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Abstract
We propose a novel minimal solver for sphere fitting via its 2D central projection, i.e., a special ellipse. The input of the
presented algorithm consists of contour points detected in a camera image. General ellipse fitting problems require five
contour points. However, taking advantage of the isotropic spherical target, three points are enough to define the tangent
cone parameters of the sphere. This yields the sought ellipse parameters. Similarly, the sphere center can be estimated from
the cone if the radius is known. These proposed geometric methods are rapid, numerically stable, and easy to implement.
Experimental results—on synthetic, photorealistic, and real images—showcase the superiority of the proposed solutions to the
state-of-the-art methods. A real-world LiDAR-camera calibration application justifies the utility of the sphere-based approach
resulting in an error below a few centimeters.

Keywords Ellipse fitting · Sphere fitting · Minimal solver · Image-based reconstruction

1 Introduction

Target-based sensor calibration is a fundamental topic in 3D
computer vision. The efficiency of these methods depends
on the accuracy and robustness of the object detection algo-
rithms. This paper focuses on spherical targets for robust
fitting and extrinsic camera calibration, as they are easy to
identify in camera images owing to the rotation symmetry.
In the image plane, the perspective projection of a sphere is
an ellipse; thus, its contour detection becomes an essential
step for sphere recognition.

Consequently, we propose sample-minimizing solutions
for the special ellipse and the sphere parameter estimation.
The methods take advantage of the spherical projection since
the shape of the ellipse is restricted by the sphere and the
intrinsic camera parameters. These approaches require only
three contour points as opposed to the general five-point
problem of ellipse fitting.
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Spherical calibration. The industry often utilizes spherical
targets for calibrating sensors with differentmodalities (Ruijl
et al. 2001; Klüng and Meli 2005). They are exploited in
the field of optics (Xiong et al. 2021; Liu et al. 2017).
Depth cameras or laser scanners, like LiDAR, generate three-
dimensional pointclouds where spherical objects are readily
distinguished. As this shape is represented by the coordinates
of the center in space and the radius, the search space has
four variables that can be accurately estimated. If the radius
of the sphere is known, the degrees of freedom become three.
This paper focuses only on estimation of extrinsic parame-
ters even if intrinsic ones can also be computed using at least
three spherical objects (Lu and Payandeh 2010).

Most of the related papers do not consider the geometric
advantage of the setup.Numerous related publications advise
a contrastive background and target object during real-world
tests. For instance, Sun et al. (2016) use white spheres in
front of a black board. Guan et al. (2015) apply the sphere as
the only light source.

Robust Detectors.We strive to find a robust method without
restrictions during measurements to improve our sphere-
based calibration pipeline (Tóth et al. 2020). This previous
work approximates the spherical projection with a circle and
detects the ellipse contour with Random Sampling Con-
sensus (RANSAC) algorithm (Fischler and Bolles 1981).
Recently, RANSAC and its variants (Zuliani et al. 2005;
Chum and Matas 2005; Barath and Matas 2021) have been
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Fig. 1 The proposed algorithms of the paper. The novel techniques
3pFit (Sect. 3.1) and Direct3pFit (Sect. 3.3) require only 3 input points
and produce the ellipse or the sphere parameters. In spite of that, the
classical methods assuming general the case use 5 points. We proposed
the algorithms Ell2Sphere (Sect. 3.2) and Sphere2Ell (Sect. 2.2) for

ellipse-sphere conversions as well. This allows both the comparison
under any method and the measurement of Ground-Truth (GT) ellipse
parameters from the sphere. As a sub-step, the cone parameters are also
estimated

Fig. 2 The geometric setup of the problem. The sphere is parameterized
with the coordinates of its center s and its radius r . The tangential cone
about this sphere is described with the apex at the camera position c,
the direction w, and the opening angle α. The principal point p and the
coordinate axis x lie on the image plane.w intersects the image plane at
es, which is the foci of the ellipse. The ellipse is the result of the cone-
image plane intersection defined by the semi-major and the semi-minor
axes a and b, the center coordinates e0, and the rotation angle θ

widely used for robust model and multi-model estimation.
These methods require both minimal and overdetermined
solvers. The minimal method runs in each iteration on a ran-
domly selected set of points and calculates the parameters
fromminimal input. The overdetermined solver estimates the
model parameters from a larger sample set. The time com-
plexity of RANSAC exponentially depends on the minimal
sample size (see Table 1). Therefore a reliable ellipse edge

Table 1 The proposed and the state-of-the-art spherical ellipse fitting
methods (Sun et al. 2016; Shi et al. 2019) reduce the minimal sample
size n from 5 to 3 points

n Outlier ratio

50% 65% 80% 95%

3 3.50×101 1.06×102 5.73×102 ∼ 104

5 1.46×102 8.75×102 ∼ 104 ∼ 107

This table presents the iteration number required for RANSAC (Fischler
and Bolles 1981) with confidence set to 99%. The different rows show
the size of the varying input: the general ellipse fitting problem requires
five points while the spherical problem needs only three. Columns are
varying w.r.t. outlier ratio from 50% to 95%. It is well seen that fitting
by RANSAC is significantly faster if the method can take advantage of
the spherical scenario

detection for minimal and overdetermined cases is essential
for rapid RANSAC-based estimation.

Ellipse Detectors. The main categories of ellipse fitting
methods are parameter estimation by ellipse contour points
and edge-following algorithms. The classical point-based
estimators (Fitzgibbon et al. 1996, 1999; Zhang 1997; Rosin
1993; Prasad et al. 2013; Halir and Flusser 1998) apply e.g.
least squares method and analytical or numerical approxima-
tion to find the ellipse parameters. The latter approaches (Mai
et al. 2007; Liu and Qiao 2009; Lu et al. 2020; Meng et al.
2020) extract arcs from images and groups those belonging
to the same ellipse.

Ellipse detectors can utilize the Hough transform (HT)
to estimate the general ellipse parameters by a voting
scheme (Hough 1962; Nair and Saunders 1996). The time
and memory demands of this kind of detector are very high.
Moreover, HT is also very sensitive to the quantification of
the parameters. Xie and Ji (2002) proposed a rapid HT-based
method where only one parameter is considered during the
voting, and the other four parameters are estimated based on
the symmetry of the ellipses.
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Recent methods apply deep learning for ellipse estima-
tion (Liu et al. 2007; Dong et al. 2021). Machine learning
is very efficient for e.g. free-form object detection (Cai and
Vasconcelos 2018). Nonetheless, other approaches are more
accurate when the sought model is describable by a few clear
geometric constraints and only a few parameters. Machine
learning is not a suitable tool for such problems as the object
translation and rotation, the so-called pose, can be poorly
retrieved (Jabbar et al. 2019).

Sphere Detectors. For sphere detection in images, point-
based methods are commonly used requiring at least three
contour points. Shi et al. (2019) proposed a point-based min-
imal ellipse detector minimizing an algebraic error function,
where the center estimation is composed of a particular and a
free solution in the null space. In theworkof Sun et al. (2016),
a flexible and global spherical calibration is introduced. The
paper solves the standard problem of spherical projection
fitting without outliers as they apply monochromatic back-
ground. We propose analytical point-based methods for both
sphere and spherical ellipse estimations to reach more accu-
rate results in our calibration pipeline with robust detectors.
The methods are compared to both general five-point and
minimal three-point methods.

Contribution. This paper presents how to accurately esti-
mate the projected ellipse parameters from contour points
for calibrated cameras. Furthermore, we reveal how to eval-
uate the sphere parameters analytically. It is proven that three
contour points of an ellipse are sufficient to estimate the pro-
jective line of the sphere centers. Hence, if the radius of the
sphere is known, the sphere position can be estimated. We
propose a direct method to estimate the ellipse with para-
metric representation. Finally, it is shown how the sphere
parameters can be computed if the contour ellipse is known.
We address the problem of bothminimal and overdetermined
cases. The applied error value is geometric and no numerical
optimization is needed contrary to the algebraic error-based
state-of-the-art methods (Shi et al. 2019; Sun et al. 2016).

Paper outline. Fig. 1 shows the proposed methods along
with the input and output parameters. The paper is structured
to present these techniques in the following way.

Section 2 overviews the mathematical background of the
problem visualized in Fig. 2. Section 2.1 gives a formal
description of the setup. Two constraints corresponding to
the elliptical projection are derived in Sect. 2.2.

The proposed algorithms are introduced in Sect. 3: (i)
3pFit (Sect. 3.1) is for three-point ellipse detection,where the
ellipse fitting is considered with parametric representation,
(ii) Ell2Sphere (Sect. 3.2) converts the ellipse parameters to
sphere parameters, and (iii) Direct3pFit (Sect. 3.3) gives a
direct solution to fit the sphere parameters from a pointset.
The entire derivations in the appendices prove the reliability
of our methods.

Section 4 discusses our novel algorithms and provides
pseudocodes and performance analysis. The validation of
the proposed methods in Sect. 5 is also special in the sense
that both semi-synthetic and real tests are used here. Images
of spheres with ground truth parameters are rendered with
Blender. Theproposed and state-of-the-artmethods arequan-
titatively compared. Themethods are qualitatively compared
on real data as well.

2 Mathematical Background

The aim of this paper is to estimate the parameters of a conic
sectiont (Glaeser et al. 2016,) i.e., an ellipse (seeLemma1), in
an image which contains the projected contour of a sphere.
This section describes the shape and curve representations
relevant to the sphere projection problem.

2.1 Preliminaries and Notation

In this subsection, we enumerate the used formulae for the
camera model and the main geometric objects: the sphere,
the cone, and the ellipse.

The perspective camera.Assume, we have a calibrated per-

spective camera
[
su sv

]T
,
[
u0 v0

]T
, and f denote the pixel

scaling, the principal point, and the focal length, respectively.
Then the intrinsic parameters are as follows:

K =
⎡

⎣
su f 0 u0
0 sv f v0
0 0 1

⎤

⎦ , (1)

The pixels of the image can be normalized by the camera
parameters which map the points of the image plane into the
world frame:

⎡

⎣
û
v̂

1

⎤

⎦ = K−1

⎡

⎣
u
v

1

⎤

⎦ =
⎡

⎢
⎣

u−u0
su f
v−v0
sv f
1

⎤

⎥
⎦ , (2)

where
[
û v̂ 1

]T
denotes the normalized homogeneous coor-

dinates of the point
[
u v

]T
in pixels. Hence, the camera

location and the principal point are c = [
0 0 0

]T
and

p = [
0 0 f = 1

]T
, respectively. The unit vector to any 3D

point except for the origin pi ∈ R
3 is qi = pi

‖pi‖ . For the
principal point, q = p holds.

Geometry representation. Fig. 2 illustrates the sphere pro-
jection in the camera. To find the mathematical connection
between any contour points of the conic section and the
sphere, we use the following notations and equations.
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Fig. 3 Visibility of a sphere w.r.t. the depth coordinate z

Let us consider the implicit representation of a sphere as:

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 − r2 = 0, (3)

where s = [
x0 y0 z0

]T
and r are the sphere center and radius,

respectively. We assume the radius is known in our approach
and the sphere center is an unknown position.

The cone from the camera center, touching the sphere,
determines how the sphere becomes a conic section in the
image and vice versa. Throughout this paper, the cone is
defined by the following two parameters: the unit vector of
the cone axis w and the angle α between the axis and the
generators. The apex of the cone is at the camera position c.

2.2 Ellipse Estimation from a Sphere

If a sphere is projected into the image plane, the equations
of the ellipse in both implicit and parametric forms can be
deduced from the sphere parameters.Moreover, two invariant
properties can be observed.

Implicit representation. In the general case, the implicit
equation of a conic section contains six unknown parameters:

Aû2 + Bûv̂ + C v̂2 + Dû + E v̂ + F = 0, (4)

which is an ellipse if � = B2 − 4AC < 0, i.e., when
the conic discriminant is negative. In this special case, it
becomes indeed an ellipse (Hajder et al. 2020), as we proved
in Lemma 1.

Lemma 1 If a conic section is the projection of a sphere lying
in front of the image plane, the result is an ellipse.

Proof If a conic section is an ellipse, the conic discriminant
is negative:

� = B2 − 4AC < 0. (5)

Since the conic section is visible in the image, we introduce
a restriction on z0 which expresses that the whole sphere sur-
face is strictly in front of the camera: r < z0. Otherwise, the
sphere would be either behind the image plane and invisi-
ble, or touch or contain the camera itself, which is unrealistic
in a real-world scenario, as discussed in Fig. 3. The conic
discriminant becomes:

� = 4x20 y
2
0 − 4

((
y20 + z20 − r2 )( x20 + z20 − r2

))

= −4
(
z20 − r2

) (
x20 + y20 + z20 − r2

)
. (6)

After substituting (6) into the inequality in (5):

(
z20 − r2

) (
x20 + y20 + z20 − r2

)
> 0 (7)

The restriction yields 0 < z20 − r2 ≤ x20 + y20 + z20 − r2.
Hence, (7) holds, that is � < 0, and the conic section is
indeed an ellipse. ��

The back projection of an image point corresponds to a
ray in space. If we use the normalized coordinates defined in

(2), the coordinates of the ray can be written as
[
x y z

]T =
z
[
û v̂ 1

]T
. The implicit representation of the sphere (3) gives

the intersections of a ray and the sphere:

(
zû − x0

)2 + (
zv̂ − y0

)2 + (z − z0)
2 = r2. (8)

This leads to the following coefficients of (4) as it comes
from (A.7) discussed in “Appendix A” and based on Tóth
et al. (2020):

A = y20 + z20 − r2, B = −2x0y0,

C = x20 + z20 − r2, D = −2x0z0,

E = −2y0z0, F = x20 + y20 − r2. (9)

Three invariant properties can be defined:

C1 : D (BD − 2AE) − E (BE − 2CD) = 0,
C2 : B (BD − 2AE) − E (ED − 2BF) = 0,
C3 : B (BE − 2CD) − D (ED − 2BF) = 0.

(10)

The equations are linearly dependent, thus, one can be
dropped as

DC2 − BC1 − EC3 = 0. (11)
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Parametric representation. Another approach to define an
ellipse is a 2Daffine transformationdescribinghowanorigin-
centered unit circle becomes an ellipse specified by a rotation
angle, two scaling factors, and a translation vector. Hence,
the parametric ellipse is

e(φ) = R (θ)

[
a cosφ

b sin φ

]
+ e0, φ ∈ [0; 2π) , (12)

whereR (θ) =
[
cos θ − sin θ

sin θ cos θ

]
is a 2D rotationmatrix calcu-

lated from the angle θ ∈ [−π
2 ; π

2

)
, a and b are the major and

minor semi-axes, e0 = [
ex ey

]T
is the center of the ellipse.

The centre of the ellipse e0 and the central projection of
the sphere center es are not identical, see the spatial view in
Fig. 2 or the planar view in Fig. 4. This disparity in the image
gives the eccentricity of the projection ε = ‖es − e0‖ which
has to be considered (Matsuoka and Maruyama 2016) when
constructing the new method.

To find the parametric representation of an ellipse using
the sphere parameters, an important property of a sphere pro-
jection is that the line of the major ellipse axis goes through
the principal point of the image (Lu and Payandeh 2010). In
other words, if the ellipse center e0 is known, it yields the
value of the rotation angle directly: θ = atan2

(
ey, ex

)
. In

this paper, we call this property the axial constraint.
Let us use constraints � = B2 − 4AC and � = AE2 +

CD2 − BDE + F� to formulate the equations which con-
verts a general ellipse from implicit form to its parametric
one (Hoffmann 1989):

e0 = 1

�

[
2CD − BE
2AE − BD

]
, θ = arctan

B

A − C
,

a; b =

√
2�

(
A + C ±

√
(A − C)2 + B2

)

−�
. (13)

Substituting (9) into (13) with the axial constraint gives that
the parametric ellipse parameters can be delivered from the
sphere parameters directly:

e0 =
[
x0
y0

]
z0

z20 − r2
, a =

r
√
x20 + y20 + z20 − r2

z20 − r2
,

θ = atan2 (y0, x0) , b = r
√
z20 − r2

. (14)

An important observation describes the connection between
the ellipse center and the semi-axes as follows:

a2

b2
= e2x + e2y

b2 + 1
+ 1. (15)

Fig. 4 The projectional constraint reveals that if the ellipse center e0
and one of the semi-axes are estimated, it determines the other one. I.e.,
because of (15), either a or b has to be estimated. The principal point
p, the foci es , and the minor axis (a1, e0, a2) are collinear. However, es
is linearly independent of the minor axis (b1, e0, b2) if the eccentricity
of the ellipse ε is non-zero. The foci, which is the cone axis intersec-
tion point of the image, can be expressed straightforwardly if the cone
parameters are known. Hence, the end-points of the major semi-axis a
can be estimated easier than the minor semi-axis b

This means that an ellipse axis is defined if the two center
coordinates and the other axis are known. In conclusion, if e0
and either a or b are known, then θ and the remaining semi-
axis can be calculated as well. In this paper, this property is
called projectional constraint. The projected sphere center
is the first two coordinates of s normalized by the third one

which is es = 1
z0

[
x0 y0

]T
.

Observation. Both deductions contain two constraints. The
implicit form has constraints C1, C2, and C3 in (10), but only
two of them are independent because of (11). The parametric
form has an axial and a projectional constraint.

In this paper, the formulae in (9) and (14) are referred to
as Sphere2Ell. This name covers both possible conversions
depending on the representation of the required output as we
know the parametric-implicit conversion of an ellipse.

3 ProposedMinimal Solvers

Classical methods (Fitzgibbon et al. 1996, 1999; Halir and
Flusser 1998; Zhang 1997; Rosin 1993) use five points
for ellipse estimations. Based on our special scenario, we
can consider the two constraints introduced in the previous
section. Hence, the degrees of freedom are reduced from
five to three. Therefore, three contour points, denoted by

pi = [
ûi v̂i 1

]T
, are enough for estimation the ellipse param-

eters, where ûi and v̂i are the normalized coordinates of the
i-th sample point as in (2), i ∈ {1, 2, 3}.

We pursue to apply two approaches here: one is based on
the constraints of the implicit representation similar to some
state-of-the-art methods (Sun et al. 2016; Shi et al. 2019),
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Fig. 5 The axial constraint is built on the observation that the camera
c, the sphere center s, and the major ellipse axis (a1, es , a2) are co-
planar. The vectorn is perpendicular to the cone directionw and viewing
direction p. Rotating w around n by α gives vectors qa1 and qa2 that
intersect the image plane at a1 and a2, i.e., the end-points of the major
ellipse axis

and the other is based on a novel geometric approach. The
implicit solution in Appendix B has no closed-form solution
and did not overperform the rival methods. The following
approach shows that the estimation problem can be solved
significantly easier and faster than the previously mentioned
algorithm as the solution can be given in closed form,without
any numerical approximation applied.

3.1 Geometric Approach

The main idea of the proposed method is that the projection
can be defined by the cone directed to the sphere center when
the generator of the cone touches the sphere and the apex
is at the camera focal point. The intersection of this cone
and the image plane gives the ellipse contour in the image.
Therefore, the cone parameters can be calculated from a few
contour points; then, the ellipse parameters can be retrieved.

The cone parameters. If three points pi , i ∈ {1, 2, 3} are
given on the ellipse contour, the cone can be defined by the
following process. Let the unit vectors from c topi be denoted
by qi . Then

〈q1,w〉 = 〈q2,w〉 = 〈q3,w〉 = cosα. (16)

Let matrix Q = [
q1 q2 q3

]
contain the normals and 13 be

a one 3-vector. The inner products can be written in matrix
form after re-ordering as

(cosα)−1 w = Q−T 13. (17)

Hence, themagnitude and the direction of vectorQ−T 13 give
the cone parameters cosα and w.

The end-points of the major axis. If the cone parameters
cosα and w are known, the ellipse parameters can be calcu-
lated as well. For this purpose, we estimate two well-defined
contour points of the ellipse: the end-points of the major
axis denoted by a1 and a2 (see Fig. 4). The axial constraint
makes these points and the semi-major axis a measurable in
the image.

Figure 5 illustrates the problem, where the plane contains
the points c, p, a1, and a2. A unit normal of this plane can be
defined as p × w which equals to

n =

⎧
⎪⎨

⎪⎩

[
−wy wx 0

]T ·
(
w2
x + w2

y

)− 1
2

for w 
= p
[
0 1 0

]T
for w = p.

(18)

Thus, the directions from c to a1 and a2 can be calculated,
if R (n, α) denotes the axis–angle representation of a 3-
dimensional rotation describing the rotation around vector
n with angle α

qa1 = R (n, α) · w, (19)

qa2 = R (n,−α) · w = R (n, α)T · w. (20)

If qa1 and qa2 are known, the axis end-points are

a1 = 	I
(
qa1

)
, a2 = 	I

(
qa2

)
, (21)

where the projection operator 	I : R3 �→ R
2 maps a vector

from 3D space to a point in the normalized image plane.

The parametric ellipse.As it was demonstrated, calculating
the major axis end-points a1 and a2 are straightforward using
the axial constraint. Moreover, the projectional constraint
and formula (15) determines b based on e0 and a. Let us use
the constraint 
 = e2x + e2y + 1 − a2, then

e0 =a1 + a2
2

, a =‖a1 − a2‖
2

,

θ = atan2
(
ey, ex

)
, b =

√
−
 + √


2 + 4a2

2
. (22)

3.1.1 Overdetermined Case

If we have a large set of points consisting of n > 3 ellipse
contour points, (17) is modified as

(cosα)−1 w = Q+T 1n, (23)

where Q = [
q1 . . . qn

]
, Q+ is the Moore-Penrose inverse of

matrixQ and 1n is a one n-vector. This techniqueminimizes a
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geometric error. The remaining steps of the algorithm are the
same.We refer to bothminimal and overdetermined solutions
as 3pFit.

The main advantage over the state-of-the-art algorithms
(Sun et al. 2016; Shi et al. 2019) is the minimization of the
geometric error, i.e., the inverse of cosα in (23) and (17),
instead of an algebraic one. cos−1α equals to the the ratio of
the focal point—sphere distance and the radius.

3.2 Center from Parametric Ellipse

We describe a sphere center estimator algorithm called
Ell2Sphere next that allows us to compute the sphere param-
eters based on the proposed ellipse estimators. The inputs of
the method are the ellipse parameters and the radius of the
sphere. The main goal is to define the cone parameters and
then find the sphere center.

First, we estimate the end-points of the major ellipse axis.
Based on the geometric meaning of the parametric ellipse
described before (12), the input of function e are the inter-
section points of an origin-centered unit circle and axis x ,
i.e., φ = {0, π}. Hence, the sought points are a1 = e(0) and
a2 = e(π).

The next step is to find the direction of the cone axis. We
back-project the points a1 and a2 into the 3D space:

qa1 = 	S (a1) , qa2 = 	S (a2) , (24)

where the projection operator 	S : R
2 �→ R

3 provides
the image ray and maps a point x from the normalized
image plane to a vector into the 3D space as 	S(x) =
	−1

I (x)/‖	−1
I (x)‖. Afterward, the angle between qa1 and

qa2 gives the angle of the cone and the angle bisector of
these vectors gives the direction as

α = arccos〈qa1 ,qa2〉
2

, w = qa1 + qa2
2

. (25)

Since sin α = r/‖s‖ (see Fig. 5), variables α and r give
the distance between the camera focal point and the sphere
center, the latter of which is obtained as follows:

s = r

sin α
w. (26)

Based on 〈qa1 ,qa2〉 = cos 2α, trigonometrical identities
allow us to calculate the sphere center s without measuring
angle α:

s =
√
2r

√
1 − 〈qa1 ,qa2〉

w. (27)

3.3 Center from Contour Points

Some ellipse contour points can define ellipse contour points
define the sphere center straightforwardly and the ellipse
estimation can be omitted from the proposed method. This
simplified algorithm called Direct3pFit is suitable for both
minimal and overdetermined problems.

The method has three main steps: estimation of Q con-
taining the normal vectors, then the cone parameters, which
yields the sphere center. It starts the same way as in Sect. 3.1
until (17) or (23) when the cone parameters are already esti-
mated. Then the sphere center is written like in (26). The
optimization step of (27) is modified as cosα is estimated in
(17) and (23) instead of cos 2α:

s = r√
1 − cos2 α

w. (28)

4 Algorithms

The actual implementations of the algorithms have a large
effect on the speed. Therefore, we provide some implementa-
tion details and list the algorithmic components that facilitate
fast performance. In this section, we list these optimization
steps, justify the design choices and present the pseudocode
of our methods: 3pFit, Ell2Sphere, and Direct3pFit are out-
lined in Algorithms 1, 2, and 3, respectively. The algorithms
contain only high-level descriptions, and the operations on
the left have to be performed.

3pFit and Ell2Sphere estimate the major axis end-points
a1 and a2 to find the ellipse and cone parameters instead
of measuring the minor axis end-points b1 and b2, although
the problem could be formulated and solved in both ways.
Figure 4 illustrates both cases. The minor axis end-points
can be calculated as b1 = 	I

(
R (w, π/2) · qa1

)
and b2 =

	I
(
R (w, π/2)T · qa1

)
similar to (21). Thismeans that find-

ing the end-points regarding b instead of a would need extra
rotation calculation and cause more numerical error.

In 3pFit and Direct3pFit, the reformulation of qa2 (20)
comes from the properties of a Lie algebra. Accordingly,
we can reuse the already calculated R (n, α) in (19) instead
of estimating the new matrix which would be more time-
consuming than the simple transposition. This simplification
was executed also in the equation of b2 in the last paragraph
as R (w,−π/2) = R (w, π/2)T .

Finally, we advise not to measure α in Ell2Sphere and
Direct3pFit directly to calculate s in (26) because the arccos
operation inflicts rounding error in (25). The deductions with
cos 2α in (27) and cosα in (28) are more accurate and rapid.

Stability analysis in Sect. 5.3 supports these steps. Fur-
thermore, a real-world example in Table 7 presents that
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Algorithm 1 3pFit
Require: points P = {pi ∈ R

2 | i = {1, . . . , n}, n ≥ 3}; camera matrix K ∈ R
3×3

Ensure: ellipse parameters: e0 ∈ R
2, a ∈ R>0, b ∈ R>0, θ ∈ [−π/2; π/2)

1: Q := Normalize(P , K) � Normalization by Eq. (2) & calc. unit vectors
2: if n = 3 then
3: cosα, w := ConeFromPoints(Q−T ) � Cone opening angle & direction from Eq. (17)
4: else
5: cosα, w := ConeFromPoints(Q+T ) � Cone opening angle & direction from Eq. (23)
6: end if
7: a1, a2 := MajorAxisFromCone(cosα, w) � Ellipse major axis end-points from Eqs. (18–21)
8: e0 := (a1 + a2)/2 � Ellipse center from Eq. (22)
9: a := ‖a1 − a2‖/2 � Ellipse major semi-axis from Eq. (22)
10: b := ProjectionalConstraint(e0, a) � Ellipse minor semi-axis from Eq. (22)
11: θ := AxialConstraint(e0) � Ellipse rotation angle from Eq. (22)
12: return e0, a, b, θ

Table 2 Main differences
between the proposed and
state-of-the-art three-point
methods

Three-point methods Coeff. matrix size Matrix operations P to s directly? Ellipse rep

Proposed N × 3 NORM + PINV Yes a,b,e0,θ

LLSB (Sun et al. 2016) N × 3 NORM + LSQ Yes A − F

IMM (Shi et al. 2019) N × 6 PINV + SVD No A − F

The operations on the coefficient matrices (normalization (NORM); pseudoinverse (PINV); homogeneous
linear least squares method (LSQ); singular value decomposition (SVD)) are related to the computational
complexity of the methods. The third column itemizes whether the algorithms provide the point-based closed
formula of the sphere center s or whether the ellipse parameters have to be estimated as well. Finally, the last
column specifies the estimated ellipse representations from (4) or (12) of every method

the accuracy holds if the sequential execution of 3pFit and
Direct3pFit changed to Direct3pFit while it is less time-
consuming.

Computational complexity. In Table 2, we compared the
computational complexity of the three-point algorithms and
summarized the principal differences to reveal the inno-
vation of the proposed approach. IMM (Shi et al. 2019)
computes on a double-sized coefficient matrix contrary to
the proposed and LLSB (Sun et al. 2016) methods. Besides
elementary computational steps, the primary matrix opera-
tions of the methods are normalization (NORM), computing
the pseudoinversematrix (PINV), linear least squaresmethod
(LSQ), and singular value decomposition (SVD). In terms of
complexity, all three methods guarantee linear runtime. Nev-
ertheless, the expected time demand of IMM is higher due
to the larger matrix size. Besides, the fourth column presents
that the sphere estimation sin IMM is not a direct method
from point set P but contains the estimation of the ellipse
as a sub-step. LLSB and the proposed Direct3pFit define the
sphere position s via the cone parameters more efficiently but
with different approaches.

The last column showswhether the algorithm can produce
the ellipse parameters of (4) or (12), which is critical in terms
of application in a robust detector. The primary motivation
of the paper is to find suitable methods for the calibration
pipeline of Tóth et al. (2020), which estimates the ellipses
using RANSAC. The distances between every point and the
ellipse are evaluated within every iteration to find the largest

consensus set. The distance function d of the later experi-
ment in (29) computes the same value. This step requires the
geometric parameters a, b, e0 and θ estimated only by the
proposed 3pFit method directly. Hence, the output of IMM
and LLSB would be converted from the A − F parameters
in every iteration of RANSAC, causing extra computational
time.

5 Results

To demonstrate the performance of the sphere and ellipse
fitting methods, we simulated several test scenarios in MAT-
LAB, Blender, and made real-world tests. The source code
of the proposed methods is available on GitHub as part
of a sensor calibration project: https://github.com/tothtekla/
SphereCalib.

The next paragraphs outline the tested ellipse fittingmeth-
ods.

LSQDir (Halir and Flusser 1998): This variant of the clas-
sical direct ellipse fitting algorithmof Fitzgibbon et al. (1996)
provides better numerical stability. LSQDir finds the param-
eters of a general ellipse via eigenvector computation of a
small matrix. Therefore it is very fast and non-iterative. The
drawback of this method is that it is biased toward finding
small ellipses.

HQ (Lu et al. 2020): This is a high-quality, four-stage
ellipse detector. It detects arcs from Sobel or Canny edge
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Algorithm 2 Ell2Sphere
Require: ellipse parameters: e0 ∈ R

2, a ∈ R>0, b ∈ R>0, θ ∈ [−π/2; π/2); sphere radius r ∈ R>0

Ensure: sphere center s = [
x0 y0 z0

]T ∈ R
3

1: a1:= e(0), a2 := e(π) � Ellipse major axis end-points from Eq. (12)
2: cos 2α, w := ConeFromEllipse(a1, a2) � Cone opening angle & direction from Eqs. (24–25)
3: s:= SphereCenterFromEllipse(r , cos 2α, w) � Sphere center from Eq. (27)
4: return s

Algorithm 3 Direct3pFit
Require: points P = {pi | pi ∈ R

2, i = {1, . . . , n}, n ≥ 3}; camera matrix K ∈ R
3×3; sphere radius r ∈ R>0

Ensure: sphere center s = [
x0 y0 z0

]T ∈ R
3

1: Q := Normalize(P , K) � Normalization by Eq. (2) & calc. unit vectors
2: if n = 3 then
3: cosα, w := ConeFromPoints(Q−T ) � Cone opening angle & direction from Eq. (17)
4: else
5: cosα, w := ConeFromPoints(Q+T ) � Cone opening angle & direction from Eq. (23)
6: end if
7: s := SphereCenterFromPoints(r , cosα, w) � Sphere center from Eq. (28)
8: return s

detectors and several properties of these arcs are exploited,
e.g. overall gradient distribution, arc-support directions, and
polarity. This method is sensitive to the setting of its three
parameters. Thus, it was tuned on each test sequence in HQ
to achieve accurate results.

AAMB (Meng et al. 2020): After segmenting the edges
into elliptic arcs, the so-called digraph-based arc adjacency
matrix (AAM) is constructed. All arc combinations are then
generated through bidirectionally searching the AAM for
ellipse candidates. The next step is the estimation of the
cumulative-factor-based cumulative matrices (CM). At last,
the ellipses are fitted to each candidate through the double
eigen-decomposition of the CMs using the Jacobi method.

Some novel papers deal with sphere positioning and con-
tain ellipse fitting too. The following paragraphs summarize
the approaches and the innovation of our method in contrast
to these in addition to the complexity analysis in Sect. 4.

LLSB (Sun et al. 2016): A linear least-squares-based
sphere estimation method is presented in this paper, which
requires high-quality ellipse contours. Its limitation is the
white spherical target in front of a blackboard, as mentioned
in the introduction. This method reconstructs sphere cen-
ters effectively using two constraints as well. However, the
paper did not reveal how to interpret them independently.
The approach detects the sphere center directly, while ellipse
estimation is not exposed in detail, but the parameters can be
expressed.

IMM (Shi et al. 2019): An implicit minimal method is
proposed for sphere fitting similarly to our initial attempt,
described in Appendix B. The sphere center estimation is
composed of a particular and a free solution in the null space,
which problems are solved bySVDandGauss-Jordan’s elim-
ination. Both projected ellipse and sphere parameters can be
computed directly, minimizing an algebraic error function.

CB (Hajder et al 2020, Tóth et al 2020): Our former
approach deals with circle-based sphere estimation, which
is suitable especially for narrow-angle lenses when the a/b
ratio of the projected ellipse is close to one. In a RANSAC
process, the minimal solver is a three-point circle estimator
with a well-tuned error threshold. LSQDir is applied to find
the ellipse parameters to the largest consensus set. The sphere
center is obtained from the implicit ellipse parameters with
Levenberg-Marquardt optimization.

In order to evaluate the performance of the algorithms,
both minimal and non-minimal cases were tested contam-
inated by zero-mean Gaussian noise. We also varied the
distance of the sphere centers from the focal point both
along the vertical and optical axes. We modeled several sit-
uations both in MATLAB and in Blender. We assumed that
the camera intrinsics were calibrated, and the sphere radius
was known.

Moreover, we tested real scenarioswith two pre-calibrated
cameras. We compared the algorithms by estimating the
parameters of the observed sphere in both cameras. Since the
cameras and spheres were static, the 3D translation between
the sphere centers should coincide with the translation of the
two cameras and, thus, can be used for measuring the error.
Finally, a camera-LiDARcalibration application revealed the
relevance of these algorithms.

5.1 Experimental Settings

The applied synthetic, photorealistic, and real camera intrin-
sics are listed in Table 3. These parameters were assumed to
be knownduring the tests. The perspective cameramodelwas
applied in all cases. The digital camera was a Hikvision MV-
CA020-20GC sensor with high-quality Fujinon SV-0614H
lenses. The radial distortion of the lenses was negligible.
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Table 3 The intrinsic camera
parameters in pixels of the three
test setups discussed in
Sects. 5.3, 5.4 and 5.5

Setup Environment Image resolution Focal length Principal point
fu fv u0 v0

Matlab–1 Synthetic qHD: 960 × 540 1050 1050 480 270

Matlab–2 Synthetic HD: 1920 × 1080 800 675 960 540

Blender Photorealistic HD: 1920 × 1080 800 675 960 540

Hikvision Real-world WUXGA: 1920 × 1200 1262.6 1267.4 934.6 659.5

The ground truth ellipse parameters were also required to
compare the different estimators in the synthetic tests. They
were delivered from the sphere parameters, as we discussed
in Sect. 2.2. In the real-world tests (Sects. 5.5 and 5.6), 3pFit
was executed in a RANSAC framework to find the ellipse in
the image andDirect3pFit to find the estimated sphere center
based on the best consensus set

5.2 Optimization of Direct3pFit

Levenberg-Marquardt minimization (LMM) can help in
numerical optimization (Hartey and Zisserman 2004) when
the data set is noisy. The formula of the LMM problem was

argmin
s

‖d (Sphere2Ell(s, r),P)‖2 , (29)

where s is initially estimated with the proposed Direct3pFit,
the function d gives the Euclidean difference vector between
a parametric ellipse and an inlier pointset, and P is the set of
the 2D inlier points. The function d is a quadric; the sought
root can be approximated numerically.

LMM found a local optimum in a few steps in many
experiments. The most likely reason is that although the
noise occurs in the image plane, the cone axis is close to
perpendicular to that plane even if the ellipse lies far from
the principal point but still visible, i.e., near a corner of the
image (Hajder et al. 2020). Equations (17) and (23) mini-
mize a geometric error. After that, the algorithm always takes
exact steps, and no approximation is needed. As the geomet-
ric error is linear w.r.t. the inverse of the cosine of the angle,
Direct3pFit obtains the (optimal) solution in one step with-
out any iterations. The inverse of the cosine is the ratio of
the sphere center—camera distance and the radius. The fit-
ting error in the image space, i.e., the ellipse-points distance,
can be minimized via numerical optimization. As the pro-
posed method gives the initial value, which is also geometric
error-based minimization, the numerical optimization usu-
ally cannot improve the result. However, the optimization of
(29) via LMM is preferred in degenerated cases.

Fig. 6 The mean error in the ellipse (e0; continuous curves; meters)
and sphere centers (s; dashed curves; meters) plotted as a function of
the sample size used for the estimation. For estimating e0, we ran the
method in Sect. 3.1 (3pFit). The sphere centers were estimated from e0
by the method in Sect. 3.2 (Ell2Sph). The results in the noise-free and
noisy cases are shown by color

5.3 Synthesized Accuracy and Ill-Conditioning Tests

Synthetic tests implemented in MATLAB for competitive-
quantitative evaluation demonstrate how the three-point
algorithms behave in noisy and ill-conditioned cases. Camera
parameters are listed in the first two rows of Table 3.

The effect of the inlier number. In the first experiment pre-
sented in Fig. 6, the ellipse and sphere center estimationmean
error was evaluated w.r.t. the number of points using 3PFit
and Direct3PFit in case of no noise, 1 pixel and 2 pixel
white Gaussian noise in the image. The sphere parameters

were s = [−0.95 0.35 3.00
]T

and r = 0.35, and the tests
were repeated 1000 times with different point sets contain-
ing 3–700 inliers. We observed that the sphere center error
is about 101.5 times more than the ellipse center error in this
configuration. For overdetermined cases, 50 was a sufficient
number of fitting points to get a millimeter-precise result
with this setup during synthetic tests. Noise-free scenarios
and at least 50 points gave a sub-millimeter result. In gen-
eral,more contour points gradually reduced the error rate. For
real-world scenarios, accurate inlier localization was a bot-
tleneck of the sphere detection, as the algorithm in this setup
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Fig. 7 The smoothed error in sphere centers plotted as a function of the
sample size used for the estimation. The inliers were ill-conditioned,
and only the results between 50 and 150 points were analyzed since the
error function converges to zero, i.e., the 7.9% of the ellipse contour
was enough for millimeter precise sphere fitting. Some measurements
are highlighted in Fig. 8 for visual comparison; further evaluation is
presented in Table 4

cannot approach centimeter precision with 2 pixel noise even
with about 500 points. Nonetheless, in general, more contour
points gradually reduced the error rate.

Ill-conditioned tests.To support this observation and test the
robustness, we generated ill-conditioned scenarios contain-
ing only adjacent inliers, i.e., an arc segment. This problem
occurs when the ellipse is blurred, and only a short contour
segment can be detected. We compared the results to the two
other sphere detectors IMM (Shi et al. 2019) and LLSB (Sun
et al. 2016) as well presented in Fig. 7 and Fig. 8. The meth-
ods using 40 adjacent inliers from the total ∼2000 points
gave unsatisfactory results: ellipses with large semi-axes as
the inliers are nearly fitting to a line. 47, 48, and 51 inliers

have a varying, unstable impact. From 59 to 101 inliers,
the parameters converged to the optimal values and reached
centimeter-precise results. Finally, the ellipses are ideal in
case of 250 ormore inliers. LLSB and the proposed algorithm
overperform IMM in case of 70–100 inliers. The compared
quantitative results and runtime are listed in Table 4. The
measurements executed on an Intel(R) i7-8665U 1.90 GHz
with 16GBRAMverified the accuracy of themethods, while
the runtime of the proposed approach was significantly bet-
ter: within a second for 1894 run.

Stability analysis.More than 25000 noiseless test cases with
1000 inliers were generated with varying sphere parame-
ters. The top image of Fig. 9 showcases the reliability of the
proposed method and LLSB: the highest errors were around
10−10 and 10−8, respectively.However, the twopeaks around
10−7 and 10−2 reveals the stability problems of IMM in the
zoomed, bottom image. Additionally, we evaluated the effect
of the proposed implementation improvements presented in
Sect. 4. The optimization steps did not influence the results
of the overdetermined cases. In contrast, the same test data
set but with a minimal three-point fitting revealed that the
algorithm is faster by 3.71% with the same accuracy. This
property is especially beneficial in using robust detectorswith
a high outlier ratio.

5.4 Photorealistic Tests

Further tests based on photorealistic images were generated
by Blender. The camera parameters, listed in the third row of
Table 3, and the sphere radius r = 0.25 m were fixed while
the sphere location was changed in the scene. We described
the sphere locations using the following terms.

Fig. 8 Ill-conditioned test cases present the robustness of the sphere fitting methods. The fewer the inlier number (n), the more degraded the fitted
ellipses displayed in pixels. Nonetheless, the proposed algorithm is reliable from n ≥ 250 points. The ellipse contour is constructed by about 2000
pixels
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Table 4 Mean error (SE; meters), standard deviation (SD; meters),
root-mean-square deviation (RMSD; meters) of the sphere center esti-
mation methods in 1894 degenerate scenarios with varying inlier ratio

Method SE SD RMSD �t

Proposed 0.0122 0.0755 0.0764 0.8450

LLSB 0.0140 0.0871 0.0882 6.7538

IMM 0.0214 0.1377 0.1393 157.2325

Results present the stability of the algorithms. The runtime (�t ; section)
of the proposed method is clearly the best. These properties make it the
most suitable to apply in robust detectors (e.g. RANSAC). The time
measurements were repeated 1000 times and averaged on Intel(R) i7-
8665U 1.90 GHz with 16 GB RAM

Fig. 9 Stability analysis of the three-point methods. The top image
presents the distribution of the average error of 25000 different scenarios
in a logarithmic scale. In the bottom image, the zoomed diagram shows
the stability error of IMM around zero

The depth coordinates and a varying step set were defined
as zk = 0.75 + 0.05 · k and stepk = 0.05 + 0.065 · k where
k ∈ {0, . . . , 25}. We defined new set of x and y coordinates
for every depth value zk as xi = stepk · i and y j = stepk ·
j where i ∈ {0, . . . , 9} and j ∈ {0, . . . , 3}. This process
evaluated 10 × 4 × 26 = 1040 sphere positions in total. All
sphere contourswere continuous and fully visible in the input
images. The image sequence of Fig. 10 on the left shows some
generated input image indexedwith [i, j, k]. As no noisewas
added to the images, the inlier set P was obtained directly
by Canny edge detection.

The results for the test evaluation are listed in Table 5.
The high-quality input images caused a sub-pixel error rate
for every tested method. Our 3pFit method approximated
the length of the major semi-axis the best and gave the most

precise sphere localization. Although the estimation of b
and e0 were not outperform some other methods, the differ-
ence isminimal, and the constraint-based approach generated
precise sphere positions. The time demand of the proposed
method is also notable compared to the others. Note, that
implementation of AAMB and HQ was provided in advance;
hence, the edge detection was different which affected the
runtime. The methods LSQDir, LLSB, and IMM got the
same input pointset after executing Canny edge detection.
Ell2Sphere algorithm helps to estimate the sphere positions
for the comparison based on the general five-point methods
HQ, AAMB, and LSQDir.

The middle image in Fig. 10 presents the median sphere
center estimation errorw.r.t. the distance from the optical axis
projected into the image andmeasured in pixels,whichmeans
the p—eS distance. This diagram concludes that the further
distance—i.e., higher a/b ratio—favors a more precise esti-
mation in case of high picture quality, especially in case of the
HQ method. One key component of the proposed method is
to estimate the major ellipse axis end-points, and circle-like
sphere projections do not favor this process. The optimal dis-
tance is around 300 − 600 pixel distance for LSQDir, LLSB,
IMM, and the proposed method followed by an increasing
error. If the depth of the sphere is normal but the distance from
the optical axis is relatively large, the ellipse approximates
to another conic section: the parabola (see Fig. 3). Hence the
inflected problem is similar to the circle-like cases.

The depth test on the right image of Fig. 10 reports the
same sphere center estimation error w.r.t. the z coordinate of
the sphere. This setup had an optimum at z = 1.4 m, but the
difference from the higher error rate is around 1 mm. On the
first hand, the further distance from the camera increases the
rounding error as we convert the point between pixels and the
metric system. On the other hand, the horizontal and vertical
views of the camera influence the visibility of the sphere in
the image. The closer depth means a smaller range for sphere
coordinates x and y, which causes unfavorable, circle-like
ellipse parameters as in the previous test. Some examples
are plotted on the left in Fig. 10, labeled as image[0, 0, 0],
image[9, 0, 0], image[0, 3, 0], and image[9, 3, 0] among
the input images. We think the optimum was the point when
the spheres were relatively further from the camera and the
optical axis, and the raster images caused minimal mea-
surement error in the contour points. The sphere fitting was
generally stable in the case of varying depth parameters. Note
that the trend of AAMB is worse around 1–2 mm in depth and
optical axis distance tests.

5.5 Real-World Stereo Camera Tests

During real-world scenarios,we usedHikvisionMV-CA020-
20GC cameras to measure the precision of the sphere center
estimation (see detailed camera parameters in Table 3). A
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Fig. 10 Input images of the photorealistic setup (left). The indices of
the pictures, denoted by image[i, j, k] in the upper left corners, deter-
mine the position of the sphere in the scene. The details of the setup are

discussed in Sect. 5.4. Sphere estimation error w.r.t. the distance from
the optical axis (middle) and w.r.t. depth of the sphere (right)

Table 5 Photo-realistic results of 1040 images. no, �t , SE , and SD denote the outlier number, the runtime, the mean error, and the standard
deviation, respectively

Method no �t a b e0 s

SE SD SE SD SE SD SE SD

Proposed 1 0.6895 0.3123 0.2969 0.2379 0.2510 0.8047 0.1583 0.0019 0.0005

HQ (Lu et al. 2020) 28† 435.2723 0.4122 0.3003 0.3133 0.2261 0.8095 0.1689 0.0023 0.0006

AAMB (Meng et al. 2020) 5 41.6001 0.3752 0.3125 0.2832 0.2313 0.6275 0.1337 0.0032 0.0006

LSQDir (Halir and Flusser 1998) 29 137.3629 0.3203 0.3182 0.2306 0.2406 0.8060 0.1611 0.0020 0.0006

LLSB (Sun et al. 2016) 39 1.1967 0.3126 0.2973 0.2380 0.2511 0.8055 0.1603 0.0019 0.0005

IMM (Shi et al. 2019) 116 21.0683 0.2994� 0.2892� 0.2280� 0.2456� 1.4053 2.8123 0.1225 0.4172

The ellipse parameters a, b, e0 are in pixels, and the sphere position s is in meters. �89 out of the 116 outlier cases were filtered to generate IMM
results for parameters a and b. Hence, in these columns, the second most competitive results were also highlighted
†Note that HQ failed to find any ellipse in 25 cases from the 28 outlier scenario

Fig. 11 Stereo image pairs with fitted ellipses. Every column demon-
strates a different setup; the top and bottom row shows the right and
left camera images taken simultaneously, respectively. The results of

the different methods are similar as the ellipses cover each other in
the original images. Yellow rectangles show magnified image parts that
illustrate the results more detailedly

sphere with 0.25 m radius was placed 68 times in the
scene. Some image pairs with the fitted ellipses are pic-
tured in Fig. 11. The sphere-camera positions were not
measured directly, but after a GT transformation: the cam-
eras were translated along axis x by 21 cm. We refined
this prior knowledge of the extrinsic parameters using the

checkerboard-based (Zhang 2000;Heikkila and Silven 1997)
Stereo Camera Calibrator in Matlab Computer Vision Tool-
box. Therefore, the sphere center was estimated in the two
camera coordinate systems based on the paired images, and
the error was given as the translation error of the sphere cen-
ters.
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Table 6 The tested methods and the applied sub-steps of the RANSAC method in the stereo camera experiment

Tested methods The applied methods in RANSAC algorithm

Minimal solver Refitting method Sphere center from ellipse parameters

Proposed 3pFit Single step: Direct3pFit (see Table 7)

HQ (Lu et al. 2020) HQ HQ Ell2Sphere

AAMB (Meng et al. 2020) AAMB AAMB Ell2Sphere

LSQDir (Halir and Flusser 1998) LSQDir LSQDir Ell2Sphere

CB (Hajder et al. 2020; Tóth et al. 2020) Circle fitting LSQDir From implicit ellipse with LMM

Table 7 Comparison of the proposed 2-step and simplified algorithms
during the real tests

3pFit+Ell2Sphere vs. Direct3pFit

SE SD

Camera#1 1.5173×10−4 2.3683×10−4

Camera#2 4.5716×10−5 6.3819×10−5

Trans. err 1.7182×10−4 2.3535×10−4

SE and SD denote the mean error and standard deviation. Neither
the sphere center estimations of the cameras nor the translation error
between the sphere centers showed any observable difference except for
some subcentimeter-submillimeter deviation. However, theDirect3pFit
is less computational demanding as it can be seen in the algorithms of
Sect. 4

For real images, edge detection and outlier filtering
are required; accordingly, the methods were tested using
RANSAC. The sub-steps are compared in Table 6. The pro-
posed process finds the best ellipse contour point set with
3pFit and Direct3pFit computes the sphere center in a sin-
gle step. The general five-point methods HQ, AAMB, and
LSQDir were supplemented with Ell2Sphere to facilitate the
comparison after ellipse refitting. CB applies a circle-based
minimal method and Levenberg-Marquardt optimization on
implicit ellipse parameters from LSQDir.

At first, we examined the difference between our pro-
posed 2-step sphere center estimation via the ellipse fitting
and the direct method that directly generates the sphere from
the points. The results listed in Table 7 justify that the two
approaches had similar results, and the results differed only
due to rounding errors. Hence, applyingDirect3pFit in a sin-
gle operation during refitting is an appropriate choice.

The main results of the experiments over the concurrent
methods were plotted in Fig. 12. The horizontal axis exhibits
all of the test cases. The five dots are the measured errors in
every column based on the same input using varying meth-
ods. The results are ordered based on the error values of the
proposed method for easier visual comparison. The fewer
points below the dark blue points, the better the proposed fit-
ting algorithm. The color of the lowest dots gives the ratio of
the best estimation listed in the upper left corner of the dia-
gram.Missing dots in a columnmean that a result is an outlier

or the error rate is higher than 6 cm. The outlier ratio are also
listed above, and the most conspicuous issue was the high
rate of LSQDir and the deviation of the error of CB. The
other approaches had only negligible wrong results. Using
the proposed algorithm, matching the sphere center estima-
tion with the two cameras gave 1 − 6 cm error while the
average distance of the sphere and the cameras was around
1–2 m. In general, the error was not linear w.r.t. the distance
of the sphere and the cameras, but close sphere images (as the
stereo image example in fourth column of Fig 16) definitely
results in a smaller error. The positions of purple points in
some of the last test cases indicate that LSQDir produced the
best, only 2 cm error. Tn these instances, sphere-camera dis-
tance was long (like in fifth column of Fig 16) meaning that
LSQDir was robust despite the outlier rate. Our method out-
performed the rival ones giving the best results for 69.70%
of the test cases.

Figure 13 represents the distribution of the same data
series categorized into 0.5 cm long intervals in a histogram-
like manner. The proposed method performed better within
the 1.5–2 cm error rate, while most cases were between 2 and
3 cm. Remarkable that 9 test results ofCBwere below 1.5 cm
error. In precision, the AAMB method lagged at the begin-
ning. The drawback of CB is that 41.86% of the tests were
above the 6 cm error and cannot be listed in the histogram.

For a more profound analysis, Fig. 14 shows the sphere
location error along the three main coordinate axes sepa-
rately. During the estimation for the coordinates x and y,
the spread was below 2 cm. The mean error was not accurate
around zero. This may be caused by the light direction affect-
ing the edge positions. The plot suggests that the detectable
error comes from the wrong estimation, mainly along axis
z, i.e., the methods are sensitive in terms of depth estima-
tion. However, 50% of the estimation was still within the ±2
cm error level. The advantage of the proposed method also
appeared along axis z: the standard deviation was reduced
from 6 to 4 cm compared to other methods. It can be seen
along every axis that these camera instincts negatively affect
the circle-based results of CB as they have the most signifi-
cant spread in all three directions.
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Fig. 12 The error between the sphere center estimations with a stereo
camera using 68 test cases. The measurements are sorted by the error
of the proposed algorithm. Every data quartet along a vertical line is
the estimated error of the same setup by the different methods. The dis-
tance of the sphere and the camera centers were between 1 and 2 m on

average. Further distances do not show significantly higher error; the
image quality and illumination principally influence the results. A typ-
ical error is between 1–4cm. The proposed algorithm performs better
in 84% of the testing scenarios

Fig. 13 The distribution of the error between the sphere center estimations with stereo camera generated from the data in Fig. 12 Our method was
very dominant in the regions below 2 cm error, and no case generated more than 5 cm error opposite to the other methods

Fig. 14 Boxplots of sphere center estimation errors. Testing data and
rival methods are the same as in Fig. 12

The cumulative distribution function (CDF) shown in
Fig. 15 has very similar results as a continuous function.
The steepest parts of the functions are similarly around 1.5–
3 cm. The mean error values for the methods are listed in the
bottom right corner. In total, the proposed method precedes

Fig. 15 The cumulative distribution (CDF) of the real tests. The data
sets were smoothed by Gaussian-weighted moving average with three
neighboring data points. The CDF of the proposed method has a minor
error with 2–4 mm while reaching the exact value of the CDF

the others with 2–4 mm. Due to the high amount of outliers
and less accurate estimations, the LSQDir and CB does not
reach the top value within 6 cm.
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Fig. 16 An input image sequence from Camera2 of Fig. 17. The estimated sphere centers regarding these images are the blue points around y = 1.8
m in Fig. 18

Fig. 17 The schematic figure of the sensor calibration using the esti-
mated extrinsic parameters (right) represents a realistic adjustment
considering the photo of the mounted setup (left). In this experiment,
the three perspective cameras (green, blue, purple) were calibrated from
the equipped five, the two sideways fisheye cameras were not installed
in our system

Fig. 18 The estimated sphere centers registered into the LiDAR coor-
dinate system show the measurement error and spread before (top) and
after (bottom) the improvements in the calibration pipeline. The sphere
was placed typically to 1–2.5 m far from the sensors. The calibration
was accomplished using 6, 9, 11, and 19 sphere centers from Camera#1
(green), Camera#2 (blue), Camera#3 (purple), and the LiDAR (grey).
The result of the improved poinset registration gave the setup plotted
on the left side in Fig. 17

5.6 Real-World Application: Camera-LiDAR
Calibration

In this part of the paper, we illustrate the utility of the
proposed algorithms via a multi-camera and LiDAR cali-
bration experiment for an autonomous driving system. In
Tóth et al 2020, we presented how spheres are suitable for
LiDAR-camera calibration, which has three main steps: (i)
pointcloud-based sphere center estimation, (ii) image-based
sphere center estimation, and (iii) relative pose estimation
by pointset registration. The theoretical contribution of this
paper was applicable in the image-based sphere recognition,
as 3pFit was executed in a RANSAC framework to find the
ellipse in the image and Direct3pFit to find the estimated
sphere center based on the best consensus set. This section
aims to present the results of the improved calibration pro-
cess.

A Velodyne VLP-16 LiDAR sensor and three Hikvision
cameras (see the left picture in Fig. 17) were mounted on
our test vehicle. Initially, the cameras under the LiDARwere
oriented about ±20◦ to the forward direction, and the one
on the top was looking ahead, but the displacement errors
during the mounting process and the car movement moti-
vated us to apply a precise calibration. The cameras and the
LiDAR were hardware-triggered to take the images, and the
pointcloud was captured during a single turnaround of the
LiDAR simultaneously. The calibration input was one con-
tinuous capture with 4 frames per second with half of the
ordinary image resolution (see Hikvision camera intrinsics
in Table 3) while one walked with a sphere back and forth in
front of the sensor setup. Themethod calibrated every camera
to the LiDAR-based on 6, 9, and 11 image-pointcloud pair.
The number of the test images and LiDAR scans depended
on the visibility of the sphere from different points of view.
Some recordings contained the sphere in two camera images;
hence, only 19 LiDAR clouds were processed in total due to
the overlap in the field of view.

One image sequence of Camera#2 can be seen in Fig. 16.
The mean error and standard deviation compared to the orig-
inal SphereCalib (Tóth et al 2020) method of this example
were listed in Table 8. The novel methods improved the cali-
bration significantly: themean errorwas reduced from5.48 to
1.25 cm with sub-centimeter standard deviation results. The
3D point registration gives an error within a few centimeters.
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Table 8 Mean error (SE;
meters) and stranded deviation
(SD; meters) of the sphere
center registration between the
LiDAR and the cameras before
and after improving our
calibration pipeline with the
new ellipse and sphere
estimation algorithms

Camera#1 Camera#2 Camera#3 Accumulated

SphereCalib (Tóth et al 2020) SE 0.0635 0.0362 0.0694 0.0548

SD 0.0266 0.0431 0.0488 0.0448

SphereCalib + 3pFit + Direct3pFit SE 0.0121 0.0137 0.0115 0.0125

SD 0.0025 0.0096 0.0054 0.0070

Fig. 19 To validate the sphere-based calibration results, we registered
colored pointcloud sequence by the iterative closest point (ICP, Besl
and McKay (1992)) algorithm (bottom; same pointcloud from differ-
ent points of view) and displayed one original snapshot of the scene
(top left: pointcloud; top right: camera image). On the top, the framed
regions with the same color cover similar areas and are easy to identify
in the colored 3D points. The points circled with purple belong to the

ego car. On the bottom, the coloring around the window sills and the
eaves (bottom left) exemplify the precision of the extrinsic calibration
parameters, including the image-based sphere estimation. The dividing
black line (bottom middle) and yellow road markings (bottom right)
are also recognizable, and the road is in shadow after the third pillar
(bottom right), like in the camera image. The main pillars with some
intense greenish light are also observable (Color figure online)

The calibration result is compared to the actual setup
in Fig. 17. The origins and the coordinate axis directions
represent a realistic sensor setup. Especially the rotation
parameters are accurate, as the coloring shows in the fur-
ther qualitative examples. This estimation is essential, as the
displacement can be more easily guaranteed during mount-
ing, but the rotation of the cameras is more often error-prone
than planned.

Figure 18 visualizes the estimated 6, 12, 10, and 19 sphere
centers of Camera#1, Camera#2, Camera#3, and the LiDAR,
respectively, after transforming them in the LiDAR coordi-
nate system. This qualitative comparison confirms the results
in Table 8 as the error can be observed in the point pair reg-
istration before applying 3pFit and Direct3pFit in the top
image. After the improvements, the sphere centers nearly
overlap in the bottom image, as the error rate is minimal.

InFig. 19, the colorized and registeredpointcloud sequence
is a visual illustration of the reliability. As we had neither
GPS nor IMU data, the iterative closest point (ICP, Besl and
McKay (1992)) algorithm concatenated the LiDAR snap-
shots to map the environment and the movement of the

vehicle. Several landmarks and objects are well-colored: the
window sills, the basement pillars, the gutter, the road sign,
and some shadows.

In conclusion, the calibration experiments revealed that
spheres are practical for 2D–3D data registration. A fur-
ther application of spheres is panoramic image stitching,
as the projected ellipse centers can be matched between
two cameras, which gives the homography between the
images (Hartey and Zisserman 2004). We plan to expand
the autonomous test vehicle with additional sensors and use
sphere-based calibration for adequate reliability.

6 Conclusion

This paper proposed a simple analytical three-point algo-
rithm for parameter estimation of a sphere and its projected
ellipse, which needs no numerical optimization. We demon-
strated that the contour points of the sphere in the image form
a special ellipse. Based on this particular setup, two geo-
metric constraints have been applied here: the projectional
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constraint and the axial constraint. Experimental results
show that the proposed ellipse fittingmethod outperforms the
rival techniques in various environments. Our analysis also
reveals that the introduced constraints and some simplifica-
tion steps improve the precision of the proposed algorithm.
Therefore, this method is faster even than the rival three-
point approaches. Given these results, we believe that the
proposed fitting algorithms provide accurate parameters to
assist various algorithms in utilizing spheres.

Acknowledgements EFOP−3.6.3-VEKOP-16-2017-00001: Talent
Management in Autonomous Vehicle Control Technologies—The
Project is supported by the Hungarian Government and co-financed by
the European Social Fund. Supported by the ÚNKP-21-3 NewNational
Excellence Program of the Ministry for Innovation and Technology
from the source of the National Research, Development and Innovation
Fund. L. Hajder thanks the support of the “Application Domain Specific
Highly Reliable IT Solutions” project that has been implemented with
the support provided from the National Research, Development and
Innovation Fund of Hungary, financed under the Thematic Excellence
Programme TKP2020-NKA-06 (National Challenges Subprogramme)
funding scheme.

Funding Open access funding provided by Eötvös Loránd University.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Perspective sphere projection

The implicit form of a sphere can be written as

(x − s)T (x − s) − r2 = 0, (A.1)

where s = [
x0 y0 z0

]T
and r are the sphere center and radius,

respectively. A spatial point x ∈ R
3 is on the surface of the

sphere if (A.1) holds.
The sphere is a special kind of quadric. The implicit equa-

tion of a general quadric is

[
xT 1

]
M

[
x
1

]
= 0, (A.2)

where M = MT is a 4 × 4 symmetric matrix. It can be
rewritten as

[
xT 1

] [
M̃ b
bT ν

] [
x
1

]
= 0, (A.3)

where the 3 × 3 matrix M̃ is also symmetric.
For a sphere, the matrix M, representing the quadric, can

be written as

M =
[

I −s
−sT sT s − r2

]
. (A.4)

Thus, for a sphere, M̃ = I,b = −s, and ν = sT s − r2.
Contour of a projected quadric. For a pin-hole camera,
the camera intrinsic parameters are frequently represented
by the so-called camera matrix K. The projection of a point

is given as follows: λ
[
u v 1

]T = Kx, where λ is the so-

called projective depth andu = [
u v 1

]T
is the homogeneous

representation of the image points. Therefore, a spatial point
x on the reprojected ray of image point u can be obtained as
x = λK−1u.

If the reprojected ray is substituted, we get the following
implicit equation:

[
λuTK−T 1

] [
M̃ b
bT ν

] [
λK−1u

1

]
= 0.

Then λ2uTK−T M̃K−1u + 2λνbTK−1u + ν = 0. This is
a quadratic equation, therefore, a ray and a non-degenerate
quadric have at most two intersection points. Contour points
produce a single intersection in which case the discriminant

is zero:
(
2νbTK−1u

)2 −4
(
uTK−T M̃K−1u

)
ν = 0. There-

fore,

(
bTK−1u

)2 = vuTK−T M̃K−1u. (A.5)

This equation represents a conic in the image.
Special case: projection of spheres. For spheres, b = −s,
ν = sT s − r2, and M̃ = I. Moreover, if the cameras are
calibrated as it is written in (2) thenK = I. Therefore, (A.5)
can be modified as

(
sTu

)2 =
(
sT s − r2

)
uTu. (A.6)

If the coordinates within the vectors are considered, the
formula becomes (ux0 + vy0 + z0)2 = (x20 + y20 + z20 − R2)

(u2 + v2 + 1). One can rewrite it as

(
R2 − y20 − z20

)
u2 +

(
R2 − x20 − z20

)
v2+

2x0y0uv + 2x0z0u + 2y0z0v + R2 − x20 − y20 = 0. (A.7)
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Appendix B Implicit approach with SVD

The equation system using three independent ellipse contour

points pi = [
ûi v̂i 1

]T
, i ∈ {1, 2, 3} can be written in matrix

form, based on (4), as follows:

⎡

⎣
û21 û1v̂1 v̂21 û1 v̂1 1
û22 û2v̂2 v̂22 û2 v̂2 1
û23 û3v̂3 v̂23 û3 v̂3 1

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

A
B
C
D
E
F

⎤

⎥⎥⎥⎥⎥⎥
⎦

=
⎡

⎣
0
0
0

⎤

⎦ . (A.8)

A more compact form is M� = 0, where M ∈ R
3×6 is the

matrix containing the polynomial functions of the coordi-
nates and � is the column vector containing the six ellipse
coefficients. Applying Singular ValueDecomposition (SVD)
M = U�VT yields the basis vectors for the null space ofM.
The last three column vectors of V give the three right null
vectors v4, v5, and v6 ofM. The linear combination of those
gives the solution for the ellipse parameters:

� (γ, δ) = v4 + gv5 + hv6. (A.9)

The weights γ, δ ∈ R for the linear combination should
be computed considering the constraints, discussed in (10).
Substituting the expressions into C1 and C2 leads us to an
equation system of third degree polynomials containing two
variables.

Unfortunately, a closed formula to γ and δ expressed by
the null space vector elements is not attainable, because there
is no general solution of the following equation system:

[
g
h

] [
γ 3 γ 2δ γ 2 γ δ2 γ δ γ δ3 δ2 δ 1

]T = 0, (A.10)

where every coefficient gi of g and hi of h are third degree
polynomials of some of the v jk values. v jk denotes the kth
element of vj, i ∈ {1, . . . , 10}, j ∈ {4, 5, 6}, k ∈ {1, . . . , 6}.

To the best of our knowledge, these coefficients cannot
be factorized and do not contain any usable special property
to find an explicit solution to γ and δ. Hence, we applied
the symbolic solver built-in function in MATLAB on the
equations containing the concrete values of vectors v4, v5,
and v6, but it is time-consuming which makes this solution
not recommended. Shi et al. (2019) tried to solve it similarly
in an implicit way, but by different techniques, and also found
a solution only with multiple roots.
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