
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:9409–9442
https://doi.org/10.1007/s11227-022-05040-y

1 3

EPSILOD: efficient parallel skeleton for generic iterative
stencil computations in distributed GPUs

Manuel de Castro1 · Inmaculada Santamaria‑Valenzuela1 · Yuri Torres1 ·
Arturo Gonzalez‑Escribano1 · Diego R. Llanos1

Accepted: 29 December 2022 / Published online: 14 January 2023
© The Author(s) 2023

Abstract
Iterative stencil computations are widely used in numerical simulations. They
present a high degree of parallelism, high locality and mostly-coalesced memory
access patterns. Therefore, GPUs are good candidates to speed up their computa-
tion. However, the development of stencil programs that can work with huge grids in
distributed systems with multiple GPUs is not straightforward, since it requires solv-
ing problems related to the partition of the grid across nodes and devices, and the
synchronization and data movement across remote GPUs. In this work, we present
EPSILOD, a high-productivity parallel programming skeleton for iterative stencil
computations on distributed multi-GPUs, of the same or different vendors that sup-
ports any type of n-dimensional geometric stencils of any order. It uses an abstract
specification of the stencil pattern (neighbors and weights) to internally derive the
data partition, synchronizations and communications. Computation is split to better
overlap with communications. This paper describes the underlying architecture of
EPSILOD, its main components, and presents an experimental evaluation to show
the benefits of our approach, including a comparison with another state-of-the-art
solution. The experimental results show that EPSILOD is faster and shows good
strong and weak scalability for platforms with both homogeneous and heterogene-
ous types of GPU.

 * Diego R. Llanos
 diego@infor.uva.es

 Manuel de Castro
 manuel@infor.uva.es

 Inmaculada Santamaria-Valenzuela
 msantamaria@infor.uva.es

 Yuri Torres
 yuri.torres@infor.uva.es

 Arturo Gonzalez-Escribano
 arturo@infor.uva.es

1 Departamento de Informática, Escuela de Ingeniería Informática, Universidad de Valladolid,
Campus Miguel Delibes s/n, 47011 Valladolid, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-05040-y&domain=pdf

9410 M. de Castro et al.

1 3

Keywords Distributed memory · GPU · Heterogeneous · Stencil · Parallel skeletons

1 Introduction

Iterative stencil computations, or iterative stencil loops (ISLs), are widely used in
high-performance computing (HPC). They are used, for example, to compute the
numerical solutions of partial differential equations in discretized spaces on a large-
scale, in order to characterize and predict physical quantities such as heat, sound,
velocity, pressure, density, elasticity, electromagnetism, and electrodynamics [1–4].
In stencil computations, grid cells from a multi-dimensional input are iteratively
updated based on the previous values of neighbor cells. The neighborhood is deter-
mined using a specific pattern or stencil shape. The highest distance to a neighbor is
called the stencil radius. The calculation involves accessing neighbor cells accord-
ing to the stencil shape, multiplying each of them by a specific coefficient, adding all
these results, and optionally dividing the result by a given factor. This computation
is repeated independently for each cell.

Iterative stencil computations present a high degree of parallelism, high locality
and mostly coalesced memory-access patterns. Therefore, many-core computational
models and platforms, such as modern graphics processing units (GPUs), are good
candidates to speed up this type of computations. GPUs are currently the most pop-
ular accelerator in supercomputers and are employed in most of the top 10 machines
in the TOP500 list [5].

Programming stencil computations in GPUs for large grids is not straightforward.
The big memory footprint required in many real case situations can easily become
too large to be allocated on the memory space of a single GPU. In these cases, the
use of multi-GPUs in one or more distributed nodes is a useful alternative. However,
this requires mixing programming models for both GPUs and distributed memory
across different nodes. For example, a programmer may combine CUDA [6] or
OpenCL [7] to manage the devices, with a distributed memory tool, such as MPI
[8], to manage inter-node communications. This implies a complex and error-prone
programming, manually dealing with accelerator optimizations, data partitions, dif-
ferent memory hierarchies, and manually specifying sequences for data communi-
cation and synchronization, both across accelerators and host, and across distrib-
uted nodes. Nevertheless, the operations of a stencil computation across iterations
are mainly repetitive, and it is possible to build higher-level abstractions to program
them.

In this work, we present EPSILOD, a high-productivity parallel programming
skeleton for iterative stencil computations on distributed multi-GPUs. The under-
lying idea was presented as a poster in SC’21 [9]. EPSILOD supports any type of
n-dimensional geometric stencils (compact, non-compact, symmetric, or asymmet-
ric) of any order. It is implemented as a C99 library function to maximize compat-
ibility with any C/C++ environment.

It uses an abstract specification of the stencil pattern (neighbors and weights) to
internally derive the data partition, synchronizations and communications, splitting
the computation to better overlap with communications. To enable portability and fast

9411

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

synchronization and device management, it is programmed with the Controllers model
[10] and the Hitmap library [11]. These tools provide a heterogeneous portability layer
that allows the transparent use of different types of devices.

The contributions of this work can be summarized as follows:

• We introduce EPSILOD’s architecture and describe the programming tools used to
implement it. We also show how to use EPSILOD to characterize stencils and auto-
matically generate efficient kernels.

• We present a new skeleton version that supports clusters with devices of mixed
types and vendors, such as NVIDIA and AMD GPUs. It includes the possibility of
using load balancing techniques to transparently distribute the computation across
devices with different computation power. The skeleton includes a generic GPU
kernel that can be used for any stencil. EPSILOD also includes a tool to generate
more optimized kernels for each stencil pattern, or even the possibility of providing
a user-optimized kernel.

• We include extensive experimentation to show the benefits of our approach, com-
paring it with an state-of-the-art solution, and taking into account different architec-
tures. This evaluation includes:

– An experimental study in a BSC (Barcelona Supercomputing Center) cluster of
up to 48 NVIDIA V100 GPUs, distributed among 12 nodes, which shows that
our proposal can achieve both very good strong and weak scalability for several
types of 2D stencils.

– An experimental study in a cluster of up to 32 NVIDIA V100 GPUs, distrib-
uted among eight nodes, which shows that our proposal outperforms implemen-
tations of the same stencils using Celerity [12], a state-of-the-art programming
tool for distributed GPUs built on top of MPI and SYCL.

– An experimental study in a heterogeneous node comprising different kinds of
GPUs (NVIDIA and AMD) that shows the impact of using the load-balancing
technique integrated in the skeleton to achieve good strong and weak scalability
in this kind of heterogeneous platforms.

The experimental results show that EPSILOD is faster than Celerity and shows good
strong and weak scalability for both homogeneous and heterogeneous platforms. The
EPSILOD source code and examples can be freely downloaded from https:// gitlab.
com/ trasgo- group- valla dolid/ contr oller s/-/ tree/ epsil od_ JoS22.

The rest of the work is structured as follows. Section 2 discusses some related work.
In Sect. 3, we describe the main features of the Hitmap and Controllers libraries used to
build our solution. Section 4 describes how EPSILOD is built on top of these libraries.
Section 5 presents an extensive experimental evaluation of the capabilities of EPSI-
LOD. Finally, in Sect. 6, we present our conclusions and discuss future work.

https://gitlab.com/trasgo-group-valladolid/controllers/-/tree/epsilod_JoS22
https://gitlab.com/trasgo-group-valladolid/controllers/-/tree/epsilod_JoS22

9412 M. de Castro et al.

1 3

2 Related work

Exploiting GPUs for general-purpose computing has emerged as a high-performance
computing technique to accelerate stencil-based applications in different domains.
These works [13–17] are focused on specific physical problems, and they are manu-
ally developed using the native parallel programming model provided by the vendor,
such as CUDA or OpenCL. When using these techniques in distributed systems, the
programmer is responsible for manually developing the code for load partitioning,
mapping, synchronizations and data communications.

In addition, there exist several CPU-based frameworks and libraries, such as
[18–24], that are focused on a wide range of stencil computations for distributed
systems, some of them even at an exascale level. The use of these frameworks is
comparatively simple, due to the abstraction levels introduced. Nevertheless, their
performance is significantly penalized in heterogeneous clusters, since they only use
CPUs as computing units, without exploiting any kind of coprocessor devices, such
as GPUs.

There exist some frameworks that aim to generate stencil code not only for CPUs,
but also for hardware accelerators. DeVito [25] is a framework capable of generat-
ing highly optimized code given symbolic equations expressed in Python, special-
ized in, but not limited to, stencil codes. It internally uses OpenMP/OpenACC to
target GPUs and MPI for distributed platforms. YASK [26] is another framework
that allows the creation of high-performance stencil codes for distributed CPUs and
GPUs, although it is focused on optimizations for Intel devices and it does not sup-
port other platforms. None of these proposal exploits several vendor-specific pro-
gramming models and tools to target simultaneously different devices in heterogene-
ous environments.

There are works that propose an efficient GPU algorithm for computing stencils
with arbitrary patterns, such as [26–32]. These works propose the use of stencil
frameworks capable of automatically transforming stencil patterns that appear in a
given C source code into optimized CUDA code. However, they do not support dis-
tributed environments. The advanced optimization techniques considered in some of
these works include exploiting task granularity adjustment at runtime, depending on
device performance [31], or the use of concurrent kernels, taking into account data
dependencies in order to better exploit underlying GPU hardware resources [32].

There are other works oriented toward executing large stencil computations
for distributed systems using GPU coprocessors, some of them based on parallel
skeletons, such as [33–42]. These works achieve a better performance due to the
use of this kind of hardware accelerators. In particular, Muesli [42] and SkelCL
[39] are good examples of skeleton-based solutions that fall in this category.
However, they do not implement a full overlapping of data communication and
computation, combining the overlapping opportunities in transfers between host
and devices with communication and synchronization across nodes. Thus, GPU
coprocessors can sometimes be idle while waiting to be fed by data. Most of these
works require the programmer to indicate operations in the correct order. Only
[34] includes a technique to automatically deduce dependences and determine the

9413

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

execution order of the different tasks, but it still needs the inclusion of a synchro-
nization primitive to properly synchronize the operations related to the exchanges
of ghost-zones (parts of the grid that are shared across devices).

Finally, we should mention other popular, general-purpose programming
frameworks for heterogeneous systems that are not specific for stencils, but that
can be used to develop a distributed application to compute a stencil on a paral-
lel, heterogeneous system. They can also be used to build higher abstractions for
programming stencil applications on this kind of platforms.

OpenMP [43] is a classical and extensively used programming model for
multi-core shared-memory systems. Modern compilers have full support for
the latest versions of OpenMP, which include features to offload the computa-
tion to devices such as GPUs. Although there are plenty of academic proposals
to extend OpenMP to distributed memory systems, the model does not include a
native communication system across nodes. Moreover, programming asynchro-
nous operations to manage several devices and overlap computation for GPUs is
not trivial [44]. Thus, the programmer should rely on an external communication
model, such as MPI, and devise complex structures and synchronization mecha-
nisms to move data across remote GPUs.

RAJA [45] is a portability layer that enables C++ applications to leverage var-
ious programming models, and thus architectures, with a single-source codebase.
RAJA targets loop kernel parallelism for C++ applications by relying on standard
C++11 language features for its external interface, and common programming
model extensions such as OpenMP and CUDA for its implementation. RAJA is
designed to integrate with legacy codes simply and to provide a model for the
development of new codes that are portable from inception. However, Raja does
not include mechanisms to do inter-node communication. Thus, as in OpenMP,
applications targeting distributed memory systems usually rely on message-pass-
ing models, such as MPI, manually dealing with the complexities of the synchro-
nization of the devices and the data movements (see e.g., [46]).

The Kokkos C++ library [47] enables applications and domain libraries to
achieve performance portability on diverse manycore architectures by unifying
abstractions for both fine-grain data parallelism and memory access patterns. Its
most recent extension [48] includes support for hierarchical parallelism, contain-
ers, task graphs and arbitrary-sized atomic operations. Kokkos Remote Spaces
[49] adds distributed shared memory (DSM) support to Kokkos. It enables a
global view of data for a convenient multi-GPU, multi-node and multi-device
programming. It is built on top of libraries implementing a PGAS model or even
MPI one-sided communications. However, it provides a fine grain communica-
tion model that does not scale well even with several GPUs in the same node,
as reported by the authors [49]. More complex data descriptions could be used
to manually express aggregate communications, but dealing with the same com-
plexity as expressing communications in a message-passing style. Finally, the
Kokkos mechanism to perform efficient data transfers across different memory
spaces (deep-copy) implies synchronization fences, preventing the program-
mer from exploiting the full potential of overlapping device computation with
communication.

9414 M. de Castro et al.

1 3

SYCL [50] is a standard model for cross-platform programming with several
implementations and compilers, such as DPC++ in Intel OneAPI (DPC++) or
hipSYCL. Kernels and host tasks are organized by a task graph that is implic-
itly constructed by the SYCL runtime. The control flow and the data transfers
needed are derived from programmer declarations of the input/output role of the
buffers used by computations. Both computations and device-host communica-
tions can be implicit and asynchronous. Celerity [12] extends the ease of use of
the SYCL domain-specific embedded language to distributed clusters. While the
execution of parallel kernels is still handled by the SYCL runtime on each indi-
vidual worker node, the Celerity runtime acts as a wrapper around each compute
process, handling the data partition and the inter-node communication and sched-
uling. The programmer declares a range mapper that indicates to the runtime sys-
tem the data elements to be accessed by each range of elements. This allows the
inter-process communications for the data partition to be derived. Indeed, Celer-
ity includes a neighborhood range mapper that is specifically indicated to express
the access pattern of symmetric stencil computations. The communications
derived for asymmetric stencils are non-exact, including non-needed communica-
tions or elements, but they can still be programmed. Celerity is a good candidate
to implement stencil computations for distributed multi-GPUs.

In order to build a higher abstraction for stencil computations on distributed
multi-GPU environments, we decided to rely on two parallel programming tools
developed by our research group. Controllers [10] is a heterogeneous parallel pro-
gramming model implemented as a C library. It transparently manages the coor-
dination, communication and kernel launching on different heterogeneous com-
puting devices. It exploits native or vendor-specific programming models and
compilers, such as OpenMP, CUDA, or OpenCL, enabling the potential perfor-
mance obtained by using them. It supports asynchronous operations using both
data buffers and selected subparts of them. Hitmap [11] is a distributed program-
ming library, built on top of MPI, that simplifies the partition and communication
of data structures in distributed memory environments. It allows the construction
of customized and reusable communication patterns in terms of data-access pat-
terns and partition policies chosen at runtime. They can express the exact com-
munications needed for both symmetric and asymmetric stencil computations of
any order. Moreover, a precompiled program or library using Hitmap calculates,
at runtime, the communication pattern for the given data-access pattern, adapting
itself to the chosen stencil. Controllers also uses Hitmap to abstract the manage-
ment of the data structures across accelerators and host. Hitmap is included in the
Controller release. Thus, they are perfectly coupled and seem appropriate to build
higher-level abstractions for stencil computations on distributed GPUs. The fol-
lowing section provides additional information on these tools.

To facilitate comparison, Table 1 summarizes the features of some of the sten-
cil-computations frameworks discussed in this section. As can be seen, among
the main frameworks analyzed, only Celerity presents part of the heterogeneous
portability features of our proposal.

9415

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

3 EPSILOD building blocks: Hitmap and Controllers

Gorlatch and Cole defines a parallel skeleton as “a programming construct (or a
function in a library), which abstracts a pattern of parallel computation and inter-
action. To use a skeleton, the programmer must provide the code and type defini-
tions for various application-specific operations, usually expressed sequentially.
The skeleton implementation takes responsibility for composing these operations
with control and interaction code in order to effect the specified computation, in
parallel, as efficiently as possible” [51]. Our proposal, EPSILOD, is an efficient
framework to allow the execution of large stencil computations on distributed,
heterogeneous systems, thanks to the use of a skeleton specially designed to
carry out stencil computations. EPSILOD relies on an internal mechanism of the
Controllers model and the Hitmap library to start asynchronous communications
when the runtime detects that a part of a data structure has been fully updated.
Afterward, it automatically launches the next tasks and synchronizes execution
and communication. Thus, the opportunities for overlapping computation and
data movement are maximized.

This section presents an overview of the programming tools used to implement
our stencil skeleton. We discuss the core concepts of the Hitmap library and the
Controllers programming model, focusing on those exploited by our proposal. They
are both implemented as libraries of functions written in C99. They are built with
an object-oriented paradigm, comprising multiple structures, each one with its cor-
responding API of C functions, that work like classes. They are compatible with any
C99/C++ compiler, and they are easily interoperable with other libraries and paral-
lel programming models.

Table 1 Main features of the
frameworks described in the
related work

Multi-GPU Support for several GPU devices in the same node. Mul-
tinode: Support for distributed computing across GPU devices in
several distributed nodes. Heterogeneous portability: Built on top of
a heterogeneous programming layer that targets different program-
ming models for supporting GPUs of different type/vendor on each
compilation or run. Mixed GPUs: Support for mixing GPU devices
of different types/vendors on the same execution with load balancing
∗ Examples of parallel solutions used to program stencils on multi-
GPU systems
‡ Examples of domain-specific frameworks used for stencil applica-
tions in multi-GPU systems

Framework Multi-GPU Multinode Heterogene-
ous port-
ability

Mixed GPUs

SkelCL ∗ X
Muesli ∗ X X
DeVito ‡ X X
YASK ‡ X X
Celerity X X X
EPSILOD X X X X

9416 M. de Castro et al.

1 3

The source code of both modules is freely available on the repository of the
Trasgo group.1

3.1 Hitmap

The Hitmap library [11] provides a portable interface to manage distributed arrays
and other data structures. It is built on top of MPI, providing higher-level abstrac-
tions. It implements functions to efficiently create, handle, map and communicate
hierarchical tile arrays. The library supports three main sets of functionalities:

• Tiling functions Hitmap provides the HitTile structure, a kind of fat-pointer. It
stores, alongside the pointer to the memory space, metadata related to the size,
dimensions and partitions of an array. The index domains of the tiles are declared
and queried using the interface associated to the HitShape structure. Accessing
these abstract arrays is performed using a generic function hit, with a variable
number of index parameters.

• Mapping functions The HitTopology and HitLayout structures provide abstrac-
tions for modular functionalities for the partition and mapping of data structures
across virtual processes. The library includes from common n-dimensional parti-
tion policies to heterogeneous partitions based on different weights for each pro-
cess that can be used for load balancing in heterogeneous environments.

• Communication functions They allow the creation of reusable communication
patterns, HitPattern, based on a given HitLayout distribution. They provide
an abstraction of a message passing programming model to communicate tiles
between multiple virtual processes. Each new pattern is built in terms of the
runtime information found in a layout object. Thus, they transparently adapt the
communication structure to any change in the distribution policy or number of
processes.

More architecture details and use cases of the Hitmap library can be obtained in
[11].

3.2 Controllers programming model

Controllers [10] is a heterogeneous programming model implemented as a library
that enables performance portability across CPU-cores (using OpenMP), GPUs
(using CUDA or OpenCL), Intel FPGAs (using Intel FPGA SDK for OpenCL), or
Xilinx FPGAs (using Xilinx Vitis). The Controllers model integrates the use of dif-
ferent vendor specific technologies through different backends coordinated by the
same runtime layer, effectively handling the architectural differences between dif-
ferent computing devices [52]. The programmer can write a single generic portable
kernel code that can target different kinds of devices. The programmer can also pro-
vide different versions of the same kernel, optimized for different devices, including

1 https:// gitlab. com/ trasgo- group- valla dolid/ contr ollers.

https://gitlab.com/trasgo-group-valladolid/controllers

9417

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

code and features of the vendor or low-level programming model if needed. These
kernels are then compiled with the desired vendor or native compiler. All object files
generated by these compilers are then linked together. In this way, programs devel-
oped using the Controllers model include executable codes for all the backends and
their runtime support, allowing the program to select at runtime the most efficient
kernel for the type of device chosen, either from different vendors or from different
families of the same vendor. Controllers also allows the declaration of host-tasks, a
special type of kernel that are executed within a host-space backend. The host-tasks
allow generic host operations, such as calls to I/O operations.

For programming the host coordination code, the Controllers framework pro-
poses an abstract class, called Controller. A Controller object is associated with a
particular instance of a device during its construction. Each object transparently
manages the coordination and communication of the host code with that device.
For the transparent and portable management of data structures, Controllers uses
the HitTile abstraction of the Hitmap library (described in Sect. 3.1) to encapsu-
late variables and data structures, such as multi-dimensional arrays. The HitTiles
can be allocated only in the host, only in the device (internal variables), or in both
host and device sides (tied variables). The hit function is used in host and kernels
as an abstraction to transparently access data with both functional and performance
portability. It provides a portable view, with consistent row-major order, across any
device and the host.

When programming a kernel or host-task, the programmer should also provide
information that includes the role of each parameter (input/output). By analyzing
the dependencies of launched kernels and host-tasks, the Controllers model auto-
matically handles the execution order, asynchronous data transfers between host and
devices, and ensures that computations are performed on up-to-date data, regardless
of what entity executes them (host or devices). Controllers extends the HitTile struc-
ture with more meta-data related to the location and state of the data in the device,
that is internally used to automatically keep the memory consistency across the dif-
ferent memory hierarchies.

4 Parallel stencil skeleton

This section discusses the proposed parallel stencil skeleton from the programmer’s
point of view, through the description of the programming interface. It presents with
examples: (a) How to provide a stencil description; (b) a description of a generic
kernel provided with the skeleton that can use any stencil description; (c) a kernel
generation tool to build more efficient kernels from stencil descriptions; and (d) how
to call the parallel stencil skeleton with both the generic kernel and an optimized
kernel.

The section then provides a description of the skeleton implementation, includ-
ing how it distributes the load, coordinates data transfers and inter-node communi-
cations and achieves an efficient overlap of computation and communication using
device computation partition and asynchronous techniques.

9418 M. de Castro et al.

1 3

4.1 Interface and usage

The proposed stencil skeleton is presented as a reentrant, higher-order function
written in C99, compatible with any modern C/C++ compiler. The function
solves a fixed number of iterations of a geometric stencil computation, applying
the stencil operator to each element of an n-dimensional array. It is implemented
using the Hitmap library and the Controllers programming model. As we will see,
from a programmer’s perspective, the interface is simple to understand and its use
is straightforward.

Stencil Description.
The stencil operator is expressed by a Stencil Description that comprises the

following data: (a) A Shape, expressed as a HitShape object, indicating the dis-
tance to the farthest neighbor (or radius) on each dimension and direction; (b)
a Pattern, an array of weights/coefficients for each element in the shape, with
zeros in the elements that should be ignored, and positive/negative weights for
the actual neighbors; and (c) a Division Factor for the weighted sum. Listing 1
shows an example of a stencil description for a classic 2D 4-point star stencil, to
solve Poisson’s equations of heat transfer using a Jacobi method.

The skeleton provides a generic kernel that works for any Stencil Description.
The user can also provide a more optimized kernel code. Moreover, a tool to gen-
erate specific kernels from Stencil Descriptions is also provided.

The Generic Kernel.
The generic kernel included in the skeleton works for any kind of stencil, once

provided its Description (shape, pattern, and division factor). It works by iterating
over the stencil pattern elements. For each element, the corresponding neighbor
is accessed, multiplied by the weight, and summed into the result. The internal
implementation of the generic kernel for 2D stencils is shown in Listing 2. The
arguments provided to the kernel, related to the pattern size (begin_x, begin_y,
end_x, and end_y), are automatically provided by the skeleton from the Stencil
Description’s shape.

9419

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

Kernel Generation Tool (KGT).
The use of a single generic kernel for any type of stencil computation is ineffi-

cient in terms of performance. Using nested loops and accessing all the elements
of the stencil pattern, regardless of their weights, derives in a performance pen-
alty for the generic kernel. This performance penalty is especially noticeable for
stencils with patterns where most elements have a weight of zero.

We provide a tool, called Kernel Generation Tool (KGT), that is able to gener-
ate a tailored, more efficient kernel from the very same Stencil Description the
generic kernel uses. The generated kernel avoids accesses to elements that do not
participate in the computation, as well as the usage of loops. We refer to this kind
of kernels as specific kernels. The KGT is currently implemented as a Bash+Awk
script. It receives a C code file as the argument with the Stencil Descriptions in
the same format discussed previously (see Listing 1). The script traverses the
stencil pattern and generates a code without loops that directly accesses neigh-
bors with positive/negative weight values, avoiding elements with zero weight.
Thus, these kernels require less memory bandwidth and achieve a higher through-
put than the generic kernel. The kernels are generated with the necessary Con-
trollers wrapper syntax. Listing 3 shows the stencil kernel generated by the tool,
from the stencil description provided in Listing 1. The user can try to optimize
the generated kernels further to achieve even higher throughput.

In Sect. 5.1, we provide a performance comparison between the generic kernel
and a tailored kernel generated by the KGT tool for different test scenarios.

9420 M. de Castro et al.

1 3

Skeleton function prototype.
Listing 4 presents an excerpt of the header file of the skeleton function, show-

ing the function prototype and the type definitions for the initialization and results
output functions provided by the user. The skeleton function has the following
parameters:

1. The sizes of the space array on each dimension, provided as an array of integers.
2. The Stencil Description:

(a) A HitShape object describing the stencil shape.
(b) The stencil pattern, an array of weights for each stencil element in the

shape.
(c) The division factor for the weighted sum. This argument is used only with

the generic kernel, and it is ignored when using specific or custom kernels.

3. The number of iterations to apply the operator.
4. The name of the stencil kernel to use, or a NULL pointer to use the generic kernel.
5. A pointer to a function to initialize the values of the space array. This function

will receive a HitTile with the part of the array assigned to the local process, the
number of dimensions of the array, and information about the boundary condi-
tions. Line 2 of the header file excerpt shows the type definition for this function.

6. A pointer to a function to output the results of the computation. This function has
the same parameters as an initialization function. Line 3 of the header file excerpt
shows the type definition for this function.

Listing 5 shows an example program calling the stencil skeleton function using
the generic kernel provided with the skeleton. The example uses the 2D 4-point
star stencil for Poisson’s equation described in Listing 1.

9421

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

Registering new kernels.
Listing 6 shows an example of using the skeleton function with a kernel written

manually by the user or generated with the provided tool (KGT). These kernels must
be registered to be used in the skeleton function. This is done with the macro-func-
tion REGISTER_STENCIL. This macro-function receives the name of the stencil ker-
nel to be registered as the argument. The macro expands into the special kernel proto-
type required by the Controllers model, and into a host wrapper function that launches
the kernel. The name of the kernel used, passed to the stencil skeleton function as the
fourth argument, is transparently translated to a pointer to the wrapper function, which
launches the device kernel with the Controllers framework. All the low-level details are
hidden from the programmer.

9422 M. de Castro et al.

1 3

4.2 Implementation details

This section describes the main ideas to implement the skeleton structure with effi-
cient overlapping of computation, data transfers, and inter-node communications.

Distribution of the global array.
The skeleton program is launched as an MPI application. Internally, the ranks of

the MPI processes in the same node determine the associations between processes
and each of the available devices in the node. A Controller object is automatically
created on each process to manage the associated device.

The skeleton receives the sizes of the global array as input. It uses Hitmap’s
topology and layout functions, to organize the available MPI processes in a grid
and divide the index space evenly among them. Partition can be done in con-
tiguous bands by the first dimension of the array or in two or three dimensional
blocks. See Fig. 1. The partition method is chosen by configuring the skel-
eton function. For heterogeneous clusters, we also introduce a second skeleton

Fig. 1 Partition of the global array to different processes by contiguous bands (left) or two-dimensional
blocks (right)

9423

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

version using a specific layout function that makes a weighted division of the
index domain in horizontal bands. The amount of rows mapped to each process
is proportional to the relative weight of that process. Weights are provided by the
programmer, according to the estimated or previously measured computational
power of the different devices used by the MPI processes. Thus, the computa-
tion load can be balanced across different types of devices. See Fig. 2. The skel-
eton creates a HitShape object to represent the part of the global index domain
mapped to the local process.

Subparts of the local arrays.
The stencil shape received as parameter contains the radiuses of the sten-

cil pattern on each dimension and direction. They are used to create space for
halos, memory zones to have copies of remote data not owned by the process, but
needed to compute the local cells.

We distinguish three different non-overlapping parts in each process’ local
array (see Fig. 3):

Fig. 2 Partition of the global array to different processes by contiguous bands using a previously deter-
mined weighted distribution

Fig. 3 Left: Asymmetric irregular 2D stencil pattern definition and its graphical representation. Middle:
The different parts and extended shape calculated for the local part of an array. Right: Different instances
of border sub-parts to be communicated to neighbor processes

9424 M. de Castro et al.

1 3

• Halos: Elements of the local arrays not owned by the process, but needed to
compute the local part. These elements are not assigned to the process by the
partition function. They are included in the local part during the expansion of the
shape determined by the stencil radiuses and should be received on every itera-
tion from the neighbor processes. They are the outermost elements of the local
arrays, and they are not updated on the local process.

• Borders: These are the elements owned by the local process that are duplicated
as halos in other processes. They are updated locally and they should be sent to
their corresponding neighbors on every iteration.

• Inner: The innermost elements of the local arrays, skipping halos and borders.
These elements are updated on every iteration, and they are not communicated to
any neighbor.

Figure 3 shows a highly asymmetric stencil pattern (on the left), and the correspond-
ing halos and extended shape generated for a local array (in the middle). Hitmap
provides functionalities to extend the shape of the local part of the array accord-
ing to the information concerning radiuses. The extension automatically takes into
account that it should not be expanded beyond boundaries in the first or last pro-
cesses of each dimension.

The skeleton proceeds to allocate memory for the expanded local part of the array
including the halos. Each process allocates memory for two local arrays: One to
store the data computed in the previous iteration, and another to store the results of
the current iteration. The skeleton uses one HitTile object as a handler to manage
each array. A functionality of the Controller object is used to allocate each HitTile.
This functionality creates two related memory images for a HitTile, one in the host
and one in the device.

Before the first iteration, the user’s data-initialization function is called to intro-
duce the initial values in the array. The data are copied into the device memory
image. After computing each iteration, the handlers (HitTiles) of the two arrays are
swapped to exchange their internal meta-data, including the data pointers in host
and device. This relocates the new computed data in the array of previous results,
avoiding array data copies. After all the iterations have been executed, the results are
copied from the device to the host, and the user’s output function is called on each
process. The user’s function can use the functionalities provided by Hitmap to easily
write a distributed array in the file system.

Generation of the communication pattern.
At the same time that the halos and extended shape of the local array are deter-

mined, the same analysis of the stencil pattern is used to automatically calculate
the inter-node communications needed across iterations. The elements with nonzero
weights in the pattern indicate the borders which should be effectively sent to neigh-
bor processes and received in the halos. For each dimension of the processes grid,
it is checked whether communication is needed from/to the previous and next pro-
cesses, also computing the width of the border or halo to communicate from the
shape of the stencil. For asymmetric stencils, the widths could be different for each
direction, and communications in just one direction may be needed. In partitions of

9425

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

two or three dimensions, if the pattern has nonzero weights in diagonal positions
with respect to the cell to compute, communications are also needed for the corners
of the borders or halos, with processes which are also in diagonal positions in the
processes grid. In these cases, some data in the corners of the borders should be
communicated to more than one process. See an example in the leftmost corner of
Fig. 3 (right).

Let d be the number of dimensions of the partition, or processes grid. The maxi-
mum number of active border send operations, or active halo receive operations, is
3
d − 1 . The processes at the limits of the grid deactivate the send/receive operations

in directions where there is no neighbor process.
The communication pattern to be repeated on each iteration for the local process

is defined by the active borders/halos and the shapes of the corresponding pieces.
This pattern is used in two ways. First, to build an inter-process communication pat-
tern. Hitmap provides a functionality to build a HitPattern object in terms of borders
and halo shapes. The shapes’ intersections lead to exact communications. No data
is communicated if it is not needed, and no data is communicated more times, or to
more processes, than needed. The HitPattern contains the information to perform
the MPI communication operations for all the data movements indicated during its
construction. Hitmap provides functionalities to perform the communications of a
HitPattern at any moment.

Second, the pattern is used to coordinate data transfers from and to the device.
Hitmap allows the declaration of hierarchical tile structures: A HitTile can be a sub-
selection of a given part of another HitTile. Thus, it is possible to declare HitTiles
for each part of a border, for a halo, or for the inner part of the local array. Their
internal data pointers indicate the first element of the sub-selection, and the meta-
data indicates the sizes and strides needed to access the data. Controllers provides
functionalities to move data from/to the device for a HitTile. The Controllers model
abstracts the underlying hardware details of the different devices and the low-level
communication mechanisms from the skeleton. Each Controller object used in the
program transparently leverages the native or vendor-specific programming model
for the chosen device, such as CUDA or OpenCL, to perform these data trans-
fers. This allows the skeleton to achieve data-transfer throughputs similar to those
of the native or vendor-specific models [52]. If the tile to move is a sub-selection,
appropriate data movements for only that specific part of the array are executed.
The Controllers backends transparently use the proper CUDA or OpenCL functions
to efficiently transfer sub-selections of an array, which can include non-contiguous
memory pieces. These data transfers are done asynchronously by the Controllers
runtime.

9426 M. de Castro et al.

1 3

Overlapping of computation and communication.
In order to obtain the maximum possible overlapping of computation, data trans-

fers and inter-process communications, we should consider separately the dependen-
cies between the halos, borders and inner part of the local and remote arrays.

Algorithm 1 shows the order of operations performed by the skeleton on each
iteration. It uses arrays of HitTiles representing borders and halos, and two extra
HitTiles for inner parts. Those that start with the prefix new are sub-selections of
the local array for computing new values on this iteration (newTile). Those that start
with the prefix old are sub-selections of the local array that holds the data of the
previous iteration (oldTile). Recall that the number of borders is 3d − 1 , d being the
number of dimensions of the partition, or processes grid. There are two Boolean
arrays, activeBorders and activeHalos. Their elements are set on positions where
there is a communication to send out that border, or to receive in that halo, accord-
ing to the stencil pattern and the position of the local process in the processes grid.

The computation in the local array can start as soon as the halos computed
remotely in the previous iteration have reached the device. The computation for
the borders and the inner part can be launched as separate computations. The
skeleton splits the computation and works in two stages (see Fig. 4). As soon
as the computation of the local borders has finished, the data transfer and inter-
process communication of the new border values can start. These data transfers
and communications can be done asynchronously, overlapping with the compu-
tation in the inner part of the local array. For data sizes that really need parallel
distributed computing, the computation load in the inner part of the local array is

9427

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

far higher than in the borders, maximizing the opportunities to hide the latencies
of data transfers and inter-process communications.

The Controllers model allows the launch of a kernel using HitTiles which are
sub-selections of another tile. Thus, launching the kernels to compute the borders
and the inner part separately is straightforward. The kernels are enqueued and
executed asynchronously in the device. The Controllers runtime ensures that: (1)
Requests for data transfers are not started until the kernels using the data are not
yet finished; and (2) kernels are not started if there are pending data transfers
for their parameters. Controllers offers an explicit synchronization operation to
wait in the host until all the pending operations for a given HitTile have finished
(kernel executions and/or data transfers). We use this to synchronize the start of
the inter-process communications with the end of the data transfers of the borders
from the device. This explicit synchronization is needed because these operations
work on different tiles (although they are sub-selections of the same tile). Finally,
the iterations loop is unrolled once, to avoid the unneeded communication of
halos at the end of the last iteration.

Figure 5 shows an example image obtained with the NVIDIA Visual Profiler
during the execution of some iterations of the skeleton in two processes with two
NVIDIA Titan Black GPUs in two different nodes, interconnected with 10Gb Eth-
ernet. It shows the computation-communication overlap achieved. The small blue
rectangles represent the computation of the borders. Brown rectangles represent
both the data transfers from GPU to CPU of the borders, and the data transfers from
CPU to GPU of the received halos. Green rectangles represent the time dedicated to
inter-process data communication. Finally, the big blue rectangles represent the time
dedicated to the computation of the inner part of the local arrays. As can be seen, the
computation of the inner part of the local arrays completely overlaps the CPU-GPU
transfers and inter-process data communications.

Fig. 4 Computations and data movements performed on each iteration of the proposed skeleton

9428 M. de Castro et al.

1 3

5 Experimental studies

In this section, we discuss the results of three different experimental studies to
test our proposal in different scenarios, with different types of stencils:

1. Strong and weak scalability of the skeleton in up to 48 NVIDIA GPUs in 12
distributed nodes.

2. Comparison with the strong and weak scalability obtained by a Celerity imple-
mentation of the same stencil computations, in up to 32 NVIDIA GPUs in eight
distributed nodes.

3. Strong and weak scalability of the skeleton in a heterogeneous node comprising
both NVIDIA and AMD GPUs, using load balancing techniques.

All tests were performed using single precision floating-point (FP32) calculations
to leverage the highest amount of compute units in the GPUs. We have not con-
sidered half precision (FP16) representation, since it is not a native data type in
certain GPUs, and our goal is to maximize compatibility across heterogeneous
devices. Regarding double precision (FP64), its use is not optimal in terms of
GPU computing resource utilization. Thus, it does not present the most demand-
ing scenarios for synchronization and computation/communication overlapping.

5.1 Experimental study 1: strong and weak scaling in CTE‑POWER

We have selected several stencil operators in 2D, including compact, non-com-
pact, symmetric, and asymmetric stencils.

• 2D 4-point compact stencil (Jacobi).
• 2D 9-point compact stencil.
• 2D 9-point non-compact, second order stencil.
• 2D 5-point non-compact, asymmetric stencil.

Fig. 5 Timeline from a profiling session of the execution of a Jacobi 2D stencil in 2 distributed NVIDIA
Titan Black GPUs

9429

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

A visual representation of the 2D stencils described is shown in Fig. 6. For these
stencils, we compare the performance of the EPSILOD generic kernel and the ker-
nels automatically generated by the KGT tool (referred to as specific kernels).

The experimentation platform chosen is the CTE-POWER cluster of BSC (Bar-
celona Supercomputing Center). Each node has four NVIDIA 16GB Tesla V100
GPUs and two IBM Power9 8335-GTH @ 2.4GHz CPUs. They are interconnected
with an Infiniband network. The stencils are executed in up to 48 GPUs in 12 dis-
tributed nodes. They are interconnected with an Infiniband network. The input array
size for strong-scale experiments is 44 000 × 44 000, that is near the maximum size
that fits in a 16GB Tesla V100 GPU. For weak-scaling analysis, the size of the array
grows proportionally to the number of GPUs, increasing the size in one different
dimension with each additional GPU. Each experiment executes 15 repetitions of
1000 iterations of each stencil, with enough load to obtain representative and sta-
ble results. Strong and weak scalability have been tested with the parallel skeleton
proposed using both the generic and the automatically generated kernel implementa-
tions. Performance measures are the execution times of the program for the stencil
computation part, excluding initialization and output of results.

The deviations of the measures are small in general. On specific experiments
using 16 and 32 GPUs (four and eight nodes respectively), we obtained a high devi-
ation with inconsistent mean values. The BSC’s staff reported that some nodes for
those configurations contained malfunctioning GPUs with lowered computational
performance. The corresponding experiments were discarded and the malfunction-
ing GPUs were not used again. However, our quota did not allow us to re-run the
experiments needed to obtain a meaningful average. Thus, we present results for the
minimum execution time value observed for each experiment, which is consistent
with the trend of the means for the normal performance scenarios.

Fig. 6 Visual description of the
2D stencils tested

9430 M. de Castro et al.

1 3

Figure 7 shows the execution times for the strong scalability tests with the 2D
stencils, with logarithmic scale in the y-axis. Figure 8 shows the execution times
for the weak scalability tests with the 2D stencils. In both cases, the plots on the
left present the results with the generic kernel, and the plots on the right using the
automatically generated kernel.

Table 2 shows the GFLOPS achieved by our proposal in the weak scalability
tests for the 2D 9-point stencil. Only the GFLOPS for one of the tested stencils
are provided for readability reasons. Nevertheless, all the other stencils behave
similarly in terms of GFLOPS scalability. We choose to show the data for the
2D 9-point stencil, since it achieves the highest GFLOPS of all the tested sten-
cils due to its high pattern density (i.e., high element utilization per memory line
accessed).

From the results obtained we can make the following observations:

• In the weak scaling experiments, we observe smaller execution times when
using one or two GPUs than when using four GPUs or more. This is explained
by the architecture of the cluster nodes. There are four GPUs on each node

Fig. 7 Strong scalability in CTE-Power for 2D stencils. Left: Generic kernel. Right: Automatically gen-
erated kernels using the KGT tool described in Sect. 4.1

Fig. 8 Weak scalability in CTE-Power for 2D stencils. Left: Generic kernel. Right: Automatically gener-
ated kernels using the KGT tool described in Sect. 4.1

9431

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

Ta
bl

e
2

 G
FL

O
PS

 a
ch

ie
ve

d
in

 w
ea

k
sc

al
ab

ili
ty

 b
y

ou
r p

ro
po

sa
l,

w
he

n
ex

ec
ut

in
g

th
e

2D
 9

-p
oi

nt
 st

en
ci

l i
n

C
TE

-P
ow

er
 u

si
ng

 th
e

ge
ne

ric
 k

er
ne

l a
nd

 a
 s

pe
ci

fic
 k

er
ne

l g
en

er
-

at
ed

 b
y

th
e

K
er

ne
l G

en
er

at
io

n
To

ol

2D
 9

-p
oi

nt
 st

en
ci

l G
FL

O
PS

1
G

PU
 1

 n
od

e
2

G
PU

s 1
 n

od
e

4
G

PU
s 1

 n
od

e
8

G
PU

s 2
 n

od
es

16
 G

PU
s 4

 n
od

es
32

 G
PU

s 8
 n

od
es

48
 G

PU
s 1

2
no

de
s

EP
SI

LO
D

 w
ea

k
sc

al
ab

ili
ty

, g
en

er
ic

 k
er

ne
l

82
1.

59
16

40
.6

7
31

42
.4

5
62

19
.5

2
12

33
3.

38
24

80
0.

17
36

96
8.

81
EP

SI
LO

D
 w

ea
k

sc
al

ab
ili

ty
, K

G
T-

ge
ne

r-
at

ed
 k

er
ne

l
12

82
.6

0
25

57
.9

5
46

84
.8

5
93

02
.9

2
18

47
8.

60
37

11
4.

85
55

08
7.

86

9432 M. de Castro et al.

1 3

grouped in two different zones, with different CPUs (NUMA nodes), and dif-
ferent power and ventilation areas. With four GPUs executing in the node,
there are two devices executing in the same zone, and both devices experiment
a little performance degradation.

• We also observe a very good weak scalability, specially for the optimized kernel.
With up to four GPUs, inter-process communication is fast, as it is done inter-
nally in the node. With eight or more, there are also inter-process communica-
tions using the network. We observe no relevant execution time increment when
using more than four GPUs, indicating that all the data transfers and communi-
cations are fully overlapped with the computation.

• The strong scaling results also show how good the overlapping is, with a parallel
efficiency of more than 90% with up to 48 GPUs.

• Regarding performance, the execution time is dominated by the computation of
the inner part. The kernels of these stencil computations are memory-bound. The
performance differences between different stencils are mainly originated by the
lower or higher memory bandwidth needed to access the neighbor elements. In
general, non-compact stencils perform worse than compact ones. For stencils
accessing a similar amount of memory lines, slight performance differences can
be appreciated depending on the number of arithmetic operations per cell. These
differences are more noticeable when using the less optimized generic kernel.
For example, the 2d9 non-compact stencil presents the higher execution times.
It accesses more memory lines than the others due to the higher stencil radius
(r = 2 on each of the four directions). The 2d4 stencil is faster because it has
a lower number of floating point operations per cell. In the case of the asym-
metric 2d5 stencil, the effects of the higher radius on two directions, zero-radius
in another two, and the number of floating point operations are compensated,
obtaining a similar performance to the 2d9 compact stencil. Nevertheless, the
communication pattern of the asymmetric 2d5 stencil derives in a pipeline struc-
ture, simpler than the full neighbor synchronization structure of the other sten-
cils. Thus, its performance suffers less from occasional small delays on remote
synchronizations. This is noticeable in the strong scaling tests when using the
automatically generated kernel for 32 or 48 GPUs. The load of the inner part
becomes so small that the inter-process synchronization effects become relevant.
Also, in the same situations, the higher volume of communication of the 2d9
non-compact stencil leads to a little lower performance for a high number of
GPUs.

5.2 Experimental study 2: comparison with celerity implementations

We have conducted an experimental study to compare the performance achieved
using our proposal with the one obtained using Celerity [12], a state-of-the-art tool
for distributed heterogeneous computing. Celerity uses MPI for inter-node commu-
nications, and SYCL to manage the heterogeneous devices. Strong and weak scala-
bility have been tested for optimized implementations of the following stencil opera-
tions using both our parallel skeleton and a Celerity-based application:

9433

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

• 2D 4-point compact stencil (Jacobi).
• 2D 9-point compact stencil.
• 2D 9-point non-compact, second order stencil.
• 2D 5-point non-compact, asymmetric stencil.

The experimentation platform is again the CTE-POWER cluster of BSC, com-
prising nodes with four NVIDIA Tesla V100 GPUs. We use Celerity 0.2.1, built
on top of hipSYCL v0.9.1. Each experiment is executed three times. The num-
ber of iterations is 1 000 for all experiments. The stencils are executed in up to
32 GPUs in eight distributed nodes. In this case, we do not present results for
48 GPUs. The reason is that, in our experimental setup, we found that Celer-
ity takes so much time in this configuration that it would consume our entire
quota resources. The Controllers model has a much lower memory footprint
than Celerity for the distributed arrays on the devices. Thus, it is not possible
to experiment with the sizes used in the previous experimental study. For a fair
comparison, the array sizes in this study are smaller. The array size for strong-
scaling experiments is 30 000×30 000, which is near the maximum size that fits
in a 16GB Tesla V100 GPU using Celerity. For weak-scaling analysis, the size
of the array grows in all dimensions proportionally to the number of GPUs.

Figure 9 shows the comparison between the Celerity implementation and our
proposal in terms of strong scaling, and Fig. 10 in terms of weak scaling.

Table 3 shows the GFLOPS achieved by the Celerity implementation and
our proposal in the weak scalability tests of this experimental study, for the 2D
9-point stencil. As it was the case in the previous experimental study, the 2D
9-point stencil achieves the highest GFLOPS of all the tested stencils, for both
the Celerity implementation and our proposal. It also shows a scaling behavior
that is similar for all of the tested stencils. However, we also consider of interest
to show the GFLOPS achieved by both implementations in the case of the 2D
4-point stencil, since it is the only scenario in which the Celerity implementa-
tion achieves higher GFLOPS than our proposal for some number of GPUs. That
data are shown in Table 4.

As the load is smaller than in the previous experimental study, the impact of
the data transfers and communications is higher, affecting scalability in some
situations. It can be noted that our proposal outperforms the Celerity implemen-
tations for every type of stencil tested, except in the simplest stencil (the 2D
4-point stencil) when using fewer than 32 GPUs, which show a similar behavior.
Our proposal has a better management of communications, reducing their num-
ber for non-symmetric stencils, and improving the computation-communication
overlapping on each iteration.

Regarding the corresponding memory footprints, Celerity presents a memory
footprint around 8 GB, while EPSILOD presents a memory footprint of less than
1 GB. Based on these results, our guess is that Celerity may be introducing extra
copies of some matrix structures that are not needed for this specific kind of
application, although the study of the exact reasons are beyond the scope of this
paper.

9434 M. de Castro et al.

1 3

Ta
bl

e
3

 G
FL

O
PS

 c
om

pa
ris

on
 fo

r t
he

 w
ea

k
sc

al
ab

ili
ty

 o
f a

 C
el

er
ity

 im
pl

em
en

ta
tio

n
an

d
ou

r p
ro

po
sa

l w
he

n
ex

ec
ut

in
g

th
e

2D
 9

-p
oi

nt
 st

en
ci

l

2D
 9

-p
oi

nt
 st

en
ci

l G
FL

O
PS

1
G

PU
 1

 n
od

e
2

G
PU

s 1
 n

od
e

4
G

PU
s 1

 n
od

e
8

G
PU

s 2
 n

od
es

16
 G

PU
s 4

 n
od

es
32

 G
PU

s 8
 n

od
es

C
el

er
ity

 im
pl

em
en

ta
tio

n,
 w

ea
k

sc
al

ab
ili

ty
12

38
.3

7
23

41
.6

0
42

38
.5

2
84

17
.5

8
15

77
7.

26
30

94
0.

34
EP

SI
LO

D
, K

G
T-

ge
ne

ra
te

d
ke

rn
el

, w
ea

k
sc

al
ab

ili
ty

14
26

.7
4

28
30

.0
6

49
53

.2
0

97
85

.3
7

17
96

5.
59

35
14

5.
91

9435

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

Ta
bl

e
4

 G
FL

O
PS

 c
om

pa
ris

on
 fo

r t
he

 w
ea

k
sc

al
ab

ili
ty

 o
f a

 C
el

er
ity

 im
pl

em
en

ta
tio

n
an

d
ou

r p
ro

po
sa

l w
he

n
ex

ec
ut

in
g

th
e

2D
 4

-p
oi

nt
 st

en
ci

l

2D
 4

-p
oi

nt
 st

en
ci

l G
FL

O
PS

1
G

PU
 1

 n
od

e
2

G
PU

s 1
 n

od
e

4
G

PU
s 1

 n
od

e
8

G
PU

s 2
 n

od
es

16
 G

PU
s 4

 n
od

es
32

 G
PU

s 8
 n

od
es

C
el

er
ity

 im
pl

em
en

ta
tio

n,
 w

ea
k

sc
al

ab
ili

ty
81

7.
36

15
20

.1
3

27
12

.6
6

53
61

.1
3

10
02

0.
10

18
01

1.
26

EP
SI

LO
D

, K
G

T-
ge

ne
ra

te
d

ke
rn

el
, w

ea
k

sc
al

ab
ili

ty
77

4.
52

15
36

.5
0

26
81

.5
7

52
87

.0
3

97
73

.1
0

19
39

0.
49

9436 M. de Castro et al.

1 3

5.3 Experimental study 3: using different GPU types

We conduct an experimental study to test the performance achieved with our pro-
posal in a heterogeneous node which features different kinds of GPUs. We con-
duct the tests in the node Manticore, comprising 2 32GB NVIDIA Tesla V100
GPUs, and 2 AMD Radeon PRO WX 9100 GPUs. Weak scalability is tested for
specific kernel implementations of the 2D stencils presented.

In this experiment, we first use the basic skeleton that maps the same amount
of data to each process and device. Then, we use the skeleton version that uses
static load-balancing techniques. This latter version uses a different layout func-
tion from the ones provided by the lower-level Hitmap library. It includes a
parameter for the programmer to provide an array of weights that indicates the
relative amount of data to supply to each specific GPU device. We have experi-
mentally estimated the weights for each GPU in the node to redistribute the com-
puting array in a balanced way across the processes. The weight for the V100
GPUs is normalized to 1 in all cases. The weights for the Radeon GPUs are 0.41
for the 2D 9-point non-compact, and 0.46 for the other stencils. For these weak-
scaling experiments, we start with a size of 44 000 × 44 000 in a Tesla V100 GPU,

Fig. 9 Strong scaling comparison for a Celerity implementation and our proposal using different 2D
stencils

Fig. 10 Weak scaling comparison for a Celerity implementation and our proposal using different 2D
stencils

9437

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

and the array size increases in the first dimension proportionally to the accumu-
lated weight of the GPUs used to execute the program. Figure 11 shows the exe-
cution times obtained. The results show that with minimal modifications, the pro-
posed skeleton can use static load-balancing techniques and achieve good weak
scalability for 2D stencils in heterogeneous platforms comprising different types
of GPUs.

Table 5 shows the GFLOPS obtained in the case of the 2D 9-point stencil (the
stencil that achieves the highest amount of GFLOPS). For readability reasons, only
the GFLOPS for one of the tested stencils are provided. Nevertheless, the other sten-
cils present a GFLOPS scaling behavior similar to the 2D 9-point stencil.

5.4 Summary of results

We can summarize our main findings as follows:

• Regarding strong and weak scaling in CTE-POWER, we observe a very good
weak scalability, specially for the optimized kernel. We also observe that the
execution time does not increase with more than four GPUs, indicating that all
the data transfers and communications are fully overlapped with the computa-

Fig. 11 Execution times for weak scaling tests using 2D stencils in a node with two different types of
GPUs: NVIDIA V100, AMD Radeon PRO WX 9100. Left: Basic skeleton with the same amount of data
per GPU. Right: Skeleton with irregular distribution to balance the workload

Table 5 GFLOPS comparison for the weak scalability of the basic skeleton and the skeleton with stati-
cally load-balanced array distribution, when executing the 2D 9-point stencil

2D 9-point stencil GFLOPS 1 Tesla V100 2 Tesla V100 2 Tesla V100, 1
Radeon PRO WX
9100

2 Tesla V100, 2
Radeon PRO WX
9100

EPSILOD, unbalanced distri-
bution

1239.86 2478.34 1762.18 2216.63

EPSILOD, balanced distribu-
tion

1239.97 2478.48 3044.86 3657.75

9438 M. de Castro et al.

1 3

tion. Strong scaling also demonstrate how good the overlapping is, with a paral-
lel efficiency of more than 90% with up to 48 GPUs.

• Regarding the comparison with Celerity implementations, our proposal outper-
forms the Celerity implementations for every type of stencil tested, except in the
simplest stencil when using fewer than 32 GPUs, where performance is similar.
This is due to our better communications management.

• Regarding the use of different GPU types with different computation power
simultaneously, the results show that simple, static load-balancing techniques
allow to achieve good weak scalability with the proposed skeleton.

6 Conclusions

In this paper, we present EPSILOD, an improved parallel programming skeleton for
iterative stencil computations on distributed multi-GPUs. It supports any type of
n-dimensional geometric stencils (compact, non-compact, symmetric, or asymmet-
ric) of any order. It is compatible with any C/C++ programming environment. The
stencils are described with simple data structures that determine the neighbors and
their weights. The data partition, synchronization and communications are automati-
cally derived using that information. It splits the computation in the devices to maxi-
mize the overlapping of computation and communication. The skeleton provides a
generic kernel, a tool to generate more specific and efficient kernels from the sten-
cil description, and the possibility to use kernels manually written and optimized
by the programmer. It exploits the Controllers model and the Hitmap library for an
efficient management of the devices and MPI communications. We also provide an
additional version supporting techniques to balance the load when using different
types of GPUs in the same platform, from different vendors or with different compu-
tational power.

We present results for experimental studies testing the strong and weak scalability
obtained for different stencils using a cluster with up to 12 nodes with 32 NVIDIA
V100, or a heterogeneous node with 2 NVIDIA V100 GPUs and 2 AMD Radeon
Pro WX 9100 GPUs. We also compare the scalability obtained with the implemen-
tation of the same stencils using a state-of-the-art programming framework for dis-
tributed heterogeneous devices: Celerity, built on top of MPI and SYCL. The results
show that our proposal can obtain good strong and weak scalability for the 2D sten-
cils tested, outperforming the Celerity implementations. They also show that a good
scalability can be obtained using the integrated load-balancing techniques when
exploiting nodes with different types of GPUs.

Future work includes improving the skeleton to support more heterogeneous envi-
ronments with more types of devices, and including new optimization techniques.
Regarding more complex iterative stencils with several computational stages, such
as stencils that are second-order in time, staggered-grid stencils that read and write
multiple grids over two stages, and algorithms with absorbing boundary conditions,
among others, we plan to extend the functionalities of EPSILOD to support them. In
any case, these improvements will extend the framework following the fundamentals
of the solutions proposed in this work.

9439

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

Acknowledgements This work has been funded by the Consejería de Educación of Junta de Cas-
tilla y León, Ministerio de Economía, Industria y Competitividad of Spain, European Regional
Development Fund (ERDF) program: Project PCAS (TIN2017-88614-R) and Project PROPHET-2
(VA226P20). This work was supported in part by grant TED2021-130367B-I00 funded by MCIN/
AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”. The authors thank-
fully acknowledges the computer resources at CTE-POWER and Minotauro and the technical support
provided by Barcelona Supercomputing Center (RES-IM-2021-2-0005, RES-IM-2021-3-0024, RES-
IM-2022-1-0014). The authors would also like to thank Carmelo de Castro for his help with the figures
of this paper.

Author Contributions All authors wrote the main manuscript text. M.D.C., Y.T., and A.G.E. carry out
the experimentation. M.D.C., Y.T., A.G.E., and D.R.L. generate the figures. All authors reviewed the
manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Consejería de Educación of Junta de Castilla y León, Spain: VA226P20. Ministerio de Economía, Indus-
tria y Competitividad of Spain, European Regional Development Fund (ERDF) program: TIN2017-
88614-R. Red Española de Supercomputación (RES): RES-IM-2021-2-0005, RES-IM-2021-3-0024,
RES-IM-2022-1-0014.

Declarations

Conflict of interest The authors have no competing interests as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval Not applicable.

Availability of data and materials The source code of both modules is freely available on the repository of
the Trasgo group: https:// gitlab. com/ trasgo- group- valla dolid/ contr ollers.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Ao Y, Yang C, Wang X, Xue W, Fu H, Liu F, Gan L, Xu P, Ma W (2017) 26 pflops stencil com-
putations for atmospheric modeling on sunway taihulight. In: 2017 IEEE International parallel and
Distributed Processing symposium (IPDPS), pp 535–544. https:// doi. org/ 10. 1109/ IPDPS. 2017.9

 2. Rossinelli D, Hejazialhosseini B, Hadjidoukas P, Bekas C, Curioni A, Bertsch A, Futral S, Schmidt
SJ, Adams NA, Koumoutsakos P (2013) 11 pflop/s simulations of cloud cavitation collapse. In: Pro-
ceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis. SC ’13. Association for Computing Machinery, New York, NY, USA. https:// doi. org/
10. 1145/ 25032 10. 25045 65

 3. Shimokawabe T, Aoki T, Muroi C, Ishida J, Kawano K, Endo T, Nukada A, Maruyama N, Mat-
suoka S (2010) An 80-fold speedup, 15.0 TFlops full GPU acceleration of non-hydrostatic weather
model ASUCA production code’. In: SC ’10: Proceedings of the 2010 ACM/IEEE International

https://gitlab.com/trasgo-group-valladolid/controllers
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/IPDPS.2017.9
https://doi.org/10.1145/2503210.2504565
https://doi.org/10.1145/2503210.2504565

9440 M. de Castro et al.

1 3

Conference for High Performance Computing, Networking, Storage and Analysis, pp 1–11. https://
doi. org/ 10. 1109/ SC. 2010.9

 4. Shimokawabe T, Aoki T, Takaki T, Endo T, Yamanaka A, Maruyama N, Nukada A, Matsuoka S
(2011) Peta-scale phase-field simulation for dendritic solidification on the tsubame 2.0 supercom-
puter. In: Proceedings of 2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis. SC ’11. Association for Computing Machinery, New York, NY,
USA. https:// doi. org/ 10. 1145/ 20633 84. 20633 88

 5. TOP500.org (2022) TOP 500 Main Page. https:// www. top500. org/ lists/ top500/
 6. NVIDIA (2022) CUDA Toolkit Documentation v11.7.0. http:// docs. nvidia. com/ cuda/, Last visit:

May, 2022
 7. Khronos (2022) Open Computing Language (OpenCL). http:// www. khron os. org/ opencl/, Last visit:

May, 2022
 8. Forum M (2022) Message Passing Interface (MPI). https:// www. mpi- forum. org/, Last visit: May,

2022
 9. de Castro M, Santamaria-Valenzuela I, Miguel-Lopez S, Torres Y, Gonzalez-Escribano A (2021)

Towards an efficient parallel skeleton for generic iterative stencil computations in distributed gpus.
In: SC21—ACM/IEEE Conference on High Performance Networking and Computing. https:// sc21.
super compu ting. org/ proce edings/ tech_ poster/ tech_ poster_ pages/ rpost 167. html

 10. Moreton-Fernandez A, Ortega-Arranz H, Gonzalez-Escribano A (2018) Controllers: an abstraction
to ease the use of hardware accelerators. Int J High Perform Comput Appl (IJHPCA) 32(6):838–
853. https:// doi. org/ 10. 1177/ 10943 42017 702962

 11. Gonzalez-Escribano A, Torres Y, Fresno J, Llanos DR (2014) An extensible system for multilevel
automatic data partition and mapping. IEEE Trans Parallel Distrib Syst 25(5):1145–1154. https://
doi. org/ 10. 1109/ TPDS. 2013. 83

 12. Thoman P, Salzmann P, Cosenza B, Fahringer T (2019) Celerity: high-level C++ for accelerator
clusters. In: Yahyapour R (ed) Euro-Par 2019: parallel processing. Springer, Cham, pp 291–303.
https:// doi. org/ 10. 1007/ 978-3- 030- 29400-7_ 21

 13. Sourouri M, Langguth J, Spiga F, Baden SB, Cai X (2015) CPU+ GPU programming of stencil
computations for resource-efficient use of GPU clusters. In: 2015 IEEE 18th International Confer-
ence on Computational Science and Engineering, pp 17–26. https:// doi. org/ 10. 1109/ CSE. 2015. 33

 14. Feichtinger C, Habich J, KöStler H, Hager G, RüDe U, Wellein G (2011) A flexible patch-based
lattice Boltzmann parallelization approach for heterogeneous GPU–CPU clusters. Parallel Comput
37(9):536–549. https:// doi. org/ 10. 1016/j. parco. 2011. 03. 005

 15. Shimokawabe T, Aoki T, Ishida J, Kawano K, Muroi C (2011) 145 TFlops performance on 3990
GPUs of TSUBAME 2.0 supercomputer for an operational weather prediction. In: Proceedings of
the International Conference on Computational Science, ICCS 2011, Nanyang Technological Uni-
versity, Singapore, 1-3 June, 2011, pp 1535–1544. https:// doi. org/ 10. 1016/j. procs. 2011. 04. 166

 16. Shimokawabe T, Aoki T, Muroi C, Ishida J, Kawano K, Endo T, Nukada A, Maruyama N, Mat-
suoka S (2010) An 80-fold speedup, 15.0 TFlops full GPU acceleration of non-hydrostatic weather
model ASUCA production code. In: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis. SC ’10, pp 1–11. IEEE Com-
puter Society, Washington, DC, USA. https:// doi. org/ 10. 1109/ SC. 2010.9

 17. Shimokawabe T, Aoki T, Takaki T, Endo T, Yamanaka A, Maruyama N, Nukada A, Matsuoka S
(2011) Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 super-
computer. In: Proceedings of 2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis. SC ’11, pp 3–1311. ACM, New York, NY, USA. https:// doi. org/ 10.
1145/ 20633 84. 20633 88

 18. Schäfer A, Fey D (2008) libgeodecomp: a grid-enabled library for geometric decomposition codes.
In: Lastovetsky A, Kechadi T, Dongarra J (eds) Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer, Berlin, pp 285–294. https:// doi. org/ 10. 1007/ 978-3- 540- 87475-
1_ 39

 19. Stark DT, Barrett RF, Grant RE, Olivier SL, Pedretti KT, Vaughan CT (2014) Early experiences co-
scheduling work and communication tasks for hybrid MPI+ X applications. In: 2014 Workshop on
Exascale MPI at Supercomputing Conference, pp 9–19. https:// doi. org/ 10. 1109/ ExaMPI. 2014.6

 20. Chakroun I, Vander Aa T, De Fraine B, Haber T, Wuyts R, Demeuter W (2015) Exashark: A scal-
able hybrid array kit for exascale simulation. In: Proceedings of the Symposium on High Perfor-
mance Computing. HPC ’15, pp 41–48. Society for Computer Simulation International, San Diego,
CA, USA. http:// dl. acm. org/ citat ion. cfm? id= 28725 99. 28726 05

https://doi.org/10.1109/SC.2010.9
https://doi.org/10.1109/SC.2010.9
https://doi.org/10.1145/2063384.2063388
https://www.top500.org/lists/top500/
http://docs.nvidia.com/cuda/
http://www.khronos.org/opencl/
https://www.mpi-forum.org/
https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost167.html
https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost167.html
https://doi.org/10.1177/1094342017702962
https://doi.org/10.1109/TPDS.2013.83
https://doi.org/10.1109/TPDS.2013.83
https://doi.org/10.1007/978-3-030-29400-7_21
https://doi.org/10.1109/CSE.2015.33
https://doi.org/10.1016/j.parco.2011.03.005
https://doi.org/10.1016/j.procs.2011.04.166
https://doi.org/10.1109/SC.2010.9
https://doi.org/10.1145/2063384.2063388
https://doi.org/10.1145/2063384.2063388
https://doi.org/10.1007/978-3-540-87475-1_39
https://doi.org/10.1007/978-3-540-87475-1_39
https://doi.org/10.1109/ExaMPI.2014.6
http://dl.acm.org/citation.cfm?id=2872599.2872605

9441

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

 21. Baskaran M, Pradelle B, Meister B, Konstantinidis A, Lethin R (2016) Automatic code generation
and data management for an asynchronous task-based runtime. In: 2016 5th Workshop on Extreme-
Scale Programming Tools (ESPT), pp 34–41. https:// doi. org/ 10. 1109/ ESPT. 2016. 009

 22. Bachan J, Bonachea D, Hargrove PH, Hofmeyr S, Jacquelin M, Kamil A, van Straalen B, Baden SB
(2017) The UPC++ PGAS library for exascale computing. In: Proceedings of the Second Annual
PGAS Applications Workshop. PAW17, pp 7–174. ACM, New York, NY, USA. https:// doi. org/ 10.
1145/ 31447 79. 31691 08

 23. Tanaka H, Ishihara Y, Sakamoto R, Nakamura T, Kimura Y, Nitadori K, Tsubouchi M, Makino
J (2018) Automatic generation of high-order finite-difference code with temporal blocking for
extreme-scale many-core systems. In: 2018 IEEE/ACM 4th International Workshop on Extreme
Scale Programming Models and Middleware (ESPM2), pp. 29–36. https:// doi. org/ 10. 1109/ ESPM2.
2018. 00008

 24. Kronawitter S, Lengauer C (2018) Polyhedral search space exploration in the exastencils code gen-
erator. ACM Trans Archit Code Optim 15(4):40–14025. https:// doi. org/ 10. 1145/ 32746 53

 25. Luporini F, Louboutin M, Lange M, Kukreja N, Witte P, Hückelheim J, Yount C, Kelly PHJ, Her-
rmann FJ, Gorman GJ (2020) Architecture and performance of devito, a system for automated sten-
cil computation. ACM Trans Math Softw. https:// doi. org/ 10. 1145/ 33749 16

 26. Hagedorn B, Stoltzfus L, Steuwer M, Gorlatch S, Dubach C (2018) High performance stencil code
generation with lift. In: Proceedings of the 2018 International Symposium on Code Generation and
Optimization. CGO 2018, pp 100–112. ACM, New York, NY, USA. https:// doi. org/ 10. 1145/ 31688
24

 27. Pereira AD, Castro M, Dantas MAR, Rocha RCO, Góes LFW (2017) Extending OpenACC for effi-
cient stencil code generation and execution by skeleton frameworks. In: 2017 International Con-
ference on High Performance Computing Simulation (HPCS), pp 719–726. https:// doi. org/ 10. 1109/
HPCS. 2017. 110

 28. Schäfer A, Fey D (2011) High performance stencil code algorithms for GPGPUs. Procedia Comput
Sci 4:2027–2036. https:// doi. org/ 10. 1016/j. procs. 2011. 04. 221. (Proceedings of the International
Conference on Computational Science, ICCS 2011)

 29. Anjum O, Simon GdG, Hidayetoglu M, Hwu W-M (2019) An efficient GPU implementation tech-
nique for higher-order 3d stencils. In: 2019 IEEE 21st International Conference on High Perfor-
mance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp 552–561.
https:// doi. org/ 10. 1109/ HPCC/ Smart City/ DSS. 2019. 00086

 30. Matsumura K, Zohouri HR, Wahib M, Endo T, Matsuoka S (2020) AN5D: automated stencil frame-
work for high-degree temporal blocking on GPUs. In: Proceedings of the 18th International Sym-
posium on Code Generation and Optimization, pp 199–211. Association for Computing Machinery,
New York, NY, USA. https:// doi. org/ 10. 1145/ 33688 26. 33779 04

 31. Rawat PS, Vaidya M, Sukumaran-Rajam A, Rountev A, Pouchet L-N, Sadayappan P (2019) On
optimizing complex stencils on GPUs. In: 2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), pp 641–652. https:// doi. org/ 10. 1109/ IPDPS. 2019. 00073

 32. Oh C, Zheng Z, Shen X, Zhai J, Yi Y (2020) Gopipe: A granularity-oblivious programming frame-
work for pipelined stencil executions on GPU. In: Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques. PACT ’20, pp 43–54. Association for Com-
puting Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 34104 63. 34146 56

 33. Pereira AD, Ramos L, Góes LFW (2015) Pskel: a stencil programming framework for CPU–GPU
systems. Concurr Comput Pract Exper 27(17):4938–4953. https:// doi. org/ 10. 1002/ cpe. 3479

 34. Viñas M, Fraguela BB, Andrade D, Doallo R (2017) Facilitating the development of stencil appli-
cations using the heterogeneous programming library. Concurr Comput Pract Exp 29(12):4152.
https:// doi. org/ 10. 1002/ cpe. 4152

 35. Steuwer M, Haidl M, Breuer S, Gorlatch S (2014) High-level programming of stencil computations
on multi-GPU systems using the SkelCL library. Parallel Process Lett 24(03):1441005. https:// doi.
org/ 10. 1142/ S0129 62641 44100 59

 36. Maruyama N, Sato K, Nomura T, Matsuoka S (2011) Physis: an implicitly parallel programming
model for stencil computations on large-scale GPU-accelerated supercomputers. In: SC ’11: Pro-
ceedings of 2011 International Conference for High Performance Computing, Networking, Storage
and Analysis, pp 1–12. https:// doi. org/ 10. 1145/ 20633 84. 20633 98

https://doi.org/10.1109/ESPT.2016.009
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1109/ESPM2.2018.00008
https://doi.org/10.1109/ESPM2.2018.00008
https://doi.org/10.1145/3274653
https://doi.org/10.1145/3374916
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3168824
https://doi.org/10.1109/HPCS.2017.110
https://doi.org/10.1109/HPCS.2017.110
https://doi.org/10.1016/j.procs.2011.04.221
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00086
https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1109/IPDPS.2019.00073
https://doi.org/10.1145/3410463.3414656
https://doi.org/10.1002/cpe.3479
https://doi.org/10.1002/cpe.4152
https://doi.org/10.1142/S0129626414410059
https://doi.org/10.1142/S0129626414410059
https://doi.org/10.1145/2063384.2063398

9442 M. de Castro et al.

1 3

 37. Lutz T, Fensch C, Cole M (2013) Partans: an autotuning framework for stencil computation on
multi-GPU systems. ACM Trans Archit Code Optim 9(4):59–15924. https:// doi. org/ 10. 1145/ 24006
82. 24007 18

 38. Shimokawabe T, Aoki T, Onodera N (2014) A high-productivity framework for multi-gpu computa-
tion of mesh-based applications. In: Grösslinger A, Köstler H (eds), Proceedings of the 1st Interna-
tional Workshop on High-Performance Stencil Computations, Vienna, Austria, pp 23–30. https://
hgpu. org/?p= 11286

 39. Breuer S, Steuwer M, Gorlatch S (2014) Extending the SkelCL skeleton library for stencil compu-
tations on multi-GPU systems. In: HiStencils 2014, First International Workshop on High-Perfor-
mance Stencil Computations, pp 1–13. https:// hgpu. org/?p= 11368

 40. Aldinucci M, Danelutto M, Drocco M, Kilpatrick P, Misale C, Peretti Pezzi G, Torquati M (2018) A
parallel pattern for iterative stencil + reduce. J Supercomput 74(11):5690–5705. https:// doi. org/ 10.
1007/ s11227- 016- 1871-z

 41. Kim H, Hadidi R, Nai L, Kim H, Jayasena N, Eckert Y, Kayiran O, Loh G (2018) Coda: enabling
co-location of computation and data for multiple GPU systems. ACM Trans Archit Code Optim
15(3):32–13223. https:// doi. org/ 10. 1145/ 32325 21

 42. Herrmann N, de Melo Menezes BA, Kuchen H (2022) Stencil calculations with algorithmic skel-
etons for heterogeneous computing environments. Int J Parallel Program 50(5):433–453. https:// doi.
org/ 10. 1007/ s10766- 022- 00735-4

 43. Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R (2001) Parallel Programming in
OpenMP. Morgan Kaufmann Publishers Inc., San Francisco

 44. Tian S, Doerfert J, Chapman B (2020) Extending the SkelCL skeleton library for stencil computa-
tions on multi-GPU systems. In: Fourth LLVM Performance Workshop at CGO. https:// llvm. org/
devmtg/ 2020- 02- 23/

 45. Beckingsale DA, Burmark J, Hornung R, Jones H, Killian W, Kunen AJ, Pearce O, Robinson P,
Ryujin BS, Scogland TR (2019) Raja: Portable performance for large-scale scientific applications.
In: 2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC
(P3HPC), pp 71–81. https:// doi. org/ 10. 1109/ P3HPC 49587. 2019. 00012

 46. Beckingsale DA, Burmark J, Hornung R, Jones H, Killian W, Kunen AJ, Pearce O, Robinson P,
Ryujin BS, Scogland TR (2019) Raja: Portable performance for large-scale scientific applications.
In: 2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC
(P3HPC). IEEE, New York, NY, USA. https:// doi. org/ 10. 1109/ P3HPC 49587. 2019. IEEE/ACM

 47. Edwards HC, Trott CR, Sunderland D (2014) Kokkos: enabling manycore performance portability
through polymorphic memory access patterns. J Parallel Distrib Comput 74(12):3202–3216. https://
doi. org/ 10. 1016/j. jpdc. 2014. 07. 003. (Domain-Specific Languages and High-Level Frameworks
for High-Performance Computing)

 48. Trott CR, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V, Ellingwood N, Gayatri R, Harvey E, Hol-
lman DS, Ibanez D, Liber N, Madsen J, Miles J, Poliakoff D, Powell A, Rajamanickam S, Simberg
M, Sunderland D, Turcksin B, Wilke J (2022) Kokkos 3: Programming model extensions for the
exascale era. IEEE Trans Parallel Distrib Syst 33(4):805–817. https:// doi. org/ 10. 1109/ TPDS. 2021.
30972 83

 49. Ciesko J (2020) Distributed memory programming and multi-GPU Support with KOKKOS. Pre-
sented at SC’20. https:// doi. org/ 10. 2172/ 18299 51. https:// www. osti. gov/ biblio/ 18299 51

 50. Khronos OpenCL working group (2020) SYCL 1.2.1 specification standard. (accessed February 1,
2022). https:// www. khron os. org/ regis try/ SYCL/ specs/ sycl-1. 2.1. pdf

 51. Gorlatch S, Cole M (2011) In: Padua D (ed), Parallel Skeletons, pp 1417–1422. Springer, Boston.
https:// doi. org/ 10. 1007/ 978-0- 387- 09766-4_ 24

 52. Rodriguez-Canal G, Torres Y, Andujar FJ, Gonzalez-Escribano A (2021) Efficient heterogeneous
programming with FPGAs using the Controller model. J Supercomput 77:1–16. https:// doi. org/ 10.
1007/ s11227- 021- 03792-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/2400682.2400718
https://doi.org/10.1145/2400682.2400718
https://hgpu.org/?p=11286
https://hgpu.org/?p=11286
https://hgpu.org/?p=11368
https://doi.org/10.1007/s11227-016-1871-z
https://doi.org/10.1007/s11227-016-1871-z
https://doi.org/10.1145/3232521
https://doi.org/10.1007/s10766-022-00735-4
https://doi.org/10.1007/s10766-022-00735-4
https://llvm.org/devmtg/2020-02-23/
https://llvm.org/devmtg/2020-02-23/
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.2172/1829951
https://www.osti.gov/biblio/1829951
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://doi.org/10.1007/978-0-387-09766-4_24
https://doi.org/10.1007/s11227-021-03792-7
https://doi.org/10.1007/s11227-021-03792-7

	EPSILOD: efficient parallel skeleton for generic iterative stencil computations in distributed GPUs
	Abstract
	1 Introduction
	2 Related work
	3 EPSILOD building blocks: Hitmap and Controllers
	3.1 Hitmap
	3.2 Controllers programming model

	4 Parallel stencil skeleton
	4.1 Interface and usage
	4.2 Implementation details

	5 Experimental studies
	5.1 Experimental study 1: strong and weak scaling in CTE-POWER
	5.2 Experimental study 2: comparison with celerity implementations
	5.3 Experimental study 3: using different GPU types
	5.4 Summary of results

	6 Conclusions
	Acknowledgements
	References

