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Abstract

Modelling the mapping from scene irradiance to image intensity is essential for many computer vision tasks. Such mapping
is known as the camera response. Most digital cameras use a nonlinear function to map irradiance, as measured by the sensor
to an image intensity used to record the photograph. Modelling of the response is necessary for the nonlinear calibration.
In this paper, a new high-performance camera response model that uses a single latent variable and fully connected neural
network is proposed. The model is produced using unsupervised learning with an autoencoder on real-world (example) camera
responses. Neural architecture searching is then used to find the optimal neural network architecture. A latent distribution
learning approach was introduced to constrain the latent distribution. The proposed model achieved state-of-the-art CRF
representation accuracy in a number of benchmark tests, but is over twice as fast as the best current models when performing
the maximum likelihood estimation during camera response calibration due to the simple yet efficient model representation.

Keywords Relative colour constancy - Colour correction - Colour alignment - Camera colour calibration

1 Introduction

A camera response function (CRF) describes the mapping
between the radiant energy received by an image sensor and
the intensity output of a camera in the final images [1]. Most
cameras are manufactured with nonlinear CRFs [2]. Such
nonlinearity is introduced during the stages of image forma-
tion in the camera. For instances, analog-digital conversion
in the image sensor, white balance adjustment that minimises
image colour drift due to differing illumination, gamma cor-
rection that expands the luminance range to be interpreted,
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and tone mapping for optimising the image visual quality [3].
Popular CRF models include Empirical Model of Response
(EMoR), generalised gamma curve model (GGCM), polyno-
mial, and gamma [2,4].

Calibration of a camera response is crucial in many com-
puter vision tasks. Examples of such tasks include image
mosaicing where multiple images need to be flawlessly cou-
pled together [5], high dynamic range imaging where images
of multiple exposures are used to produce images with greater
dynamic ranges [6], and denoising that removes motion blur
[7]. CREF calibration also has application in digital forensics
[1].

Elaborate CRF representation modelling is the foundation
for accurate and rapid CRF calibration. The calibration can
be seen as an optimisation process where often the optimal
parameters of a selected CRF representation model are calcu-
lated to best describe the camera response. The existing CRF
models are mostly parametric with multiple parameters. The
solution spaces for optimising these parameters are complex
with arbitrary distributions. Thus, it takes a long time to cal-
ibrate the optimal parameters using existing models.

In this paper, a novel and high-performance non-
deterministic CRF representation model, the Single Latent
Representation model (SLR), is proposed based on the
autoencoder, neural architecture search (NAS), and latent dis-
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tribution learning (LDL) techniques. This work presents the
following contributions. 1) Pattern of real-world CRFs were
extracted by unsupervised learning and represented by a sin-
gle latent variable using autoencoder. 2) Two approaches (i.e.
aLDL and a supervised learning approach using handcrafted
feature) are proposed and applied during model representa-
tion learning to constrain the latent distribution which further
improves the accuracy of camera calibration. 3) A naive NAS
algorithm is used to seek for the optimal autoencoder archi-
tecture considering both model accuracy and complexity. 4)
The proposed model achieves state-of-the-art performance in
terms of accuracy and efficiency of CRF modelling but exe-
cutes in less than half the time than current best algorithms
during CRF calibration.

2 Related work

The latest successful CRF representation model is perhaps
the EMoR by Grossberg and Nayar proposed in 2004 [2].
The EMoR describes a CRF by linearly composing a collec-
tion of principal components or eigenvectors generated by
applying Principal Component Analysis (PCA) on 201 real-
world CRFs known as the Database of Response Function
(DoRF). Each CRF curve is composed by 1024 uniformly
sampled irradiance-intensity converting ratios and is nor-
malised between and passes through (0, 0) and (1, 1). By
EMOoR, an approximation f to the CRF f can be constructed
from k coefficients and the corresponding eigenvectors:

f=fo+e Hy (1)

where fj is the base function calculated by averaging all the
CRFsinDoRF, ¢y = H Z (f — fo) is the model coefficients,
and Hy := [hy--- hy] is the first k eigenvectors with the
largest eigenvalues.

EMOoR is an efficient model to represent CRFs by a very
small number of parameters or coefficients. As reported in
the paper [2], three eigenvalues encode 99.5 percent of the
cumulative energies associated with the eigenvalues in DoRF.
So far, it is the most widely adopted model for representing
a CRF due to its high representing accuracy and simplicity
[3,5,8-12].

Polynomial and gamma curves are the two other popular
models used for CRF representation whose performances are
slightly worse than the EMoR according to a benchmark [4].
A high-order polynomial has the general form:

M .
fo(x) =) @x' )
i=1

where M and w are the order number and model coefficients,
respectively, and they are the parameters to be determined
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through camera calibration. x € [0, 1] is the model input
and represents image pixel intensity.
In general, gamma curves follow the basic form:

fx)=x" 3

where y is the gamma value typically determined through
calibration. This model has been applied in numeral works
[13,14].

An extended version of gamma curve named GGCM has
been proposed [4] and applied [15]. It is denoted in (4).

fo (x) = xFo® )

where the gamma value in the basic form is replaced by a
polynomial term P, (x) = Y ; @ix'.

A limitation of the current CRF representation models is
certainly the high dimensional and complex solution space
for solving the optimal model parameters during calibration.
A CRF representation with a minimum number of model
parameters, e.g. the single gamma value for gamma curves,
is demanded for simplifying the calibration. Autoencoder
has the ability of generalising and has been used for rep-
resentation modelling [16]. It compresses data into a much
lower dimensional latent space represented by a few latent
variables and provides a potential solution to CRF represen-
tation. However, such work has not been reported yet.

In general, autoencoder is a neural network that consists
of an encoder and a decoder. The encoder maps the input data
x to a latent representation z. And the decoder reconstructs
z back to the input data ¥. The latent representation and
the model weights are trained by minimising the difference
between the input and reconstructed data in an unsupervised
process [17].

In the work by Makhzani et al. [18], Adversarial Autoen-
coder (AAE) has been introduced combining autoencoder
with generative adversarial training to deliver unsupervised
learning on multiple objectives. It can impose a constraint
on the latent distribution by the adversarial training process.
The value function of adversarial training can be represented
as:

minmax V (D, G) = Ex~p, [log D (x)]
G D (5)
+ Ezvpizy [log (1 = D (G (2)))]

where the encoder in the autoencoder also acts as the
generator G in adversarial network to produce the latent rep-
resentations z from the data distribution P;. And at the same
time, a discriminator D calculates the probability that a rep-
resentation is generated from the data or prior distribution.
AAE has been successfully applied in applications such as
image anomaly detection [19] and classification [18].
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Fig.1 Architecture of the proposed model for CRF representation. The
top row represents a multi-layer fully connected autoencoder with a sin-
gle latent variable. The bottom row demonstrates the latent distribution
and an objective prior distribution

A Variational Autoencoder (VAE) [20] is another popular
autoencoder model capable of constraining the distribution of
latent representation. Such constraint is achieved by a recog-
nition network that predicts the posterior distribution of the
latent space.

Recent advancement of neural networks for end-to-end
feature representation and data processing increases the
demand for automating the architecture engineering which
is time-consuming and usually done manually. NAS auto-
mates the neural network engineering process. It can be
summarised as three topics: search space, search strategy, and
performance evaluation strategy [21]. Search space defines
the architecture searching scope and usually involves human
prior knowledge. Search strategy determines how the search
space is explored. And performance evaluation strategy
quantifies candidate model performance.

3 Proposed method
3.1 Autoencoder-based CRF representation model

As shown in Fig. 1, the proposed Single Latent variable
camera response Representation (SLR) model inputs a CRF
represented by 1,024 uniformly sampled points on the func-
tion, reduces the dimensionality to the latent space by the
encoder, and outputs the reconstructed CRF by the decoder.
As aresult, a CRF can be represented by the latent variables
in the latent space of the proposed model. A multi-layer fully
connected autoencoder with the same number of input and
output neurons is selected as the representation model of
CREFs.

In our model, the number of hidden layers in either the
encoder or decoder is denoted by L. Both the encoder and
decoder contain either one, two, or three hidden layers, i.e.
L e {1, 2, 3}. Each hidden layer contains varied number of
neurons, denoted by C; where [ € {1, ..., L} is the layer
index. C is the number of latent variables in the model.

Dropout operation is added to prevent the model from overfit-
ting [22]. Nonlinearity is introduced by an activation function
on each unit. The feed-forward operation of the proposed
model has the form:

rj ~ Bernoulli (p)
0 — Dy, O
- 6
pFD wi(1+1)uz n bi(z+1> (6)

1

I+1 I+1
! )=8(U,~( ))

where r () is a vector of independent Bernoulli random vari-
ables with each element a probability p of being 1, * denotes
an element-wise product, #!) denotes the output vector cal-
culated from the input vector v) into layer /, w® and b
are the model weights and bias at layer [, g is the activation
function.

The output vector from layer [ is firstly sampled by the
dropout operation and then processed by the weights and
bias. The processed outputs are nonlinearly activated and
used as inputs to the next layer. This process is repeated layer
by layer. At test time, the model weights are scaled by p to
infer without the effect of the dropout. For CRF construction,
the latent variable is used as the input, and the reconstructed
CRF x can be obtained at the final output layer.

The model weights in the autoencoder are learnt by inde-
pendently back-propagating the gradients calculated from the
derivatives of the losses. The reconstruction loss is the mean-
square-error (MSE) between the input x and reconstructed
CRFs x:

1 N
MSE (x,5) = = ) (xi = %)’ (7)

i=1

where N is the number of training data. Meanwhile, a
smoothness loss is imposed on the reconstructed CRF X as a
CRF is usually a smooth and continuous function based on
the observation from the CRFs in the DoRF:

L@ =|¥], ®

where X is the first derivative of the reconstructed CRF, ||,
denotes the 12-norm.

The optimal number of hidden layers and number of neu-
rons in each hidden layer are determined by NAS.

3.2 Naive neural architecture search
The optimal architecture of the proposed SLR model in terms
of both model accuracy and complexity is determined by

NAS. NAS not only helps find the desired model architecture
but also brings flexibility to the model design (e.g. when an
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extension of the number of latent variables is needed). Since
devices with relatively limited computing resources such as
mobile phones are being considered for running the proposed
model, the model performance estimation needs to be taken
cognisance of both the model complexity and its accuracy.

The search space defined is three hidden layers with
optional neuron numbers 41 = [10, 20, 50, 100, 200, 500],
hy = [0, 10, 20, 50, 100, 200],and ~3 = [0, 10, 20, 50, 100]
for both encoder and decoder. Note that when hidden layer
two has no neuron, hidden layer three must also have no
neuron.

We aim to minimise the model complexity while maximis-
ing its accuracy. However, balancing the trade-offs between
model complexity and accuracy is a persistent challenge in
NAS.

In this paper, the optimal model architecture is determined
by a newly proposed NAS method named naive NAS. Ini-
tially, the naive NAS searches for possible neural architecture
in the search space. It then selects M candidate architectures
with the highest accuracies from the search. Eventually, the
optimal architecture is chosen from those M candidates with
the lowest model complexity. The naive NAS is illustrated in
Algorithm 1.

Algorithm 1 Naive neural architecture search algorithm

Require: A is the architecture search space. M is the number of archi-
tectures with the highest accuracies to be selected from A for the
complexity estimation.

Ensure: The optimal architecture A € A

1: Construct a Set vector S with length N which equals to the number

of elements in A

:for k < 1to N do

Obtain the architecture object from the search space A <— Ay

Estimate the architecture accuracy a <— Accuracy (A)

Estimate the architecture complexity ¢ <— Complexity (A)

Construct and store a Set object Sy < {a, ¢, A}

7: end for

8: Descending order S based on the accuracy metric a

9: Select M candidate architectures with the highest accuracies " «
S[0: M]

10: Ascending order S based on the complexity metric ¢

11: Obtain the architecture object A from the first element of the ordered
S/

12: return A

A AN o

Existing variable search strategies can be coupled with the
proposed naive NAS. The Grid Search [23] is the selected
strategy since it is thorough and the proposed model is light-
weight (i.e. the performance estimation of each candidate
architecture can be completed in less than a minute) and the
search space is discrete and small (i.e. with only a total of
156 valid candidate architectures in the search space).

The model complexity is calculated by the total number
of weights in either the encoder or decoder of the SLR with
considering the latent variable:

@ Springer

L
Complexity ~ [(Z Ci_i1C) + C,) +CLC. + cz} )

=1

where L is the total number of layers in the encoder or
decoder, C is the number of neurons in a specific layer, and
C, is the number of latent variables in the model. The model
accuracy is measured by a three-fold cross-validation and

(7:
Accuracy ~ MSE (x, X) (10)

where x and x are the reconstructed and validated CRF
curves.

3.3 Constraint on the latent distribution

The latent variable z in the autoencoder follows an arbitrary
distribution by default. Two approaches (i.e. a distribution
learning and a supervised learning approach using heuristics)
have been proposed to constrain the latent variable to follow
a prior distribution to help the optimisation process to more
accurately find the best z during calibration.

In the first approach, the latent distribution is constrained
by “learning” from the objective distribution. It is named
latent distribution learning (LDL) and achieved by min-
imising the Kullback—Leibler Divergence (KL-divergence)
between the latent and objective distributions.

The latent distribution is approximated by a normal dis-
tribution y ~ N (i, o). The normal distribution maximum
likelihood of the latent variable is estimated by:

nw=y,

N
o’ =Y (yi—w’

i=1

(1D

where y is the samplings on the latent distribution and M is
the number of samplings.

KL-divergence between two normal distributions has the
form:

KL Nt (1, 01) , Na (w2, 02))
= —//\/'1 10g(N2)dy+/J\/1 log (M))dy

2 2
o o+ — 1
~ log <_2> Lotz 1
o1 20'2 2

12)

The KL-divergence between the estimated latent distribu-
tion A (141, o1) and the objective standard normal distribu-
tion NV (0, 1) can be simplified to:
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KL N (u1,01), N (0, 1))
1/, 5 (13)
=5 (ul +oi —2logoy — 1)

This is used as the cost for the latent distribution learning
in the proposed SLR model. The second approach, named
AUC, generates a label for each CRF as the true latent value
for distribution constraining. The label is generated by a so-
called area under curve approach which calculates the area
between the CRF and diagonal curve:

- i
L=Z<x,- _N> (14)

where N is the number of samplings in each CRF curve,
which is 1,024 for those in the DoRF. The latent distribution
is trained using supervised learning by minimising the MSE
between the latent and true values.

4 Experiments and results

This section details the experimental setup used to examine
and test the proposed model. All the processing and evalua-
tions were performed on a laptop computer with a 2.6-GHz
Intel Core i7 processor and a 16-GB memory. To acceler-
ate the optimisation process, a NVIDIA GeForce RTX 2060
GPU was employed.

4.1 Datasets

Two datasets, i.e. the DoRF and a modified Middlebury
[24], were prepared for performing the validations and bench-
marks. Data distribution of these two datasets is demonstrated
in Fig. 2.

The DoRF contains 201 CRFs and is currently the most
comprehensive dataset of CRFs produced from real-world
camera models. This dataset was used in our experiments
without modification.

The modified Middlebury dataset contains a total of 112
images. Images of 14 cameras were selected from the original
dataset. These cameras were chosen because of their higher
cross-channel response uniformity. Each of these cameras
took eight images of a Macbeth colour chart under two uni-
form illuminations and four fixed exposures. This dataset
provides an abundance of variation for evaluating CRF cali-
bration accuracy.

The colour patch (CP) locations in the images in the sec-
ond dataset (24 CP for each image) were carefully labelled
by utilising a custom-developed Python script so that the CPs
can be extracted and aligned with each other across different
images. The true colour values of the CPs are extracted from
the RAW images.
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Fig. 2 Distribution of the two datasets used for model validation. (a)
The CRFs of 201 real-world cameras in the DoRF. Each green curve
represents a CRF in the database. (b) Irradiance-intensity scatter plot of
the CCPs extracted from the 14 cameras selected from the Middlebury
dataset. CCPs of different cameras were rendered in varied colours

4.2 Evaluation metrics

The root-mean-square error (RMSE) [2,8,25-27] has been
widely used to quantify colour difference. It measures the
Euclidean distance between two compared vectors:

N

1 2
d (i, v) = | > i —v) (15)

i=1

where u and v are the compared vectors and N is the number
of items in each of the vectors. A smaller RMSE indicates a
better result. A 0 RMSE illustrates identical results.

In the experiments, the RMSEs calculated from compar-
ing the reconstructed CRF with CRFs in the DoRF in the first
experiment or those from comparing colour values of JPG
and corresponding RAW images in the second experiment
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Fig. 3 Visualisation of the (a) objective distribution, compared to the
latent distribution developed by the SLR that (b-e) applies four different
constraining approaches and (f) imposes no constraint as the training
epoch grows

were collected into a result vector 4 for statistical analysis:

where C is the number of camera models to be compared.
The Mean of the result vector 4 was used as the over-
all performance evaluation indicator in the first experiment.
In the second experiment, five metrics are used to evaluate
the result vector produced by each method. The first four
are statistical metrics (i.e. Mean, Standard Derivation, Maxi-
mum, and 95 Percentile) that reflect model accuracy. Among
these four metrics, the Mean of / can be seen as the overall
performance metric for accuracy. The time metric was eval-
uated as the total time needed in seconds (s) for calibrating
all the 14 camera models in the second dataset. We consid-
ered ARMSE > 0.005 to be the thresholds for significant
performance difference in the second experiment.

4.3 Latent distribution constraint benchmarks

Constraining the latent distribution using four different
approaches (i.e. the two proposed approaches, AAE and VAE
approaches), the baseline (i.e. without imposing any con-
straint method), and the objective distribution were compared
in this benchmark as shown in Fig. 3.

@ Springer

Table1 DoRF curves fitting performance evaluation of various approx-
imation models with different number of parameters in terms of
averaged RMSE

Method Dim

One Two Three Four
Our SLR 5.57E-4 N. A. N. A. N. A.
Gamma 7.34E-3 N. A. N. A. N. A.
Polynomial 8.79E-3 2.36E-2 2.50E-2 2.90E-2
GGCM 6.65E-3 7.55E-3 7.06E-3 6.76E-3
EMoR 3.60E-2 1.24E-2 5.71E-3 3.21E-3

Other than the two proposed approaches, AAE constrains
the latent distribution by utilising an adversarial training net-
work. The network employs the encoder in the SLR model
as the generator. The discriminator consists of two hidden
layers with 100 neurons for each layer and a single neuron
for both the input and output layers. The adversarial training
process is represented by (5).

Instead of imposing additional constraints on the latent
distribution as used by the previous three approaches, VAE
incorporates the posterior distribution of the latent space into
the autoencoder network architecture. Since a normal latent
distribution is demanded, the encoder outputs two neurons
(i.e.aMean and a Standard Derivation) representing a normal
distribution and then generates the single latent variable by
sampling the posterior normal distribution.

The last approach imposes no constraint on the latent dis-
tribution and is seen as the baseline for the comparisons.

The objective latent distribution is the standard normal
distribution A (0, 1) as visualised in Fig. 3(a), except for the
AUC approach.

The results demonstrated that applying the proposed latent
learning approach converged rapidly and led to an accu-
rate latent distribution compared to the objective distribution.
The proposed supervised learning approach produced a con-
strictive yet sharp latent distribution. The latent distribution
developed by AAE was unstable compared to the rests. Both
the distributions developed by VAE and baseline converged
slowly during model training with the baseline distribution
also being constrictive.

Overall, the proposed latent distribution learning (LDL)
approach performed the best. Thus, this approach was
selected to constrain the latent distribution in the rest exper-
iments.

4.4 DoRF curve-fitting benchmark

We firstly compared the performance of the proposed SLR
with four other popular models, i.e. gamma, polynomial,
GGCM, and EMoR in a DoRF curve-fitting benchmark. In
this experiment, every CRF curve in the DoRF was repre-
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Fig. 4 Radiometric calibration results of a specific camera model
(CanonPowerShotG9). The grey dots are the ground truth values. The
red, orange, yellow, and red curves are the inverse CRFs calibrated using
3,6, 12, and 24 NoCCPs on a Macbeth colour chart, respectively. And
the blue diagonal line is for reference to. Our model (a) produced more
accurate and stable inverse CRFs than the other three tested methods
(b, c,d)

sented by each model with a specific number of parameters
using the optimal parameters calculated. Four number of
parameters (i.e. 1,2, 3, and 4) were tested for each of the poly-
nomial, GGCM, and EMoR. While gamma and our method
were tested with only one parameter since our method works
with a single latent variable. The benchmark results are
demonstrated in Table 1.

The results indicate that our model with only a single
parameter achieved greater than ten-folds better perfor-
mance (Mean RMSE: 5.61E-4) over most of the other tested
methods in the DoRF curve-fitting benchmark. This is not
surprising as our model learned the nonlinear CRF features
from the real-world CRFs.

4.5 Camera radiometric calibration

The performance and applicability of the proposed SLR
model is further validated by a camera radiometric calibra-
tion application [28]. This computer vision task estimates
inverse-CRF from real camera images.

The true irradiance-intensity mapping values of a specific
camera model, i.e. Canon PowerShot G9, and inverse-CRFs
produced by four different methods with applying 3, 6, 12,
and 24 number of corresponding colour patches (NoCCPs)
during calibration are visualised in Fig. 4. Our model fitted
more accurately to the true values (see Table 2 for detail).
Ours also performed more stable when using varied NoC-
CPs for the calibration (the Total Variance of the four curves

Table 2 Stability evaluation and comparison of the four commonly
used CRF models, i.e. our SLR, polynomial, GGCM, and EMoR, in
terms of the total variance between CRFs estimated using 3, 6, 12, and
24 NoCCPs on a Macbeth colour chart

Method Stability (Total Variance) |,
Our SLR 0.66
Polynomial 1.63
GGCM 8.11
EMoR 3.87

in each plot of Fig. 4 are: our SLR 0.66; polynomial 1.63;
GGCM 8.11; EMoR 3.87; the smaller the better).

The radiometric calibration performances of the five meth-
ods (i.e. our SLR, gamma, third degree polynomial, third
degree GGCM, and EMoR with three parameters) were fur-
ther evaluated by 14 camera models. Their performances in
terms of six metrics are demonstrated in Table 3. The first
five metrics are statistical metrics of the RMSEs calculated
from the inverse-CRFs of the 14 camera models. The RMSE
of each camera model was calculated by comparing the true
values and the calibrated inverse-CRF. These five metrics
evaluate accuracy of the inverse-CRFs calibrated by each
method. Our SLR with a single latent variable and applying
the LDL (Mean RMSE 0.062) clearly outperformed the oth-
ers compared to some of the other methods with using even
three parameters. The CRF calibration accuracy improve-
ment contributed by the LDL on our SLR can be quantified
by comparing with the baseline. The sixth metric evaluates
the total time needed for calibrating all the 14 camera mod-
els (i.e. finding the optimal model parameters). It is a metric
that reflects model efficiency and is important to be consid-
ered for deploying on mobile platforms. Our SLR with LDL
(57.4s) completed all the calibrations over twice faster than
the gamma (112.6s) that also works with a single param-
eter and the others that work with more parameters. This
is partially contributed by the simple yet efficient autoen-
coder architecture found by NAS. Our SLR with AUC (43.15)
achieved faster calibration yet sacrificed the calibration accu-
racy (Mean RMSE 0.105).

5 Conclusion

In this paper, a CRF model that represents camera responses
with only a single latent variable has been described. The
model used unsupervised learning on real-world CRFs by
autoencoder. A simple yet efficient autoencoder architec-
ture was found by applying a naive NAS algorithm. A latent
distribution learning approach was introduced to effectively
constrain the latent variable to a normal distribution for
improving the accuracy of the CRF calibration process. We
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Table3 Cameraradiometric calibration results produced by five differ-
ent methods (our SLR, gamma, polynomial, GGCM, and EMoR) using
eight calibration images and three colour patches in each image are
listed. Our SLR was evaluated with four latent distribution constraining
approaches and the baseline. Six metrics are used to evaluate the per-
formance of each method. The first five are statistical metrics (mean,

median, standard derivation, maximum, and 95 percentile) of RMSE
that reflect model accuracy. Among these five metrics, the mean can be
seen as the overall performance metric for accuracy. The time metric
was evaluated as the total time needed in seconds for calibrating all the
14 camera models

Mean Median S.D. Max. 95 Pct. Time
Our SLR (d=1) Our LDL 0.062 0.056 0.056 0.106 0.101 57.4
Our AUC 0.105 0.092 0.064 0.252 0.213 43.1
AAE 0.064 0.057 0.027 0.131 0.107 56.4
VAE 0.063 0.054 0.025 0.108 0.107 57.0
baseline 0.075 0.067 0.039 0.193 0.138 58.5
Our SLR (d=3) Our LDL 0.097 0.097 0.050 0.184 0.181 61.1
AAE 0.063 0.051 0.038 0.178 0.122 60.6
VAE 0.091 0.091 0.038 0.145 0.139 62.1
baseline 0.120 0.120 0.051 0.251 0.195 59.72
Gamma (d=1) 0.092 0.080 0.040 0.164 0.162 112.6
Polynomial (d=3) 0.074 0.070 0.027 0.156 0.118 129.6
GGCM (d=3) 0.124 0.125 0.055 0.222 0.210 143.3
EMoR (d=3) 0.154 0.105 0.121 0.474 0.408 138.1

demonstrated a superior performance of the proposed model
in terms of both the CRF modelling accuracy (i.e. ten-folds
better CRF modelling accuracy in the curve-fitting cross-
validation benchmark) and calibration efficiency (i.e. around
twice as fast as the best current models for CRF calibration
in a double-cross-validation benchmark).
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