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Abstract
Swarm intelligence leverages collective behaviours emerging from interaction and activ-
ity of several “simple” agents to solve problems in various environments. One problem 
of interest in large swarms featuring a variety of sub-goals is swarm clustering, where the 
individuals of a swarm are assigned or choose to belong to zero or more groups, also called 
clusters. In this work, we address the sensing-based swarm clustering problem, where clus-
ters are defined based on both the values sensed from the environment and the spatial dis-
tribution of the values and the agents. Moreover, we address it in a setting characterised 
by decentralisation of computation and interaction, and dynamicity of values and mobility 
of agents. For the solution, we propose to use the field-based computing paradigm, where 
computation and interaction are expressed in terms of a functional manipulation of fields, 
distributed and evolving data structures mapping each individual of the system to values 
over time. We devise a solution to sensing-based swarm clustering leveraging multiple 
concurrent field computations with limited domain and evaluate the approach experimen-
tally by means of simulations, showing that the programmed swarms form clusters that 
well reflect the underlying environmental phenomena dynamics.

Keywords Sensing-based clustering · Swarm clustering · Computational fields · Multi-
agent cluster formation

1 Introduction

Swarm intelligence is the collective-level ability to solve problems in large groups of rel-
atively simple agents that interact with each other locally, i.e. based on physical/logical 
proximity (Bonabeau et al., 1999). Swarm intelligence is a phenomenon observed both in 
natural systems (cf. social insects and animals) and artificial systems (cf. computational 
ecosystems) (Bonabeau et al., 1999). In computer science and engineering, research fields 
like swarm robotics (Brambilla et al., 2013) and self-organising systems (Serugendo et al., 
2011, 2007) emerged to study algorithms, models, and techniques for promoting swarm 
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intelligence in artificial systems for a variety of contexts and applications including (but 
not limited to) environment monitoring (De Masi & Ferrante, 2020; Casadei et al., 2020a), 
enterprise software service coordination (Clark et  al., 2015), crowd management  (Beal 
et  al., 2015), and most specifically control of robot swarms (groups of relatively simple 
robots) (Shen et al., 2004; Carrillo-Zapata et al., 2018). A common distinction is between 
behaviour-based and automatic design methods  (Brambilla et  al., 2013): the former is 
based on a manual specification of individual behaviour, whereas in the latter the indi-
vidual behaviour is generated automatically, by searching, adapting, or evolving individual 
behaviours for effective collective behaviour. Common but not exhaustive classes of collec-
tive behaviours include spatial organisation (e.g. pattern formation), swarm navigation, and 
collective-decision making (Brambilla et al., 2013).

In particular, one problem of interest is swarm clustering (Lee et al., 2005; Cruz et al., 
2017), whereby the classical data clustering task (i.e. the unsupervised learning task where 
data items are grouped to promote intra-group similarity) is brought in swarm settings. 
This problem revolves around splitting the swarm into groups of individuals, called clus-
ters, such that the individuals in the same cluster are more similar to each other (for some 
definition of similarity) than to those in other clusters. Once a cluster is formed, typically 
it is assigned a sub-goal to be carried on collectively. Typical clustering approaches may 
consider the spatial distribution of the individuals or the goals of the individuals to define 
clusters that represent, for example, teams or interaction domains. In this paper, we focus 
on sensing-based clustering  (Lin & Megerian, 2007), namely a clustering problem that 
considers both the spatial distribution of individuals and the environmental values sensed 
by these individuals (through sensors). That is, the goal is to seek for clusters of neighbour 
individuals with a similar perception of some sensed value. The problem can be in a static 
form, where a snapshot of the system state is considered, or in a dynamic form, where 
values change over time and solutions have to deal with change somehow. The problem 
has been considered in Wireless Sensor Networks (WSNs) and Internet-of-Things (IoT) 
applications like environment monitoring and control  (Lin & Megerian, 2007), efficient 
distributed collection (Pham et al., 2010), and disaster management (Kucuk et al., 2020). 
However, to the best of our knowledge no existing work addresses the dynamic problem in 
mobile swarms, which requires specific techniques to adaptively re-adjust clusters to face 
changes. Additionally, we look for solutions featuring resilience, namely leveraging dis-
tribution and decentralisation to continuously face changes and faults, hence avoiding sin-
gle points of failures and potential bottlenecks. Accordingly, in this work, we present and 
address the dynamic sensing-based swarm clustering problem.

Among the many approaches to express (and reason in terms of) collective behaviour 
featuring inherent adaptivity we shall consider the field-based computing approach (Viroli 
et  al., 2019), for its suitability in addressing dynamic problems by fostering “controlled 
self-organisation”. In this approach, computations leverage an execution model based on 
repeated computation and asynchronous neighbour-based communication. On top, com-
plex collective behaviour is described in terms of functional manipulations of (computa-
tional) fields, i.e. data structures evolving over time that map agents in a domain to com-
putational values—sort of spatially distributed streams of values. This is inspired by the 
common notion of fields found in physics (e.g. force or magnetic fields). Notice, however, 
that in our viewpoint, the computational fields assign values to agents rather than to envi-
ronment (space-time) positions as in, for example, artificial potential fields (Warren, 1989), 
though the approaches are similar and related. We adopt this approach as it has shown 
to conveniently express a variety of resilient collective swarm-like behaviour including 
self-healing distance estimation (gradient)  (Audrito et  al., 2017), self-stabilising leader 



29Swarm Intelligence (2023) 17:27–62 

1 3

election (Mo et al., 2018), distributed collection (Audrito et al., 2021), and team creation 
and coordination  (Casadei et  al., 2021)—and to scale with complexity up to high-level 
composite patterns (Pianini et al., 2021b).

Essentially, the core idea of our clustering approach is to make agents in local minima 
(or maxima) of the sensed value (depending on whether lowest or highest values are most 
significant) spawn a spatial process of gathering for neighbour devices until finding the 
proper size of the cluster, additionally managing interactions with other clusters when there 
are overlaps.

In this manuscript we provide the following contributions:

• we provide a precise definition of the dynamic sensing-based mobile swarm clustering 
problem;

• we present a field-based approach to address the problem, and describe a novel config-
urable meta-algorithm for inducing self-organised clustering in a system of neighbour-
ing-interacting robots;

• we provide a publicly available and reproducible simulation framework for evaluating 
the algorithm on a set of diverse environment configurations, from which we observe 
that our solution can identify various cluster shapes and cope with a certain degree of 
node mobility and changes in sensed phenomena.

Therefore, the contribution lies both in the general area of swarm intelligence as well as in 
the specific thread of research in field-based computing.

The paper is organised as follows. Section 2 covers background, introducing the field-
based computing paradigm and the swarm clustering problem. Section 3 provides the novel 
technical contribution. Section 4 presents our evaluation of the approach. Section 5 covers 
related work. Finally, Sect. 6 provides a summary and discusses future research directions.

2  Background and motivation

The background of this work includes field-based computing (Sect. 2.1) and the problem of 
clustering in swarms (Sect. 2.2).

2.1  Field‑based computing

Field-based computing (Viroli et al., 2019) is an approach where computation leverages a 
notion of computational fields (fields for short) (Warren, 1989; Mamei et al., 2004; Viroli 
et al., 2019), namely distributed data structures evolving in time and associating locations 
with values. The approach originates from previous work like Warren’s artificial potential 
fields  (Warren, 1989) and co-fields from Mamei et  al. (2004). In particular, in co-fields, 
computational fields represent contextual information, locally sensed by the agents and 
repeatedly distributed by the agents themselves or the infrastructure according to a propa-
gation rule.

In this work, by field-based computing we mean a specific programming and computa-
tional model, also known as aggregate computing in literature (Beal et al., 2015), which is 
surveyed in Viroli et al. (2019). In this model, collective and self-organising behaviour is 
programmed through a composition of functions operating on fields mapping a set of indi-
vidual agents (rather than environment locations) to computational values. Therefore, fields 
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can be used to associate a certain domain of agents with what they sense, the information 
they process, and actuation instructions for operating on the environment. Fields are com-
puted locally to the agents but are subject to a global viewpoint: so, e.g. a field of velocity 
vectors can be seen as a movement command for an entire swarm, or a field of reals can 
denote what an entire swarm perceives in a certain environment. To understand field-based 
computing, two essential parts have to be considered: the system model and the program-
ming model. Their interplay is what allows the local actions of the agents to yield emergent 
collective behaviour.

2.1.1  System model

We consider a network of computing and interacting agents situated in some environment.
Structure. An agent is an autonomous entity equipped with sensors and actuators, 

which serve as the interface towards a logical or physical environment. By a logical point 
of view1, it also has state, a support for communicating with other agents, and support for 
computing simple programs. An agent is connected with other neighbour agents which col-
lectively form its neighbourhood. The set of neighbours depends on a neighbouring rela-
tionship, which is defined by designers according to the application at hand and is subject 
to the constraints exerted by the underlying physical network. A typical neighbouring rule 
is the one that mimics physical connectivity; so, e.g. a robot is a neighbour of another 
robot if it manages to send a message to the latter over the wireless channel. Another typi-
cal neighbouring rule is the one based on spatial vicinity; so, e.g. a robot is a neighbour 
of another robot if the infrastructure manages to deliver a message from the former to the 
latter (e.g. using other robots as relays) and these two robots are at an estimated distance 
smaller than a certain threshold (assuming a distance can be estimated through a proper 
technology).

Interaction. Interaction happens by sending messages to neighbours, asynchronously. 
Interaction can also happen in a stigmergic way, by perceiving and acting upon the envi-
ronment through sensors and actuators. The content of messages and when they are sent 
and received depend on the agent behaviour. However, in general, as our goal is to model 
continuous collective behaviours, or self-organising systems, we remark that interaction 
would typically be frequent (in relation to the problem and environment dynamics).

Behaviour. As per the above consideration, the behaviour of any individual agent is best 
understood in terms of repeated enaction of execution rounds, where each round consists of 
the following steps (though some flexibility exists especially in the actuation part): 

1. Context acquisition. The agent gathers its context by considering its previous state as 
well as the most recent sensor readings and messages from neighbours.

2. Computation. The agent runs a computation against the acquired context, yielding (i) 
an output describing potential actuations; and (ii) a coordination message containing all 
the information to be sent to neighbours for the purpose of coordination at a collective 
level.

3. Actuation and communication. The agent performs the actuations described by the 
program output and dispatches the coordination message to the entire neighbourhood.

1 Actually, such requirements may be relaxed by considering different execution strategies on available 
infrastructure (Casadei et al., 2020a).



31Swarm Intelligence (2023) 17:27–62 

1 3

By having every agent repeatedly run these sense-compute-act rounds, the whole system 
fosters a self-organisation process whereby up-to-date information (from the environment 
and from the agents) is continuously incorporated and processed, typically in a self-stabi-
lising manner (Dolev, 2000).

This system model provides a basic machinery for collective adaptive behaviour, which, 
however, requires a proper description of the “local computation step”: this is fostered 
by the field-based programming model (discussed in Sect. 2.1.2). A field-based program 
steers the collective adaptive behaviour of a system, which unfolds by having each agent in 
the system evaluate that program according to the discussed round-based execution model. 
Notice that such a program specifies both what local processing the agents must perform 
and what data they must share with neighbours; also, notice that generally the program 
does not affect the round-based execution protocol—unless advanced forms of scheduling 
are desired (Pianini et al., 2021a). The distributed execution protocol may be provided by 
a middleware, which will ensure that messages are exchanged and rounds properly sched-
uled. The reader can refer to Pianini et al. (2021a) and Casadei et al. (2022b), respectively, 
for a more comprehensive discussion on execution and deployment aspects.

2.1.2  Field‑based programming model

Field-based programs can be encoded with field-based programming languages like 
ScaFi  (Casadei et  al., 2020b), which are implementations of field calculi  (Viroli et  al., 
2019; Audrito et al., 2020), i.e. functional core languages that provide the minimal set of 
constructs for programming with fields and enable formal analysis. ScaFi is a domain-spe-
cific language (DSL) embedded in Scala which supports field-based constructs and offers a 
library of reusable functions, some of which are covered in the following.

A field-based expression or program (e.g. programmed in ScaFi) can be subject to a 
local or global interpretation. Locally, an integer value like 7 has the usual meaning; glob-
ally, a 7 denotes a field where each agent is mapped to a local 7 (a uniform, constant field). 
For instance, querying a local temperature sensor would yield a field of temperature read-
ings, associating space-time events (i.e. all the rounds of a network of agents) to values 
denoting the temperatures at those locations.

Locally, an integer expression add(a,b), or a+b, has the usual meaning, given by the 
sum of a with b; globally, it denotes the application of a field of functions add, or +, on a 
field a and a field b, yielding a field given by the sum of a and b in an agent-wise fashion 
(notice that a may be a non-uniform non-constant field having different local values for dif-
ferent agents over time).

The programming model does not deal directly with global fields (which are essentially 
a denotational construct), but it deals only with neighbouring fields, which enable one 
agent to collect data from its neighbours.

Generally, field calculi feature constructs to (i) evolve values across time, by trans-
forming a value computed at a previous round into a new value; (ii) exchange data with 
neighbours, where received data is reified by neighbouring fields; (iii) conditionally break 
a computation into parts, defining distinct domains of collective computation. However, 
in the following, we only briefly present a subset of the field-based computing building 
blocks used for sensing-based clustering, as the details of field calculi are not required to 
understand the contribution of this manuscript. See Viroli et al. (2019) for more details on 
how these blocks are actually developed.
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Typically, in field-based computing applications, we are dealing with sharing and col-
lecting information from/to a device.

To do this, the gradient is an essential construct (Audrito et al., 2017). This block 
produces a numeric field that expresses the minimum distance from a source zone follow-
ing a certain metric (e.g. Euclidean distance). Hence, it maps a Boolean field (true where 
a node is a source, false otherwise) into a distance field from the closest source. The 
signature of the function is defined as2:

def gradient(source: Boolean, metric: Metric): Double

This function is resilient to changes in the source field and metric field, self-stabilising 
to the correct field of minimum distances to the closest source once input fields stabilise. 
Gradients support information flows, which are fundamental constructs for designing self-
organising systems (Wolf & Holvoet, 2007). Indeed, through this construct, it is possible 
to share generic data (a position, a temperature, etc.) towards this resulting distance field. 
Such propagation of data from a source of a gradient outwards is captured by a broad-
cast function (generic in type parameter D):

def broadcast[D](source: Boolean, data: D): D

When we want to aggregate data in source agents, we use the block C (collect) 
instead (Audrito et al., 2021):

def C[V](p: Double, acc: (V, V) => V, local: V, null: V): V

In this signature, p is a potential field usually computed through gradient; acc is 
the logic that combines locally perceived data with that received from neighbours; local 
is the local data we want to collect at a point in space (e.g. a position); and null is the 
null data for the acc operation (e.g. if we collect a real value, the null value could be 0). 
This is also an essential operation for the definition of collective behaviours: it enables, for 
example, computation of the average temperature in a certain zone covered by agents.

As an example, consider a network of agents where a sparse set of leaders have been 
elected. Suppose that we want to break the system into several regions, each one ruled by 
one leader, and that we want every agent to know how many members are in their region. 
This can be coded as follows:

val leader: Boolean = // true on leader devices
val potential: Double = gradient(leader, metric())
val collect: Int = C[Int](potential, (sum,v)=>sum+v, 1, 0)
val count: Int = broadcast[Int](leader, collect)

2 In Scala, keyword def introduces a named function; after the name, it follows a list of parameters of the 
form name:Type; after the parameter list, the return type of the function is specified.
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A region is indirectly defined by the corresponding leader; each agent has to simply 
descend the gradient to locate its leader (and hence its region). Along the potential 
towards leaders, a contribution of 1 is accumulated for each agent. To propagate the com-
plete count on the whole region, it is then sufficient to broadcast the leader’s col-
lect value outwards.

2.1.3  Field‑based concurrent processes

Field-based concurrent processes, also called aggregate processes  (Casadei et  al., 2019, 
2021), are field-based computations that exist dynamically: they can be dynamically gener-
ated (usually by individual agents), execute on a dynamic set of agents, and disappear once 
all its members withdraw. They have been formalised in Casadei et al. (2019) and deeply 
covered in Casadei et al. (2021), showing how they can support the design of intelligent 
collective behaviour by extending the practical expressiveness of field-based programming 
models (Viroli et al., 2019). We provide a brief account of the details relevant for this man-
uscript in the following.

Indeed, the aggregate process abstraction is relevant in this work since an aggregate process 
instance, by running on a (evolving) subset of the agents, can be used to denote a dynamic 
cluster. Therefore, clustering algorithms can be expressed in terms of how aggregate processes 
are generated (candidate cluster formation) and merged/removed (cluster selection).

Aggregate processes can be expressed as normal field-based functions and spawned 
through a spawn construct with the following signature:

// spawn is a generic function which accepts 3 parameters
def spawn[K,A,R](process: K => A => (R,Boolean),

newProcesses: Set[K],
args: A): Map[K,R]

The generic type K instantiates to the type of a process key, also called a process iden-
tifier (PID), which also works as construction parameter; the generic type A instantiates 
to the type of runtime parameters for the currently running process instances; the generic 
type R instantiates to the type of the output of the process. A process definition has cur-
ried type K => A => (R,Boolean), namely a function from a value of type K and a 
value of type A to a pair of a value of type R and a Boolean. The Boolean value, called the 
process status, expresses if the device that has executed a given process instance would like 
to participate into the process (true status) or not (false status). The crucial point is 
that every device that participates into a process with PID � automatically propagates the 
process PID � to all its neighbours, which will run a corresponding process instance when 
the spawn function is evaluated. So, the spawn function accepts a function process of 
a field-based behaviour, a set newProcesses of new process instances to be generated 
locally in the current round, and a value of type A for the runtime input of the instances 
currently running in the local round of a given device. Notice that, though process can 
be a field of functions, it is typically a constant field of the same function, which means 
that usually a spawn expression enables running zero or more process instances of the 
same kind of process. Evaluation of spawn returns a Map[K,R] (i.e. a hashmap or dic-
tionary) which a set of entries mapping the PIDs of executed process instances (with status 
true) to corresponding outputs of type R.
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As an example, consider building a separate gradient computation for each distinct 
source agent, that will expand within a certain range � . This could be coded as follows in 
ScaFi:

type DeviceId = Int
// Process definition as a function
val proc: DeviceId => Boolean => (Double, Boolean) = id => isSource => {

val output = gradient(id == deviceId())
val status = if(id == deviceId()) isSource

else output < ρ
(output, status)

}
// Set of processes to be generated locally
val newProcesses: Set[DeviceId] =

if(isSource()) Set(deviceId()) else Set.empty
// Expression for handling acquired and generated processes
val gradients: Map[DeviceId,Double] =

spawn[DeviceId,Boolean,Double](process, newProcesses, isSource())

In detail, the IDs of sources are used as PIDs; so, for instance, a gradient from agent 7 
will become a process with PID 7. The process logic is defined through proc, which is 
a function of the PID id and Boolean argument isSource denoting whether the run-
ning agent is a source, as provided by built-in sensor function isSource(). In proc, a 
gradient is built from the agent whose ID, provided by deviceId(), matches the id of 
the source corresponding to the current process instance. Then, status is defined true 
if the source for the process is still a source or, for non-source agents, if their gradient 
value is lower than threshold � . Notice that when the original source is not a source any 
more, the gradient output will rise, eventually causing all the agents to leave that pro-
cess. Value newProcesses will be a singleton set with the ID of the running device 
when its isSource() sensor returns true, or the empty set otherwise. In the former case, 
a corresponding process is spawned if it did not already exist. The evaluation of the spawn 
call, then, will run both new and existing processes including those executed (and not quit) 
at the previous round, as well as those acquired from neighbours. The output of the spawn 
expression will be a map from the PIDs of the processes locally executed to the value of 
the gradient (output) locally computed in those process instances.

An example of the dynamics of such a program is provided in Fig. 1. In the picture: 
nodes are agents; labels on nodes are agent IDs; edges denote neighbouring links, over 
which messages are sent and received; the output of the spawn expression is shown above 
the nodes, unless it is an empty map (not shown); the different sub-pictures are snapshots 
of a corresponding hypothetical system state trajectory that may result after multiple 
rounds of execution in multiple devices. A more thorough introduction and description of 
aggregate processes together with more examples is available in Casadei et al. (2021).

2.2  Resilient dynamic cluster formation in swarms

Different cluster models exist and, for each cluster model, several algorithms can be 
devised  (Estivill-Castro, 2002). These are reviewed and compared with our cluster 
model in Sect. 5.
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In this paper, we focus on swarm clustering, which involves associating each swarm 
member to zero or more clusters. So, this is a problem of cluster formation (Ge et al., 
2018), more than a problem of cluster analysis (which generally includes cluster 

Fig. 1  Examples of the dynamics of multiple concurrent gradient processes
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formation followed by cluster evaluation). A cluster, in this setting, is essentially a label 
(cluster ID), which can be associated to an agent, and that can be used to determine its 
behaviour. In field terms, a clustering can be seen as a field mapping each agent to a set 
of cluster IDs—we call this a clustering field.

Essentially, a cluster can be used to determine, query, and control a group of agents. 
Such a group could represent a team, used for cooperation or to solve a common goal, or 
a space-time domain for a field computation. Indeed, as the agents are situated in space, 
they provide a means for extracting data from their corresponding location, which may 
be instrumental for environment monitoring, data acquisition, etc.

Moreover, we consider dynamic clustering  (Roa et  al., 2019), where the emphasis 
is not on identifying a single clustering for a given system configuration, but to update 
and evolve a clustering solution as the system configuration evolves (e.g. due to mobil-
ity, failure, or change in other clustering criteria). The specific problem we tackle is 
dynamic sensing-based/space-based swarm clustering, which involves associating each 
swarm member to zero or more clusters, and to evolve such association by consider-
ing change in the environment (sensing-based) and spatial location of the members 
(space-based).

In summary, our goal is to define a distributed, decentralised, field-based clustering 
algorithm, for the system model described in Sect. 2.1.1, able to create and dynamically 
maintain a clustering field, resiliently. Our focus on resilience make centralised approaches 
not appropriate since we cannot assume that some nodes are infallible or always available. 
This work draws motivation from (i) the relevance of the problem for situated systems (e.g. 
in swarm robotics), (ii) a scarcity of solutions to the problem of sensing-driven spatial 
clustering in literature, and (iii) a general lack of effective field-based clustering solutions. 
Refer to Sect. 5 for a more detailed account on these research gaps.

3  Contribution

In this section, after describing a minimal set of assumptions underlying the approach 
(Sect. 3.1), we define the problem to be addressed (Sect. 3.2), in terms of inputs, out-
puts, and parameters, describe a specific instantiation of the problem for centroid-based 
clustering on numeric values (Sect. 3.3), and then present a meta-algorithm providing a 
solution to the stated problem (Sect. 3.4).

3.1  Assumptions

Before formally defining the problem of Dynamic Sensing Based Swarm Clustering, 
we summarise the assumptions about the swarm devices and the environment in which 
they act. Such assumptions justify both the way we define the problem, and some of the 
design choices we adopt for its solution. 

1. A swarm is composed by a set of possibly many relatively simple autonomous robots 
(e.g. ground, airborne, underwater).

2. A robot can move within the environment, sense, and actuate.
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3. Communication is based on peer-to-peer connection link, based on the proximity of 
robots, without relying on infrastructure (e.g. LTE network, WiFi network).

4. Reliability of robots themselves and communications are not guaranteed and, in some 
scenarios, failures are quite likely.

5. The measures of the environment, as sensed by the robots, can change over time.
6. The measures of interest of the environment at two points in space close to each other 

tend to be positively correlated.

The above assumptions are rather weak and, therefore, quite challenging. They encompass 
scenarios where a swarm of robots explores an area where multiple natural phenomena are 
happening.

The field-based clustering algorithm for solving the Dynamic Sensing-Based Swarm 
Clustering problem will be discussed below. For now, we just want to point out that our 
assumptions justify a fully distributed approach in which robots exchange information with 
their neighbours.

First, given the very nature of swarm systems, problems are usually better solved by 
distributed algorithms than centralised algorithms, e.g. Hoshino (2013); Cruz et al. (2017). 
In particular, by our assumption that robots and communications can fail, and that there is 
no global communication infrastructure, a node in charge of all the computations (either a 
robot or a base station) would constitute a risky single-point of failure. Even if the swarm 
was able to recover from such failure by automatically choosing another central node, the 
switch would be cumbersome and potentially very costly, only to reach again a situation 
with another single point of failure.

Given robots whose connection links are established and lost based on the proximity 
with other robots, it may be possible to build an abstraction on top of that, whereby multi-
hop communications are transparent and each robot has the illusion to be able to imme-
diately communicate with any other robot in the swarm by specifying an appropriate ID 
(this is, for example, the typical abstraction brought by the IP layer of the TCP/IP stack). 
While the cost of adding such additional layer may be acceptable in some situations, for the 
specific goal of clustering this would not bring any advantage: as we shall see in the sec-
tions below, clusters spring out, expand, and collapse following spatial vicinity—i.e. a new 
cluster expands first to the immediate neighbours of the robot that generated it, and then 
progressively spreads to further robots in an incremental way.

3.2  Problem definition

In this paper, we address the problem of situation awareness and recognition, where a 
value distributed in space (e.g. temperature as measured by sensors) has to be monitored, 
by recognising compact clusters with similar values (e.g. spatial regions with a simi-
lar temperature). This problem, called sensing-driven clustering in literature, has been 
investigated largely in static scenarios (Kucuk et  al., 2020; Pham et  al., 2010; Lin & 
Megerian, 2007), where data from a fixed sensor network has to be processed in order 
to obtain the relevant clusters. However, solutions for such networks do not extend well 
to dynamic contexts, such as micro-drone swarms monitoring an environment: in this 
scenario, mobility and proximity of communication are key and need to be handled by an 
algorithm that is resilient to changes in both values, network structure and placement in 
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space. To the best of our knowledge, this problem has never been previously considered 
in the literature.

A sensing-driven clustering algorithm for mobile swarms could be useful for several 
outcomes. Clusters may provide a compressed summary of the value distribution in space, 
to upload on the cloud and be graphically represented for human convenience. Clusters 
may also be used to drive more complex situation recognition patterns: algorithms to detect 
dangerous situations may be run in each cluster separately, using information from that 
cluster to reach a verdict, without interference from information on neighbouring clusters. 
Clusters may also be used to drive task assignment to the monitoring drones, possibly guid-
ing their placement in space, by directing more drones in clusters where the need arises.

More formally, we consider the following problem:

• Input: for each device, a unique identifier i and a value vi of type T (possibly obtained 
through a sensor reading);

• Output: for each device, a list of clusters to which the device belongs, represented as a 
map from unique identifiers l of cluster leaders to corresponding cluster summary val-
ues wl of type S.

In order to formally specify the output, we need some further details characterising what a 
cluster is, how they should be selected, and what is their summary. This is attained through 
the following problem parameters.

• Metric: a data type M with

– a null value 0M;
– a partial order3 x ≤ y defined for x, y of type M;
– an addition operator x + y defined for x,  y of type M, such that x + 0M = x and 

x + y > x if y > 0M;
– a positive function d(i, j) > 0M returning a value in M representing a distance 

between a device i and j (depending on the devices’ sensor states and possibly val-
ues vi ). This is intended to make use of spatial distance estimates as well as other 
factors (i.e. value distances).

• Summary: a data type S with

– a value s(i) of type S in every device i (depending on sensor state);
– an associative and commutative function f ∶ (S, S) → S , used to aggregate values 

s(i) for devices in a same cluster.

• Leader selection:

– a candidate radius r(i) in M (depending on sensor state and values), so that only 
devices with a relative distance strictly lower than r(i) can belong to a cluster whose 
leader is i;4

– a commutative similarity predicate p ∶ (S, S) → {⊤,⊥} , identifying similar clusters 
based on their summary.

3 A partial order is a reflexive, transitive and anti-symmetric relation; with no requirement that either x ≤ y 
or y ≤ x for x, y of type M.
4 Notice that r(i) = 0M implies that no device can be in a cluster whose leader is i.



39Swarm Intelligence (2023) 17:27–62 

1 3

According to this description, a candidate cluster C is a set of devices with a leader i, such 
that every j ∈ C is within a distance of r(i) from the leader i, according to the metric given 
by d. The summary wi of such cluster is the repeated aggregation through f of the values 
{vj ∶ j ∈ C} . Nearby clusters are merged if their summaries are similar according to predi-
cate p, and in such case, the lowest identifier is selected as the leader of the merged cluster.

Leaders are used to regulate clusters via aggregate processes and to easily support con-
sistent coordination and decision-making regarding the activity of a cluster. Notice that 
agents may belong to multiple clusters: this is important to support tracking phenomena 
that are spatially close to each other. Indeed, if a node is in between two phenomena, it 
could participate in the corresponding clusters at the same time to help to track or handle 
both phenomena.

We highlight that we aim to solve this problem by an adaptive algorithm, that is, a pro-
gram that is able to handle changes in its input, by periodically and asynchronously updat-
ing its internal values.

3.3  Adaptive centroid‑based clustering on numeric values

In the evaluation section, we consider a specific instantiation of the parameters just intro-
duced, for centroid-based clustering on numeric values. In this context, the metric is a 
simple distance on values, so that d(i, j) = |vi − vj| . To prevent the creation of a candidate 
cluster for every device, the candidate radius r(i) is set to zero whenever i is not a local 
minimum (i.e. has a neighbouring device j such that vj < vi ). If instead i is a local mini-
mum, r(i) is set to a fixed difference value � . The values s(i) to be summarised are set to a 
tuple [xi, yi, vi, 1] of the devices’ positions5 and values with the number 1, with an aggrega-
tor function f that is a component-wise sum, so that the overall aggregate of a cluster C is 
(eventually) equal to the tuple [

∑
i∈C xi,

∑
i∈C yi,

∑
i∈C vi, #C] (where #C is the actual number 

of members of cluster C). The similarity predicate p then declares two clusters as similar 
if they have centroids within a radius of � , in a 3D space mixing spatial coordinates with a 
value coordinate:

where (x, y, v) denotes a 3D vector and ‖ ⋅ ‖ denotes the norm of a vector. By setting the 
problem parameters as described, the meta-algorithm can select clusters of similar value, 
led by their minima, and merge overlapping clusters that are too close together and with a 
similar value.

3.4  Adaptive clustering meta‑algorithm

We now describe the general meta-algorithm for the stated problem through state equa-
tions. The algorithm state is distributed, hence composed of variables xi depending on 
a device identifier i: we assume that such a variable is stored in device i and periodi-
cally updated by it through the state equations. Each equation may involve inspecting 
the state of variables in neighbour devices j: we assume that every device periodically 
shares its state with neighbours, so that a (not necessarily updated) view of neighbours’ 

p([x, y, v, n], [x�, y�, v�, n�]) ∶=
‖‖‖‖‖

(x, y, v)

n
−

(x�, y�, v�)

n�

‖‖‖‖‖
< 𝛾

5 We assume that a GPS-like sensor is available.
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state is available in each device, and each state equation can be computed locally in the 
current device i, without remote memory accesses. We use N(i) to denote the set of 
current neighbours of device i, i.e. the set of devices j for which a view of their state is 
locally available in i (not including i itself). The execution of state equations can be per-
formed in asynchronous rounds, as described in Sect. 2.1. In order to showcase the algo-
rithm at work by examples, in the following we consider a network of three intercon-
nected devices i = 0, 1, 2 , so that N(0) = N(1) = N(2) = {0, 1, 2} . We assume that the 
devices are placed in positions (x0, y0) = (0, 0) , (x1, y1) = (1, 1) , (x2, y2) = (2, 0) and hold 
values v0 = 2 , v1 = 3 , v2 = 1 . We will also assume that the parameters are as described 
in Sect. 3.3, with � = � = 3.

Table 1 summarises the state variables used in state equations. Every device main-
tains a candidate leader set Si , of possible clusters to which the device may belong. 
Every round, this set is updated as:

Thus, Si includes i provided that r(i) > 0M , together with other candidate leaders � con-
sidered by neighbours (in their candidate leader set and which have computed to be within 
the cluster). In field-based computing, this set is implicitly maintained by the spawn con-
struct, given c�

i
 as process return status and {i} as new process key (if r(i) > 0M ). In our 

sample network, the initial value for Si in each i will only consider the current device, 
as information from neighbouring devices is not available yet. Thus, we will have 
S0 = {0},S1 = {},S2 = {2} . After convergence, each node will understand itself as pos-
sibly belonging to clusters 0 and 2, so that S0 = S1 = S2 = {0, 2}.

Most of the meta-algorithm computation is repeated for each of the candidate leaders 
� ∈ Si . First, a metric m�

i
 of distance between � and i is computed, through the follow-

ing equation (called the gradient block in field-based computing—cf. Sect. 2.1):

In the sample network, we will have m0
0
= m2

2
= 0 , m0

1
= 0 + |v0 − v1| = 1 , 

m2
1
= 0 + |v2 − v1| = 2 , m2

0
= m0

2
= 0 + |v0 − v1| + |v2 − v1| = 3 . From m�

i
 , we also decide 

the values c�
i
 as the truth predicates of whether m�

i
≤ �.

Si = {� ∈ Sj for j ∈ N(i) s.t. c�
j
= ⊤} ∪

{
� if r(i) = 0M
{i} otherwise

m�

i
=

{
0M if � = i

min{m�

j
+ d(i, j) ∶ j ∈ N(i)} otherwise

Table 1  State variables used in the state equations

i Current device N(i) Neighbour set
� Candidate leader Si Candidate leader set
m�

i
Metric in i from � c�

i
Whether i belongs to cluster �

p�
i

Parent of i in cluster � t�
i

Partial summary in i for cluster �

u�
i

Candidate leader summary in i for �
li Selected leader for cluster i, if any wi Selected summary for cluster i, if any
l�
i

Selected leader for cluster � in i w�

i
Selected summary for cluster � in i
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Then, an optional parent p�
i
 for � ≠ i is determined as the neighbour j with minimal m�

j
 

(resolving ties by the identifier j itself):

In our example, we have that p0
1
= 0 , p2

1
= 2 , p2

0
= p0

2
= 1 while p0

0
 and p2

2
 are undefined. 

Through it, partial summaries t�
i
 can be computed (C block in field-based computing—cf. 

Sect. 2.1):

where “reduce” is a function accumulating every element of a given set with the given 
binary function, and thus aggregates with f the value s(i) together with the t�

j
 values of 

neighbours j which chose the current device i as their parent. In the sample network, we will 
have that t2

0
= s(0) = (0, 0, 2, 1) , t0

2
= s(2) = (2, 0, 1, 1) , t0

1
= s(1) + s(2) , t2

1
= s(1) + s(0) , 

t0
0
= t2

2
= s(0) + s(1) + s(2) = (3, 1, 6, 3) . The value of the partial summary in the leader is 

then propagated through the cluster by a broadcast function:

so that, in our example after convergence, each u�
i
 is (3, 1, 6, 3). Every candidate leader i 

with r(i) > 0M is now able to choose its selected leader li , as the minimum candidate leader 
j (possibly i itself) with a summary similar to that of i according to predicate p:

In the running example, we will have that l0 = l2 = 0 , w0 = w2 = (3, 1, 6, 3) , since the two 
clusters are fully overlapping hence p is true. The selected leader li and corresponding sum-
mary wi is then propagated by broadcast through the cluster of i. For every � ∈ Si:

Finally, in every device i, the meta-algorithm output is the map:

This meta-algorithm is presented as ScaFi pseudo-code in Fig. 2, using ScaFi library 
functions gradient, C, and broadcast—cf. Sect. 2.1. Notice that since clusters are 
represented as aggregate processes, and aggregate processes define “scopes” for collective 
computations, the participation of an agent in an aggregate process has by itself the infor-
mation about the cluster membership; so, collective tasks may be assigned to any cluster, 
and these will be inherently played by all the members of that cluster. We also remark that 
although values vi are not directly used by the meta-algorithms, the parameters r(i) and 

p�
i
=

{
argminj∈N(i){(m

�

j
, j)} if � ≠ i

None otherwise

t�
i
= reduce({s(i)} ∪ {t�

j
∶ j ∈ N(i) and p�

j
= i}, f )

u�
i
=

{
t�
i

if � = i

u�
p�
i

otherwise

(li,wi) =

{
min{(�, u�

i
) ∶ � ∈ Si and p(u

�

i
, ui

i
)} if r(i) > 0M

None otherwise

(l�
i
,w�

i
) =

{
(li,wi) if � = i

(l�
p�
i

,w�

p�
i

) otherwise

{l�
i
↦ w�

i
∶ � ∈ Si}.
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d(i, j) are allowed to depend on them (and usually do), so that values are indirectly used. 
An example of such behaviour is given in the next section.

4  Evaluation

In this section, we evaluate the meta-algorithm proposed in Sect. 3.4 in a case study of situ-
ation recognition within a synthetic environment (Sect. 4.1). The goal (Sect. 4.2) is to show 
how the algorithm can cluster agents in a sensing-based fashion, hence identifying various 
temperature cluster shapes. Furthermore, we assess how the algorithm works in mobile set-
tings, where a swarm of agents moves across an environment—which can be representative 
for exploration scenarios. After describing the scenario and goals, in this section we describe 
the simulation framework (Sect.  4.3), the simulation configurations (Sect.  4.4), the results 
(Sect. 4.5), and finally provide a discussion about the evaluation and the approach (Sect. 4.6).

4.1  Scenario description

A swarm group of robots is interested in identifying areas where environmental data var-
ies within a known range. In particular, we assume that the robots are both capable of 

// process starts when r(i) is positive
val newProc = mux (r(i) > 0) { Set(mid) } { Set.empty }

// collect map from � ∈ to (m�
i , u

�
i)

val clusters = spawn(� => _ => {

val m�
i = gradient(mid == �, d) // distance estimation

val c�i = m�
i < r(�) // whether device is in cluster

val t�i = C(m�
i, f, s(i)) // summary collection

val u�i = broadcast(m�
i, t�i) // summary broadcast

return ((m�
i, u�i), c�i) // process result and status

}, newProc, ())
// selected leader
val li = mux (r(i) > 0) {

clusters.filter(x => p(x._2, clusters(mid))).keys.min
} { mid }
// selected leader summary
val wi = mux (r(i) > 0) { clusters(li)._2 } { None }
// propagate in process
val result = spawn(� => _ => {

val m�
i = clusters(�)._1 // recover distances

val c�i = m�
i < r(�) // whether device is in cluster

val (l�i, w�
i) = broadcast(m�

i, (li, wi)) // final broadcast

return ((l�i, w�
i), c�i) // process result and status

}, newProc, ())
// build result map
return result.map(x => { x._2._1 -> x._2._2 })

Fig. 2  ScaFi pseudo-code of the meta-algorithm
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sensing the environmental temperature, perceiving their position in space (e.g. using GPS), 
and exploring a limited area (i.e. a square with a side of 1km). The temperature is just an 
arbitrary choice of a sensible physical quantity that should drive, together with the spatial 
distribution, the clustering; the idea is that a temperature can be indicative for an envi-
ronment situation that could require attention or intervention (cf. wildfires which can start 
and spread in hot, dry, and windy conditions). The scenarios are plausible, but we are not 
interested in full realism: simplifications and generalisations are introduced to study the 
algorithm in diverse controlled situations. Since the absence of central authority and the 
limited robot communication capability, we suppose that the robots can only interact with 
their neighbours (i.e. the devices with which a robot manages to establish a connection). In 
particular, we imagine that each robot is equipped with a LoRa module with a connection 
range of 100m. In this case, a node can potentially participate in several clusters as it may 
be spatially close to two different phenomena. Therefore, it must both partake in the col-
lective perception (i.e. perceive the local temperature) and act to solve the cluster-identified 
problem. The choice of how and when a node should act depends on the application but is 
typically left to the leader, since it has the cluster-side vision of phenomena and the nodes. 
Notice that these assumptions are coherent with the system model of Sect. 2.1.1.

In the experiments described in the following, we are only interested in the clusters 
determined by the swarm cooperatively, not in how clusters are leveraged at the applica-
tion level. However, even if we do not directly leverage the output of the clustering process, 
we would underline that, in using the proposed algorithm, we inherently exploit both the 
leader election process and the multi-cluster formation. The foster is necessary to create 
clusters since, in our algorithm, each cluster is managed by one leader. The latter is essen-
tial to track the phenomena of interest. In fact, as phenomena can be spatially close and 
thus overlapping, if a node could only participate in one cluster, we would not be able to 
analyse the traced phenomenon correctly. Finally, we would underline that this application 
description is general and could be applied in several other concrete scenarios  (Schranz 
et al., 2020), just mentioning: sea monitoring  (Farinelli et al., 2017) (aquaculture, pollu-
tion, water quality), smart agriculture  (Ball et  al., 2013) (fertilisation, removal of weeds 
and insects), surveillance in military use cases, criminal activity tracking, and victim local-
isation in disaster situations (Saez-Pons et al., 2010).

4.2  Evaluation goals

We set up these simulations to: 

G.1  verify the capability of the algorithm to find different cluster shapes: we want to 
check that our algorithm is robust enough to correctly identify any kind of distribu-
tion, whether Gaussian or not;

G.2  examine how found clusters can cope with drone movement and failures: once veri-
fied the algorithm results in stationary conditions, we would examine how mobil-
ity and failures influences the clustering process by controlling both clusters count, 
shape, and size;

G.3  test the algorithm dynamics when the temperature distribution changes: in a swarm 
robotics context, the observed phenomena could change over time. Therefore, the 
algorithm proposed should be robust against phenomena dynamisms.
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 That is, these goals reflect the design requirement of supporting sensing/spatial-based 
clustering in static, mobile, and environment-dynamic scenarios.

4.3  Simulation framework

We verify our sensing-driven clustering algorithm using simulations. The simulation 
experiments, resulting data, source code, and instructions for reproducibility are available 
at a public GitHub repository6.

Among the many simulators available for swarm-like robots behaviours (e.g. 
ARGoS (Pinciroli et al., 2012)), we choose Alchemist (Pianini et al., 2013), a meta-sim-
ulator for pervasive-computing like applications. Alchemist is already used in similar sce-
narios  (Casadei et  al., 2021) and it supports the ScaFi language  (Casadei et  al., 2020b), 
that has been chosen among other field-based languages (Viroli et al., 2019) as it supports 
aggregate processes (Casadei et al., 2019), which we consider essential in order to imple-
ment our clustering algorithm.

4.3.1  Parameters

To check the effectiveness of our solution, we evaluate the aggregate program behaviour 
using different parameters, summarised in Table 2 and described in the following.

One of the most important parameters is the in cluster threshold ( � ). It defines if a node 
is inside the cluster or outside; so, it guides the aggregate process expansion among the 
nodes. If the value is too low, the programs take into consideration only a few nodes; if it is 
too high, the cluster will be expanded to nodes that should not belong to that cluster. This 
parameter is application-dependent, so developers should carefully choose the right bal-
ance between node inclusion and boundedness, ultimately affecting the cluster shape.

Table 2  A summary of the parameters used in simulations

Parameter Unit Description Values

In Cluster 
Threshold – �

◦
C A real value used to verify if the temperature perceived 

in a certain node could be considered as a part of the 
current cluster

[ 0.5, 1.0, 1.5 ]

Same Cluster 
Threshold – �

n.a A real value used to verify if two clusters could be con-
sidered as the same

[ 0.1, 0.3, 0.7 ]

Speed – � km/s The constant velocity used by drone to explore the areas [ 7, 10, 14 ]
Exploration range 

– �
km The maximum range area in which drones could move [ 0.5, 0.6 ]

Density – � n.a A parameter used to define how many nodes will be 
placed in the environment

[ 0.5, 0.75 ]

Waiting candidate 
time – �

n.a Rounds needed to mark a node as candidate [ 3, 5, 7 ]

Failure frequency 
– �

Hz Failure frequency of random nodes that participate in the 
system

[ 0.5, 0.1, 0 ]

Spawn frequency 
– �

Hz Spawn frequency of a node in a random position within 
the environment

[ 0.5, 0.1, 0 ]

6 https:// github. com/ cric96/ exper iment- 2021- swarm- intel ligen ce- si

https://github.com/cric96/experiment-2021-swarm-intelligence-si
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The same cluster threshold ( � ), instead, is used by the cluster leader to define when two 
clusters are similar (as shown in Sect. 3.4). This parameter plays a crucial role in finding 
the right cluster boundaries. Indeed, if � is too high, two clusters could be merged even if 
they are different. On the other hand, if � is too low, multiple overlapped clusters remain 
even if they could be merged.

A clustering process starts when a node becomes a candidate. waiting candidate time 
( � ) rules the rounds needed by a node to spawn a process after it has become a candi-
date. This helps in avoiding the excessive process spawn due to small local temperature 
variations.

We are interested in the robustness of the clustering process against the node move-
ment. Therefore, we tested our solution varying the drone speed ( � ) and the exploration 
range ( � ). We expect that the higher the movement speed, the greater the instability of the 
identified clusters. � does not affect candidate nodes, they will stand still until they stay 
candidates.

We check also how the output changes varying the density ( � ) of drones. Theo-
retically, we expect a better result with high-density swarms. From � we compute 
the total number of drones as: N = (10∕�)2 , e.g. with � = 0.5,N = 400 and with 
� = 0.75,N = 173.

Finally, � (failure frequency) and � (spawn frequency) are used to verify how our 
algorithm could handle failures during the clustering process. The foster rules the fre-
quency in which a random node disappears from the system. The latter controls the 
rate of spawning nodes that will participate in the aggregate program evaluation. This 
is useful to avoid complete node isolation after frequent node failures. Even if the 
movement is already a good estimation of how the system responds to dynamisms, we 
want to add another disruptive change. Indeed, movements are typically relative, and 
therefore, the changes in the neighbourhood are limited.

4.3.2  Metrics

The clustering results are verified using different metrics. First of all, we extract the 
number of total unique clusters found by the collective to check if the program pro-
duces the correct partitioning. This value gives a quick overview of the clustering 
result. Along with this value, we evaluate the total number of unique merged clusters. 
The latter should be as near as possible to the correct cluster number.

However, neither the number of total unique clusters nor the total number of unique 
merged clusters tells us anything about the shape of the clusters. To this aim, we com-
pute several metrics:

• the number of nodes for each cluster, stating the overall device partitions;
• the Silhouette (Rousseeuw, 1987) and Dunn (Dunn, 1974) indexes, used as internal 

evaluation schemes;
• the error rate, observable only when we know the ground truth.

By observing the value of the Silhouette index, we can understand if the clusters 
extracted are overlapped. Indeed, if the Silhouette tends to be 0, it means that the clus-
ters are overlapped. Instead, if it tends to 1, the clusters found are disjointed. The Dunn 
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index, instead, is used as a control value. When we have a Silhouette that tends to be 1, 
we expect to have a higher Dunn index value.

The error rate metric measures the misclassified nodes: if a node is associated with 
a cluster but it is far from all the targets in the systems (false positive) or should be 
associated with a cluster but the algorithm identifies it as an external node. The error 
rate is computed as:

where TP stand for true positive (i.e. number of nodes classified within a cluster and they 
are placed near to a temperature distribution) and TN stands for true negative (i.e. number 
of nodes classified as external and far from all the temperature distribution). This value is 
used to understand how well the algorithm performs when the drone explores the areas.

4.4  Simulations

We evaluate the behaviour of our algorithm in several experiments. The simulations have 
in common 

i) the environment area (a square with a side of 1km),
ii) the communication radius (100m), and
iii) the average evaluation frequency of aggregate programs (1Hz).

The drones are uniformly placed to cover the entire zone. We run the simulations in a 
modern machine equipped with two AMD EPYC 7301 with 128GB RAM. The results are 
reproducible in any modern machine, but consider that it might take a long time to finish 
(in our configuration, the simulations end after 8h). Each scenario is executed 20 times 
with different random seeds for a total of 100 simulated seconds (some simulations lasts 
150s to reach convergence). The choice of scenarios that we show below was guided to test 
(i) the effectiveness of our algorithm, and (ii) verify that it fulfilled all the goals described 
above. In particular, most temperature distributions follow a normal distribution. We made 
this choice as natural phenomena usually follow this distribution. Thus, if our solution was 
capable of detecting clusters of this form, it will probably work for all other scenarios in 
which one is interested in monitoring a certain natural phenomenon. Having said this, we 
also verified that the algorithm is also capable of finding non-Gaussian shapes—(scenario 
3, 4, 5). Finally, the last scenarios serve to verify how the system can handle changes, both 
at the system level (movement and failures) and at the environment level (distribution 
changing over time). The data generated by the simulator is handled using NumPy (Har-
ris et al., 2020) and plotted using matplotlib (Hunter, 2007). The plotted results consist of 
the average (lines) and the standard deviation (area behind lines) of the values of interest 
in different episodes. In Fig. 4 there is a graphical representation of a run of our algorithm.

4.4.1  Scenario 1: Gaussian patterns (Fig. 3a)

Description In this scenario, the drones are stationary (i.e. they stand still). There are five 
zones with a Gaussian distribution, and there is no overlap between distributions. Given 
the stationary situation, the number of candidate nodes is equal to the number of zones of 
interest.

E =
FP + FN

TP + TN
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Why Used to verify G.1, particularly we expect that the algorithm finds clusters without 
making any errors and that they will be stable over time.

4.4.2  Scenario 2: Stretched Gaussian patterns (Fig. 3b)

Description These simulations are similar to the previous one, but in this case, the Gauss-
ian distributions have an ellipse-like shape.

Why With these experiments, we would check that the shape does not make such a dif-
ference in the clustering process. Indeed, we expect a result similar to the one in the previ-
ous example (G.1).

4.4.3  Scenario 3: One direction temperature field (Fig. 3c and d)

Description In this case, we imagine that only one cluster is present (fixing � to 1 ◦C and 
putting a total variation of temperature equal to 1 ◦C ). Temperatures grow from left to right 
in a constant fashion. Namely, in Fig. 3c the temperature varies in one dimension (horizon-
tally), whereas in Fig. 3d the temperature varies in two dimensions (diagonally). In the sce-
nario depicted in Fig. 3c we are interested to see what happens when multiple candidates 
are elected. In this case, there are several relative minima (the set of nodes that are leftmost 
with minimum id in their neighbourhood). But, eventually, the processes will expand them 
in the same way. Thus, we expect that the merging policy tends to create only one cluster. 
We use the scenario shown in Fig. 3d as a reference. Indeed, there will be only one can-
didate (located in the bottom left corner), and hence, the algorithm should result in one 
cluster.

(a) (b) (c)

(d) (e) (f)

Fig. 3  Graphical representation of temperature field distributions used in the simulations. The lighter the 
colour, the lower the temperature (Color figure online)
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Why We devise these experiments to test the effectiveness of the merging policy and to 
verify the goal G.1.

4.4.4  Scenario 4: Gaussian overlapped patterns (Fig. 3e)

Description In this case, we have several Gaussian patterns that could be overlapped. We 
imagine that the � value is essential here: if the value is too high, the system will recognise 
the set of overlapping clusters as one; otherwise, it will consider disjointed.

Why This experiment serves to emphasise that � is a domain-dependent choice. Moreo-
ver, it will show that the algorithm could be used also to find overlapped situations (G.1).

4.4.5  Scenario 5: Non‑convex patterns (Fig. 3f)

Description In this case, there are two zones, one with a non-convex shape with a lower 
temperature than the outer zone. Here we expect that, eventually, the system will identify 
the presence of only two clusters. The program might identify several candidates in the 
transitory phases (cf. one for each edge). Hence, the merging policy should fix this issue by 
producing only two clusters.

Why With this scenario, we want to point out that the program can cope with zones of 
arbitrary shape.

4.4.6  Scenario 6: Gaussian patterns with movement

Description We test the result using four Gaussian distributions (arranged similarly to 
Fig. 3a) combined with movement. Here, both merging policy, and waiting candidate time 
( � ) will be essential. In particular, � helps to avoid false positives since it waits before 

Fig. 4  Snapshots of simulation executions. The colour of the square identifies the cluster id found in that 
point. Black colour means no cluster. The green circle means that the node is a candidate. The blue gradient 
circles are a graphical representation of temperature distribution. On the left is shown a snapshot of a simu-
lation before the merge policy has been applied (multiple clusters per point are found). On the right, there is 
the snapshot of the same simulation after the merge policy action (Color figure online)
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spawning a new clustering process when encounters small local temperature variations. 
In general, we imagine that high values of � and � will make the algorithm more unstable.

Why We are interested in seeing how movement affects the result of the clustering pro-
cess (G.2).

4.4.7  Scenario 7: Variable size Gaussian pattern

Description In this experiment, the temperature distributions are placed similarly as 
Fig. 3a, but then the size of areas evolves in time. We expand the areas until a time T and 
then contract them to their initial size. The starting area range is 100m, and the maximum 
area expansion is 1km. Here we expect that the cluster area follows the underlying tem-
perature distribution.

Why In this experiment, we verify the algorithm’s robustness against temperature 
changes (G.3).

4.4.8  Scenario 8: Random failures

Description The temperature distribution of choice follows Fig.  3a. Nodes could disap-
pear randomly with a rate specified by failure frequency. This could be harmful when: i) 
the failure happens in a leader node, and therefore the cluster formed should be destroyed 
and, ii) the failures are so frequent that certain nodes became isolated. The second case 
is avoided using spawn frequency, which forces the system to insert a new node with the 
specified rate. In this case, we expect robust performance with high-density system (i.e. � 
= 0.5) since spurious failure does not change the overall topology.

Why In this last scenario, we check how the system handles node failures during the 
clustering process (G.3).

4.5  Results

The simulations underline that the algorithm can find good subdivisions into clusters. 
Indeed, Fig. 5 shows that our algorithm can eventually produce the correct number of clus-
ters after a certain settling period. In the following, we present the result focussing on the 
evaluation goals stated in Sect. 4.2.

4.5.1  Goal 1 (G.1): Static sensing/spatial‑based clustering

Running the simulations of scenarios 1-5 we verified how much the clusters extracted fol-
low the underlying temperature distribution in the static context. Figure 5 shows that the 
algorithm correctly extracts the cluster number—with the optimal parameters configura-
tion. Furthermore, observing Fig. 6, we can deduce that the cluster shape is correct too. 
Indeed, the Silhouette index tends to be 1 when the clusters are disjointed, and the error 
rate is negligible.

Here, � plays a key role. Observing the behaviour of scenario 4 in Fig.  7, we see 
that with too low � we overestimate the cluster numbers and, with a high level of � , we 
underestimate the cluster number. But this was the expected behaviour, as it depends 
directly on the trend of the target distributions.
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Finally, Another important aspect is the density ( � ) of the system. With a small num-
ber of nodes, candidate nodes may be positioned far from the cluster centre, thus identi-
fying wider areas than expected.

4.5.2  Goal 2 (G.2): Robustness against node mobility and failures

When nodes have a low mobility and exploration range, the system is robust to node move-
ments (Fig. 6). The exploring policy introduces errors, but the results are comparable to 
solutions where the nodes are stationary. Moreover, even in case of failures, the clustering 
process is practically not affected at all. However, in the worst case, mobility and failures 
lead to false positives (Fig. 7). Indeed, some processes start in areas where the temperature 
is almost constant. Therefore, that process approximately covers the whole area (and hence 
produces a high error rate). Scenario 8 is mainly influenced by the low-density situation. 
Indeed, in that case, removing nodes lead to not covering the whole system.

4.5.3  Goal 3 (G.3): Robustness against temperature changes

The result of scenario 7 is comparable to the static scenario. Indeed, Fig.  6 shows that 
the cluster number is correct, and Fig. 6 shows that the error rate is low and the shape is 
accurate. The solution suffers from low-density values and wrong � values as scenarios 1–5 
(Fig. 7).

Fig. 5  Overview of simulation results. The dotted lines identify the ideal cluster division count. The blue 
lines show the unique cluster found. Instead, the cyan lines indicate the unique cluster number after the 
merging phase
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Fig. 6  In-depth analysis of good simulation results. In general, the algorithm produces good results. In the 
case of movement and failures, the error can reach up to 10 per cent
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4.6  Discussion

4.6.1  Simulations

Ultimately, our algorithm can support a certain degree of movement, sporadic failures, find 
various cluster shapes, and cope with temperature changes in the optimal condition: high 
density ( � ), limited exploration range ( � ), and an appropriate value for in cluster threshold 
( � ) value.

Fig. 7  Main examples of bad clustering results. In the first line, the images show different behaviour vary-
ing � . In the second line, the plots show how the algorithm does not handle well low-density robot swarms. 
In the third line, the charts show how the algorithm handles various movement speeds. The fourth line 
shows how the exploration range impacts the clustering results. Finally, the last line shows how failures 
impact performance
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However, when drones move randomly, the algorithm starts to produce sub-optimal 
cluster divisions since the nodes do not care about the cluster found, and they continue 
to explore the area. But this could lead to becoming a false candidate and then starting an 
unwanted clustering process. Furthermore, it could be argued that uniform zones are part 
of a cluster that is not identified as there are no relative minima. For this reason, when a 
node starts the process in a non-correct zone, the cluster identification will expand in the 
nearly whole system. This problem could be reduced by changing � and � when the nodes 
belong to a cluster.

It is worth noting that with a low value of � the algorithm starts to produce bad cluster 
divisions—particularly clear in case of failures. This behaviour is unavoidable since we 
base our algorithm on the presence of a centroid that starts the clustering process. Indeed, 
with a low � value, it is more probable that the node that starts the process is far from the 
real cluster centroid, and hence the process expansion can escape from the underlying dis-
tribution, misclassifying a large population of nodes.

4.6.2  Hardware deployment

While we have not performed experiments with the clustering algorithm on a physical sys-
tem, some observations can be drawn from the physical deployment of FCPP (Audrito, 
2020), a C++ library offering an internal DSL for field-based programming. The deploy-
ment has been made in the context of applying field-based programming to an Industrial 
Internet of Things (IIoT) scenario (Testa et  al., 2022). The physical boards adopted for 
the deployment are DWM1001C modules produced by Decawave, which are highly con-
strained in terms of resources: 64MHz ARM Cortex-M4 CPU, 512 KB flash memory and 
64 KB RAM. Despite such constraints, the porting of FCPP has been successful, and on 
top of it, it has been possible to run a field-based program with dynamic processes of com-
plexity comparable to that of the clustering algorithm presented here (Testa et al., 2022). 
The communication capabilities of the DWM1001C modules include BLE (Bluetooth Low 
Energy) and UWB (Ultra-Wide Band) transceivers. In the IIoT scenario, we have exploited 
BLE for exchanging messages with neighbours, and UWB for estimating the distance from 
neighbours. The distance estimation from neighbours could be useful in the clustering 
algorithm presented here in order to estimate multi-hop distances through the gradient 
function.

While the experience with the physical deployment described above has certainly been 
positive, and makes us optimistic about the possibility of a similar deployment of the clus-
tering algorithm, some differences between the two scenarios should be further explored 
and checked with experiments. First of all, the largest experiment in the IIoT scenario 
included 20 nodes, which may not be enough to properly evaluate the clustering algorithm; 
secondly, the area covered by the experiment was quite limited (a portion of an indoor lab); 
finally, most of the nodes in the IIoT experiment were generally static (representing pallets) 
and moved only when loaded and carried by a forklift.

5  Related work

This section covers related work. Coverage of related work is organised to separately cover: 
related swarm-based environment monitoring approaches (Sect.  5.1), related clustering 
models and problems (Sect.  5.2), research work related to the sensing-based clustering 
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problem we address (Sect. 5.3), research work related to field-based computing (Sect. 5.4), 
and related field-based algorithms (Sect. 5.5).

5.1  Swarm‑based environment monitoring

The approach proposed in this paper can be used to dynamically cluster a swarm, e.g. to 
monitor an environment in a decentralised way. Literature on swarm-based environment 
monitoring is ample  (Dunbabin & Marques, 2012). In particular, various works leverage 
mobility and sparse sampling  (Garg & Ayanian, 2014; Best et  al., 2018, 2019; Casadei 
et al., 2022a; Kemna et al., 2017).

In Garg and Ayanian (2014), a persistent monitoring approach of environment phenom-
ena with discontinuous dynamics is proposed. It is based on optimally adapting a sparse set 
of sensing locations according to an evolving stochastic model of the environment. In Best 
et al. (2018, 2019), decentralised planning is used to support multi-robot active perception, 
which leverages movement to improve the quality of information gathering through effec-
tive choice of “viewpoints” in space and time. In Kemna et al. (2017), the authors focus 
on multi-robot coordination for informative adaptive sampling in unknown, communica-
tion-constrained environments (like lakes or oceans). Their approach is based on dynamic, 
decentralised Voronoi partitioning over a set of sampling locations, which are recalcu-
lated at synchronisation points initiated through requests for surfacing events. Though 
the approach of this paper could also be used to support sparse sampling (Casadei et al., 
2022a), it also aims at supporting the formation of spatially cohesive clusters for coordi-
nated processing and/or action. Moreover, we do not aim at moving robots to appropriate 
sampling locations, but rather leave the robots to move autonomously (e.g. according to 
exploration policies) while having the collective clustering reflect the underlying phenom-
enon to support decision-making possibly beyond pure environmental sampling. The use of 
Voronoi partitions in Kemna et al. (2017) differs from our clustering in that they leverage 
regions to limit the prospective sampling locations to be visited by each vehicle, while we 
actually want to define groups of coordinating robots.

5.2  Related clustering models and problems

Clustering is a well-known problem in data analysis and machine learning, and has been 
widely studied in the literature  (Jain et al., 1999; Estivill-Castro, 2002; Jain, 2010). In a 
classical setting, the data to be clustered is stored in a single dataset, and a single algorithm 
(or agent) is in charge of finding the “best” clusters according to some optimisation crite-
ria. Each data point in the input data set is described by the values of a fixed set of features; 
the number of such features constitutes the dimensionality of the data set and, typically, 
high dimensional data is harder to cluster meaningfully.

A characteristic of the clustering tasks considered in the present paper (and in gen-
eral, of sensing-based methods, see the next section), is that besides the sensed data, a 
main source of information is the spatial distance between the agents. In Thrun and Ultsch 
(2021), the authors consider high-dimensional data sets that exhibit natural clusters, char-
acterised by distances and/or density-based structures. They propose a semi-automated 
method whereby the clusters are automatically proposed and manually selected starting 
from a topographic visualisation of the high-dimensional data. Notably, they use swarm 
intelligence for computing the topographic map, while other techniques are adopted for the 
interactive process of clusters computation.
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There are, however, several works that address swarm-based clustering, using swarm 
intelligence for the clustering task itself (Martens et al., 2011). It is important to note that 
such methods (both those based on particle swarm optimisation (PSO), and those based 
on ant colony systems (ACS)) exploit swarms just as a computational means for finding 
clusters in a data set. Their goal is not to cluster the elements of the swarm itself, as it is 
the case for the present work, but to simulate a virtual swarm to find good quality clusters.

Some works directly address the clustering of swarms. In Hu et al. (2021), the clustering 
of a team of special robots (i.e. aerial drones) is part of a larger process that, after cluster 
formation, also involves formation tracking (i.e. tracking a target through a suitable forma-
tion), and containment control (i.e. surround ground robots cooperating in the mission). 
The method proposed to form clusters is based on a game-theoretic framework named 
GRAPE. A significant difference w.r.t. the present work is that the number (and nature) 
of clusters is determined by a given set of targets, while we do not assume such a priori 
knowledge. Another significant work with similar goals is Ge et al. (2018), where a team 
of robots must be partitioned into clusters organised as suitable formations (i.e. geometric 
spatial patterns). The proposed solution inter-mixes the determination of clusters and their 
formation (based, among other things, on the agents dynamics), assuming that the number 
and nature of such formations is known a priori.

Since we consider clustering over a given topology (network), the problem can be 
related to graph-based clustering (Chen & Ji, 2010). Graph-based clustering, however, 
assumes that the given graph can be partitioned into densely connected subgraphs that 
are sparsely connected to each other; i.e. it assumes that all the similarity information is 
expressed by the presence of edges between nodes (and, possibly, by their weights). This is 
not necessarily the case with the networks formed by our swarms, where connections are 
just determined by spatial distance, and the clustering is strongly influenced by the sensed 
data. Also, community detection methods can be viewed as clustering of the nodes of a 
graph representing a network of relations (e.g. a social network) (Javed et al., 2018). Inter-
estingly, unlike in generic graph-based clustering, communities can easily overlap, since a 
node (e.g. user) may belong to several communities at once.

5.3  Related work on sensing‑based clustering

Sensing-based clustering typically applies to sensor networks that are distributed on a geo-
graphical area and exploit clustering mainly to reduce the communication bandwidth and/
or energy consumption of the net. The role played by sensing a (possibly dynamic) geo-
graphic environment makes such problem and the proposed approaches to solve it relevant 
to the present work, although the agents considered here are themselves dynamic entities 
moving and acting across the space.

In Lin and Megerian (2007), the goal is to partition sensors for indoor monitoring and 
control. The cluster heads are predetermined (based on the sources to be monitored and 
controlled), while cluster formation is periodically scheduled in order to adapt to changes 
in the sensed data. In our work, instead, the cluster heads are not a priori given: they are 
determined according to the sensed data (e.g. the agents perceiving local minima) and can 
change dynamically (e.g. because a candidate withdraws and joins a different cluster).

The goal of Gedik et al. (2007) is, instead, to obtain energy savings in data collection 
from a wireless sensor network (WSN) by receiving values from only a subset of selected 
representatives and predicting the other values through automatically generated statisti-
cal models. Cluster heads are chosen (probabilistically) based on the amount of energy 
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they have. Cluster formation is periodically scheduled, and the assignment of a sensor to a 
cluster is based on the distance from the head and the similarity of the sensed value with 
the head’s value. A work with similar goals is Cai and Zhang (2018), where again energy 
savings in a WSN is the primary motivation. Here, the cluster heads are chosen based on 
residual energy level and data gradient. Moreover, an autoregressive prediction model for 
sensory data is maintained by each head to self-adjust temporal sampling intervals within 
the cluster.

A sensing-based clustering problem is also studied in Kucuk et al. (2020) where, how-
ever, instead of being a high energy-constrained WSN, the deployed system involves sen-
sorised units and mobile phones able to upload all the relevant data to the cloud, through 
cellular and Wi-Fi connections. In a disaster scenario, the mobile phones data is used to 
centrally compute density-based clusters that can inform the SAR (Search and Rescue) 
teams about the location of people in the area.

The DyClee approach described in  Roa et  al. (2019) is also centralised. The authors 
assume that streams of sensors observations (e.g. in an Industrial IoT) are continually 
tracked by their system, and are classified (e.g. as healthy or faulty) based on a set of clus-
ters that capture the patterns corresponding to different states. The main focus is on the 
novelty detection problem, or concept drift, which implies the ability to update the clusters 
as new behaviour is learned, while ignoring noise and occasional outliers. The online clus-
tering algorithm consists of two stages based, respectively, on distance and density, and is 
fully dynamic in that it is able to create, eliminate, drift, merge, and split clusters as data is 
processed.

5.4  Related approaches and programming models

Programming swarms of agents is a difficult task, because of the need of coordinating 
their local behaviours to achieve global, swarm-level goals. In this work, we adopt the 
field-based computing and programming approach  (Viroli et  al., 2019) for expressing 
self-organising, collective behaviour of swarms. Our focus is on decentralised behaviour-
based approaches (rather than automatic design methods, e.g. reinforcement learning), as 
surveyed, for example, in  Brambilla et  al. (2013); Viroli et  al. (2019) and briefly in the 
following.

An approach to the problem that has proven to be quite effective is generative com-
munication through tuple-based coordination models, as offered, for example, in the Linda 
language (Gelernter, 1985) and its descendants; essentially, several processes running on 
the same system can synchronise by writing and retrieving information in a shared (tuple-)
space. A derived idea is that of allowing programmability of the tuple space itself, so that 
the coordination logic of processes can be embedded in the communication medium–see, 
for example, Omicini and Denti (2001). An obvious limitation of the mentioned approaches 
for the task of swarm programming is that they assume a central memory accessible by all 
the agents/processes. However, the idea of tuple-spaces has been extended also to distrib-
uted systems, e.g. in the IBM TSpaces framework (Wyckoff et al., 1998).

An important feature of swarm systems is their adaptivity achieved through self-organi-
sation. A support to build such kind of systems is offered by frameworks inspired by other 
sciences such as biology (Tolksdorf & Menezes, 2003) and chemistry (Sayama, 2009). The 
field-based computing approach adopted in the present paper is based, instead, on the con-
cept of field, borrowed from physics. The related idea of a field of tuples has been imple-
mented in the TOTA middleware (Mamei & Zambonelli, 2009).
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As seen in this paper, the field-based approach is particularly well suited to mobile, spa-
tially situated agents. A related (and precursor) thread of research of that of spatial com-
puting, where space is both an abstraction and a means for computation. Spatial comput-
ing approaches have been largely surveyed in Beal et al. (2013). They are also related to 
macro-programming (Newton et al., 2007), where distributed systems as wholes are pro-
grammed by a centralised perspective. For instance, a prominent related macro approach to 
swarm programming is Buzz Pinciroli and Beltrame (2016), where swarms are first-class 
collection-like abstractions.

5.5  Related field‑based algorithms

The field-based computing approach adopted in this paper has been applied for program-
ming several swarm intelligence algorithms such as robust distance estimation (gradi-
ent)  (Audrito et  al., 2017), leader election  (Mo et  al., 2018), distributed data collec-
tion (Audrito et al., 2021), and team formation and coordination (Casadei et al., 2021).

Field-based computing has the peculiar ability to capture collective behaviours as func-
tions operating on fields and to compose them together as “building blocks” to address 
problems of increasing complexity (Viroli et al., 2019). Of particular relevance for the pre-
sent discussion is the implementation of the SCR (Self-Organising Coordination Regions) 
pattern in  Pianini et  al. (2021b), where three building blocks are composed to support 
control and monitoring of a distributed system: the sparse-choice S block (used for leader 
election); the generalised gradient G block (for information broadcasting along gradient 
fields); and the information collection C block. Most specifically, the SCR pattern can be 
denoted as a feedback chain S-G-C-G: leaders are elected (S); then, a gradient from lead-
ers builds the communication structure (G); then, data from members (indirectly defined 
by the information path towards a leader) is collected towards leaders (C); then, data from 
leaders is propagated back to the members of the regions (G). However, the SCR pattern 
is not limited to clustering (S-G part), but also regulates interactions within regions (C-G 
part). Roughly, the sensing-based clustering algorithm covered in this paper could replace 
the initial C-G composition that determines the system regions.

Similarly to a clustering algorithm, the S block (Mo et al., 2018) provides a distributed 
mechanism to elect leaders from a set of candidates, and to assign each remaining user 
node to a leader, thus partitioning the system into regions. The approach presented here 
is different in several respects: first of all, the candidate leaders are determined by a char-
acteristic of a sensed measure (e.g. local minimum); second, each candidate cluster head 
spawns an aggregate process to recruit other nodes within the cluster; finally, the other 
nodes can join more than one cluster, based on the similarity of their sensed values with 
the ones sensed by leaders.

6  Conclusion and future work

In this paper, we precisely define and address the dynamic sensing-based mobile swarm 
clustering problem. Most specifically, we use the field-based paradigm to develop a novel 
configurable meta-algorithm promoting self-organised clustering in a swarm of neigh-
bouring-interacting robots. The algorithm is evaluated on a set of synthetic environment 
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configurations. In particular, we show that a swarm can autonomously create clusters 
reflecting the underlying dynamics of the perceptible target phenomenon in the environ-
ment, and is able to deal with a certain degree of change in the swarm topology and envi-
ronment. In order to perform the evaluation, we have implemented our algorithms using 
the ScaFi Scala framework for field-based computing.

Future work could be devised in multiple directions. First of all, it could be interesting 
to stress and possibly refine the algorithm on more extreme environmental conditions, or to 
investigate it under different assumptions (e.g. a more constrained or rich system model). Sec-
ondly, it could be interesting to compare (or combine) the meta-algorithm against (with) auto-
mated swarm behaviour design methods like multi-agent reinforcement learning. Last but not 
least, we would like to evaluate our algorithms on real use cases, e.g. in smart logistics and 
precision agriculture scenarios, by implementing them on actual drones or robots.
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