.uni-muenster.de/display/HPC/GPU+Nodes
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i7-4790 CPU with 3.60GHz. The sequential version only used one of the available 
cores and no GPU.

5.1 � CPU Usage on the PC

Allocating a fraction of the work to the CPU did not speed up the Map Stencil 
skeleton as Map Stencil has communication overhead for transferring the padding 
between different computational units after each skeleton call. Hence it is reason-
able to test CPU-fractions for skeletons which require less communication. Map and 
Zip are suitable examples as calculations only depend on the current element. Fig-
ure 4 displays some results of running Map and Zip on the PC. As can be seen with 
increasing data size, all skeletons are optimal at a CPU-fraction of 2%. CPU-frac-
tions greater than 16% are not displayed as their run-time is increasing as expected. 
Interestingly, at a data size of 503 , all run-times are nearly equal and, from that point 
on, show clearly a difference. In Table 2 exemplary speedups for the mixed usage 
of the CPUs and the GPU are listed. Our results aim to automatically identify those 
changing points for the end-user to adjust the generated code to the system. In this 
context, it is especially noteworthy that eight cores available on the PC provide 
some significant computation power. Still, the fraction allocated to the CPU is small. 
Hence hardware with less cores should, by default, not use the CPU for Map and 
Zip.

In contrast to Map and Zip, creating a new data structure and the Fold skele-
ton are less calculation intense. Hence it was expected that CPU variants would be 
faster. Figure 5 displays both. Creating a data structure does not require a lot of time. 
It can be seen that for smaller sizes, the sequential and CPU only version are faster 
as no GPU memory needs to be allocated. However, for growing data sizes, they are 
similar. All CPU and GPU mixed variants show no significant difference in their 

Fig. 4   Run-times (in s) for different CPU-fractions calculated by the CPU for Map- and Zip variants on 
the PC
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run-times. As they are finished in milliseconds, this aspect has little influence on the 
overall run-time of a larger application. In contrast, the Fold skeleton requires a lot 
of time (around 12–17 s for parallel programs). In contrast to the previous skeletons, 
Fold performs best for 20 % CPU-fraction and achieves with this setting a speedup 
of 1.2 compared to the GPU only version for 803 elements.

5.2 � CPU Usage on HPC Machine

In contrast to the PC, Palma has relatively strong GPUs. A GeForce RTX 2080 Ti 
can start up to 69,632 threads in parallel, while the aforementioned GPUs can start 
6,144 and 10,240 threads in parallel, respectively. Hence, using the CPU is expected 
to be less beneficial. In contrast to the PC, skeletons were called up to 10,000 times 
as otherwise the run-time would have been too short. Figure 6 depicts the run-times 
for the MapIndex, ZipIndex, MapIndexInPlace, and ZipIndexInPlace skeleton. 
Two major observations can be made. Firstly, for InPlace variants, no speedup is 
achieved when using the CPU. This underlines that with extremely powerful GPUs 
the CPU should not be used for calculations. Secondly, non-InPlace variants show a 
rather mixed behaviour. No CPU-fraction is clearly winning, but the winner changes 
almost randomly with the cube size and the differences are small.

Table 2   Run-times (in s) for the sequential, the OpenMP only version, the GPU only version, and for the 
optimal mix of CPU and GPU for MapInPlace on the PC. The column CPU % shows which CPU frac-
tion was used in the optimal mix. The following columns show speedups of the optimal mix compared to 
the sequential version, the OpenMP only version, and the GPU only version

size ( ̂3) Run-time CPU % of 
Opt. Mix

Speedup

Seq. OpenMP GPU Opt. Mix Seq. OpenMP GPU

50 13.09 7.47 1.09 0.94 0.12 13.98 7.98 1.16
60 22.60 12.87 1.64 0.75 0.04 30.12 17.15 2.19
70 35.88 20.38 2.47 0.83 0.04 43.42 24.66 2.99
80 53.65 30.71 3.44 0.76 0.02 70.14 40.15 4.50

Fig. 5   Run-times (in s) for different CPU-fractions calculated by the CPU
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In contrast to the previous experiments, the size of the cube was increased to 
make use of all threads which can be started (max. 2903=24,389,000 elements). 
Non-InPlace skeletons require to create a new data structure where the results 
are stored. As the skeletons beside using one or two data structures use the same 
user-function, the effect must be produced by creating and writing to a different 
data structure. The effect of having longer run-times for non-InPlace skeletons 
could also be observed for the PC which required double the amount of time 
compared to InPlace variants.

For the Fold skeleton the ideal CPU fraction is hard to determine. Figure 7 
shows that all GPU programs perform only as good as the OpenMP program. 
Conclusively outsourcing calculation to the CPU produces similar run-times. 
However, allocating 40–50% of the calculation to the CPU is the best fit in most 
cases.

Fig. 6   Run-times (in s) for different CPU-fractions calculated by the CPU for Map- and Zip variants on 
the HPC Palma

Fig. 7   Run-times (in s) for different CPU-fractions calculated by the CPU for the Fold skeleton on the 
HPC Palma
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5.3 � Multi‑Node and Multi‑GPU on the PC

As the PC has just eight cores and only two GPUs, only a moderate speedup is 
possible by adding more nodes. We have measured the performance of one MPI 
process with one GPU, one MPI process with two GPUs, and two MPI processes 
with one GPU each (Figs.  8, 9). For the figure, the optimal CPU fraction has 
been taken, which varied between 0.02 and 0.04 %. Minor run-time decreases 
are caused by data sizes closer to a multiple of the maximum number of threads 
that can run in parallel. In this case, fewer threads are idle. Again at the break-
ing point of 503 elements, it is beneficial to use multiple GPUs or multiple nodes. 
Using two MPI processes with one GPU each is better than using two GPUs with 
one process. Again it can be seen that non-InPlace skeletons require more time 
caused by the additional creation of a data structure. It can be seen that in specific 
hardware settings, using the CPU (in addition to the GPU) can speed up the pro-
gram (Table 3). This is especially relevant for Map and Zip skeletons as they do 
not require communication between CPU and GPU in contrast to the Fold skel-
eton and the creation of data structures. It can also be seen that for strong GPUs, 
it is often more efficient to let the GPU do all calculations.

Fig. 8   Run-times (in s) for multiple nodes and GPUs for Map- and Zip variants on the PC

Table 3   Run-times (in s) and speedups on multiple nodes and GPUs for ZipInPlace on the PC

size ( ̂3) 1 Node 2 Nodes

Seq. OpenMP 1 GPU 2 GPUs 2 GPUs Optimal Speedup

45 9.24 5.50 0.11 0.12 0.10 0.10 93.94
55 16.88 10.02 0.63 0.36 0.33 0.33 51.89
65 27.96 16.55 0.67 0.67 0.34 0.34 82.75



182	 International Journal of Parallel Programming (2023) 51:172–185

1 3

For the Fold skeleton, only a minor speedup could be achieved on the PC. At 
253 elements, the multi-node and multi-GPU variants become faster than the single 
GPU variant. However, both variants are only slightly faster than the single GPU 
program. Creating distributed cubes is fastest on one GPU. Multi-node and multi 
GPU programs have the disadvantage of requiring multiple calls to allocate mem-
ory, which creates some overhead.

5.4 � Multi‑Node and Multi‑GPU on an HPC Machine

On Palma, setups with up to four GPUs per node can be tested. Although initializing 
additional GPUs produces overhead, the calculations can be distributed and more 
computational power can be used. Results for different skeletons can be seen in 
Figs. 10 and 11. For non-InPlace variants, there is nearly no visible speedup between 
the different GPU versions. The creation of new data structures is dependent on the 
CPU. Hence using multiple GPUs on one node does not speed up the run-time for 
skeletons which require the creation of new data structures. In contrast for InPlace 
skeletons the four GPU variant shows a significant advantage compared to the one 

Fig. 9   Run-times (in s) for multiple nodes and GPUs for Map- and Zip variants on the PC

Fig. 10   Run-times (in s) for multiple GPUs for Map- and Zip variants on the HPC Palma
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GPU variant. However, we cannot understand why the two GPU variant is not faster 
than the variant using one GPU. Although calling a skeleton produces some over-
head, this should not outweigh the calculation time. Therefore, more investigation in 
this area is required.

Interestingly, for the Fold skeleton the single GPU program and the four GPU pro-
gram have approximately the same run-time. This finding can be used for a default 
default implementation of Fold only on one GPU with the best found CPU-fraction.

6 � Conclusions and Future Work

We have shown that in specific hardware settings and for selected skeletons, using 
the CPU in addition to the GPUs can speed up the program. This is especially rele-
vant for Map and Zip skeletons as they do not require communication between CPU 
and GPU in contrast to the Fold skeleton and the creation of data structures. We 
have also shown that for strong GPUs, it is often more efficient to let the GPUs do 
all calculations.

As future work, we plan to use our observations for automatically choosing a 
suitable data distribution. This could facilitate the usage of Muesli for inexperienced 
programmers. There is however still some way to go, before we can reach this goal. 
As could be seen, different hardware requires a different distribution of data and cal-
culations. Therefore, we aim to fine-tune Muesli to the specific hardware. In addition 
to making use of hardware details which are available at run-time, a precompiler 
could care about the distribution of data and work, and might integrate regular data-
structures. SkePU is using a precompiler, and the authors mentioned the usefulness 
of a static code analysis by the precompiler to autotune a program [11]. However, 
this has not been fully implemented yet to the best of our knowledge. The autotuner 
would have to take the complexity of the user functions into account.

Fig. 11   Run-times (in s) for multiple GPUs for the Fold skeleton on the HPC Palma
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