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Abstract
In this work, we assess the performance and energy efficiency of high-performance 
codes for the convolution operator, based on the direct, explicit/implicit lower-
ing and Winograd algorithms used for deep learning (DL) inference on a series of 
ARM-based processor architectures. Specifically, we evaluate the NVIDIA Denver2 
and Carmel processors, as well as the ARM Cortex-A57 and Cortex-A78AE CPUs 
as part of a recent set of NVIDIA Jetson platforms. The performance–energy evalu-
ation is carried out using the ResNet-50 v1.5 convolutional neural network (CNN) 
on varying configurations of convolution algorithms, number of threads/cores, and 
operating frequencies on the tested processor cores. The results demonstrate that the 
best throughput is obtained on all platforms with the Winograd convolution operator 
running on all the cores at their highest frequency. However, if the goal is to reduce 
the energy footprint, there is no rule of thumb for the optimal configuration.

Keywords Convolution algorithms · ARM processors · High performance · Energy 
efficiency

1 Introduction

Over the past years, convolutional neural networks (CNNs) have exhibited an 
outstanding accuracy in a myriad of applications, including but not limited to face, 
speech, image or handwriting recognition, autonomous driving, and automatic 
medical diagnosis [1, 2]. The power and effectiveness of CNNs are due to the 
convolutional operators utilised therein, which can automatically detect distinctive 
image features while reducing the arithmetic costs and memory consumption 
required by previous approaches. This operator, however, is responsible for a 
substantial portion of the computational costs required for CNN training and 
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inference [2]. Consequently, significant efforts have been devoted to developing 
efficient algorithms for this particular computational core in almost all current 
processor architectures [3, 4]. In applications where CNNs inference is deployed 
on smart sensors or battery-operated devices equipped with micro-controller units 
(MCUs) (e.g. ARM Cortex-M CPUs) or low-power processors (e.g. ARM Cortex-A 
CPUs), the optimisation of this operator is strongly focused on reducing its energy 
consumption [5].

In this paper, we contribute to this line of work with a comprehensive analysis of 
the performance and energy efficiency of different convolution algorithms for deep 
learning (DL) inference on a collection of ARM-based processor architectures. Spe-
cifically, we make the following major contributions:

– We describe our high-performance implementations for the direct1, explicit2 and 
implicit lowering3, and Winograd4 convolution algorithms optimised for ARM 
processors and their integration within PyDTNN, a Python framework for train-
ing and inference of deep neural networks (DNNs) [6].

– We characterise the target ARM processors of different NVIDIA Jetson plat-
forms based on Orin, Xavier, nanO, and TX2, as well as their execution models 
and the available power rails for measuring the CPU and memory energy con-
sumption.

– We assess the performance and energy efficiency of the ResNet-50v1.5 CNN 
on varying configurations of convolution algorithms, number of threads/cores, 
ARM processors and operating frequencies. For each tested processor, we deter-
mine the best-performing configuration and the most energy-efficient scenario.

The rest of the paper is structured as follows. In Sect. 2, we describe some related 
works and compare their analysis with those obtained in this study. Next, in Sec-
tion 3, we describe different convolution algorithms and optimisations for ARM pro-
cessors. In Sect. 4, we evaluate the performance and energy consumption under dif-
ferent configurations, and finally, in Sect. 5, we close the paper with a few remarks 
and a brief discussion of future work.

2  Related work

Among different methods proposed in the literature for the convolution operator, we 
can list (i) the direct algorithm, usually implemented as six nested loops around a 
multiply-and-add instruction [4]; (ii) the lowering (also known as im2cOl/im2rOw 

1 The source code of the direct convolution is available at https:// github. com/ hpca- uji/ convD irect.
2 The source code of the explicit lowering convolution is available at https:// github. com/ hpca- uji/ 
PyDTNN.
3 The source code of the implicit lowering convolution is available at https:// github. com/ hpca- uji/ convG 
emm.
4 The source code of the Winograd convolution algorithm is available at https:// github. com/ hpca- uji/ 
convW inogr ad.

https://github.com/hpca-uji/convDirect
https://github.com/hpca-uji/PyDTNN
https://github.com/hpca-uji/PyDTNN
https://github.com/hpca-uji/convGemm
https://github.com/hpca-uji/convGemm
https://github.com/hpca-uji/convWinograd
https://github.com/hpca-uji/convWinograd
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-based) approach, which transforms the input image(s) into a matrix in such a way 
that a general matrix–matrix (gemm) multiplication can then be used to compute the 
convolution [7, 8]; (iii) the FFT-based algorithm, which shifts the computation into 
the frequency domain in order to reduce the arithmetic requirements [9–11]; and 
(iv) the Winograd-based convolution, which leverages the Winograd minimal filter-
ing algorithm to decrease the arithmetic cost of the convolution [9, 12]. The general 
view of these methods and some of their corresponding high-performance imple-
mentations for MCUs and low-power processors (e.g. CMSIS-NN [13], ARM Com-
pute Library [14], and NNPack [15]) is that the best option from the performance 
and energy viewpoints largely depends on the parameters that define the convolution 
operations (i.e. the dimensions of the filters and the image, the batch size, etc.), as 
well as different performance states and working modes provided by each processor 
architecture.

To perform DNN inference on low-power processors and MCUs, their limited 
computational and memory capabilities require aggressive optimisations in both 
algorithms and codes to be carried out. For instance, the authors in [16] propose a 
series of incremental improvements for DNN inference, such as the adjustment of 
the convolution algorithm or the cache blocking parameters, which are evaluated 
performance- and energy-wise on an NVIDIA Jetson Xavier. Similarly, the authors 
in [17] present novel optimisation techniques based on layer separation and sparsifi-
cation that are employed for wearable devices based on Qualcomm Snapdragon 400, 
ARM Cortex M0 and M3, and NVIDIA Tegra K1. Another approach for minimising 
resource requirements (computation, memory, and energy) is DeepX [18], a soft-
ware tool that allows large-scale DL models to be executed efficiently on modern 
mobile processors. In this work, however, we focus on performing an exhaustive 
performance–energy evaluation of DL inference using a series of highly optimised 
convolution algorithms on ARM processors.

3  Convolution algorithms

The convolution operator

receives a sequence of filter tensors, F, and 4-dimensional (4D) inputs, I, to produce 
4D output tensors, O, where:

– F comprises co filters of dimension hf × wf × ci each, where hf × wf  correspond 
to the filters height × width.

– I consists of b input images of size hi × wi × ci each, where hi × wi denote the 
images height × width, and ci stands for the number of input channels.

– O is composed of b outputs of size ho × wo × co each, where ho × wo represent the 
outputs height × width and co is the number of output channels.

(1)O = CONV(F, I),
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The basic algorithm for the direct convolution in Listing  1 shows that each filter 
convolves a subtensor of the inputs, with the same dimension as the filter, to render 
a single scalar value (entry) for one of the co outputs. The filter is then repeatedly 
applied to the whole input, in a sliding window manner, to produce the complete 
entries of this single output [2].

In the following sections, we review four different methods to compute the convo-
lution operator and our high-performance implementations for ARM processors. In 
particular, we target: (i) a blocked variant of the direct algorithm (ConvDirect), (ii) 
a lowering approach (Lowering), (iii) an implicit lowering approach (ConvGemm), 
and (iv) a Winograd implementation (ConvWinograd).

3.1  Blocked algorithm for direct convolution

In previous work [19], we combined the blocking strategy in [4] for the direct con-
volution algorithm with the packing schemes employed in the high-performance for-
mulation of gemm [20]. The result was a new blocked version of the direct convolu-
tion, referred to as ConvDirect and illustrated by the algorithm in Listing 2, with the 
following properties:

– All the arithmetic is enclosed inside a micro-kernel that computes a gemm to 
update a small mr × nr micro-tile of the result (in this case, O), mimicking the 
high-performance implementations of gemm in GotoBLAS2, BLIS, OpenBLAS, 
and AMD AOML.

– The micro-tile dimensions are decoupled from the cache blocking parameters 
wo,b, co,b, ci,b.

– The input tensor contents are packed into an mc × nc buffer Ac to allow that its 
entries are accessed with unit stride from the micro-kernel. (For simplicity, the 
algorithm in Listing 2 only shows where this packing routine is placed.)

– The filter tensor is re-packed into a 5D tensor, of dimension 
hf × wf × co∕co,b × ci × co,b . This type of packing enables unit-stride accesses to 
B from the micro-kernel. It should be noted that as the filters do not vary dur-
ing inference, this only needs to be done once for the DNN model, and its cost 
becomes negligible.
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A significant key to attaining high performance in the blocked direct convolution 
lies in the utilisation of an architecture-specific micro-kernel. The decoupling of the 
micro-tile dimensions from the cache blocking parameters combined with the pack-
ing of the input tensor facilitates leveraging existing high-performance micro-ker-
nels, specifically tuned for a concrete processor architecture [19]. The advantage of 
our approach is to directly handle the well-adopted NHWC data layout, avoiding the 
tensor transformation overhead of previous algorithm designs [4].

Micro-kernels for the blocked direct convolution The evaluated direct convolution 
framework includes a number of micro-kernels specifically developed and tuned for 
the ARM Neon v8. These micro-kernels work with different micro-tile sizes, MR 
and NR, like 8 ×12, 4 ×12, 4 ×16, 4 ×20, etc. Among these, the 8 × 12 micro-kernel 
is the one which generally attains the best performance. For this reason, we have 
selected this micro-kernel size for the performed ConvDirect experiments. It should 
be noted that this micro-kernel uses two different implementations. The first one 
is used when the micro-tile size is equal to MR × NR (8×12) and is programmed 
in ARM assembly language. The second implementation, which is called in those 
cases where the size of the micro-tile is smaller than MR × NR, is programmed 
using ARM intrinsic instructions.

Parallelisation The blocked direct convolution presents a considerable number of 
independent loops, which offer a rich variety of parallelisation opportunities (loop-
level parallelism) that can be exploited, for example, via OpenMP. In our case, we 
parallelised the loop traversing the co,b dimension (see Line 11 of Listing 2).
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3.2  Lowering approach

A high-performance implementation of the convolution operator can be obtained 
for current computer architectures by lowering this operator into a large matrix-
matrix multiplication (gemm). For this purpose, assuming the input/output 
tensors are stored following the NHWC layout (and the filters in the CRSK 
layout), the lowering approach: 

1. Applies a row transformation to the 4D input tensor I in order to build an aug-
mented 2D matrix A of size m × k = (bhowo) × (cihf wf ) [7], as shown in the algo-
rithm in Listing 3.

2. Computes the output of the convolution directly from the gemm C = A ⋅ B , where 
C ≡ O is the output tensor, viewed as an m × n = (bhowo) × co matrix, and B ≡ F 
is the filter tensor, viewed as a k × n = (cihf wf ) × co matrix.

We denote the combination of these two steps as an explicit im2rOw-based con-
volution. The lowering approach performs the same arithmetic operations as the 
direct convolution in Listing 1 and therefore has the same numerical properties.

Parallelising and vectorising the im2rOw transform. The im2rOw transform is a 
memory-bound transform which can be easily parallelised by adding the appro-
priate OpenMP directive to the most appropriate loop(s), preferably one of the 
outermost ones or a collapsed combination of them. In our case, we parallelised 
loops iterating over the batch size and input channels, though the parallelisation 
efficiency is limited when the multiple threads saturate the memory bandwidth 
while accessing to I and A or when the number of collapsed iterations is not big 
enough.

Its vectorisation, however, is not straightforward. This kernel only performs 
data movements between I and the workspace A, so we efficiently benefit from 
SIMD loads (e.g. via ARM NEON intrinsics) provided the innermost loop trav-
erses the ci dimension of the problem. However, SIMD stores are not possible to 
write the values to A.

High-performance gemm and lowering. On the positive side, the large 
dimension of the gemm appearing in the lowering approach favours an efficient 
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vectorisation and exposes a high degree of loop-level parallelism for multicore 
ARM architectures. This can be achieved by invoking an existing high-
performance implementation of gemm, such as that in the BLIS framework [20].

3.3  Implicit lowering approach

The negative side of the lowering approach described in the previous subsection is 
that it requires a large temporary workspace A ( hfwf  times larger than I) and presents 
a certain overhead due to the required data copies. To minimise these costs, instead 
of explicitly constructing the matrix A, it is possible to combine the im2rOw trans-
form and the packing of A into the buffer Ac that occurs within the gemm BLIS [3]. 
For this purpose, during the execution of the gemm kernel, the buffer Ac is directly 
constructed from the contents of the input tensor I, instead of from the augmented 
matrix A. This approach never explicitly assembles A, obtaining large memory sav-
ings because Ac typically requires a few kilobytes of memory and is much smaller 
than A. The maximum size of A depends on the model, the data set, the batch size, 
and the data type being used. For example, for ResNet50, ImageNet, a batch size 
of 1, and using the float32 data type, the maximum size of A is 6.9 MiB, whereas 
with a batch size of 64 is 441 MiB. Our implementation for the implicit lowering 
convolution variant is denoted as ConvGemm.

3.4  Winograd minimal filtering algorithm

The Winograd (minimal filtering) [21] algorithm, referred to as ConvWinograd, 
provides a method to obtain an efficient implementation of a convolution operator 
[22]. Concretely, given a convolution layer that applies a filter f to an input image d, 
consisting of c input channels, in order to produce an output y, with k channels, the 
Winograd-based convolution can be expressed as

where G, B, respectively, denote the transformation matrices for the filter and input 
matrices; A is the inverse transformation matrix; fik ,ic is the ic-th channel of the ik-th 
filter; dic is the ic-th channel of the input image; yik is the ik-th channel of the output; 
and ⊙ denotes the Hadamard (or element-wise) multiplication [12].

From a practical point of view, the 2D Winograd-based convolution applies 
an r × r filter to a t × t input tile in order to produce an m × m output tile, with 
t = m + r − 1 . An hi × wi image is processed by partitioning it into t × t tiles, 
with an overlapping factor of r − 1 elements between neighbouring tiles, yielding 
⌈hi∕m⌉⌈wi∕m⌉ tiles per channel. In this algorithm, choosing a larger value for m thus 
reduces the number of arithmetic operations, unfortunately at the cost of introduc-
ing numerical instability in the computation [23]. For that reason, m is usually set 
to be small, with two popular cases being F(m × m, r × r) = F(4 × 4, 3 × 3) and 
F(2 × 2, 3 × 3).

(2)yik = AT
�∑c

ic=1

�
Gfik ,icG

T
�
⊙
�
BTdicB

��
A, ik = 1, 2,… , k,
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According to Winograd’s formula  (2), the intermediate Hadamard products 
are summed over all c channels to produce the ik-th output channel. In our Wino-
grad implementation [24], we scatter each transformed tile of the filter and input 
along the t × t dimensions, on respective intermediate workspaces U and V, of sizes 
t × t × k × c and t × t × c × (⌈hi∕m⌉⌈wi∕m⌉) in order to collapse the Hadamard prod-
ucts and the element-wise summations into t × t independent matrix–matrix mul-
tiplications (also known as a batched gemm [25]). Finally, the same coordinates of 
the resulting t × t matrices are gathered to form a new t × t tile which is next used to 
compute the inverse transform as a m × m tile on the output tensor.

In summary, the batched gemm variant of the Winograd algorithm exposes four 
major phases: 1) filter transform; 2) input transform; 3) batched gemm; and 4) out-
put inverse transform. In DL, the 3D input/output tensors are extended with a batch 
dimension n using either the NCHW or the NHWC layouts.

OpenMP parallelisation In our implementation, the four phases of the algorithm 
are parallelised using OpenMP, as the kernels involved by the transform matrices 
for the filter/input/output tiles present no data dependencies. To augment loop-level 
parallelism, we also use the OpenMP collapse clause to fuse the first two loops 
in each phase. Each individual t × t gemm kernel in phase 3 is executed serially, but 
we parallelise their calculation across the t × t dimensions.

Vectorising the input transform The implementation of the Winograd filter/input/
output transform phases is also vectorised using ARM NEON intrinsics. A special-
ised gemm for the filter/input/output tiles is implemented computing only the non-
zero elements in the G, B, and A sparse transformation matrices. Given that these 
matrix operands remain static for all the computation, it is possible to hard-code 
their entries to directly operate with vector registers.

4  Experimental results

In this section, we assess the performance and energy efficiency of the described 
convolution algorithms on four different platforms based on ARM multicore CPUs 
with varying core/frequency configurations using the ResNet-50 v1.5 CNN model. 
In [16], we performed an exhaustive execution analysis of different algorithms and 
described a series of optimisations to reduce the inference time. In this paper, we 
leverage the optimal versions of these algorithms.

4.1  Hardware setup

For the experiments, we use a range of NVIDIA Tegra platforms [26], a SoC series 
for battery-operated devices such as smartphones, personal digital assistants, and 
mobile Internet devices. The Tegra SoCs integrate an ARM architecture CPU, a 
GPU, a north/southbridge, and a memory controller into a single package. These 
low-power SoCs, branded as NVIDIA Jetson, emphasise performance for gaming 
and machine/deep learning applications with a special focus on energy efficiency.
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Table 1  Specifications for the selected NVIDIA Jetson platforms

Platform Component Description

 Orin CPU 12×ARM Cortex-A78AE ARMv8.2 cores @ 2.20 GHz (grouped in 3 clusters)
L1 Cache 64 KiB ICache; 64 KiB DCache (per core)
L2 Cache 256 KiB (per core)
L3 Cache 2048 KiB (per cluster)
Memory 64 GiB LPDDR5 @ 204.8 GB/s

 Xavier CPU 8×NVIDIA Carmel ARMv8.2 cores @ 2.26 GHz (grouped in 4 clusters)
L1 cache 128 KiB ICache; 64 KiB DCache (per core)
L2 cache 2048 KiB (per cluster)
L3 cache 4096 KiB (total)
Memory 32 GiB LPDDR4 @ 137 GB/s

 nanO CPU 4×ARM Cortex-A57 ARMv8-A cores @ 1.43 GHz
L1 cache 48 KiB ICache; 32 KiB DCache (per core)
L2 cache 2048 KiB (total)
Memory 4 GiB LPDDR4 @ 25.6 GB/s

 TX2  CPU 2×NVIDIA Denver2 ARMv8-A cores @ 2.0 GHz
4×ARM Cortex-A57 ARMv8-A cores @ 2.0 GHz

 L1 cache Denver: 128 KiB ICache; 64 KiB DCache (per core)
ARM: 48 KiB ICache; 32 KiB DCache (per core)

L2 cache 2048 KiB (per cluster)
Memory 8 GiB LPDDR4 @ 59.7 GB/s

Table 2  Selected NVP model configurations for the NVIDIA Jetson platforms

Platform NVP model ID NVP model CPUs enabled Power 
budget (W)

Fre-
quency 
(GHz)

 Orin 0 Max-N 12 – 2.20
1 15W 4 15 1.11
2 30W 8 30 1.72
3 50W 12 50 1.49

 Xavier 0 Max-N 8 – 2.26
1 10W 2 10 1.20
2 15W 4 15 1.20
3 30W-All 8 30 1.20

 nanO 0 Max-N 4 – 1.48
1 5W 2 5 0.92

 TX2 0 Max-N 2×Denver2 + 4 ×A57 – 2.00
1 Max-Q 4×A57 – 1.20
2 Max-P-Core-All 2×Denver2 + 4 ×A57 – 1.40
3 Max-P-ARM 4×A57 – 2.00
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Table  1 describes the specifications of the four selected NVIDIA Jetson plat-
forms: AGX Orin, AGX Xavier, nanO, and TX2. For each platform, the table 
details the CPU model, architecture, maximum operating frequency, levels of cache, 
memory type and size. Each of these systems permits the selection of different per-
formance models, also known as NVP (NVIDIA Performance) models, allowing the 
user to enable/disable CPUs and to adjust the core operating frequency in order to 
limit the maximum power consumption. NVP models can be configured and moni-
tored via the nvpmodel and jetson-stats tools [27], respectively. The per-
formance models configured for each platform are detailed in Table 2. There, the 
Max-N mode enables all CPU cores and allows them to consume as much power 
as they require to achieve their maximum performance. In contrast, modes with IDs 
starting from 1 on (except for TX2) set a maximum power budget to be consumed, 
either by progressively disabling cores, reducing the operating frequency, or a com-
bination of both. Note that the TX2 platform does not offer any kind of power cap-
ping in its available NVP models.

4.2  Power monitoring

The Jetson platforms offer several INA3221 on-board power sensors via I 2 C, which 
can be monitored through the sysfs file system nodes [28]. These sensors meas-
ure power, voltage, and current rails available for each platform. Table 3 details the 
CPU-related rails that we monitor for the energy efficiency evaluation. These include 
the CPU and memory (DDR) power consumption rails but omit those related to the 
GPU and other on-board peripherals that have not been used in this study.

To collect measurements from these power rails, we leverage Pmlib, a Power 
Measurement Library [29]. This library implements a client-server model where the 
server continuously reads power samples that can be later collected by the clients for 
a given time interval. To gather power measurements from each Jetson platform, the 
corresponding Pmlib module reads the sysfs files related to the power rails listed 
in Table 3 at a frequency of 10 Hz.

Table 3  Measured CPU-related power rails for each system platform

Platform Measured power rails Description

 Orin +VDD_CPU_CV CPU and CV combined power rail
+VDDQ_VDD2_1V8AO DDR and 1V8AO combined power rail

 Xavier +CPU CPU power rail
+VDDRQ DDR memory power rail

 nanO +POM_5V_IN System 5V power rail
– POM_5V_GPU GPU power rail (subtracted from POM_5V_IN)

 TX2 +VDD_SYS_CPU CPU power rail.
+VDD_SYS_DDR DDR memory power rail
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4.3  DL framework, libraries, compilation flags, and parallelisation

To evaluate different convolution algorithms, we bundled their codes into indi-
vidual C libraries and integrated them into PyDTNN, a lightweight framework 
implemented in Python for DL training and inference [6, 30]. For this purpose, we 
developed the corresponding binding modules that internally call the ConvDirect, 
ConvGemm, and ConvWinograd C functions via the ctypes Python library. 
These Python modules interact with the PyDTNN layer class Conv2D to finally 
execute the convolution algorithm. For the case of ConvWinograd, the bind-
ing module calls the Winograd C function according to the filter size requested 
by the convolutional layer encountered in a given neural network model. Note that 
the libraries for the ConvGemm and ConvWinograd algorithms, which inter-
nally execute the gemm or leverage a gemm-related micro-kernel, are linked against 
BLIS v0.8.1. Alternatively, the implementation of the Lowering algorithm within 
the Conv2D layers is implemented in PyDTNN using Cython v0.29.24 and paral-
lelised with OpenMP. In this case, the implementation of gemm is provided by the 
same BLIS library. It is also worth noting that the three convolution libraries (Con-
vGemm, ConvDirect and ConvWinograd) have been compiled using gcc v10.2.0 
with the optimisation flags -O3 -fopenmp for all the platforms.

4.4  Testbed

For the evaluation, we measure the inference throughput and energy efficiency in 
terms of images per second and images per Joule, respectively, of the ResNet-50 
v1.5 [2] CNN model on the ImageNet dataset [31]. In all cases, the batch size is set 
to n = 1 to reflect the single-stream scenario of the ML Commons benchmark for 
inference on edge computing. Also, all the operations performed in the CNN infer-
ence experiments are carried out using FP32 arithmetic.

4.5  Performance and energy efficiency scalability

Figure 1 reports the inference throughput (left-hand column) and energy efficiency 
(right-hand column) for the four NVIDIA Jetson platforms with a varying number 
of threads and NVP models. Note that both throughput and energy efficiency figures 
were averaged from a total of 600 inferences using the ResNet-50 v1.5 model. From 
the performance point of view, we observe that increasing the operating frequency 
and the number of threads delivers the best throughput in general. This behaviour 
is common for all the platforms and algorithms, except for the ConvDirect on 
the Xavier, where the scalability is limited by the improper use of cache memo-
ries in a multithreaded scenario.5 Leaving apart this outlying result, the algorithm 

5 We suspect that the ConvDirect algorithm is not properly considering the cache replacement policy on 
this platform, though we leave its optimisation as part of a future work.



9830 M. F. Dolz et al.

1 3

Fig. 1  Performance and energy efficiency per convolution algorithm, number of threads and NVP model
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that delivers in general the best performance in all configurations and platforms is 
ConvWinograd.

Focusing on energy efficiency, we observe different trends depending on the 
selected NVP model, number of threads, and platform. The first observation is 
that the best energy efficiency is not always obtained by increasing the number 
of threads. The most energy-efficient configuration for Orin on the 50W model 

Fig. 2  Performance and energy efficiency with the best thread configuration for each algorithm and NVP 
model
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is to use only 8 threads of 12 for all algorithms except ConvDirect. For Xavier 
on the 30W-All model, the best choice is to set 4 cores instead of all 8. Similar to 
the previous performance study, the ConvDirect algorithm on Xavier and Orin 
obtains a lower energy efficiency as the number of threads increases. Again, this 
is due to the poor usage of the cache levels that the configuration of this algo-
rithm delivers on these specific platforms. On the contrary, the increasing number 
of threads on the nanO and TX2 platforms does improve their energy efficiency. 
Therefore, we can conclude that these platforms are far more energy proportional 
than Orin and Xavier, as the energy consumed by the algorithm decreases when 
more cores (threads) are used.

4.6  Performance and energy consumption for the best parallel configuration

Figure  2 summarises the results shown in Figure  1 by reporting only those 
configurations with the number of threads that deliver the best throughput (left-hand 

Table 4  Optimal thread and NVP model configurations for best performance and energy efficiency

 Platform  Method Configuration for best performance Configuration for best energy 
efficiency

NVP 
mode/#Cores

Images/s Images/J NVP 
mode/#Cores

Images/s Images/J

 Orin ConvDirect Max-N/12 6.14 0.45 15W/4 2.45 0.98
Lowering Max-N/12 11.73 0.80 50W/8 6.69 1.28
ConvGemm Max-N/12 11.61 0.76 50W/8 6.65 1.27
ConvWino-
grad

Max-N/12 12.35 0.84 50W/8 7.35 1.40

 Xavier ConvDirect Max-N/2 2.07 0.52 10W/1 0.95 0.85
Lowering Max-N/8 6.15 0.62 30W-All/4 1.11 0.77
ConvGemm Max-N/8 6.66 0.57 30W-All/8 3.12 0.97
ConvWino-
grad

Max-N/8 7.32 0.60 30W-All/4 2.30 1.09

 nanO ConvDirect Max-N/4 1.53 0.33 Max-N/4 1.53 0.33
Lowering Max-N/4 1.89 0.39 Max-N/4 1.89 0.39
ConvGemm Max-N/4 1.84 0.38 Max-N/4 1.84 0.38
ConvWino-
grad

Max-N/4 1.99 0.42 Max-N/4 1.99 0.42

 TX2 ConvDirect Max-N/4 2.02 0.43 Max-Q/2 0.72 0.62
Lowering Max-N/4 2.37 0.49 Max-P-Core-

All/4
1.44 0.68

ConvGemm Max-N/4 2.39 0.49 Max-P-Core-
All/4

1.48 0.70

ConvWino-
grad

Max-N/4 2.57 0.54 Max-P-Core-
All/4

1.61 0.76
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column) and energy efficiency (right-hand column) per algorithm and NVP model. 
The numbers at the top of the bars indicate the optimal number of threads of each 
configuration. Focusing on performance, we can conclude, as already mentioned 
above, that increasing the NVP model (from model ID 1 on) in each device 
improves the performance of different algorithms. Besides, the algorithm with 
the best throughput is ConvWinograd with the Max-N model. This combination 
of algorithm and NVP model outperforms all other configurations, except on TX2 
where the Max-P-ARM model obtains a behaviour similar to Max-N.

Concerning energy efficiency, the results are less predictable. Nevertheless, 
the most energy-efficient algorithm is still ConvWinograd. Instead, the best NVP 
model for each platform is 50W for Orin, 30W-All for Xavier, Max-N for nanO, 
and Max-P-Core-All for TX2.

Table 4 reports the NVP model and the number of threads (cores) tuple configu-
rations that achieve the best throughput and energy efficiency obtained by each con-
volution algorithm. The throughput and energy efficiency of the best algorithm for 
each platform are highlighted in bold.

All in all, we can conclude that if the aim is to maximise performance, the best 
option on all the platforms is to use the ConvWinograd algorithm and set the NVP 
model to Max-N with the maximum number of cores. In contrast, if the goal is to 
reduce the energy footprint, there is no rule of thumb, as each platform has its own 
optimal configuration.

5  Concluding remarks

We have performed an exhaustive evaluation of the performance and energy 
efficiency attained by the selected convolution algorithms for DL inference on a 
collection of low-power ARM-based processor architectures. In particular, this 
analysis leverages a collection of NVIDIA Jetson platforms based on Orin, Xavier, 
nanO, and TX2, comprising different models of ARMv8-A-/ARMv8.2-based 
multicore processors.

Regarding the experimental results, we can conclude that for raw DL inference 
performance, the most suitable configuration consists of scaling the processors to 
the highest available frequency and using the maximum number of cores. However, 
this configuration will only achieve great results provided the convolution algorithm 
delivers fair strong scaling and makes efficient use of the cache levels. In contrast, 
if the goal consists in reducing the energy footprint, we find no clear winner for 
an optimal configuration, as depending on the platform, algorithm, the number of 
cores, and operating frequency, we can find different outcomes. We relate these 
effects to the distinct energy efficiencies and energy proportionality grades of the 
assessed Tegra SoC devices for the evaluated convolution algorithms.

As part of the future work, we plan to complement the performance–energy 
trade-off analysis with high-end processors, such as the Fujitsu A64FX ARMv8.2-
A+SVE, and MCUs, equipped with ARM Cortex-M and ESP32 CPUs, e.g. the 
Arduino Nano 33 BLE Sense or the Espressif ESP32-EYE devices. To reproduce 



9834 M. F. Dolz et al.

1 3

this experimentation on those platforms, we plan to develop external power–energy 
meters providing high-resolution measurements.
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