
Vol.:(0123456789)

Swarm Intelligence (2023) 17:27–62
https://doi.org/10.1007/s11721-022-00215-y

1 3

A field‑based computing approach to sensing‑driven
clustering in robot swarms

Gianluca Aguzzi1 · Giorgio Audrito2 · Roberto Casadei1 · Ferruccio Damiani2 ·
Gianluca Torta2 · Mirko Viroli1

Received: 3 January 2022 / Accepted: 26 August 2022 / Published online: 19 September 2022
© The Author(s) 2022

Abstract
Swarm intelligence leverages collective behaviours emerging from interaction and activ-
ity of several “simple” agents to solve problems in various environments. One problem
of interest in large swarms featuring a variety of sub-goals is swarm clustering, where the
individuals of a swarm are assigned or choose to belong to zero or more groups, also called
clusters. In this work, we address the sensing-based swarm clustering problem, where clus-
ters are defined based on both the values sensed from the environment and the spatial dis-
tribution of the values and the agents. Moreover, we address it in a setting characterised
by decentralisation of computation and interaction, and dynamicity of values and mobility
of agents. For the solution, we propose to use the field-based computing paradigm, where
computation and interaction are expressed in terms of a functional manipulation of fields,
distributed and evolving data structures mapping each individual of the system to values
over time. We devise a solution to sensing-based swarm clustering leveraging multiple
concurrent field computations with limited domain and evaluate the approach experimen-
tally by means of simulations, showing that the programmed swarms form clusters that
well reflect the underlying environmental phenomena dynamics.

Keywords Sensing-based clustering · Swarm clustering · Computational fields · Multi-
agent cluster formation

1 Introduction

Swarm intelligence is the collective-level ability to solve problems in large groups of rel-
atively simple agents that interact with each other locally, i.e. based on physical/logical
proximity (Bonabeau et al., 1999). Swarm intelligence is a phenomenon observed both in
natural systems (cf. social insects and animals) and artificial systems (cf. computational
ecosystems) (Bonabeau et al., 1999). In computer science and engineering, research fields
like swarm robotics (Brambilla et al., 2013) and self-organising systems (Serugendo et al.,
2011, 2007) emerged to study algorithms, models, and techniques for promoting swarm

 * Roberto Casadei
 roby.casadei@unibo.it

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1553-4561
http://orcid.org/0000-0002-2319-0375
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0002-4276-7213
http://orcid.org/0000-0003-2702-5702
http://crossmark.crossref.org/dialog/?doi=10.1007/s11721-022-00215-y&domain=pdf

28 Swarm Intelligence (2023) 17:27–62

1 3

intelligence in artificial systems for a variety of contexts and applications including (but
not limited to) environment monitoring (De Masi & Ferrante, 2020; Casadei et al., 2020a),
enterprise software service coordination (Clark et al., 2015), crowd management (Beal
et al., 2015), and most specifically control of robot swarms (groups of relatively simple
robots) (Shen et al., 2004; Carrillo-Zapata et al., 2018). A common distinction is between
behaviour-based and automatic design methods (Brambilla et al., 2013): the former is
based on a manual specification of individual behaviour, whereas in the latter the indi-
vidual behaviour is generated automatically, by searching, adapting, or evolving individual
behaviours for effective collective behaviour. Common but not exhaustive classes of collec-
tive behaviours include spatial organisation (e.g. pattern formation), swarm navigation, and
collective-decision making (Brambilla et al., 2013).

In particular, one problem of interest is swarm clustering (Lee et al., 2005; Cruz et al.,
2017), whereby the classical data clustering task (i.e. the unsupervised learning task where
data items are grouped to promote intra-group similarity) is brought in swarm settings.
This problem revolves around splitting the swarm into groups of individuals, called clus-
ters, such that the individuals in the same cluster are more similar to each other (for some
definition of similarity) than to those in other clusters. Once a cluster is formed, typically
it is assigned a sub-goal to be carried on collectively. Typical clustering approaches may
consider the spatial distribution of the individuals or the goals of the individuals to define
clusters that represent, for example, teams or interaction domains. In this paper, we focus
on sensing-based clustering (Lin & Megerian, 2007), namely a clustering problem that
considers both the spatial distribution of individuals and the environmental values sensed
by these individuals (through sensors). That is, the goal is to seek for clusters of neighbour
individuals with a similar perception of some sensed value. The problem can be in a static
form, where a snapshot of the system state is considered, or in a dynamic form, where
values change over time and solutions have to deal with change somehow. The problem
has been considered in Wireless Sensor Networks (WSNs) and Internet-of-Things (IoT)
applications like environment monitoring and control (Lin & Megerian, 2007), efficient
distributed collection (Pham et al., 2010), and disaster management (Kucuk et al., 2020).
However, to the best of our knowledge no existing work addresses the dynamic problem in
mobile swarms, which requires specific techniques to adaptively re-adjust clusters to face
changes. Additionally, we look for solutions featuring resilience, namely leveraging dis-
tribution and decentralisation to continuously face changes and faults, hence avoiding sin-
gle points of failures and potential bottlenecks. Accordingly, in this work, we present and
address the dynamic sensing-based swarm clustering problem.

Among the many approaches to express (and reason in terms of) collective behaviour
featuring inherent adaptivity we shall consider the field-based computing approach (Viroli
et al., 2019), for its suitability in addressing dynamic problems by fostering “controlled
self-organisation”. In this approach, computations leverage an execution model based on
repeated computation and asynchronous neighbour-based communication. On top, com-
plex collective behaviour is described in terms of functional manipulations of (computa-
tional) fields, i.e. data structures evolving over time that map agents in a domain to com-
putational values—sort of spatially distributed streams of values. This is inspired by the
common notion of fields found in physics (e.g. force or magnetic fields). Notice, however,
that in our viewpoint, the computational fields assign values to agents rather than to envi-
ronment (space-time) positions as in, for example, artificial potential fields (Warren, 1989),
though the approaches are similar and related. We adopt this approach as it has shown
to conveniently express a variety of resilient collective swarm-like behaviour including
self-healing distance estimation (gradient) (Audrito et al., 2017), self-stabilising leader

29Swarm Intelligence (2023) 17:27–62

1 3

election (Mo et al., 2018), distributed collection (Audrito et al., 2021), and team creation
and coordination (Casadei et al., 2021)—and to scale with complexity up to high-level
composite patterns (Pianini et al., 2021b).

Essentially, the core idea of our clustering approach is to make agents in local minima
(or maxima) of the sensed value (depending on whether lowest or highest values are most
significant) spawn a spatial process of gathering for neighbour devices until finding the
proper size of the cluster, additionally managing interactions with other clusters when there
are overlaps.

In this manuscript we provide the following contributions:

• we provide a precise definition of the dynamic sensing-based mobile swarm clustering
problem;

• we present a field-based approach to address the problem, and describe a novel config-
urable meta-algorithm for inducing self-organised clustering in a system of neighbour-
ing-interacting robots;

• we provide a publicly available and reproducible simulation framework for evaluating
the algorithm on a set of diverse environment configurations, from which we observe
that our solution can identify various cluster shapes and cope with a certain degree of
node mobility and changes in sensed phenomena.

Therefore, the contribution lies both in the general area of swarm intelligence as well as in
the specific thread of research in field-based computing.

The paper is organised as follows. Section 2 covers background, introducing the field-
based computing paradigm and the swarm clustering problem. Section 3 provides the novel
technical contribution. Section 4 presents our evaluation of the approach. Section 5 covers
related work. Finally, Sect. 6 provides a summary and discusses future research directions.

2 Background and motivation

The background of this work includes field-based computing (Sect. 2.1) and the problem of
clustering in swarms (Sect. 2.2).

2.1 Field‑based computing

Field-based computing (Viroli et al., 2019) is an approach where computation leverages a
notion of computational fields (fields for short) (Warren, 1989; Mamei et al., 2004; Viroli
et al., 2019), namely distributed data structures evolving in time and associating locations
with values. The approach originates from previous work like Warren’s artificial potential
fields (Warren, 1989) and co-fields from Mamei et al. (2004). In particular, in co-fields,
computational fields represent contextual information, locally sensed by the agents and
repeatedly distributed by the agents themselves or the infrastructure according to a propa-
gation rule.

In this work, by field-based computing we mean a specific programming and computa-
tional model, also known as aggregate computing in literature (Beal et al., 2015), which is
surveyed in Viroli et al. (2019). In this model, collective and self-organising behaviour is
programmed through a composition of functions operating on fields mapping a set of indi-
vidual agents (rather than environment locations) to computational values. Therefore, fields

30 Swarm Intelligence (2023) 17:27–62

1 3

can be used to associate a certain domain of agents with what they sense, the information
they process, and actuation instructions for operating on the environment. Fields are com-
puted locally to the agents but are subject to a global viewpoint: so, e.g. a field of velocity
vectors can be seen as a movement command for an entire swarm, or a field of reals can
denote what an entire swarm perceives in a certain environment. To understand field-based
computing, two essential parts have to be considered: the system model and the program-
ming model. Their interplay is what allows the local actions of the agents to yield emergent
collective behaviour.

2.1.1 System model

We consider a network of computing and interacting agents situated in some environment.
Structure. An agent is an autonomous entity equipped with sensors and actuators,

which serve as the interface towards a logical or physical environment. By a logical point
of view1, it also has state, a support for communicating with other agents, and support for
computing simple programs. An agent is connected with other neighbour agents which col-
lectively form its neighbourhood. The set of neighbours depends on a neighbouring rela-
tionship, which is defined by designers according to the application at hand and is subject
to the constraints exerted by the underlying physical network. A typical neighbouring rule
is the one that mimics physical connectivity; so, e.g. a robot is a neighbour of another
robot if it manages to send a message to the latter over the wireless channel. Another typi-
cal neighbouring rule is the one based on spatial vicinity; so, e.g. a robot is a neighbour
of another robot if the infrastructure manages to deliver a message from the former to the
latter (e.g. using other robots as relays) and these two robots are at an estimated distance
smaller than a certain threshold (assuming a distance can be estimated through a proper
technology).

Interaction. Interaction happens by sending messages to neighbours, asynchronously.
Interaction can also happen in a stigmergic way, by perceiving and acting upon the envi-
ronment through sensors and actuators. The content of messages and when they are sent
and received depend on the agent behaviour. However, in general, as our goal is to model
continuous collective behaviours, or self-organising systems, we remark that interaction
would typically be frequent (in relation to the problem and environment dynamics).

Behaviour. As per the above consideration, the behaviour of any individual agent is best
understood in terms of repeated enaction of execution rounds, where each round consists of
the following steps (though some flexibility exists especially in the actuation part):

1. Context acquisition. The agent gathers its context by considering its previous state as
well as the most recent sensor readings and messages from neighbours.

2. Computation. The agent runs a computation against the acquired context, yielding (i)
an output describing potential actuations; and (ii) a coordination message containing all
the information to be sent to neighbours for the purpose of coordination at a collective
level.

3. Actuation and communication. The agent performs the actuations described by the
program output and dispatches the coordination message to the entire neighbourhood.

1 Actually, such requirements may be relaxed by considering different execution strategies on available
infrastructure (Casadei et al., 2020a).

31Swarm Intelligence (2023) 17:27–62

1 3

By having every agent repeatedly run these sense-compute-act rounds, the whole system
fosters a self-organisation process whereby up-to-date information (from the environment
and from the agents) is continuously incorporated and processed, typically in a self-stabi-
lising manner (Dolev, 2000).

This system model provides a basic machinery for collective adaptive behaviour, which,
however, requires a proper description of the “local computation step”: this is fostered
by the field-based programming model (discussed in Sect. 2.1.2). A field-based program
steers the collective adaptive behaviour of a system, which unfolds by having each agent in
the system evaluate that program according to the discussed round-based execution model.
Notice that such a program specifies both what local processing the agents must perform
and what data they must share with neighbours; also, notice that generally the program
does not affect the round-based execution protocol—unless advanced forms of scheduling
are desired (Pianini et al., 2021a). The distributed execution protocol may be provided by
a middleware, which will ensure that messages are exchanged and rounds properly sched-
uled. The reader can refer to Pianini et al. (2021a) and Casadei et al. (2022b), respectively,
for a more comprehensive discussion on execution and deployment aspects.

2.1.2 Field‑based programming model

Field-based programs can be encoded with field-based programming languages like
ScaFi (Casadei et al., 2020b), which are implementations of field calculi (Viroli et al.,
2019; Audrito et al., 2020), i.e. functional core languages that provide the minimal set of
constructs for programming with fields and enable formal analysis. ScaFi is a domain-spe-
cific language (DSL) embedded in Scala which supports field-based constructs and offers a
library of reusable functions, some of which are covered in the following.

A field-based expression or program (e.g. programmed in ScaFi) can be subject to a
local or global interpretation. Locally, an integer value like 7 has the usual meaning; glob-
ally, a 7 denotes a field where each agent is mapped to a local 7 (a uniform, constant field).
For instance, querying a local temperature sensor would yield a field of temperature read-
ings, associating space-time events (i.e. all the rounds of a network of agents) to values
denoting the temperatures at those locations.

Locally, an integer expression add(a,b), or a+b, has the usual meaning, given by the
sum of a with b; globally, it denotes the application of a field of functions add, or +, on a
field a and a field b, yielding a field given by the sum of a and b in an agent-wise fashion
(notice that a may be a non-uniform non-constant field having different local values for dif-
ferent agents over time).

The programming model does not deal directly with global fields (which are essentially
a denotational construct), but it deals only with neighbouring fields, which enable one
agent to collect data from its neighbours.

Generally, field calculi feature constructs to (i) evolve values across time, by trans-
forming a value computed at a previous round into a new value; (ii) exchange data with
neighbours, where received data is reified by neighbouring fields; (iii) conditionally break
a computation into parts, defining distinct domains of collective computation. However,
in the following, we only briefly present a subset of the field-based computing building
blocks used for sensing-based clustering, as the details of field calculi are not required to
understand the contribution of this manuscript. See Viroli et al. (2019) for more details on
how these blocks are actually developed.

32 Swarm Intelligence (2023) 17:27–62

1 3

Typically, in field-based computing applications, we are dealing with sharing and col-
lecting information from/to a device.

To do this, the gradient is an essential construct (Audrito et al., 2017). This block
produces a numeric field that expresses the minimum distance from a source zone follow-
ing a certain metric (e.g. Euclidean distance). Hence, it maps a Boolean field (true where
a node is a source, false otherwise) into a distance field from the closest source. The
signature of the function is defined as2:

def gradient(source: Boolean, metric: Metric): Double

This function is resilient to changes in the source field and metric field, self-stabilising
to the correct field of minimum distances to the closest source once input fields stabilise.
Gradients support information flows, which are fundamental constructs for designing self-
organising systems (Wolf & Holvoet, 2007). Indeed, through this construct, it is possible
to share generic data (a position, a temperature, etc.) towards this resulting distance field.
Such propagation of data from a source of a gradient outwards is captured by a broad-
cast function (generic in type parameter D):

def broadcast[D](source: Boolean, data: D): D

When we want to aggregate data in source agents, we use the block C (collect)
instead (Audrito et al., 2021):

def C[V](p: Double, acc: (V, V) => V, local: V, null: V): V

In this signature, p is a potential field usually computed through gradient; acc is
the logic that combines locally perceived data with that received from neighbours; local
is the local data we want to collect at a point in space (e.g. a position); and null is the
null data for the acc operation (e.g. if we collect a real value, the null value could be 0).
This is also an essential operation for the definition of collective behaviours: it enables, for
example, computation of the average temperature in a certain zone covered by agents.

As an example, consider a network of agents where a sparse set of leaders have been
elected. Suppose that we want to break the system into several regions, each one ruled by
one leader, and that we want every agent to know how many members are in their region.
This can be coded as follows:

val leader: Boolean = // true on leader devices
val potential: Double = gradient(leader, metric())
val collect: Int = C[Int](potential, (sum,v)=>sum+v, 1, 0)
val count: Int = broadcast[Int](leader, collect)

2 In Scala, keyword def introduces a named function; after the name, it follows a list of parameters of the
form name:Type; after the parameter list, the return type of the function is specified.

33Swarm Intelligence (2023) 17:27–62

1 3

A region is indirectly defined by the corresponding leader; each agent has to simply
descend the gradient to locate its leader (and hence its region). Along the potential
towards leaders, a contribution of 1 is accumulated for each agent. To propagate the com-
plete count on the whole region, it is then sufficient to broadcast the leader’s col-
lect value outwards.

2.1.3 Field‑based concurrent processes

Field-based concurrent processes, also called aggregate processes (Casadei et al., 2019,
2021), are field-based computations that exist dynamically: they can be dynamically gener-
ated (usually by individual agents), execute on a dynamic set of agents, and disappear once
all its members withdraw. They have been formalised in Casadei et al. (2019) and deeply
covered in Casadei et al. (2021), showing how they can support the design of intelligent
collective behaviour by extending the practical expressiveness of field-based programming
models (Viroli et al., 2019). We provide a brief account of the details relevant for this man-
uscript in the following.

Indeed, the aggregate process abstraction is relevant in this work since an aggregate process
instance, by running on a (evolving) subset of the agents, can be used to denote a dynamic
cluster. Therefore, clustering algorithms can be expressed in terms of how aggregate processes
are generated (candidate cluster formation) and merged/removed (cluster selection).

Aggregate processes can be expressed as normal field-based functions and spawned
through a spawn construct with the following signature:

// spawn is a generic function which accepts 3 parameters
def spawn[K,A,R](process: K => A => (R,Boolean),

newProcesses: Set[K],
args: A): Map[K,R]

The generic type K instantiates to the type of a process key, also called a process iden-
tifier (PID), which also works as construction parameter; the generic type A instantiates
to the type of runtime parameters for the currently running process instances; the generic
type R instantiates to the type of the output of the process. A process definition has cur-
ried type K => A => (R,Boolean), namely a function from a value of type K and a
value of type A to a pair of a value of type R and a Boolean. The Boolean value, called the
process status, expresses if the device that has executed a given process instance would like
to participate into the process (true status) or not (false status). The crucial point is
that every device that participates into a process with PID � automatically propagates the
process PID � to all its neighbours, which will run a corresponding process instance when
the spawn function is evaluated. So, the spawn function accepts a function process of
a field-based behaviour, a set newProcesses of new process instances to be generated
locally in the current round, and a value of type A for the runtime input of the instances
currently running in the local round of a given device. Notice that, though process can
be a field of functions, it is typically a constant field of the same function, which means
that usually a spawn expression enables running zero or more process instances of the
same kind of process. Evaluation of spawn returns a Map[K,R] (i.e. a hashmap or dic-
tionary) which a set of entries mapping the PIDs of executed process instances (with status
true) to corresponding outputs of type R.

34 Swarm Intelligence (2023) 17:27–62

1 3

As an example, consider building a separate gradient computation for each distinct
source agent, that will expand within a certain range � . This could be coded as follows in
ScaFi:

type DeviceId = Int
// Process definition as a function
val proc: DeviceId => Boolean => (Double, Boolean) = id => isSource => {

val output = gradient(id == deviceId())
val status = if(id == deviceId()) isSource

else output < ρ
(output, status)

}
// Set of processes to be generated locally
val newProcesses: Set[DeviceId] =

if(isSource()) Set(deviceId()) else Set.empty
// Expression for handling acquired and generated processes
val gradients: Map[DeviceId,Double] =

spawn[DeviceId,Boolean,Double](process, newProcesses, isSource())

In detail, the IDs of sources are used as PIDs; so, for instance, a gradient from agent 7
will become a process with PID 7. The process logic is defined through proc, which is
a function of the PID id and Boolean argument isSource denoting whether the run-
ning agent is a source, as provided by built-in sensor function isSource(). In proc, a
gradient is built from the agent whose ID, provided by deviceId(), matches the id of
the source corresponding to the current process instance. Then, status is defined true
if the source for the process is still a source or, for non-source agents, if their gradient
value is lower than threshold � . Notice that when the original source is not a source any
more, the gradient output will rise, eventually causing all the agents to leave that pro-
cess. Value newProcesses will be a singleton set with the ID of the running device
when its isSource() sensor returns true, or the empty set otherwise. In the former case,
a corresponding process is spawned if it did not already exist. The evaluation of the spawn
call, then, will run both new and existing processes including those executed (and not quit)
at the previous round, as well as those acquired from neighbours. The output of the spawn
expression will be a map from the PIDs of the processes locally executed to the value of
the gradient (output) locally computed in those process instances.

An example of the dynamics of such a program is provided in Fig. 1. In the picture:
nodes are agents; labels on nodes are agent IDs; edges denote neighbouring links, over
which messages are sent and received; the output of the spawn expression is shown above
the nodes, unless it is an empty map (not shown); the different sub-pictures are snapshots
of a corresponding hypothetical system state trajectory that may result after multiple
rounds of execution in multiple devices. A more thorough introduction and description of
aggregate processes together with more examples is available in Casadei et al. (2021).

2.2 Resilient dynamic cluster formation in swarms

Different cluster models exist and, for each cluster model, several algorithms can be
devised (Estivill-Castro, 2002). These are reviewed and compared with our cluster
model in Sect. 5.

35Swarm Intelligence (2023) 17:27–62

1 3

In this paper, we focus on swarm clustering, which involves associating each swarm
member to zero or more clusters. So, this is a problem of cluster formation (Ge et al.,
2018), more than a problem of cluster analysis (which generally includes cluster

Fig. 1 Examples of the dynamics of multiple concurrent gradient processes

36 Swarm Intelligence (2023) 17:27–62

1 3

formation followed by cluster evaluation). A cluster, in this setting, is essentially a label
(cluster ID), which can be associated to an agent, and that can be used to determine its
behaviour. In field terms, a clustering can be seen as a field mapping each agent to a set
of cluster IDs—we call this a clustering field.

Essentially, a cluster can be used to determine, query, and control a group of agents.
Such a group could represent a team, used for cooperation or to solve a common goal, or
a space-time domain for a field computation. Indeed, as the agents are situated in space,
they provide a means for extracting data from their corresponding location, which may
be instrumental for environment monitoring, data acquisition, etc.

Moreover, we consider dynamic clustering (Roa et al., 2019), where the emphasis
is not on identifying a single clustering for a given system configuration, but to update
and evolve a clustering solution as the system configuration evolves (e.g. due to mobil-
ity, failure, or change in other clustering criteria). The specific problem we tackle is
dynamic sensing-based/space-based swarm clustering, which involves associating each
swarm member to zero or more clusters, and to evolve such association by consider-
ing change in the environment (sensing-based) and spatial location of the members
(space-based).

In summary, our goal is to define a distributed, decentralised, field-based clustering
algorithm, for the system model described in Sect. 2.1.1, able to create and dynamically
maintain a clustering field, resiliently. Our focus on resilience make centralised approaches
not appropriate since we cannot assume that some nodes are infallible or always available.
This work draws motivation from (i) the relevance of the problem for situated systems (e.g.
in swarm robotics), (ii) a scarcity of solutions to the problem of sensing-driven spatial
clustering in literature, and (iii) a general lack of effective field-based clustering solutions.
Refer to Sect. 5 for a more detailed account on these research gaps.

3 Contribution

In this section, after describing a minimal set of assumptions underlying the approach
(Sect. 3.1), we define the problem to be addressed (Sect. 3.2), in terms of inputs, out-
puts, and parameters, describe a specific instantiation of the problem for centroid-based
clustering on numeric values (Sect. 3.3), and then present a meta-algorithm providing a
solution to the stated problem (Sect. 3.4).

3.1 Assumptions

Before formally defining the problem of Dynamic Sensing Based Swarm Clustering,
we summarise the assumptions about the swarm devices and the environment in which
they act. Such assumptions justify both the way we define the problem, and some of the
design choices we adopt for its solution.

1. A swarm is composed by a set of possibly many relatively simple autonomous robots
(e.g. ground, airborne, underwater).

2. A robot can move within the environment, sense, and actuate.

37Swarm Intelligence (2023) 17:27–62

1 3

3. Communication is based on peer-to-peer connection link, based on the proximity of
robots, without relying on infrastructure (e.g. LTE network, WiFi network).

4. Reliability of robots themselves and communications are not guaranteed and, in some
scenarios, failures are quite likely.

5. The measures of the environment, as sensed by the robots, can change over time.
6. The measures of interest of the environment at two points in space close to each other

tend to be positively correlated.

The above assumptions are rather weak and, therefore, quite challenging. They encompass
scenarios where a swarm of robots explores an area where multiple natural phenomena are
happening.

The field-based clustering algorithm for solving the Dynamic Sensing-Based Swarm
Clustering problem will be discussed below. For now, we just want to point out that our
assumptions justify a fully distributed approach in which robots exchange information with
their neighbours.

First, given the very nature of swarm systems, problems are usually better solved by
distributed algorithms than centralised algorithms, e.g. Hoshino (2013); Cruz et al. (2017).
In particular, by our assumption that robots and communications can fail, and that there is
no global communication infrastructure, a node in charge of all the computations (either a
robot or a base station) would constitute a risky single-point of failure. Even if the swarm
was able to recover from such failure by automatically choosing another central node, the
switch would be cumbersome and potentially very costly, only to reach again a situation
with another single point of failure.

Given robots whose connection links are established and lost based on the proximity
with other robots, it may be possible to build an abstraction on top of that, whereby multi-
hop communications are transparent and each robot has the illusion to be able to imme-
diately communicate with any other robot in the swarm by specifying an appropriate ID
(this is, for example, the typical abstraction brought by the IP layer of the TCP/IP stack).
While the cost of adding such additional layer may be acceptable in some situations, for the
specific goal of clustering this would not bring any advantage: as we shall see in the sec-
tions below, clusters spring out, expand, and collapse following spatial vicinity—i.e. a new
cluster expands first to the immediate neighbours of the robot that generated it, and then
progressively spreads to further robots in an incremental way.

3.2 Problem definition

In this paper, we address the problem of situation awareness and recognition, where a
value distributed in space (e.g. temperature as measured by sensors) has to be monitored,
by recognising compact clusters with similar values (e.g. spatial regions with a simi-
lar temperature). This problem, called sensing-driven clustering in literature, has been
investigated largely in static scenarios (Kucuk et al., 2020; Pham et al., 2010; Lin &
Megerian, 2007), where data from a fixed sensor network has to be processed in order
to obtain the relevant clusters. However, solutions for such networks do not extend well
to dynamic contexts, such as micro-drone swarms monitoring an environment: in this
scenario, mobility and proximity of communication are key and need to be handled by an
algorithm that is resilient to changes in both values, network structure and placement in

38 Swarm Intelligence (2023) 17:27–62

1 3

space. To the best of our knowledge, this problem has never been previously considered
in the literature.

A sensing-driven clustering algorithm for mobile swarms could be useful for several
outcomes. Clusters may provide a compressed summary of the value distribution in space,
to upload on the cloud and be graphically represented for human convenience. Clusters
may also be used to drive more complex situation recognition patterns: algorithms to detect
dangerous situations may be run in each cluster separately, using information from that
cluster to reach a verdict, without interference from information on neighbouring clusters.
Clusters may also be used to drive task assignment to the monitoring drones, possibly guid-
ing their placement in space, by directing more drones in clusters where the need arises.

More formally, we consider the following problem:

• Input: for each device, a unique identifier i and a value vi of type T (possibly obtained
through a sensor reading);

• Output: for each device, a list of clusters to which the device belongs, represented as a
map from unique identifiers l of cluster leaders to corresponding cluster summary val-
ues wl of type S.

In order to formally specify the output, we need some further details characterising what a
cluster is, how they should be selected, and what is their summary. This is attained through
the following problem parameters.

• Metric: a data type M with

– a null value 0M;
– a partial order3 x ≤ y defined for x, y of type M;
– an addition operator x + y defined for x, y of type M, such that x + 0M = x and

x + y > x if y > 0M;
– a positive function d(i, j) > 0M returning a value in M representing a distance

between a device i and j (depending on the devices’ sensor states and possibly val-
ues vi). This is intended to make use of spatial distance estimates as well as other
factors (i.e. value distances).

• Summary: a data type S with

– a value s(i) of type S in every device i (depending on sensor state);
– an associative and commutative function f ∶ (S, S) → S , used to aggregate values

s(i) for devices in a same cluster.

• Leader selection:

– a candidate radius r(i) in M (depending on sensor state and values), so that only
devices with a relative distance strictly lower than r(i) can belong to a cluster whose
leader is i;4

– a commutative similarity predicate p ∶ (S, S) → {⊤,⊥} , identifying similar clusters
based on their summary.

3 A partial order is a reflexive, transitive and anti-symmetric relation; with no requirement that either x ≤ y
or y ≤ x for x, y of type M.
4 Notice that r(i) = 0M implies that no device can be in a cluster whose leader is i.

39Swarm Intelligence (2023) 17:27–62

1 3

According to this description, a candidate cluster C is a set of devices with a leader i, such
that every j ∈ C is within a distance of r(i) from the leader i, according to the metric given
by d. The summary wi of such cluster is the repeated aggregation through f of the values
{vj ∶ j ∈ C} . Nearby clusters are merged if their summaries are similar according to predi-
cate p, and in such case, the lowest identifier is selected as the leader of the merged cluster.

Leaders are used to regulate clusters via aggregate processes and to easily support con-
sistent coordination and decision-making regarding the activity of a cluster. Notice that
agents may belong to multiple clusters: this is important to support tracking phenomena
that are spatially close to each other. Indeed, if a node is in between two phenomena, it
could participate in the corresponding clusters at the same time to help to track or handle
both phenomena.

We highlight that we aim to solve this problem by an adaptive algorithm, that is, a pro-
gram that is able to handle changes in its input, by periodically and asynchronously updat-
ing its internal values.

3.3 Adaptive centroid‑based clustering on numeric values

In the evaluation section, we consider a specific instantiation of the parameters just intro-
duced, for centroid-based clustering on numeric values. In this context, the metric is a
simple distance on values, so that d(i, j) = |vi − vj| . To prevent the creation of a candidate
cluster for every device, the candidate radius r(i) is set to zero whenever i is not a local
minimum (i.e. has a neighbouring device j such that vj < vi). If instead i is a local mini-
mum, r(i) is set to a fixed difference value � . The values s(i) to be summarised are set to a
tuple [xi, yi, vi, 1] of the devices’ positions5 and values with the number 1, with an aggrega-
tor function f that is a component-wise sum, so that the overall aggregate of a cluster C is
(eventually) equal to the tuple [

∑
i∈C xi,

∑
i∈C yi,

∑
i∈C vi, #C] (where #C is the actual number

of members of cluster C). The similarity predicate p then declares two clusters as similar
if they have centroids within a radius of � , in a 3D space mixing spatial coordinates with a
value coordinate:

where (x, y, v) denotes a 3D vector and ‖ ⋅ ‖ denotes the norm of a vector. By setting the
problem parameters as described, the meta-algorithm can select clusters of similar value,
led by their minima, and merge overlapping clusters that are too close together and with a
similar value.

3.4 Adaptive clustering meta‑algorithm

We now describe the general meta-algorithm for the stated problem through state equa-
tions. The algorithm state is distributed, hence composed of variables xi depending on
a device identifier i: we assume that such a variable is stored in device i and periodi-
cally updated by it through the state equations. Each equation may involve inspecting
the state of variables in neighbour devices j: we assume that every device periodically
shares its state with neighbours, so that a (not necessarily updated) view of neighbours’

p([x, y, v, n], [x�, y�, v�, n�]) ∶=
‖‖‖‖‖

(x, y, v)

n
−

(x�, y�, v�)

n�

‖‖‖‖‖
< 𝛾

5 We assume that a GPS-like sensor is available.

40 Swarm Intelligence (2023) 17:27–62

1 3

state is available in each device, and each state equation can be computed locally in the
current device i, without remote memory accesses. We use N(i) to denote the set of
current neighbours of device i, i.e. the set of devices j for which a view of their state is
locally available in i (not including i itself). The execution of state equations can be per-
formed in asynchronous rounds, as described in Sect. 2.1. In order to showcase the algo-
rithm at work by examples, in the following we consider a network of three intercon-
nected devices i = 0, 1, 2 , so that N(0) = N(1) = N(2) = {0, 1, 2} . We assume that the
devices are placed in positions (x0, y0) = (0, 0) , (x1, y1) = (1, 1) , (x2, y2) = (2, 0) and hold
values v0 = 2 , v1 = 3 , v2 = 1 . We will also assume that the parameters are as described
in Sect. 3.3, with � = � = 3.

Table 1 summarises the state variables used in state equations. Every device main-
tains a candidate leader set Si , of possible clusters to which the device may belong.
Every round, this set is updated as:

Thus, Si includes i provided that r(i) > 0M , together with other candidate leaders � con-
sidered by neighbours (in their candidate leader set and which have computed to be within
the cluster). In field-based computing, this set is implicitly maintained by the spawn con-
struct, given c�

i
 as process return status and {i} as new process key (if r(i) > 0M). In our

sample network, the initial value for Si in each i will only consider the current device,
as information from neighbouring devices is not available yet. Thus, we will have
S0 = {0},S1 = {},S2 = {2} . After convergence, each node will understand itself as pos-
sibly belonging to clusters 0 and 2, so that S0 = S1 = S2 = {0, 2}.

Most of the meta-algorithm computation is repeated for each of the candidate leaders
� ∈ Si . First, a metric m�

i
 of distance between � and i is computed, through the follow-

ing equation (called the gradient block in field-based computing—cf. Sect. 2.1):

In the sample network, we will have m0
0
= m2

2
= 0 , m0

1
= 0 + |v0 − v1| = 1 ,

m2
1
= 0 + |v2 − v1| = 2 , m2

0
= m0

2
= 0 + |v0 − v1| + |v2 − v1| = 3 . From m�

i
 , we also decide

the values c�
i
 as the truth predicates of whether m�

i
≤ �.

Si = {� ∈ Sj for j ∈ N(i) s.t. c�
j
= ⊤} ∪

{
� if r(i) = 0M
{i} otherwise

m�

i
=

{
0M if � = i

min{m�

j
+ d(i, j) ∶ j ∈ N(i)} otherwise

Table 1 State variables used in the state equations

i Current device N(i) Neighbour set
� Candidate leader Si Candidate leader set
m�

i
Metric in i from � c�

i
Whether i belongs to cluster �

p�
i

Parent of i in cluster � t�
i

Partial summary in i for cluster �

u�
i

Candidate leader summary in i for �
li Selected leader for cluster i, if any wi Selected summary for cluster i, if any
l�
i

Selected leader for cluster � in i w�

i
Selected summary for cluster � in i

41Swarm Intelligence (2023) 17:27–62

1 3

Then, an optional parent p�
i
 for � ≠ i is determined as the neighbour j with minimal m�

j

(resolving ties by the identifier j itself):

In our example, we have that p0
1
= 0 , p2

1
= 2 , p2

0
= p0

2
= 1 while p0

0
 and p2

2
 are undefined.

Through it, partial summaries t�
i
 can be computed (C block in field-based computing—cf.

Sect. 2.1):

where “reduce” is a function accumulating every element of a given set with the given
binary function, and thus aggregates with f the value s(i) together with the t�

j
 values of

neighbours j which chose the current device i as their parent. In the sample network, we will
have that t2

0
= s(0) = (0, 0, 2, 1) , t0

2
= s(2) = (2, 0, 1, 1) , t0

1
= s(1) + s(2) , t2

1
= s(1) + s(0) ,

t0
0
= t2

2
= s(0) + s(1) + s(2) = (3, 1, 6, 3) . The value of the partial summary in the leader is

then propagated through the cluster by a broadcast function:

so that, in our example after convergence, each u�
i
 is (3, 1, 6, 3). Every candidate leader i

with r(i) > 0M is now able to choose its selected leader li , as the minimum candidate leader
j (possibly i itself) with a summary similar to that of i according to predicate p:

In the running example, we will have that l0 = l2 = 0 , w0 = w2 = (3, 1, 6, 3) , since the two
clusters are fully overlapping hence p is true. The selected leader li and corresponding sum-
mary wi is then propagated by broadcast through the cluster of i. For every � ∈ Si:

Finally, in every device i, the meta-algorithm output is the map:

This meta-algorithm is presented as ScaFi pseudo-code in Fig. 2, using ScaFi library
functions gradient, C, and broadcast—cf. Sect. 2.1. Notice that since clusters are
represented as aggregate processes, and aggregate processes define “scopes” for collective
computations, the participation of an agent in an aggregate process has by itself the infor-
mation about the cluster membership; so, collective tasks may be assigned to any cluster,
and these will be inherently played by all the members of that cluster. We also remark that
although values vi are not directly used by the meta-algorithms, the parameters r(i) and

p�
i
=

{
argminj∈N(i){(m

�

j
, j)} if � ≠ i

None otherwise

t�
i
= reduce({s(i)} ∪ {t�

j
∶ j ∈ N(i) and p�

j
= i}, f)

u�
i
=

{
t�
i

if � = i

u�
p�
i

otherwise

(li,wi) =

{
min{(�, u�

i
) ∶ � ∈ Si and p(u

�

i
, ui

i
)} if r(i) > 0M

None otherwise

(l�
i
,w�

i
) =

{
(li,wi) if � = i

(l�
p�
i

,w�

p�
i

) otherwise

{l�
i
↦ w�

i
∶ � ∈ Si}.

42 Swarm Intelligence (2023) 17:27–62

1 3

d(i, j) are allowed to depend on them (and usually do), so that values are indirectly used.
An example of such behaviour is given in the next section.

4 Evaluation

In this section, we evaluate the meta-algorithm proposed in Sect. 3.4 in a case study of situ-
ation recognition within a synthetic environment (Sect. 4.1). The goal (Sect. 4.2) is to show
how the algorithm can cluster agents in a sensing-based fashion, hence identifying various
temperature cluster shapes. Furthermore, we assess how the algorithm works in mobile set-
tings, where a swarm of agents moves across an environment—which can be representative
for exploration scenarios. After describing the scenario and goals, in this section we describe
the simulation framework (Sect. 4.3), the simulation configurations (Sect. 4.4), the results
(Sect. 4.5), and finally provide a discussion about the evaluation and the approach (Sect. 4.6).

4.1 Scenario description

A swarm group of robots is interested in identifying areas where environmental data var-
ies within a known range. In particular, we assume that the robots are both capable of

// process starts when r(i) is positive
val newProc = mux (r(i) > 0) { Set(mid) } { Set.empty }

// collect map from � ∈ to (m�
i , u

�
i)

val clusters = spawn(� => _ => {

val m�
i = gradient(mid == �, d) // distance estimation

val c�i = m�
i < r(�) // whether device is in cluster

val t�i = C(m�
i, f, s(i)) // summary collection

val u�i = broadcast(m�
i, t�i) // summary broadcast

return ((m�
i, u�i), c�i) // process result and status

}, newProc, ())
// selected leader
val li = mux (r(i) > 0) {

clusters.filter(x => p(x._2, clusters(mid))).keys.min
} { mid }
// selected leader summary
val wi = mux (r(i) > 0) { clusters(li)._2 } { None }
// propagate in process
val result = spawn(� => _ => {

val m�
i = clusters(�)._1 // recover distances

val c�i = m�
i < r(�) // whether device is in cluster

val (l�i, w�
i) = broadcast(m�

i, (li, wi)) // final broadcast

return ((l�i, w�
i), c�i) // process result and status

}, newProc, ())
// build result map
return result.map(x => { x._2._1 -> x._2._2 })

Fig. 2 ScaFi pseudo-code of the meta-algorithm

43Swarm Intelligence (2023) 17:27–62

1 3

sensing the environmental temperature, perceiving their position in space (e.g. using GPS),
and exploring a limited area (i.e. a square with a side of 1km). The temperature is just an
arbitrary choice of a sensible physical quantity that should drive, together with the spatial
distribution, the clustering; the idea is that a temperature can be indicative for an envi-
ronment situation that could require attention or intervention (cf. wildfires which can start
and spread in hot, dry, and windy conditions). The scenarios are plausible, but we are not
interested in full realism: simplifications and generalisations are introduced to study the
algorithm in diverse controlled situations. Since the absence of central authority and the
limited robot communication capability, we suppose that the robots can only interact with
their neighbours (i.e. the devices with which a robot manages to establish a connection). In
particular, we imagine that each robot is equipped with a LoRa module with a connection
range of 100m. In this case, a node can potentially participate in several clusters as it may
be spatially close to two different phenomena. Therefore, it must both partake in the col-
lective perception (i.e. perceive the local temperature) and act to solve the cluster-identified
problem. The choice of how and when a node should act depends on the application but is
typically left to the leader, since it has the cluster-side vision of phenomena and the nodes.
Notice that these assumptions are coherent with the system model of Sect. 2.1.1.

In the experiments described in the following, we are only interested in the clusters
determined by the swarm cooperatively, not in how clusters are leveraged at the applica-
tion level. However, even if we do not directly leverage the output of the clustering process,
we would underline that, in using the proposed algorithm, we inherently exploit both the
leader election process and the multi-cluster formation. The foster is necessary to create
clusters since, in our algorithm, each cluster is managed by one leader. The latter is essen-
tial to track the phenomena of interest. In fact, as phenomena can be spatially close and
thus overlapping, if a node could only participate in one cluster, we would not be able to
analyse the traced phenomenon correctly. Finally, we would underline that this application
description is general and could be applied in several other concrete scenarios (Schranz
et al., 2020), just mentioning: sea monitoring (Farinelli et al., 2017) (aquaculture, pollu-
tion, water quality), smart agriculture (Ball et al., 2013) (fertilisation, removal of weeds
and insects), surveillance in military use cases, criminal activity tracking, and victim local-
isation in disaster situations (Saez-Pons et al., 2010).

4.2 Evaluation goals

We set up these simulations to:

G.1 verify the capability of the algorithm to find different cluster shapes: we want to
check that our algorithm is robust enough to correctly identify any kind of distribu-
tion, whether Gaussian or not;

G.2 examine how found clusters can cope with drone movement and failures: once veri-
fied the algorithm results in stationary conditions, we would examine how mobil-
ity and failures influences the clustering process by controlling both clusters count,
shape, and size;

G.3 test the algorithm dynamics when the temperature distribution changes: in a swarm
robotics context, the observed phenomena could change over time. Therefore, the
algorithm proposed should be robust against phenomena dynamisms.

44 Swarm Intelligence (2023) 17:27–62

1 3

 That is, these goals reflect the design requirement of supporting sensing/spatial-based
clustering in static, mobile, and environment-dynamic scenarios.

4.3 Simulation framework

We verify our sensing-driven clustering algorithm using simulations. The simulation
experiments, resulting data, source code, and instructions for reproducibility are available
at a public GitHub repository6.

Among the many simulators available for swarm-like robots behaviours (e.g.
ARGoS (Pinciroli et al., 2012)), we choose Alchemist (Pianini et al., 2013), a meta-sim-
ulator for pervasive-computing like applications. Alchemist is already used in similar sce-
narios (Casadei et al., 2021) and it supports the ScaFi language (Casadei et al., 2020b),
that has been chosen among other field-based languages (Viroli et al., 2019) as it supports
aggregate processes (Casadei et al., 2019), which we consider essential in order to imple-
ment our clustering algorithm.

4.3.1 Parameters

To check the effectiveness of our solution, we evaluate the aggregate program behaviour
using different parameters, summarised in Table 2 and described in the following.

One of the most important parameters is the in cluster threshold (�). It defines if a node
is inside the cluster or outside; so, it guides the aggregate process expansion among the
nodes. If the value is too low, the programs take into consideration only a few nodes; if it is
too high, the cluster will be expanded to nodes that should not belong to that cluster. This
parameter is application-dependent, so developers should carefully choose the right bal-
ance between node inclusion and boundedness, ultimately affecting the cluster shape.

Table 2 A summary of the parameters used in simulations

Parameter Unit Description Values

In Cluster
Threshold – �

◦
C A real value used to verify if the temperature perceived

in a certain node could be considered as a part of the
current cluster

[0.5, 1.0, 1.5]

Same Cluster
Threshold – �

n.a A real value used to verify if two clusters could be con-
sidered as the same

[0.1, 0.3, 0.7]

Speed – � km/s The constant velocity used by drone to explore the areas [7, 10, 14]
Exploration range

– �
km The maximum range area in which drones could move [0.5, 0.6]

Density – � n.a A parameter used to define how many nodes will be
placed in the environment

[0.5, 0.75]

Waiting candidate
time – �

n.a Rounds needed to mark a node as candidate [3, 5, 7]

Failure frequency
– �

Hz Failure frequency of random nodes that participate in the
system

[0.5, 0.1, 0]

Spawn frequency
– �

Hz Spawn frequency of a node in a random position within
the environment

[0.5, 0.1, 0]

6 https:// github. com/ cric96/ exper iment- 2021- swarm- intel ligen ce- si

https://github.com/cric96/experiment-2021-swarm-intelligence-si

45Swarm Intelligence (2023) 17:27–62

1 3

The same cluster threshold (�), instead, is used by the cluster leader to define when two
clusters are similar (as shown in Sect. 3.4). This parameter plays a crucial role in finding
the right cluster boundaries. Indeed, if � is too high, two clusters could be merged even if
they are different. On the other hand, if � is too low, multiple overlapped clusters remain
even if they could be merged.

A clustering process starts when a node becomes a candidate. waiting candidate time
(�) rules the rounds needed by a node to spawn a process after it has become a candi-
date. This helps in avoiding the excessive process spawn due to small local temperature
variations.

We are interested in the robustness of the clustering process against the node move-
ment. Therefore, we tested our solution varying the drone speed (�) and the exploration
range (�). We expect that the higher the movement speed, the greater the instability of the
identified clusters. � does not affect candidate nodes, they will stand still until they stay
candidates.

We check also how the output changes varying the density (�) of drones. Theo-
retically, we expect a better result with high-density swarms. From � we compute
the total number of drones as: N = (10∕�)2 , e.g. with � = 0.5,N = 400 and with
� = 0.75,N = 173.

Finally, � (failure frequency) and � (spawn frequency) are used to verify how our
algorithm could handle failures during the clustering process. The foster rules the fre-
quency in which a random node disappears from the system. The latter controls the
rate of spawning nodes that will participate in the aggregate program evaluation. This
is useful to avoid complete node isolation after frequent node failures. Even if the
movement is already a good estimation of how the system responds to dynamisms, we
want to add another disruptive change. Indeed, movements are typically relative, and
therefore, the changes in the neighbourhood are limited.

4.3.2 Metrics

The clustering results are verified using different metrics. First of all, we extract the
number of total unique clusters found by the collective to check if the program pro-
duces the correct partitioning. This value gives a quick overview of the clustering
result. Along with this value, we evaluate the total number of unique merged clusters.
The latter should be as near as possible to the correct cluster number.

However, neither the number of total unique clusters nor the total number of unique
merged clusters tells us anything about the shape of the clusters. To this aim, we com-
pute several metrics:

• the number of nodes for each cluster, stating the overall device partitions;
• the Silhouette (Rousseeuw, 1987) and Dunn (Dunn, 1974) indexes, used as internal

evaluation schemes;
• the error rate, observable only when we know the ground truth.

By observing the value of the Silhouette index, we can understand if the clusters
extracted are overlapped. Indeed, if the Silhouette tends to be 0, it means that the clus-
ters are overlapped. Instead, if it tends to 1, the clusters found are disjointed. The Dunn

46 Swarm Intelligence (2023) 17:27–62

1 3

index, instead, is used as a control value. When we have a Silhouette that tends to be 1,
we expect to have a higher Dunn index value.

The error rate metric measures the misclassified nodes: if a node is associated with
a cluster but it is far from all the targets in the systems (false positive) or should be
associated with a cluster but the algorithm identifies it as an external node. The error
rate is computed as:

where TP stand for true positive (i.e. number of nodes classified within a cluster and they
are placed near to a temperature distribution) and TN stands for true negative (i.e. number
of nodes classified as external and far from all the temperature distribution). This value is
used to understand how well the algorithm performs when the drone explores the areas.

4.4 Simulations

We evaluate the behaviour of our algorithm in several experiments. The simulations have
in common

i) the environment area (a square with a side of 1km),
ii) the communication radius (100m), and
iii) the average evaluation frequency of aggregate programs (1Hz).

The drones are uniformly placed to cover the entire zone. We run the simulations in a
modern machine equipped with two AMD EPYC 7301 with 128GB RAM. The results are
reproducible in any modern machine, but consider that it might take a long time to finish
(in our configuration, the simulations end after 8h). Each scenario is executed 20 times
with different random seeds for a total of 100 simulated seconds (some simulations lasts
150s to reach convergence). The choice of scenarios that we show below was guided to test
(i) the effectiveness of our algorithm, and (ii) verify that it fulfilled all the goals described
above. In particular, most temperature distributions follow a normal distribution. We made
this choice as natural phenomena usually follow this distribution. Thus, if our solution was
capable of detecting clusters of this form, it will probably work for all other scenarios in
which one is interested in monitoring a certain natural phenomenon. Having said this, we
also verified that the algorithm is also capable of finding non-Gaussian shapes—(scenario
3, 4, 5). Finally, the last scenarios serve to verify how the system can handle changes, both
at the system level (movement and failures) and at the environment level (distribution
changing over time). The data generated by the simulator is handled using NumPy (Har-
ris et al., 2020) and plotted using matplotlib (Hunter, 2007). The plotted results consist of
the average (lines) and the standard deviation (area behind lines) of the values of interest
in different episodes. In Fig. 4 there is a graphical representation of a run of our algorithm.

4.4.1 Scenario 1: Gaussian patterns (Fig. 3a)

Description In this scenario, the drones are stationary (i.e. they stand still). There are five
zones with a Gaussian distribution, and there is no overlap between distributions. Given
the stationary situation, the number of candidate nodes is equal to the number of zones of
interest.

E =
FP + FN

TP + TN

47Swarm Intelligence (2023) 17:27–62

1 3

Why Used to verify G.1, particularly we expect that the algorithm finds clusters without
making any errors and that they will be stable over time.

4.4.2 Scenario 2: Stretched Gaussian patterns (Fig. 3b)

Description These simulations are similar to the previous one, but in this case, the Gauss-
ian distributions have an ellipse-like shape.

Why With these experiments, we would check that the shape does not make such a dif-
ference in the clustering process. Indeed, we expect a result similar to the one in the previ-
ous example (G.1).

4.4.3 Scenario 3: One direction temperature field (Fig. 3c and d)

Description In this case, we imagine that only one cluster is present (fixing � to 1 ◦C and
putting a total variation of temperature equal to 1 ◦C). Temperatures grow from left to right
in a constant fashion. Namely, in Fig. 3c the temperature varies in one dimension (horizon-
tally), whereas in Fig. 3d the temperature varies in two dimensions (diagonally). In the sce-
nario depicted in Fig. 3c we are interested to see what happens when multiple candidates
are elected. In this case, there are several relative minima (the set of nodes that are leftmost
with minimum id in their neighbourhood). But, eventually, the processes will expand them
in the same way. Thus, we expect that the merging policy tends to create only one cluster.
We use the scenario shown in Fig. 3d as a reference. Indeed, there will be only one can-
didate (located in the bottom left corner), and hence, the algorithm should result in one
cluster.

(a) (b) (c)

(d) (e) (f)

Fig. 3 Graphical representation of temperature field distributions used in the simulations. The lighter the
colour, the lower the temperature (Color figure online)

48 Swarm Intelligence (2023) 17:27–62

1 3

Why We devise these experiments to test the effectiveness of the merging policy and to
verify the goal G.1.

4.4.4 Scenario 4: Gaussian overlapped patterns (Fig. 3e)

Description In this case, we have several Gaussian patterns that could be overlapped. We
imagine that the � value is essential here: if the value is too high, the system will recognise
the set of overlapping clusters as one; otherwise, it will consider disjointed.

Why This experiment serves to emphasise that � is a domain-dependent choice. Moreo-
ver, it will show that the algorithm could be used also to find overlapped situations (G.1).

4.4.5 Scenario 5: Non‑convex patterns (Fig. 3f)

Description In this case, there are two zones, one with a non-convex shape with a lower
temperature than the outer zone. Here we expect that, eventually, the system will identify
the presence of only two clusters. The program might identify several candidates in the
transitory phases (cf. one for each edge). Hence, the merging policy should fix this issue by
producing only two clusters.

Why With this scenario, we want to point out that the program can cope with zones of
arbitrary shape.

4.4.6 Scenario 6: Gaussian patterns with movement

Description We test the result using four Gaussian distributions (arranged similarly to
Fig. 3a) combined with movement. Here, both merging policy, and waiting candidate time
(�) will be essential. In particular, � helps to avoid false positives since it waits before

Fig. 4 Snapshots of simulation executions. The colour of the square identifies the cluster id found in that
point. Black colour means no cluster. The green circle means that the node is a candidate. The blue gradient
circles are a graphical representation of temperature distribution. On the left is shown a snapshot of a simu-
lation before the merge policy has been applied (multiple clusters per point are found). On the right, there is
the snapshot of the same simulation after the merge policy action (Color figure online)

49Swarm Intelligence (2023) 17:27–62

1 3

spawning a new clustering process when encounters small local temperature variations.
In general, we imagine that high values of � and � will make the algorithm more unstable.

Why We are interested in seeing how movement affects the result of the clustering pro-
cess (G.2).

4.4.7 Scenario 7: Variable size Gaussian pattern

Description In this experiment, the temperature distributions are placed similarly as
Fig. 3a, but then the size of areas evolves in time. We expand the areas until a time T and
then contract them to their initial size. The starting area range is 100m, and the maximum
area expansion is 1km. Here we expect that the cluster area follows the underlying tem-
perature distribution.

Why In this experiment, we verify the algorithm’s robustness against temperature
changes (G.3).

4.4.8 Scenario 8: Random failures

Description The temperature distribution of choice follows Fig. 3a. Nodes could disap-
pear randomly with a rate specified by failure frequency. This could be harmful when: i)
the failure happens in a leader node, and therefore the cluster formed should be destroyed
and, ii) the failures are so frequent that certain nodes became isolated. The second case
is avoided using spawn frequency, which forces the system to insert a new node with the
specified rate. In this case, we expect robust performance with high-density system (i.e. �
= 0.5) since spurious failure does not change the overall topology.

Why In this last scenario, we check how the system handles node failures during the
clustering process (G.3).

4.5 Results

The simulations underline that the algorithm can find good subdivisions into clusters.
Indeed, Fig. 5 shows that our algorithm can eventually produce the correct number of clus-
ters after a certain settling period. In the following, we present the result focussing on the
evaluation goals stated in Sect. 4.2.

4.5.1 Goal 1 (G.1): Static sensing/spatial‑based clustering

Running the simulations of scenarios 1-5 we verified how much the clusters extracted fol-
low the underlying temperature distribution in the static context. Figure 5 shows that the
algorithm correctly extracts the cluster number—with the optimal parameters configura-
tion. Furthermore, observing Fig. 6, we can deduce that the cluster shape is correct too.
Indeed, the Silhouette index tends to be 1 when the clusters are disjointed, and the error
rate is negligible.

Here, � plays a key role. Observing the behaviour of scenario 4 in Fig. 7, we see
that with too low � we overestimate the cluster numbers and, with a high level of � , we
underestimate the cluster number. But this was the expected behaviour, as it depends
directly on the trend of the target distributions.

50 Swarm Intelligence (2023) 17:27–62

1 3

Finally, Another important aspect is the density (�) of the system. With a small num-
ber of nodes, candidate nodes may be positioned far from the cluster centre, thus identi-
fying wider areas than expected.

4.5.2 Goal 2 (G.2): Robustness against node mobility and failures

When nodes have a low mobility and exploration range, the system is robust to node move-
ments (Fig. 6). The exploring policy introduces errors, but the results are comparable to
solutions where the nodes are stationary. Moreover, even in case of failures, the clustering
process is practically not affected at all. However, in the worst case, mobility and failures
lead to false positives (Fig. 7). Indeed, some processes start in areas where the temperature
is almost constant. Therefore, that process approximately covers the whole area (and hence
produces a high error rate). Scenario 8 is mainly influenced by the low-density situation.
Indeed, in that case, removing nodes lead to not covering the whole system.

4.5.3 Goal 3 (G.3): Robustness against temperature changes

The result of scenario 7 is comparable to the static scenario. Indeed, Fig. 6 shows that
the cluster number is correct, and Fig. 6 shows that the error rate is low and the shape is
accurate. The solution suffers from low-density values and wrong � values as scenarios 1–5
(Fig. 7).

Fig. 5 Overview of simulation results. The dotted lines identify the ideal cluster division count. The blue
lines show the unique cluster found. Instead, the cyan lines indicate the unique cluster number after the
merging phase

51Swarm Intelligence (2023) 17:27–62

1 3

Fig. 6 In-depth analysis of good simulation results. In general, the algorithm produces good results. In the
case of movement and failures, the error can reach up to 10 per cent

52 Swarm Intelligence (2023) 17:27–62

1 3

4.6 Discussion

4.6.1 Simulations

Ultimately, our algorithm can support a certain degree of movement, sporadic failures, find
various cluster shapes, and cope with temperature changes in the optimal condition: high
density (�), limited exploration range (�), and an appropriate value for in cluster threshold
(�) value.

Fig. 7 Main examples of bad clustering results. In the first line, the images show different behaviour vary-
ing � . In the second line, the plots show how the algorithm does not handle well low-density robot swarms.
In the third line, the charts show how the algorithm handles various movement speeds. The fourth line
shows how the exploration range impacts the clustering results. Finally, the last line shows how failures
impact performance

53Swarm Intelligence (2023) 17:27–62

1 3

However, when drones move randomly, the algorithm starts to produce sub-optimal
cluster divisions since the nodes do not care about the cluster found, and they continue
to explore the area. But this could lead to becoming a false candidate and then starting an
unwanted clustering process. Furthermore, it could be argued that uniform zones are part
of a cluster that is not identified as there are no relative minima. For this reason, when a
node starts the process in a non-correct zone, the cluster identification will expand in the
nearly whole system. This problem could be reduced by changing � and � when the nodes
belong to a cluster.

It is worth noting that with a low value of � the algorithm starts to produce bad cluster
divisions—particularly clear in case of failures. This behaviour is unavoidable since we
base our algorithm on the presence of a centroid that starts the clustering process. Indeed,
with a low � value, it is more probable that the node that starts the process is far from the
real cluster centroid, and hence the process expansion can escape from the underlying dis-
tribution, misclassifying a large population of nodes.

4.6.2 Hardware deployment

While we have not performed experiments with the clustering algorithm on a physical sys-
tem, some observations can be drawn from the physical deployment of FCPP (Audrito,
2020), a C++ library offering an internal DSL for field-based programming. The deploy-
ment has been made in the context of applying field-based programming to an Industrial
Internet of Things (IIoT) scenario (Testa et al., 2022). The physical boards adopted for
the deployment are DWM1001C modules produced by Decawave, which are highly con-
strained in terms of resources: 64MHz ARM Cortex-M4 CPU, 512 KB flash memory and
64 KB RAM. Despite such constraints, the porting of FCPP has been successful, and on
top of it, it has been possible to run a field-based program with dynamic processes of com-
plexity comparable to that of the clustering algorithm presented here (Testa et al., 2022).
The communication capabilities of the DWM1001C modules include BLE (Bluetooth Low
Energy) and UWB (Ultra-Wide Band) transceivers. In the IIoT scenario, we have exploited
BLE for exchanging messages with neighbours, and UWB for estimating the distance from
neighbours. The distance estimation from neighbours could be useful in the clustering
algorithm presented here in order to estimate multi-hop distances through the gradient
function.

While the experience with the physical deployment described above has certainly been
positive, and makes us optimistic about the possibility of a similar deployment of the clus-
tering algorithm, some differences between the two scenarios should be further explored
and checked with experiments. First of all, the largest experiment in the IIoT scenario
included 20 nodes, which may not be enough to properly evaluate the clustering algorithm;
secondly, the area covered by the experiment was quite limited (a portion of an indoor lab);
finally, most of the nodes in the IIoT experiment were generally static (representing pallets)
and moved only when loaded and carried by a forklift.

5 Related work

This section covers related work. Coverage of related work is organised to separately cover:
related swarm-based environment monitoring approaches (Sect. 5.1), related clustering
models and problems (Sect. 5.2), research work related to the sensing-based clustering

54 Swarm Intelligence (2023) 17:27–62

1 3

problem we address (Sect. 5.3), research work related to field-based computing (Sect. 5.4),
and related field-based algorithms (Sect. 5.5).

5.1 Swarm‑based environment monitoring

The approach proposed in this paper can be used to dynamically cluster a swarm, e.g. to
monitor an environment in a decentralised way. Literature on swarm-based environment
monitoring is ample (Dunbabin & Marques, 2012). In particular, various works leverage
mobility and sparse sampling (Garg & Ayanian, 2014; Best et al., 2018, 2019; Casadei
et al., 2022a; Kemna et al., 2017).

In Garg and Ayanian (2014), a persistent monitoring approach of environment phenom-
ena with discontinuous dynamics is proposed. It is based on optimally adapting a sparse set
of sensing locations according to an evolving stochastic model of the environment. In Best
et al. (2018, 2019), decentralised planning is used to support multi-robot active perception,
which leverages movement to improve the quality of information gathering through effec-
tive choice of “viewpoints” in space and time. In Kemna et al. (2017), the authors focus
on multi-robot coordination for informative adaptive sampling in unknown, communica-
tion-constrained environments (like lakes or oceans). Their approach is based on dynamic,
decentralised Voronoi partitioning over a set of sampling locations, which are recalcu-
lated at synchronisation points initiated through requests for surfacing events. Though
the approach of this paper could also be used to support sparse sampling (Casadei et al.,
2022a), it also aims at supporting the formation of spatially cohesive clusters for coordi-
nated processing and/or action. Moreover, we do not aim at moving robots to appropriate
sampling locations, but rather leave the robots to move autonomously (e.g. according to
exploration policies) while having the collective clustering reflect the underlying phenom-
enon to support decision-making possibly beyond pure environmental sampling. The use of
Voronoi partitions in Kemna et al. (2017) differs from our clustering in that they leverage
regions to limit the prospective sampling locations to be visited by each vehicle, while we
actually want to define groups of coordinating robots.

5.2 Related clustering models and problems

Clustering is a well-known problem in data analysis and machine learning, and has been
widely studied in the literature (Jain et al., 1999; Estivill-Castro, 2002; Jain, 2010). In a
classical setting, the data to be clustered is stored in a single dataset, and a single algorithm
(or agent) is in charge of finding the “best” clusters according to some optimisation crite-
ria. Each data point in the input data set is described by the values of a fixed set of features;
the number of such features constitutes the dimensionality of the data set and, typically,
high dimensional data is harder to cluster meaningfully.

A characteristic of the clustering tasks considered in the present paper (and in gen-
eral, of sensing-based methods, see the next section), is that besides the sensed data, a
main source of information is the spatial distance between the agents. In Thrun and Ultsch
(2021), the authors consider high-dimensional data sets that exhibit natural clusters, char-
acterised by distances and/or density-based structures. They propose a semi-automated
method whereby the clusters are automatically proposed and manually selected starting
from a topographic visualisation of the high-dimensional data. Notably, they use swarm
intelligence for computing the topographic map, while other techniques are adopted for the
interactive process of clusters computation.

55Swarm Intelligence (2023) 17:27–62

1 3

There are, however, several works that address swarm-based clustering, using swarm
intelligence for the clustering task itself (Martens et al., 2011). It is important to note that
such methods (both those based on particle swarm optimisation (PSO), and those based
on ant colony systems (ACS)) exploit swarms just as a computational means for finding
clusters in a data set. Their goal is not to cluster the elements of the swarm itself, as it is
the case for the present work, but to simulate a virtual swarm to find good quality clusters.

Some works directly address the clustering of swarms. In Hu et al. (2021), the clustering
of a team of special robots (i.e. aerial drones) is part of a larger process that, after cluster
formation, also involves formation tracking (i.e. tracking a target through a suitable forma-
tion), and containment control (i.e. surround ground robots cooperating in the mission).
The method proposed to form clusters is based on a game-theoretic framework named
GRAPE. A significant difference w.r.t. the present work is that the number (and nature)
of clusters is determined by a given set of targets, while we do not assume such a priori
knowledge. Another significant work with similar goals is Ge et al. (2018), where a team
of robots must be partitioned into clusters organised as suitable formations (i.e. geometric
spatial patterns). The proposed solution inter-mixes the determination of clusters and their
formation (based, among other things, on the agents dynamics), assuming that the number
and nature of such formations is known a priori.

Since we consider clustering over a given topology (network), the problem can be
related to graph-based clustering (Chen & Ji, 2010). Graph-based clustering, however,
assumes that the given graph can be partitioned into densely connected subgraphs that
are sparsely connected to each other; i.e. it assumes that all the similarity information is
expressed by the presence of edges between nodes (and, possibly, by their weights). This is
not necessarily the case with the networks formed by our swarms, where connections are
just determined by spatial distance, and the clustering is strongly influenced by the sensed
data. Also, community detection methods can be viewed as clustering of the nodes of a
graph representing a network of relations (e.g. a social network) (Javed et al., 2018). Inter-
estingly, unlike in generic graph-based clustering, communities can easily overlap, since a
node (e.g. user) may belong to several communities at once.

5.3 Related work on sensing‑based clustering

Sensing-based clustering typically applies to sensor networks that are distributed on a geo-
graphical area and exploit clustering mainly to reduce the communication bandwidth and/
or energy consumption of the net. The role played by sensing a (possibly dynamic) geo-
graphic environment makes such problem and the proposed approaches to solve it relevant
to the present work, although the agents considered here are themselves dynamic entities
moving and acting across the space.

In Lin and Megerian (2007), the goal is to partition sensors for indoor monitoring and
control. The cluster heads are predetermined (based on the sources to be monitored and
controlled), while cluster formation is periodically scheduled in order to adapt to changes
in the sensed data. In our work, instead, the cluster heads are not a priori given: they are
determined according to the sensed data (e.g. the agents perceiving local minima) and can
change dynamically (e.g. because a candidate withdraws and joins a different cluster).

The goal of Gedik et al. (2007) is, instead, to obtain energy savings in data collection
from a wireless sensor network (WSN) by receiving values from only a subset of selected
representatives and predicting the other values through automatically generated statisti-
cal models. Cluster heads are chosen (probabilistically) based on the amount of energy

56 Swarm Intelligence (2023) 17:27–62

1 3

they have. Cluster formation is periodically scheduled, and the assignment of a sensor to a
cluster is based on the distance from the head and the similarity of the sensed value with
the head’s value. A work with similar goals is Cai and Zhang (2018), where again energy
savings in a WSN is the primary motivation. Here, the cluster heads are chosen based on
residual energy level and data gradient. Moreover, an autoregressive prediction model for
sensory data is maintained by each head to self-adjust temporal sampling intervals within
the cluster.

A sensing-based clustering problem is also studied in Kucuk et al. (2020) where, how-
ever, instead of being a high energy-constrained WSN, the deployed system involves sen-
sorised units and mobile phones able to upload all the relevant data to the cloud, through
cellular and Wi-Fi connections. In a disaster scenario, the mobile phones data is used to
centrally compute density-based clusters that can inform the SAR (Search and Rescue)
teams about the location of people in the area.

The DyClee approach described in Roa et al. (2019) is also centralised. The authors
assume that streams of sensors observations (e.g. in an Industrial IoT) are continually
tracked by their system, and are classified (e.g. as healthy or faulty) based on a set of clus-
ters that capture the patterns corresponding to different states. The main focus is on the
novelty detection problem, or concept drift, which implies the ability to update the clusters
as new behaviour is learned, while ignoring noise and occasional outliers. The online clus-
tering algorithm consists of two stages based, respectively, on distance and density, and is
fully dynamic in that it is able to create, eliminate, drift, merge, and split clusters as data is
processed.

5.4 Related approaches and programming models

Programming swarms of agents is a difficult task, because of the need of coordinating
their local behaviours to achieve global, swarm-level goals. In this work, we adopt the
field-based computing and programming approach (Viroli et al., 2019) for expressing
self-organising, collective behaviour of swarms. Our focus is on decentralised behaviour-
based approaches (rather than automatic design methods, e.g. reinforcement learning), as
surveyed, for example, in Brambilla et al. (2013); Viroli et al. (2019) and briefly in the
following.

An approach to the problem that has proven to be quite effective is generative com-
munication through tuple-based coordination models, as offered, for example, in the Linda
language (Gelernter, 1985) and its descendants; essentially, several processes running on
the same system can synchronise by writing and retrieving information in a shared (tuple-)
space. A derived idea is that of allowing programmability of the tuple space itself, so that
the coordination logic of processes can be embedded in the communication medium–see,
for example, Omicini and Denti (2001). An obvious limitation of the mentioned approaches
for the task of swarm programming is that they assume a central memory accessible by all
the agents/processes. However, the idea of tuple-spaces has been extended also to distrib-
uted systems, e.g. in the IBM TSpaces framework (Wyckoff et al., 1998).

An important feature of swarm systems is their adaptivity achieved through self-organi-
sation. A support to build such kind of systems is offered by frameworks inspired by other
sciences such as biology (Tolksdorf & Menezes, 2003) and chemistry (Sayama, 2009). The
field-based computing approach adopted in the present paper is based, instead, on the con-
cept of field, borrowed from physics. The related idea of a field of tuples has been imple-
mented in the TOTA middleware (Mamei & Zambonelli, 2009).

57Swarm Intelligence (2023) 17:27–62

1 3

As seen in this paper, the field-based approach is particularly well suited to mobile, spa-
tially situated agents. A related (and precursor) thread of research of that of spatial com-
puting, where space is both an abstraction and a means for computation. Spatial comput-
ing approaches have been largely surveyed in Beal et al. (2013). They are also related to
macro-programming (Newton et al., 2007), where distributed systems as wholes are pro-
grammed by a centralised perspective. For instance, a prominent related macro approach to
swarm programming is Buzz Pinciroli and Beltrame (2016), where swarms are first-class
collection-like abstractions.

5.5 Related field‑based algorithms

The field-based computing approach adopted in this paper has been applied for program-
ming several swarm intelligence algorithms such as robust distance estimation (gradi-
ent) (Audrito et al., 2017), leader election (Mo et al., 2018), distributed data collec-
tion (Audrito et al., 2021), and team formation and coordination (Casadei et al., 2021).

Field-based computing has the peculiar ability to capture collective behaviours as func-
tions operating on fields and to compose them together as “building blocks” to address
problems of increasing complexity (Viroli et al., 2019). Of particular relevance for the pre-
sent discussion is the implementation of the SCR (Self-Organising Coordination Regions)
pattern in Pianini et al. (2021b), where three building blocks are composed to support
control and monitoring of a distributed system: the sparse-choice S block (used for leader
election); the generalised gradient G block (for information broadcasting along gradient
fields); and the information collection C block. Most specifically, the SCR pattern can be
denoted as a feedback chain S-G-C-G: leaders are elected (S); then, a gradient from lead-
ers builds the communication structure (G); then, data from members (indirectly defined
by the information path towards a leader) is collected towards leaders (C); then, data from
leaders is propagated back to the members of the regions (G). However, the SCR pattern
is not limited to clustering (S-G part), but also regulates interactions within regions (C-G
part). Roughly, the sensing-based clustering algorithm covered in this paper could replace
the initial C-G composition that determines the system regions.

Similarly to a clustering algorithm, the S block (Mo et al., 2018) provides a distributed
mechanism to elect leaders from a set of candidates, and to assign each remaining user
node to a leader, thus partitioning the system into regions. The approach presented here
is different in several respects: first of all, the candidate leaders are determined by a char-
acteristic of a sensed measure (e.g. local minimum); second, each candidate cluster head
spawns an aggregate process to recruit other nodes within the cluster; finally, the other
nodes can join more than one cluster, based on the similarity of their sensed values with
the ones sensed by leaders.

6 Conclusion and future work

In this paper, we precisely define and address the dynamic sensing-based mobile swarm
clustering problem. Most specifically, we use the field-based paradigm to develop a novel
configurable meta-algorithm promoting self-organised clustering in a swarm of neigh-
bouring-interacting robots. The algorithm is evaluated on a set of synthetic environment

58 Swarm Intelligence (2023) 17:27–62

1 3

configurations. In particular, we show that a swarm can autonomously create clusters
reflecting the underlying dynamics of the perceptible target phenomenon in the environ-
ment, and is able to deal with a certain degree of change in the swarm topology and envi-
ronment. In order to perform the evaluation, we have implemented our algorithms using
the ScaFi Scala framework for field-based computing.

Future work could be devised in multiple directions. First of all, it could be interesting
to stress and possibly refine the algorithm on more extreme environmental conditions, or to
investigate it under different assumptions (e.g. a more constrained or rich system model). Sec-
ondly, it could be interesting to compare (or combine) the meta-algorithm against (with) auto-
mated swarm behaviour design methods like multi-agent reinforcement learning. Last but not
least, we would like to evaluate our algorithms on real use cases, e.g. in smart logistics and
precision agriculture scenarios, by implementing them on actual drones or robots.

Funding Open access funding provided by Alma Mater Studiorum - Università di Bologna within the
CRUI-CARE Agreement. This work has been partially supported by the EU/MUR FSE REACT-EU PON
R&I 2014-2020 and by the Italian PRIN 2020 project CommonWears 2020HCWWLP.

Data Availability Statement The datasets generated during the current study and the simulation framework
usable to replicate them are available in a public GitHub repository, https:// github. com/ cric96/ exper iment-
2021- swarm- intel ligen ce- si.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Audrito, G. (2020). FCPP: an efficient and extensible field calculus framework. In IEEE international
conference on autonomic computing and self-organizing systems, ACSOS 2020, Washington, DC,
USA, August 17–21, 2020. IEEE, pp. 153–159, https:// doi. org/ 10. 1109/ ACSOS 49614. 2020. 00037.

Audrito, G., Casadei, R., Damiani, F., et al. (2017). Compositional blocks for optimal self-healing gra-
dients. In 11th IEEE international conference on self-adaptive and self-organizing systems, SASO
2017, Tucson, AZ, USA, September 18–22, 2017. IEEE Computer Society, pp. 91–100, https:// doi.
org/ 10. 1109/ SASO. 2017. 18.

Audrito, G., Casadei, R., Damiani, F., et al. (2020). Computation against a neighbour: Addressing large-
scale distribution and adaptivity with functional programming and scala. https:// doi. org/ 10. 48550/
ARXIV. 2012. 08626.

Audrito, G., Casadei, R., Damiani, F., et al. (2021). Optimal resilient distributed data collection in
mobile edge environments. Computers and Electrical Engineering. https:// doi. org/ 10. 1016/j. compe
leceng. 2021. 107580.

Ball, D., Ross, P., English, A., et al. (2013). Robotics for sustainable broad-acre agriculture. In Alvarez
LM, Corke PI, Roberts JM (eds) Field and service robotics - results of the 9th international confer-
ence, December 9-11, 2013, Brisbane, Australia, Springer Tracts in Advanced Robotics, vol. 105.
pp. 439–453, Springer, https:// doi. org/ 10. 1007/ 978-3- 319- 07488-7_ 30.

https://github.com/cric96/experiment-2021-swarm-intelligence-si
https://github.com/cric96/experiment-2021-swarm-intelligence-si
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.48550/ARXIV.2012.08626
https://doi.org/10.48550/ARXIV.2012.08626
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.1007/978-3-319-07488-7_30

59Swarm Intelligence (2023) 17:27–62

1 3

Beal, J., Dulman, S., Usbeck, K., et al. (2013). Organizing the aggregate: Languages for spatial comput-
ing. In Formal and Practical Aspects of Domain-Specific Languages: Recent Developments. IGI
Global, chap 16, pp. 436–501, https:// doi. org/ 10. 4018/ 978-1- 4666- 2092-6. ch016.

Beal, J., Pianini, D., & Viroli, M. (2015). Aggregate programming for the internet of things. Computer,
48(9), 22–30. https:// doi. org/ 10. 1109/ MC. 2015. 261.

Best, G., Faigl, J., & Fitch, R. (2018). Online planning for multi-robot active perception with self-organ-
ising maps. Auton Robots, 42(4), 715–738. https:// doi. org/ 10. 1007/ s10514- 017- 9691-4.

Best, G., Cliff, O. M., Patten, T., et al. (2019). Dec-mcts: Decentralized planning for multi-robot active
perception. International Journal of Robotics Research. https:// doi. org/ 10. 1177/ 02783 64918
755924.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence - from natural to artificial systems.
Studies in the sciences of complexity. Oxford: Oxford University Press.

Brambilla, M., Ferrante, E., Birattari, M., et al. (2013). Swarm robotics: A review from the swarm engineer-
ing perspective. Swarm Intelligence, 7(1), 1–41. https:// doi. org/ 10. 1007/ s11721- 012- 0075-2.

Cai, W., & Zhang, M. (2018). Spatiotemporal correlation-based adaptive sampling algorithm for clustered
wireless sensor networks. International Journal of Distributed Sensor Networks. https:// doi. org/ 10.
1177/ 15501 47718 794614.

Carrillo-Zapata, D., Carranza, N., Diego, X., et al. (2018). Morphogenesis in robot swarms. Science Robot-
ics. https:// doi. org/ 10. 1126/ sciro botics. aau91 78.

Casadei, R., Viroli, M., Audrito, G., et al. (2019). Aggregate processes in field calculus. In H.R. Nielson,
E. Tuosto (Eds.) Coordination Models and Languages - 21st IFIP WG 6.1 International Conference,
COORDINATION 2019, Held as Part of the 14th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17-21, 2019, Proceedings,
Lecture Notes in Computer Science, vol. 11533. pp. 200–217, Springer, https:// doi. org/ 10. 1007/ 978-3-
030- 22397-7_ 12.

Casadei, R., Pianini, D., Placuzzi, A., et al. (2020). Pulverization in cyber-physical systems: Engineering the
self-organizing logic separated from deployment. Future Internet, 12(11), 203. https:// doi. org/ 10. 3390/
fi121 10203.

Casadei, R., Viroli, M., Audrito, G., et al. (2020b). Fscafi : A core calculus for collective adaptive systems
programming. In T. Margaria, B. Steffen (Eds.) Leveraging applications of formal methods, verifica-
tion and validation: Engineering principles - 9th international symposium on leveraging applications
of formal methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part II, Lec-
ture notes in computer science, vol. 12477. pp. 344–360, Springer https:// doi. org/ 10. 1007/ 978-3- 030-
61470-6_ 21.

Casadei, R., Viroli, M., Audrito, G., et al. (2021). Engineering collective intelligence at the edge with aggre-
gate processes. Engineering Applications of Artificial Intelligence, 97(104), 081. https:// doi. org/ 10.
1016/j. engap pai. 2020. 104081.

Casadei R, Mariani S, Pianini D, et al. (2022a). Space-fluid adaptive sampling: a field-based, self-organising
approach. In M. H. ter Beek, M. Sirjani (Eds.) Coordination models and languages - 24th international
conference, COORDINATION 2022, held as part of the 17th international federated conference on dis-
tributed computing techniques, DisCoTec 2022, Lucca, Italy, June 13–17, 2022, Proceedings, in press.

Casadei, R., Pianini, D., Viroli, M., et al. (2022). Digital twins, virtual devices, and augmentations for
self-organising cyber-physical collectives. Applied Sciences. https:// doi. org/ 10. 3390/ app12 010349.

Chen, Z., Ji, H. (2010). Graph-based clustering for computational linguistics: A survey. In Proceedings
of the 2010 workshop on graph-based methods for natural language processing. Association for
Computational Linguistics, USA, TextGraphs-5, pp. 1–9, https:// aclan tholo gy. org/ W10- 2301/.

Clark, S.S., Beal, J., Pal, P.P. (2015). Distributed recovery for enterprise services. In 2015 IEEE 9th
international conference on self-adaptive and self-organizing systems, Cambridge, MA, USA, Sep-
tember 21–25, 2015. IEEE Computer Society, pp. 111–120, https:// doi. org/ 10. 1109/ SASO. 2015. 19.

Cruz, N. B., Nedjah, N., & de Macedo, Mourelle L. (2017). Robust distributed spatial clustering for
swarm robotic based systems. Applied Soft Computing, 57, 727–737. https:// doi. org/ 10. 1016/j. asoc.
2016. 06. 002.

De Masi, G., Ferrante, E. (2020). Quality-dependent adaptation in a swarm of drones for environmen-
tal monitoring. In 2020 advances in science and engineering technology international conferences
(ASET), pp. 1–6, https:// doi. org/ 10. 1109/ ASET4 8392. 2020. 91182 35.

Dolev, S. (2000). Self-Stabilization. Cambridge: MIT Press.
Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: Significant advancements

and applications. IEEE Robotics and Automation Magazine, 19(1), 24–39. https:// doi. org/ 10. 1109/
MRA. 2011. 21816 83.

https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1007/s10514-017-9691-4
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1177/1550147718794614
https://doi.org/10.1177/1550147718794614
https://doi.org/10.1126/scirobotics.aau9178
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.1007/978-3-030-22397-7_12
https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.3390/app12010349
https://aclanthology.org/W10-2301/
https://doi.org/10.1109/SASO.2015.19
https://doi.org/10.1016/j.asoc.2016.06.002
https://doi.org/10.1016/j.asoc.2016.06.002
https://doi.org/10.1109/ASET48392.2020.9118235
https://doi.org/10.1109/MRA.2011.2181683
https://doi.org/10.1109/MRA.2011.2181683

60 Swarm Intelligence (2023) 17:27–62

1 3

Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4(1),
95–104. https:// doi. org/ 10. 1080/ 01969 72740 85460 59.

Estivill-Castro, V. (2002). Why so many clustering algorithms: A position paper. SIGKDD Explorations,
4(1), 65–75. https:// doi. org/ 10. 1145/ 568574. 568575.

Farinelli, A., Raeissi, M. M., Marchi, N., et al. (2017). Interacting with team oriented plans in multi-
robot systems. Autonomous Agents and Multi-Agent Systems, 31(2), 332–361.

Garg, S., Ayanian, N. (2014). Persistent monitoring of stochastic spatio-temporal phenomena with a
small team of robots. In D. Fox, L. E. Kavraki, H. Kurniawati (Eds.) Robotics: Science and sys-
tems X, University of California, Berkeley, USA, July 12–16, 2014, https:// doi. org/ 10. 15607/ RSS.
2014.X. 038.

Ge, X., Han, Q., & Zhang, X. (2018). Achieving cluster formation of multi-agent systems under ape-
riodic sampling and communication delays. IEEE Transactions on Industrial Electronics, 65(4),
3417–3426. https:// doi. org/ 10. 1109/ TIE. 2017. 27521 48.

Gedik, B., Liu, L., & Yu, P. S. (2007). ASAP: An adaptive sampling approach to data collection in sen-
sor networks. IEEE Transactions on Parallel and Distributed Systems, 18(12), 1766–1783. https://
doi. org/ 10. 1109/ TPDS. 2007. 1110.

Gelernter, D. (1985). Generative communication in linda. ACM Transactions on Programming Lan-
guages and Systems, 7(1), 80–112. https:// doi. org/ 10. 1145/ 2363. 2433.

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. (2020). Array programming with NumPy. Nature,
585(7825), 357–362. https:// doi. org/ 10. 1038/ s41586- 020- 2649-2.

Hoshino, S. (2013). Reactive clustering method for platooning autonomous mobile robots. IFAC Pro-
ceedings Volumes, 46(10), 152–157. https:// doi. org/ 10. 3182/ 20130 626-3- AU- 2035. 00009.

Hu, J., Bhowmick, P., Jang, I., et al. (2021). A decentralized cluster formation containment framework
for multirobot systems. IEEE Transactions on Robotics, 37(6), 1936–1955. https:// doi. org/ 10. 1109/
TRO. 2021. 30716 15.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science and Engineering,
9(3), 90–95. https:// doi. org/ 10. 1109/ MCSE. 2007. 55.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–
666. https:// doi. org/ 10. 1016/j. patrec. 2009. 09. 011.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Comput Surv, 31(3),
264–323. https:// doi. org/ 10. 1145/ 331499. 331504.

Javed, M. A., Younis, M. S., Latif, S., et al. (2018). Community detection in networks: A multidiscipli-
nary review. The Journal of Network and Computer Applications, 108, 87–111. https:// doi. org/ 10.
1016/j. jnca. 2018. 02. 011.

Kemna, S., Rogers, J.G., Nieto-Granda, C., et al. (2017). Multi-robot coordination through dynamic
voronoi partitioning for informative adaptive sampling in communication-constrained environ-
ments. In 2017 IEEE International conference on robotics and automation, ICRA 2017, Singapore,
May 29–June 3, 2017. IEEE, pp 2124–2130, 10.1109/ICRA.2017.7989245.

Kucuk, K., Bayilmis, C., Sonmez, A. F., et al. (2020). Crowd sensing aware disaster framework design
with iot technologies. Journal of Ambient Intelligence and Humanized Computing, 11(4), 1709–
1725. https:// doi. org/ 10. 1007/ s12652- 019- 01384-1.

Lee, C., Kim, M., Kazadi, S. (2005). Robot clustering. In Proceedings of the IEEE international confer-
ence on systems, man and cybernetics, Waikoloa, Hawaii, USA, October 10–12, 2005. IEEE, pp 1449–
1454, https:// doi. org/ 10. 1109/ ICSMC. 2005. 15713 50.

Lin, Y., Megerian, S. (2007). Sensing driven clustering for monitoring and control applications. In: 4th
IEEE Consumer Communications and Networking Conference, CCNC 2007, Las Vegas, NV, USA,
January 11–13, 2007. IEEE, pp 202–206, https:// doi. org/ 10. 1109/ CCNC. 2007. 47.

Mamei, M., & Zambonelli, F. (2009). Programming pervasive and mobile computing applications: The tota
approach. ACM Transactions on Software Engineering and Methodologies, 18(4), 1–56. https:// doi.
org/ 10. 1145/ 15389 42. 15389 45.

Mamei, M., Zambonelli, F., & Leonardi, L. (2004). Co-fields: A physically inspired approach to motion
coordination. IEEE Pervasive Computing, 3(2), 52–61. https:// doi. org/ 10. 1109/ MPRV. 2004. 13168 20.

Martens, D., Baesens, B., & Fawcett, T. (2011). Editorial survey: Swarm intelligence for data mining.
Machine Learning, 82, 1–42. https:// doi. org/ 10. 1007/ s10994- 010- 5216-5.

Mo, Y., Beal, J., Dasgupta, S. (2018). An aggregate computing approach to self-stabilizing leader election.
In 2018 IEEE 3rd international workshops on foundations and applications of self* systems (FAS*W),
Trento, Italy, September 3–7, 2018. IEEE, pp 112–117, https:// doi. org/ 10. 1109/ FAS-W. 2018. 00034.

Newton, R., Morrisett, G., Welsh, M. (2007). The regiment macroprogramming system. In T. F. Abdelza-
her, L. J. Guibas, M. Welsh (Eds.) Proceedings of the 6th international conference on information

https://doi.org/10.1080/01969727408546059
https://doi.org/10.1145/568574.568575
https://doi.org/10.15607/RSS.2014.X.038
https://doi.org/10.15607/RSS.2014.X.038
https://doi.org/10.1109/TIE.2017.2752148
https://doi.org/10.1109/TPDS.2007.1110
https://doi.org/10.1109/TPDS.2007.1110
https://doi.org/10.1145/2363.2433
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.3182/20130626-3-AU-2035.00009
https://doi.org/10.1109/TRO.2021.3071615
https://doi.org/10.1109/TRO.2021.3071615
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1145/331499.331504
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1007/s12652-019-01384-1
https://doi.org/10.1109/ICSMC.2005.1571350
https://doi.org/10.1109/CCNC.2007.47
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1007/s10994-010-5216-5
https://doi.org/10.1109/FAS-W.2018.00034

61Swarm Intelligence (2023) 17:27–62

1 3

processing in sensor networks, IPSN 2007, Cambridge, Massachusetts, USA, April 25–27, 2007.
ACM, pp. 489–498, https:// doi. org/ 10. 1145/ 12363 60. 12364 22.

Omicini, A., & Denti, E. (2001). From tuple spaces to tuple centres. Science of Computer Programming,
41(3), 277–294. https:// doi. org/ 10. 1016/ S0167- 6423(01) 00011-9.

Pham, N. D., Le, T. D., Park, K., et al. (2010). SCCS: Spatiotemporal clustering and compressing schemes
for efficient data collection applications in wsns. The International Journal of Communication Sys-
tems, 23(11), 1311–1333. https:// doi. org/ 10. 1002/ dac. 1104.

Pianini, D., Montagna, S., & Viroli, M. (2013). Chemical-oriented simulation of computational systems
with ALCHEMIST. Journal of Simulation, 7(3), 202–215. https:// doi. org/ 10. 1057/ jos. 2012. 27.

Pianini, D., Casadei, R., Viroli, M., et al. (2021a). Time-fluid field-based coordination through programma-
ble distributed schedulers. Logical Methods in Computer Science, https:// doi. org/ 10. 46298/ lmcs- 17(4:
13) 2021.

Pianini, D., Casadei, R., Viroli, M., et al. (2021). Partitioned integration and coordination via the self-organ-
ising coordination regions pattern. Future Generation Computer Systems, 114, 44–68. https:// doi. org/
10. 1016/j. future. 2020. 07. 032.

Pinciroli, C., & Beltrame, G. (2016). Buzz: A programming language for robot swarms. IEEE Software,
33(4), 97–100. https:// doi. org/ 10. 1109/ MS. 2016. 95.

Pinciroli, C., Trianni, V., O’Grady, R., et al. (2012). Argos: A modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intelligence, 6(4), 271–295. https:// doi. org/ 10. 1007/ s11721- 012- 0072-5.

Roa, N. B., Travé-Massuyès, L., & Grisales, V. H. (2019). DyClee: Dynamic clustering for tracking evolv-
ing environments. Pattern Recognition, 94, 162–186. https:// doi. org/ 10. 1016/j. patcog. 2019. 05. 024.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster anal-
ysis. Journal of Computational and Applied Mathematics, 20, 53–65. https:// doi. org/ 10. 1016/ 0377-
0427(87) 90125-7.

Saez-Pons, J., Alboul, L., Penders, J., et al. (2010). Multi-robot team formation control in the GUARDIANS
project. Industrial Robot, 37(4), 372–383.

Sayama, H. (2009). Swarm chemistry. Artificial Life, 15(1), 105–114. https:// doi. org/ 10. 1162/ artl. 2009. 15.1.
15107.

Schranz, M., Umlauft, M., Sende, M., et al. (2020). Swarm robotic behaviors and current applications. Fron-
tiers Robotics AI, 7, 36. https:// doi. org/ 10. 3389/ frobt. 2020. 00036.

Serugendo, G.D.M., Martin-Flatin, J.P., Jelasity, M., et al. (Eds.) (2007). In Proceedings of the first interna-
tional conference on self-adaptive and self-organizing systems, SASO 2007, Boston, MA, USA, July
9–11, 2007, IEEE Computer Society.

Serugendo, G. D. M., Gleizes, M., & Karageorgos, A. (2011). Self-organising Software - From Natural to
Artificial Adaptation. Natural Computing Series Springer, https:// doi. org/ 10. 1007/ 978-3- 642- 17348-6.

Shen, W., Will, P. M., Galstyan, A., et al. (2004). Hormone-inspired self-organization and distributed con-
trol of robotic swarms. Autonomous Robots, 17(1), 93–105. https:// doi. org/ 10. 1023/B: AURO. 00000
32940. 08116. f1.

Testa, L., Audrito, G., Damiani, F., et al. (2022). Aggregate processes as distributed adaptive services for
the industrial internet of things. Pervasive and Mobile Computing, 85, 101658. https:// doi. org/ 10.
1016/j. pmcj. 2022. 101658

Thrun, M. C., & Ultsch, A. (2021). Swarm intelligence for self-organized clustering. Artificial Intelligence.
https:// doi. org/ 10. 1016/j. artint. 2020. 103237.

Tolksdorf, R., Menezes, R. (2003). Using swarm intelligence in linda systems. In A. Omicini, P. Petta, J. Pitt
(Eds.) Engineering societies in the agents world IV, 4th international workshop, ESAW 2003, London,
UK, October 29-31, 2003, Revised Selected and Invited Papers, Lecture Notes in Computer Science,
Vol. 3071, pp. 49–65, Springer https:// doi. org/ 10. 1007/ 978-3- 540- 25946-6_3.

Viroli, M., Beal, J., Damiani, F., et al. (2019). From distributed coordination to field calculus and aggregate
computing. The Journal of Logical and Algebraic Methods in Programming. https:// doi. org/ 10. 1016/j.
jlamp. 2019. 100486.

Warren, C.W. (1989). Global path planning using artificial potential fields. In Proceedings of the 1989 IEEE
International Conference on Robotics and Automation, Scottsdale, Arizona, USA, May 14–19, 1989.
IEEE Computer Society, pp. 316–321, https:// doi. org/ 10. 1109/ ROBOT. 1989. 100007.

Wolf, T.D., Holvoet, T. (2007). Designing self-organising emergent systems based on information flows and
feedback-loops. In Proceedings of the first international conference on self-adaptive and self-organiz-
ing systems, SASO 2007, Boston, MA, USA, July 9–11, 2007. IEEE Computer Society, pp 295–298,
https:// doi. org/ 10. 1109/ SASO. 2007. 16.

Wyckoff, P., McLaughry, S. W., Lehman, T. J., et al. (1998). T spaces. IBM Systems Journal, 37(3), 454–
474. https:// doi. org/ 10. 1147/ sj. 373. 0454.

https://doi.org/10.1145/1236360.1236422
https://doi.org/10.1016/S0167-6423(01)00011-9
https://doi.org/10.1002/dac.1104
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1016/j.patcog.2019.05.024
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1162/artl.2009.15.1.15107
https://doi.org/10.1162/artl.2009.15.1.15107
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1007/978-3-642-17348-6
https://doi.org/10.1023/B:AURO.0000032940.08116.f1
https://doi.org/10.1023/B:AURO.0000032940.08116.f1
https://doi.org/10.1016/j.pmcj.2022.101658
https://doi.org/10.1016/j.pmcj.2022.101658
https://doi.org/10.1016/j.artint.2020.103237
https://doi.org/10.1007/978-3-540-25946-6_3
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1109/ROBOT.1989.100007
https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1147/sj.373.0454

62 Swarm Intelligence (2023) 17:27–62

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Gianluca Aguzzi1 · Giorgio Audrito2 · Roberto Casadei1 · Ferruccio Damiani2 ·
Gianluca Torta2 · Mirko Viroli1

 Gianluca Aguzzi
 gianluca.aguzzi@unibo.it

 Giorgio Audrito
 giorgio.audrito@unito.it

 Ferruccio Damiani
 ferruccio.damiani@unito.it

 Gianluca Torta
 gianluca.torta@unito.it

 Mirko Viroli
 mirko.viroli@unibo.it

1 Department of Computer Science and Engineering, Alma Mater Studiorum – Università di
Bologna, Via dell’Università, 50, Cesena 47521, Italy

2 Department of Computer Science, Università degli Studi di Torino, C.so Svizzera, 185,
Torino 10149, Italy

http://orcid.org/0000-0002-1553-4561
http://orcid.org/0000-0002-2319-0375
http://orcid.org/0000-0001-9149-949X
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0002-4276-7213
http://orcid.org/0000-0003-2702-5702

	A field-based computing approach to sensing-driven clustering in robot swarms
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Field-based computing
	2.1.1 System model
	2.1.2 Field-based programming model
	2.1.3 Field-based concurrent processes

	2.2 Resilient dynamic cluster formation in swarms

	3 Contribution
	3.1 Assumptions
	3.2 Problem definition
	3.3 Adaptive centroid-based clustering on numeric values
	3.4 Adaptive clustering meta-algorithm

	4 Evaluation
	4.1 Scenario description
	4.2 Evaluation goals
	4.3 Simulation framework
	4.3.1 Parameters
	4.3.2 Metrics

	4.4 Simulations
	4.4.1 Scenario 1: Gaussian patterns (Fig. 3a)
	4.4.2 Scenario 2: Stretched Gaussian patterns (Fig. 3b)
	4.4.3 Scenario 3: One direction temperature field (Fig. 3c and d)
	4.4.4 Scenario 4: Gaussian overlapped patterns (Fig. 3e)
	4.4.5 Scenario 5: Non-convex patterns (Fig. 3f)
	4.4.6 Scenario 6: Gaussian patterns with movement
	4.4.7 Scenario 7: Variable size Gaussian pattern
	4.4.8 Scenario 8: Random failures

	4.5 Results
	4.5.1 Goal 1 (G.1): Static sensingspatial-based clustering
	4.5.2 Goal 2 (G.2): Robustness against node mobility and failures
	4.5.3 Goal 3 (G.3): Robustness against temperature changes

	4.6 Discussion
	4.6.1 Simulations
	4.6.2 Hardware deployment

	5 Related work
	5.1 Swarm-based environment monitoring
	5.2 Related clustering models and problems
	5.3 Related work on sensing-based clustering
	5.4 Related approaches and programming models
	5.5 Related field-based algorithms

	6 Conclusion and future work
	References

