
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:9819–9836
https://doi.org/10.1007/s11227-023-05050-4

1 3

Performance–energy trade‑offs of deep learning
convolution algorithms on ARM processors

Manuel F. Dolz1 · Sergio Barrachina1 · Héctor Martínez2 · Adrián Castelló4 ·
Antonio Maciá3 · Germán Fabregat1 · Andrés E. Tomás4

Accepted: 9 January 2023 / Published online: 21 January 2023
© The Author(s) 2023

Abstract
In this work, we assess the performance and energy efficiency of high-performance
codes for the convolution operator, based on the direct, explicit/implicit lower-
ing and Winograd algorithms used for deep learning (DL) inference on a series of
ARM-based processor architectures. Specifically, we evaluate the NVIDIA Denver2
and Carmel processors, as well as the ARM Cortex-A57 and Cortex-A78AE CPUs
as part of a recent set of NVIDIA Jetson platforms. The performance–energy evalu-
ation is carried out using the ResNet-50 v1.5 convolutional neural network (CNN)
on varying configurations of convolution algorithms, number of threads/cores, and
operating frequencies on the tested processor cores. The results demonstrate that the
best throughput is obtained on all platforms with the Winograd convolution operator
running on all the cores at their highest frequency. However, if the goal is to reduce
the energy footprint, there is no rule of thumb for the optimal configuration.

Keywords Convolution algorithms · ARM processors · High performance · Energy
efficiency

1 Introduction

Over the past years, convolutional neural networks (CNNs) have exhibited an
outstanding accuracy in a myriad of applications, including but not limited to face,
speech, image or handwriting recognition, autonomous driving, and automatic
medical diagnosis [1, 2]. The power and effectiveness of CNNs are due to the
convolutional operators utilised therein, which can automatically detect distinctive
image features while reducing the arithmetic costs and memory consumption
required by previous approaches. This operator, however, is responsible for a
substantial portion of the computational costs required for CNN training and

 * Manuel F. Dolz
 dolzm@uji.es

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05050-4&domain=pdf

9820 M. F. Dolz et al.

1 3

inference [2]. Consequently, significant efforts have been devoted to developing
efficient algorithms for this particular computational core in almost all current
processor architectures [3, 4]. In applications where CNNs inference is deployed
on smart sensors or battery-operated devices equipped with micro-controller units
(MCUs) (e.g. ARM Cortex-M CPUs) or low-power processors (e.g. ARM Cortex-A
CPUs), the optimisation of this operator is strongly focused on reducing its energy
consumption [5].

In this paper, we contribute to this line of work with a comprehensive analysis of
the performance and energy efficiency of different convolution algorithms for deep
learning (DL) inference on a collection of ARM-based processor architectures. Spe-
cifically, we make the following major contributions:

– We describe our high-performance implementations for the direct1, explicit2 and
implicit lowering3, and Winograd4 convolution algorithms optimised for ARM
processors and their integration within PyDTNN, a Python framework for train-
ing and inference of deep neural networks (DNNs) [6].

– We characterise the target ARM processors of different NVIDIA Jetson plat-
forms based on Orin, Xavier, nanO, and TX2, as well as their execution models
and the available power rails for measuring the CPU and memory energy con-
sumption.

– We assess the performance and energy efficiency of the ResNet-50v1.5 CNN
on varying configurations of convolution algorithms, number of threads/cores,
ARM processors and operating frequencies. For each tested processor, we deter-
mine the best-performing configuration and the most energy-efficient scenario.

The rest of the paper is structured as follows. In Sect. 2, we describe some related
works and compare their analysis with those obtained in this study. Next, in Sec-
tion 3, we describe different convolution algorithms and optimisations for ARM pro-
cessors. In Sect. 4, we evaluate the performance and energy consumption under dif-
ferent configurations, and finally, in Sect. 5, we close the paper with a few remarks
and a brief discussion of future work.

2 Related work

Among different methods proposed in the literature for the convolution operator, we
can list (i) the direct algorithm, usually implemented as six nested loops around a
multiply-and-add instruction [4]; (ii) the lowering (also known as im2cOl/im2rOw

1 The source code of the direct convolution is available at https:// github. com/ hpca- uji/ convD irect.
2 The source code of the explicit lowering convolution is available at https:// github. com/ hpca- uji/
PyDTNN.
3 The source code of the implicit lowering convolution is available at https:// github. com/ hpca- uji/ convG
emm.
4 The source code of the Winograd convolution algorithm is available at https:// github. com/ hpca- uji/
convW inogr ad.

https://github.com/hpca-uji/convDirect
https://github.com/hpca-uji/PyDTNN
https://github.com/hpca-uji/PyDTNN
https://github.com/hpca-uji/convGemm
https://github.com/hpca-uji/convGemm
https://github.com/hpca-uji/convWinograd
https://github.com/hpca-uji/convWinograd

9821

1 3

Performance–energy trade‑offs of deep learning convolution…

-based) approach, which transforms the input image(s) into a matrix in such a way
that a general matrix–matrix (gemm) multiplication can then be used to compute the
convolution [7, 8]; (iii) the FFT-based algorithm, which shifts the computation into
the frequency domain in order to reduce the arithmetic requirements [9–11]; and
(iv) the Winograd-based convolution, which leverages the Winograd minimal filter-
ing algorithm to decrease the arithmetic cost of the convolution [9, 12]. The general
view of these methods and some of their corresponding high-performance imple-
mentations for MCUs and low-power processors (e.g. CMSIS-NN [13], ARM Com-
pute Library [14], and NNPack [15]) is that the best option from the performance
and energy viewpoints largely depends on the parameters that define the convolution
operations (i.e. the dimensions of the filters and the image, the batch size, etc.), as
well as different performance states and working modes provided by each processor
architecture.

To perform DNN inference on low-power processors and MCUs, their limited
computational and memory capabilities require aggressive optimisations in both
algorithms and codes to be carried out. For instance, the authors in [16] propose a
series of incremental improvements for DNN inference, such as the adjustment of
the convolution algorithm or the cache blocking parameters, which are evaluated
performance- and energy-wise on an NVIDIA Jetson Xavier. Similarly, the authors
in [17] present novel optimisation techniques based on layer separation and sparsifi-
cation that are employed for wearable devices based on Qualcomm Snapdragon 400,
ARM Cortex M0 and M3, and NVIDIA Tegra K1. Another approach for minimising
resource requirements (computation, memory, and energy) is DeepX [18], a soft-
ware tool that allows large-scale DL models to be executed efficiently on modern
mobile processors. In this work, however, we focus on performing an exhaustive
performance–energy evaluation of DL inference using a series of highly optimised
convolution algorithms on ARM processors.

3 Convolution algorithms

The convolution operator

receives a sequence of filter tensors, F, and 4-dimensional (4D) inputs, I, to produce
4D output tensors, O, where:

– F comprises co filters of dimension hf × wf × ci each, where hf × wf correspond
to the filters height × width.

– I consists of b input images of size hi × wi × ci each, where hi × wi denote the
images height × width, and ci stands for the number of input channels.

– O is composed of b outputs of size ho × wo × co each, where ho × wo represent the
outputs height × width and co is the number of output channels.

(1)O = CONV(F, I),

9822 M. F. Dolz et al.

1 3

The basic algorithm for the direct convolution in Listing 1 shows that each filter
convolves a subtensor of the inputs, with the same dimension as the filter, to render
a single scalar value (entry) for one of the co outputs. The filter is then repeatedly
applied to the whole input, in a sliding window manner, to produce the complete
entries of this single output [2].

In the following sections, we review four different methods to compute the convo-
lution operator and our high-performance implementations for ARM processors. In
particular, we target: (i) a blocked variant of the direct algorithm (ConvDirect), (ii)
a lowering approach (Lowering), (iii) an implicit lowering approach (ConvGemm),
and (iv) a Winograd implementation (ConvWinograd).

3.1 Blocked algorithm for direct convolution

In previous work [19], we combined the blocking strategy in [4] for the direct con-
volution algorithm with the packing schemes employed in the high-performance for-
mulation of gemm [20]. The result was a new blocked version of the direct convolu-
tion, referred to as ConvDirect and illustrated by the algorithm in Listing 2, with the
following properties:

– All the arithmetic is enclosed inside a micro-kernel that computes a gemm to
update a small mr × nr micro-tile of the result (in this case, O), mimicking the
high-performance implementations of gemm in GotoBLAS2, BLIS, OpenBLAS,
and AMD AOML.

– The micro-tile dimensions are decoupled from the cache blocking parameters
wo,b, co,b, ci,b.

– The input tensor contents are packed into an mc × nc buffer Ac to allow that its
entries are accessed with unit stride from the micro-kernel. (For simplicity, the
algorithm in Listing 2 only shows where this packing routine is placed.)

– The filter tensor is re-packed into a 5D tensor, of dimension
hf × wf × co∕co,b × ci × co,b . This type of packing enables unit-stride accesses to
B from the micro-kernel. It should be noted that as the filters do not vary dur-
ing inference, this only needs to be done once for the DNN model, and its cost
becomes negligible.

9823

1 3

Performance–energy trade‑offs of deep learning convolution…

A significant key to attaining high performance in the blocked direct convolution
lies in the utilisation of an architecture-specific micro-kernel. The decoupling of the
micro-tile dimensions from the cache blocking parameters combined with the pack-
ing of the input tensor facilitates leveraging existing high-performance micro-ker-
nels, specifically tuned for a concrete processor architecture [19]. The advantage of
our approach is to directly handle the well-adopted NHWC data layout, avoiding the
tensor transformation overhead of previous algorithm designs [4].

Micro-kernels for the blocked direct convolution The evaluated direct convolution
framework includes a number of micro-kernels specifically developed and tuned for
the ARM Neon v8. These micro-kernels work with different micro-tile sizes, MR
and NR, like 8 ×12, 4 ×12, 4 ×16, 4 ×20, etc. Among these, the 8 × 12 micro-kernel
is the one which generally attains the best performance. For this reason, we have
selected this micro-kernel size for the performed ConvDirect experiments. It should
be noted that this micro-kernel uses two different implementations. The first one
is used when the micro-tile size is equal to MR × NR (8×12) and is programmed
in ARM assembly language. The second implementation, which is called in those
cases where the size of the micro-tile is smaller than MR × NR, is programmed
using ARM intrinsic instructions.

Parallelisation The blocked direct convolution presents a considerable number of
independent loops, which offer a rich variety of parallelisation opportunities (loop-
level parallelism) that can be exploited, for example, via OpenMP. In our case, we
parallelised the loop traversing the co,b dimension (see Line 11 of Listing 2).

9824 M. F. Dolz et al.

1 3

3.2 Lowering approach

A high-performance implementation of the convolution operator can be obtained
for current computer architectures by lowering this operator into a large matrix-
matrix multiplication (gemm). For this purpose, assuming the input/output
tensors are stored following the NHWC layout (and the filters in the CRSK
layout), the lowering approach:

1. Applies a row transformation to the 4D input tensor I in order to build an aug-
mented 2D matrix A of size m × k = (bhowo) × (cihf wf) [7], as shown in the algo-
rithm in Listing 3.

2. Computes the output of the convolution directly from the gemm C = A ⋅ B , where
C ≡ O is the output tensor, viewed as an m × n = (bhowo) × co matrix, and B ≡ F
is the filter tensor, viewed as a k × n = (cihf wf) × co matrix.

We denote the combination of these two steps as an explicit im2rOw-based con-
volution. The lowering approach performs the same arithmetic operations as the
direct convolution in Listing 1 and therefore has the same numerical properties.

Parallelising and vectorising the im2rOw transform. The im2rOw transform is a
memory-bound transform which can be easily parallelised by adding the appro-
priate OpenMP directive to the most appropriate loop(s), preferably one of the
outermost ones or a collapsed combination of them. In our case, we parallelised
loops iterating over the batch size and input channels, though the parallelisation
efficiency is limited when the multiple threads saturate the memory bandwidth
while accessing to I and A or when the number of collapsed iterations is not big
enough.

Its vectorisation, however, is not straightforward. This kernel only performs
data movements between I and the workspace A, so we efficiently benefit from
SIMD loads (e.g. via ARM NEON intrinsics) provided the innermost loop trav-
erses the ci dimension of the problem. However, SIMD stores are not possible to
write the values to A.

High-performance gemm and lowering. On the positive side, the large
dimension of the gemm appearing in the lowering approach favours an efficient

9825

1 3

Performance–energy trade‑offs of deep learning convolution…

vectorisation and exposes a high degree of loop-level parallelism for multicore
ARM architectures. This can be achieved by invoking an existing high-
performance implementation of gemm, such as that in the BLIS framework [20].

3.3 Implicit lowering approach

The negative side of the lowering approach described in the previous subsection is
that it requires a large temporary workspace A (hfwf times larger than I) and presents
a certain overhead due to the required data copies. To minimise these costs, instead
of explicitly constructing the matrix A, it is possible to combine the im2rOw trans-
form and the packing of A into the buffer Ac that occurs within the gemm BLIS [3].
For this purpose, during the execution of the gemm kernel, the buffer Ac is directly
constructed from the contents of the input tensor I, instead of from the augmented
matrix A. This approach never explicitly assembles A, obtaining large memory sav-
ings because Ac typically requires a few kilobytes of memory and is much smaller
than A. The maximum size of A depends on the model, the data set, the batch size,
and the data type being used. For example, for ResNet50, ImageNet, a batch size
of 1, and using the float32 data type, the maximum size of A is 6.9 MiB, whereas
with a batch size of 64 is 441 MiB. Our implementation for the implicit lowering
convolution variant is denoted as ConvGemm.

3.4 Winograd minimal filtering algorithm

The Winograd (minimal filtering) [21] algorithm, referred to as ConvWinograd,
provides a method to obtain an efficient implementation of a convolution operator
[22]. Concretely, given a convolution layer that applies a filter f to an input image d,
consisting of c input channels, in order to produce an output y, with k channels, the
Winograd-based convolution can be expressed as

where G, B, respectively, denote the transformation matrices for the filter and input
matrices; A is the inverse transformation matrix; fik ,ic is the ic-th channel of the ik-th
filter; dic is the ic-th channel of the input image; yik is the ik-th channel of the output;
and ⊙ denotes the Hadamard (or element-wise) multiplication [12].

From a practical point of view, the 2D Winograd-based convolution applies
an r × r filter to a t × t input tile in order to produce an m × m output tile, with
t = m + r − 1 . An hi × wi image is processed by partitioning it into t × t tiles,
with an overlapping factor of r − 1 elements between neighbouring tiles, yielding
⌈hi∕m⌉⌈wi∕m⌉ tiles per channel. In this algorithm, choosing a larger value for m thus
reduces the number of arithmetic operations, unfortunately at the cost of introduc-
ing numerical instability in the computation [23]. For that reason, m is usually set
to be small, with two popular cases being F(m × m, r × r) = F(4 × 4, 3 × 3) and
F(2 × 2, 3 × 3).

(2)yik = AT
�∑c

ic=1

�
Gfik ,icG

T
�
⊙
�
BTdicB

��
A, ik = 1, 2,… , k,

9826 M. F. Dolz et al.

1 3

According to Winograd’s formula (2), the intermediate Hadamard products
are summed over all c channels to produce the ik-th output channel. In our Wino-
grad implementation [24], we scatter each transformed tile of the filter and input
along the t × t dimensions, on respective intermediate workspaces U and V, of sizes
t × t × k × c and t × t × c × (⌈hi∕m⌉⌈wi∕m⌉) in order to collapse the Hadamard prod-
ucts and the element-wise summations into t × t independent matrix–matrix mul-
tiplications (also known as a batched gemm [25]). Finally, the same coordinates of
the resulting t × t matrices are gathered to form a new t × t tile which is next used to
compute the inverse transform as a m × m tile on the output tensor.

In summary, the batched gemm variant of the Winograd algorithm exposes four
major phases: 1) filter transform; 2) input transform; 3) batched gemm; and 4) out-
put inverse transform. In DL, the 3D input/output tensors are extended with a batch
dimension n using either the NCHW or the NHWC layouts.

OpenMP parallelisation In our implementation, the four phases of the algorithm
are parallelised using OpenMP, as the kernels involved by the transform matrices
for the filter/input/output tiles present no data dependencies. To augment loop-level
parallelism, we also use the OpenMP collapse clause to fuse the first two loops
in each phase. Each individual t × t gemm kernel in phase 3 is executed serially, but
we parallelise their calculation across the t × t dimensions.

Vectorising the input transform The implementation of the Winograd filter/input/
output transform phases is also vectorised using ARM NEON intrinsics. A special-
ised gemm for the filter/input/output tiles is implemented computing only the non-
zero elements in the G, B, and A sparse transformation matrices. Given that these
matrix operands remain static for all the computation, it is possible to hard-code
their entries to directly operate with vector registers.

4 Experimental results

In this section, we assess the performance and energy efficiency of the described
convolution algorithms on four different platforms based on ARM multicore CPUs
with varying core/frequency configurations using the ResNet-50 v1.5 CNN model.
In [16], we performed an exhaustive execution analysis of different algorithms and
described a series of optimisations to reduce the inference time. In this paper, we
leverage the optimal versions of these algorithms.

4.1 Hardware setup

For the experiments, we use a range of NVIDIA Tegra platforms [26], a SoC series
for battery-operated devices such as smartphones, personal digital assistants, and
mobile Internet devices. The Tegra SoCs integrate an ARM architecture CPU, a
GPU, a north/southbridge, and a memory controller into a single package. These
low-power SoCs, branded as NVIDIA Jetson, emphasise performance for gaming
and machine/deep learning applications with a special focus on energy efficiency.

9827

1 3

Performance–energy trade‑offs of deep learning convolution…

Table 1 Specifications for the selected NVIDIA Jetson platforms

Platform Component Description

 Orin CPU 12×ARM Cortex-A78AE ARMv8.2 cores @ 2.20 GHz (grouped in 3 clusters)
L1 Cache 64 KiB ICache; 64 KiB DCache (per core)
L2 Cache 256 KiB (per core)
L3 Cache 2048 KiB (per cluster)
Memory 64 GiB LPDDR5 @ 204.8 GB/s

 Xavier CPU 8×NVIDIA Carmel ARMv8.2 cores @ 2.26 GHz (grouped in 4 clusters)
L1 cache 128 KiB ICache; 64 KiB DCache (per core)
L2 cache 2048 KiB (per cluster)
L3 cache 4096 KiB (total)
Memory 32 GiB LPDDR4 @ 137 GB/s

 nanO CPU 4×ARM Cortex-A57 ARMv8-A cores @ 1.43 GHz
L1 cache 48 KiB ICache; 32 KiB DCache (per core)
L2 cache 2048 KiB (total)
Memory 4 GiB LPDDR4 @ 25.6 GB/s

 TX2 CPU 2×NVIDIA Denver2 ARMv8-A cores @ 2.0 GHz
4×ARM Cortex-A57 ARMv8-A cores @ 2.0 GHz

 L1 cache Denver: 128 KiB ICache; 64 KiB DCache (per core)
ARM: 48 KiB ICache; 32 KiB DCache (per core)

L2 cache 2048 KiB (per cluster)
Memory 8 GiB LPDDR4 @ 59.7 GB/s

Table 2 Selected NVP model configurations for the NVIDIA Jetson platforms

Platform NVP model ID NVP model CPUs enabled Power
budget (W)

Fre-
quency
(GHz)

 Orin 0 Max-N 12 – 2.20
1 15W 4 15 1.11
2 30W 8 30 1.72
3 50W 12 50 1.49

 Xavier 0 Max-N 8 – 2.26
1 10W 2 10 1.20
2 15W 4 15 1.20
3 30W-All 8 30 1.20

 nanO 0 Max-N 4 – 1.48
1 5W 2 5 0.92

 TX2 0 Max-N 2×Denver2 + 4 ×A57 – 2.00
1 Max-Q 4×A57 – 1.20
2 Max-P-Core-All 2×Denver2 + 4 ×A57 – 1.40
3 Max-P-ARM 4×A57 – 2.00

9828 M. F. Dolz et al.

1 3

Table 1 describes the specifications of the four selected NVIDIA Jetson plat-
forms: AGX Orin, AGX Xavier, nanO, and TX2. For each platform, the table
details the CPU model, architecture, maximum operating frequency, levels of cache,
memory type and size. Each of these systems permits the selection of different per-
formance models, also known as NVP (NVIDIA Performance) models, allowing the
user to enable/disable CPUs and to adjust the core operating frequency in order to
limit the maximum power consumption. NVP models can be configured and moni-
tored via the nvpmodel and jetson-stats tools [27], respectively. The per-
formance models configured for each platform are detailed in Table 2. There, the
Max-N mode enables all CPU cores and allows them to consume as much power
as they require to achieve their maximum performance. In contrast, modes with IDs
starting from 1 on (except for TX2) set a maximum power budget to be consumed,
either by progressively disabling cores, reducing the operating frequency, or a com-
bination of both. Note that the TX2 platform does not offer any kind of power cap-
ping in its available NVP models.

4.2 Power monitoring

The Jetson platforms offer several INA3221 on-board power sensors via I 2 C, which
can be monitored through the sysfs file system nodes [28]. These sensors meas-
ure power, voltage, and current rails available for each platform. Table 3 details the
CPU-related rails that we monitor for the energy efficiency evaluation. These include
the CPU and memory (DDR) power consumption rails but omit those related to the
GPU and other on-board peripherals that have not been used in this study.

To collect measurements from these power rails, we leverage Pmlib, a Power
Measurement Library [29]. This library implements a client-server model where the
server continuously reads power samples that can be later collected by the clients for
a given time interval. To gather power measurements from each Jetson platform, the
corresponding Pmlib module reads the sysfs files related to the power rails listed
in Table 3 at a frequency of 10 Hz.

Table 3 Measured CPU-related power rails for each system platform

Platform Measured power rails Description

 Orin +VDD_CPU_CV CPU and CV combined power rail
+VDDQ_VDD2_1V8AO DDR and 1V8AO combined power rail

 Xavier +CPU CPU power rail
+VDDRQ DDR memory power rail

 nanO +POM_5V_IN System 5V power rail
– POM_5V_GPU GPU power rail (subtracted from POM_5V_IN)

 TX2 +VDD_SYS_CPU CPU power rail.
+VDD_SYS_DDR DDR memory power rail

9829

1 3

Performance–energy trade‑offs of deep learning convolution…

4.3 DL framework, libraries, compilation flags, and parallelisation

To evaluate different convolution algorithms, we bundled their codes into indi-
vidual C libraries and integrated them into PyDTNN, a lightweight framework
implemented in Python for DL training and inference [6, 30]. For this purpose, we
developed the corresponding binding modules that internally call the ConvDirect,
ConvGemm, and ConvWinograd C functions via the ctypes Python library.
These Python modules interact with the PyDTNN layer class Conv2D to finally
execute the convolution algorithm. For the case of ConvWinograd, the bind-
ing module calls the Winograd C function according to the filter size requested
by the convolutional layer encountered in a given neural network model. Note that
the libraries for the ConvGemm and ConvWinograd algorithms, which inter-
nally execute the gemm or leverage a gemm-related micro-kernel, are linked against
BLIS v0.8.1. Alternatively, the implementation of the Lowering algorithm within
the Conv2D layers is implemented in PyDTNN using Cython v0.29.24 and paral-
lelised with OpenMP. In this case, the implementation of gemm is provided by the
same BLIS library. It is also worth noting that the three convolution libraries (Con-
vGemm, ConvDirect and ConvWinograd) have been compiled using gcc v10.2.0
with the optimisation flags -O3 -fopenmp for all the platforms.

4.4 Testbed

For the evaluation, we measure the inference throughput and energy efficiency in
terms of images per second and images per Joule, respectively, of the ResNet-50
v1.5 [2] CNN model on the ImageNet dataset [31]. In all cases, the batch size is set
to n = 1 to reflect the single-stream scenario of the ML Commons benchmark for
inference on edge computing. Also, all the operations performed in the CNN infer-
ence experiments are carried out using FP32 arithmetic.

4.5 Performance and energy efficiency scalability

Figure 1 reports the inference throughput (left-hand column) and energy efficiency
(right-hand column) for the four NVIDIA Jetson platforms with a varying number
of threads and NVP models. Note that both throughput and energy efficiency figures
were averaged from a total of 600 inferences using the ResNet-50 v1.5 model. From
the performance point of view, we observe that increasing the operating frequency
and the number of threads delivers the best throughput in general. This behaviour
is common for all the platforms and algorithms, except for the ConvDirect on
the Xavier, where the scalability is limited by the improper use of cache memo-
ries in a multithreaded scenario.5 Leaving apart this outlying result, the algorithm

5 We suspect that the ConvDirect algorithm is not properly considering the cache replacement policy on
this platform, though we leave its optimisation as part of a future work.

9830 M. F. Dolz et al.

1 3

Fig. 1 Performance and energy efficiency per convolution algorithm, number of threads and NVP model

9831

1 3

Performance–energy trade‑offs of deep learning convolution…

that delivers in general the best performance in all configurations and platforms is
ConvWinograd.

Focusing on energy efficiency, we observe different trends depending on the
selected NVP model, number of threads, and platform. The first observation is
that the best energy efficiency is not always obtained by increasing the number
of threads. The most energy-efficient configuration for Orin on the 50W model

Fig. 2 Performance and energy efficiency with the best thread configuration for each algorithm and NVP
model

9832 M. F. Dolz et al.

1 3

is to use only 8 threads of 12 for all algorithms except ConvDirect. For Xavier
on the 30W-All model, the best choice is to set 4 cores instead of all 8. Similar to
the previous performance study, the ConvDirect algorithm on Xavier and Orin
obtains a lower energy efficiency as the number of threads increases. Again, this
is due to the poor usage of the cache levels that the configuration of this algo-
rithm delivers on these specific platforms. On the contrary, the increasing number
of threads on the nanO and TX2 platforms does improve their energy efficiency.
Therefore, we can conclude that these platforms are far more energy proportional
than Orin and Xavier, as the energy consumed by the algorithm decreases when
more cores (threads) are used.

4.6 Performance and energy consumption for the best parallel configuration

Figure 2 summarises the results shown in Figure 1 by reporting only those
configurations with the number of threads that deliver the best throughput (left-hand

Table 4 Optimal thread and NVP model configurations for best performance and energy efficiency

 Platform Method Configuration for best performance Configuration for best energy
efficiency

NVP
mode/#Cores

Images/s Images/J NVP
mode/#Cores

Images/s Images/J

 Orin ConvDirect Max-N/12 6.14 0.45 15W/4 2.45 0.98
Lowering Max-N/12 11.73 0.80 50W/8 6.69 1.28
ConvGemm Max-N/12 11.61 0.76 50W/8 6.65 1.27
ConvWino-
grad

Max-N/12 12.35 0.84 50W/8 7.35 1.40

 Xavier ConvDirect Max-N/2 2.07 0.52 10W/1 0.95 0.85
Lowering Max-N/8 6.15 0.62 30W-All/4 1.11 0.77
ConvGemm Max-N/8 6.66 0.57 30W-All/8 3.12 0.97
ConvWino-
grad

Max-N/8 7.32 0.60 30W-All/4 2.30 1.09

 nanO ConvDirect Max-N/4 1.53 0.33 Max-N/4 1.53 0.33
Lowering Max-N/4 1.89 0.39 Max-N/4 1.89 0.39
ConvGemm Max-N/4 1.84 0.38 Max-N/4 1.84 0.38
ConvWino-
grad

Max-N/4 1.99 0.42 Max-N/4 1.99 0.42

 TX2 ConvDirect Max-N/4 2.02 0.43 Max-Q/2 0.72 0.62
Lowering Max-N/4 2.37 0.49 Max-P-Core-

All/4
1.44 0.68

ConvGemm Max-N/4 2.39 0.49 Max-P-Core-
All/4

1.48 0.70

ConvWino-
grad

Max-N/4 2.57 0.54 Max-P-Core-
All/4

1.61 0.76

9833

1 3

Performance–energy trade‑offs of deep learning convolution…

column) and energy efficiency (right-hand column) per algorithm and NVP model.
The numbers at the top of the bars indicate the optimal number of threads of each
configuration. Focusing on performance, we can conclude, as already mentioned
above, that increasing the NVP model (from model ID 1 on) in each device
improves the performance of different algorithms. Besides, the algorithm with
the best throughput is ConvWinograd with the Max-N model. This combination
of algorithm and NVP model outperforms all other configurations, except on TX2
where the Max-P-ARM model obtains a behaviour similar to Max-N.

Concerning energy efficiency, the results are less predictable. Nevertheless,
the most energy-efficient algorithm is still ConvWinograd. Instead, the best NVP
model for each platform is 50W for Orin, 30W-All for Xavier, Max-N for nanO,
and Max-P-Core-All for TX2.

Table 4 reports the NVP model and the number of threads (cores) tuple configu-
rations that achieve the best throughput and energy efficiency obtained by each con-
volution algorithm. The throughput and energy efficiency of the best algorithm for
each platform are highlighted in bold.

All in all, we can conclude that if the aim is to maximise performance, the best
option on all the platforms is to use the ConvWinograd algorithm and set the NVP
model to Max-N with the maximum number of cores. In contrast, if the goal is to
reduce the energy footprint, there is no rule of thumb, as each platform has its own
optimal configuration.

5 Concluding remarks

We have performed an exhaustive evaluation of the performance and energy
efficiency attained by the selected convolution algorithms for DL inference on a
collection of low-power ARM-based processor architectures. In particular, this
analysis leverages a collection of NVIDIA Jetson platforms based on Orin, Xavier,
nanO, and TX2, comprising different models of ARMv8-A-/ARMv8.2-based
multicore processors.

Regarding the experimental results, we can conclude that for raw DL inference
performance, the most suitable configuration consists of scaling the processors to
the highest available frequency and using the maximum number of cores. However,
this configuration will only achieve great results provided the convolution algorithm
delivers fair strong scaling and makes efficient use of the cache levels. In contrast,
if the goal consists in reducing the energy footprint, we find no clear winner for
an optimal configuration, as depending on the platform, algorithm, the number of
cores, and operating frequency, we can find different outcomes. We relate these
effects to the distinct energy efficiencies and energy proportionality grades of the
assessed Tegra SoC devices for the evaluated convolution algorithms.

As part of the future work, we plan to complement the performance–energy
trade-off analysis with high-end processors, such as the Fujitsu A64FX ARMv8.2-
A+SVE, and MCUs, equipped with ARM Cortex-M and ESP32 CPUs, e.g. the
Arduino Nano 33 BLE Sense or the Espressif ESP32-EYE devices. To reproduce

9834 M. F. Dolz et al.

1 3

this experimentation on those platforms, we plan to develop external power–energy
meters providing high-resolution measurements.

Acknowledgements Not applicable.

Author Contributions All authors contributed on the definition of the evaluated convolution algorithms,
on how to integrate them into PyDTNN and on how to correctly assess their performance and energy
consumption on different testing platforms. The code implementation and the manuscript writing were
led by Manuel F. Dolz and Héctor Martínez. The preparation and execution of all the experiments on the
computing platforms were led by Sergio Barrachina. Finally, all authors revised and improved different
versions of the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer
Nature. This research was funded by Project PID2020-113656RB-C21/C22 supported by MCIN/
AEI/10.13039/501100011033. Manuel F. Dolz was also supported by the Plan Gen–T grant CDEI-
GENT/2018/014 of the Generalitat Valenciana. Héctor Martínez is a POSTDOC_21_00025 fellow
supported by Junta de Andalucía. Adrián Castelló is a FJC2019-039222-I fellow supported by MCIN/
AEI/10.13039/501100011033. Antonio Maciá is a PRE2021-099284 fellow supported by MCIN/
AEI/10.13039/501100011033.

Availability of data and materials The ImageNet dataset used for the current study is publicly available
from the web. See https:// www. image- net. org/.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu M-L, Chen S-C, Iyengar SS (2018) A sur-
vey on deep learning: Algorithms, techniques, and applications. ACM Comput Surv 51(5):92:1-92:36.
https:// doi. org/ 10. 1145/ 32341 50. ([Online])

 2. Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and
survey. Proc IEEE 105(12):2295–2329

 3. San Juan P, Castelló A, Dolz MF, Alonso-Jordá P, Quintana-Ortí ES (2020) High performance and port-
able convolution operators for multicore processors. In: 2020 IEEE 32nd International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD), pp 91–98

 4. Zhang J, Franchetti F, Low TM (2018) High performance zero-memory overhead direct convolutions. In:
Proceedings of the 35th International Conference on Machine Learning – ICML, Vol 80, pp 5776–5785

 5. Pantho MJH, Bhowmik P, Bobda C (2021) Towards an efficient CNN inference architecture enabling in-
sensor processing. Sensors 21(6):1955

https://www.image-net.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3234150

9835

1 3

Performance–energy trade‑offs of deep learning convolution…

 6. Barrachina S, Castelló A, Catalan M, Dolz MF, Mestre J (2021) PyDTNN: a user-friendly and extensible
framework for distributed deep learning. J Supercomput 77:09

 7. Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for document
processing. In: International Workshop on Frontiers in Handwriting Recognition

 8. Georganas E, Avancha S, Banerjee K, Kalamkar D, Henry G, Pabst H, Heinecke A (2018) Anatomy of
high-performance deep learning convolutions on SIMD architectures. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage, and Analysis, ser. SC ’18.
IEEE Press

 9. Zlateski A, Jia Z, Li K, Durand F (2019) The anatomy of efficient FFT and Winograd convolutions on
modern CPUs. In: Proceedings of the ACM International Conference on Supercomputing, ser. ICS ’19.
New York, NY, USA: Association for Computing Machinery, p 414-424. Available: https:// doi. org/ 10.
1145/ 33303 45. 33303 82

 10. Wang Q, Li D, Huang X, Shen S, Mei S, Liu J (2020) Optimizing FFT-based convolution on ARMv8
multi-core CPUs. In: Malawski M, Rzadca K (eds) Euro-Par 2020: Parallel Processing. Springer Inter-
national Publishing, Cham, pp 248–262

 11. Zlateski A, Jia Z, Li K, Durand F (2018) FFT convolutions are faster than Winograd on modern CPUs,
here is why

 12. Lavin A, Gray S (2016) Fast algorithms for convolutional neural networks. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp 4013–4021. Available: https:// doi. org/ 10.
1109/ CVPR. 2016. 435

 13. Lai L, Suda N, Chandra V (2018) Cmsis-nn: Efficient neural network kernels for arm cortex-m cpus.
arXiv preprint arXiv: 1801. 06601

 14. Sun D, Liu S, Gaudiot J-L (2017) Enabling embedded inference engine with arm compute library: A
case study. arXiv preprint arXiv: 1704. 03751

 15. Dukhan M Nnpack: an acceleration package for neural network computations. Available: https:// github.
com/ Marat yszcza/ NNPACK

 16. Castelló A, Barrachina S, Dolz MF, Quintana-Ortí ES, Juan PS, Tomás AE (2022) High performance
and energy efficient inference for deep learning on multicore arm processors using general optimization
techniques and blis. Journal of Systems Architecture, vol 125, p 102459. Available: https:// www. scien
cedir ect. com/ scien ce/ artic le/ pii/ S1383 76212 20005 09

 17. Bhattacharya S, Lane ND (2016) Sparsification and separation of deep learning layers for constrained
resource inference on wearables. In: Proceedings of the 14th ACM Conference on Embedded Network
Sensor Systems CD-ROM, pp 176–189

 18. Lane ND, Bhattacharya S, Georgiev P, Forlivesi C, Jiao L, Qendro L, Kawsar F (2016) DeepX: A soft-
ware accelerator for low-power deep learning inference on mobile devices. In: 2016 15th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN). IEEE, pp 1–12

 19. Barrachina S, Castello A, Dolz MF, Low TM, Martinez H, Quintana-Orti ES, Sridhar U, Tomas AE
Convdirect: A library with different implementations of the direct convolution operation. Available:
https:// github. com/ hpca- uji/ convD irect. git

 20. Van Zee FG, van de Geijn RA (2015) BLIS: a framework for rapidly instantiating BLAS functionality.
ACM Trans on Math Soft 41(3):14:1-14:33

 21. Dolz MF, Barrachina S, Castello A, Quintana-Orti ES, Tomas AE Convwinograd: An implementation
of the winograd-based convolution transform. Available: https:// github. com/ hpca- uji/ convW inogr ad. git

 22. Winograd S (1980) Arithmetic Complexity of Computations. Society for Industrial and Applied
Mathematics

 23. Barabasz B, Anderson A, Soodhalter KM, Gregg D (2020) Error analysis and improving the accu-
racy of Winograd convolution for deep neural networks. ACM Trans. Math. Softw. 46(4):1. Available:
https:// doi. org/ 10. 1145/ 34123 80

 24. Dolz MF, Castelló A, Quintana-Ortí ES (2022) Towards portable realizations of Winograd-based con-
volution with vector intrinsics and OpenMP. In: 2022 30th Euromicro International Conference on Par-
allel, Distributed and Network-based Processing (PDP), pp 39–46

 25. Masliah I, Abdelfattah A, Haidar A, Tomov S, Falcou J, Dongarra J (2016) High-performance
matrix-matrix multiplications of very small matrices. In: 22nd International European Conference on

https://doi.org/10.1145/3330345.3330382
https://doi.org/10.1145/3330345.3330382
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1109/CVPR.2016.435
http://arxiv.org/abs/1801.06601
http://arxiv.org/abs/1704.03751
https://github.com/Maratyszcza/NNPACK
https://github.com/Maratyszcza/NNPACK
https://www.sciencedirect.com/science/article/pii/S1383762122000509
https://www.sciencedirect.com/science/article/pii/S1383762122000509
https://github.com/hpca-uji/convDirect.git
https://github.com/hpca-uji/convWinograd.git
https://doi.org/10.1145/3412380

9836 M. F. Dolz et al.

1 3

Authors and Affiliations

Manuel F. Dolz1 · Sergio Barrachina1 · Héctor Martínez2 · Adrián Castelló4 ·
Antonio Maciá3 · Germán Fabregat1 · Andrés E. Tomás4

 Sergio Barrachina
 barrachi@uji.es

 Héctor Martínez
 el2mapeh@uco.es

 Adrián Castelló
 adcastel@disca.upv.es

 Antonio Maciá
 a.macia@ua.es

 Germán Fabregat
 fabregat@uji.es

 Andrés E. Tomás
 antodo@upv.es

1 Universitat Jaume I, Castelló de la Plana, Spain
2 Universidad de Córdoba, Córdoba, Spain
3 Universitat d’Alacant, Alacant, Spain
4 Universitat Politècnica de València, València, Spain

Parallel and Distributed Computing (Euro-Par’16). Grenoble, France: Springer International Publish-
ing, 2016-08

 26. Tegra hardware information. Available: https:// devel oper. nvidia. com/ tegra- hardw are- sales- inqui ries
 27. Jetson-stats is a package for monitoring and control the nvidia jetson. Available: https:// github. com/

rbong hi/ jetson_ stats
 28. INA3221 Triple-Channel, High-Side Measurement, Shunt and Bus Voltage Monitor with I2C- and

SMBUS-Compatible Interface, https:// www. ti. com/ produ ct/ INA32 21# tech- docs
 29. Barrachina S, Barreda M, Catalán S, Dolz MF, Fabregat G, Mayo R, Quintana-Ortí E (2013) An inte-

grated framework for power-performance analysis of parallel scientific workloads. Energy, pp 114–119
 30. Barrachina S, Castelló A, Catalán M, Dolz MF, Mestre JI (2021) A flexible research-oriented frame-

work for distributed training of deep neural networks. In: 2021 IEEE International Parallel and Distrib-
uted Processing Symposium Workshops (IPDPSW), pp 730–739

 31. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Proceedings of the 25th International Conference on Neural Information Processing Sys-
tems - Volume 1, ser. NIPS’12. USA: Curran Associates Inc., pp 1097–1105. Available: http:// dl. acm.
org/ citat ion. cfm? id= 29991 34. 29992 57

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://developer.nvidia.com/tegra-hardware-sales-inquiries
https://github.com/rbonghi/jetson_stats
https://github.com/rbonghi/jetson_stats
https://www.ti.com/product/INA3221#tech-docs
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257

	Performance–energy trade-offs of deep learning convolution algorithms on ARM processors
	Abstract
	1 Introduction
	2 Related work
	3 Convolution algorithms
	3.1 Blocked algorithm for direct convolution
	3.2 Lowering approach
	3.3 Implicit lowering approach
	3.4 Winograd minimal filtering algorithm

	4 Experimental results
	4.1 Hardware setup
	4.2 Power monitoring
	4.3 DL framework, libraries, compilation flags, and parallelisation
	4.4 Testbed
	4.5 Performance and energy efficiency scalability
	4.6 Performance and energy consumption for the best parallel configuration

	5 Concluding remarks
	Acknowledgements
	References

