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Abstract
Iterative stencil computations are widely used in numerical simulations. They 
present a high degree of parallelism, high locality and mostly-coalesced memory 
access patterns. Therefore, GPUs are good candidates to speed up their computa-
tion. However, the development of stencil programs that can work with huge grids in 
distributed systems with multiple GPUs is not straightforward, since it requires solv-
ing problems related to the partition of the grid across nodes and devices, and the 
synchronization and data movement across remote GPUs. In this work, we present 
EPSILOD, a high-productivity parallel programming skeleton for iterative stencil 
computations on distributed multi-GPUs, of the same or different vendors that sup-
ports any type of n-dimensional geometric stencils of any order. It uses an abstract 
specification of the stencil pattern (neighbors and weights) to internally derive the 
data partition, synchronizations and communications. Computation is split to better 
overlap with communications. This paper describes the underlying architecture of 
EPSILOD, its main components, and presents an experimental evaluation to show 
the benefits of our approach, including a comparison with another state-of-the-art 
solution. The experimental results show that EPSILOD is faster and shows good 
strong and weak scalability for platforms with both homogeneous and heterogene-
ous types of GPU.
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1 Introduction

Iterative stencil computations, or iterative stencil loops (ISLs), are widely used in 
high-performance computing (HPC). They are used, for example, to compute the 
numerical solutions of partial differential equations in discretized spaces on a large-
scale, in order to characterize and predict physical quantities such as heat, sound, 
velocity, pressure, density, elasticity, electromagnetism, and electrodynamics [1–4]. 
In stencil computations, grid cells from a multi-dimensional input are iteratively 
updated based on the previous values of neighbor cells. The neighborhood is deter-
mined using a specific pattern or stencil shape. The highest distance to a neighbor is 
called the stencil radius. The calculation involves accessing neighbor cells accord-
ing to the stencil shape, multiplying each of them by a specific coefficient, adding all 
these results, and optionally dividing the result by a given factor. This computation 
is repeated independently for each cell.

Iterative stencil computations present a high degree of parallelism, high locality 
and mostly coalesced memory-access patterns. Therefore, many-core computational 
models and platforms, such as modern graphics processing units (GPUs), are good 
candidates to speed up this type of computations. GPUs are currently the most pop-
ular accelerator in supercomputers and are employed in most of the top 10 machines 
in the TOP500 list [5].

Programming stencil computations in GPUs for large grids is not straightforward. 
The big memory footprint required in many real case situations can easily become 
too large to be allocated on the memory space of a single GPU. In these cases, the 
use of multi-GPUs in one or more distributed nodes is a useful alternative. However, 
this requires mixing programming models for both GPUs and distributed memory 
across different nodes. For example, a programmer may combine CUDA [6] or 
OpenCL [7] to manage the devices, with a distributed memory tool, such as MPI 
[8], to manage inter-node communications. This implies a complex and error-prone 
programming, manually dealing with accelerator optimizations, data partitions, dif-
ferent memory hierarchies, and manually specifying sequences for data communi-
cation and synchronization, both across accelerators and host, and across distrib-
uted nodes. Nevertheless, the operations of a stencil computation across iterations 
are mainly repetitive, and it is possible to build higher-level abstractions to program 
them.

In this work, we present EPSILOD, a high-productivity parallel programming 
skeleton for iterative stencil computations on distributed multi-GPUs. The under-
lying idea was presented as a poster in SC’21 [9]. EPSILOD supports any type of 
n-dimensional geometric stencils (compact, non-compact, symmetric, or asymmet-
ric) of any order. It is implemented as a C99 library function to maximize compat-
ibility with any C/C++ environment.

It uses an abstract specification of the stencil pattern (neighbors and weights) to 
internally derive the data partition, synchronizations and communications, splitting 
the computation to better overlap with communications. To enable portability and fast 



9411

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

synchronization and device management, it is programmed with the Controllers model 
[10] and the Hitmap library [11]. These tools provide a heterogeneous portability layer 
that allows the transparent use of different types of devices.

The contributions of this work can be summarized as follows:

• We introduce EPSILOD’s architecture and describe the programming tools used to 
implement it. We also show how to use EPSILOD to characterize stencils and auto-
matically generate efficient kernels.

• We present a new skeleton version that supports clusters with devices of mixed 
types and vendors, such as NVIDIA and AMD GPUs. It includes the possibility of 
using load balancing techniques to transparently distribute the computation across 
devices with different computation power. The skeleton includes a generic GPU 
kernel that can be used for any stencil. EPSILOD also includes a tool to generate 
more optimized kernels for each stencil pattern, or even the possibility of providing 
a user-optimized kernel.

• We include extensive experimentation to show the benefits of our approach, com-
paring it with an state-of-the-art solution, and taking into account different architec-
tures. This evaluation includes:

– An experimental study in a BSC (Barcelona Supercomputing Center) cluster of 
up to 48 NVIDIA V100 GPUs, distributed among 12 nodes, which shows that 
our proposal can achieve both very good strong and weak scalability for several 
types of 2D stencils.

– An experimental study in a cluster of up to 32 NVIDIA V100 GPUs, distrib-
uted among eight nodes, which shows that our proposal outperforms implemen-
tations of the same stencils using Celerity [12], a state-of-the-art programming 
tool for distributed GPUs built on top of MPI and SYCL.

– An experimental study in a heterogeneous node comprising different kinds of 
GPUs (NVIDIA and AMD) that shows the impact of using the load-balancing 
technique integrated in the skeleton to achieve good strong and weak scalability 
in this kind of heterogeneous platforms.

The experimental results show that EPSILOD is faster than Celerity and shows good 
strong and weak scalability for both homogeneous and heterogeneous platforms. The 
EPSILOD source code and examples can be freely downloaded from https:// gitlab. 
com/ trasgo- group- valla dolid/ contr oller s/-/ tree/ epsil od_ JoS22.

The rest of the work is structured as follows. Section 2 discusses some related work. 
In Sect. 3, we describe the main features of the Hitmap and Controllers libraries used to 
build our solution. Section 4 describes how EPSILOD is built on top of these libraries. 
Section 5 presents an extensive experimental evaluation of the capabilities of EPSI-
LOD. Finally, in Sect. 6, we present our conclusions and discuss future work.

https://gitlab.com/trasgo-group-valladolid/controllers/-/tree/epsilod_JoS22
https://gitlab.com/trasgo-group-valladolid/controllers/-/tree/epsilod_JoS22
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2  Related work

Exploiting GPUs for general-purpose computing has emerged as a high-performance 
computing technique to accelerate stencil-based applications in different domains. 
These works [13–17] are focused on specific physical problems, and they are manu-
ally developed using the native parallel programming model provided by the vendor, 
such as CUDA or OpenCL. When using these techniques in distributed systems, the 
programmer is responsible for manually developing the code for load partitioning, 
mapping, synchronizations and data communications.

In addition, there exist several CPU-based frameworks and libraries, such as 
[18–24], that are focused on a wide range of stencil computations for distributed 
systems, some of them even at an exascale level. The use of these frameworks is 
comparatively simple, due to the abstraction levels introduced. Nevertheless, their 
performance is significantly penalized in heterogeneous clusters, since they only use 
CPUs as computing units, without exploiting any kind of coprocessor devices, such 
as GPUs.

There exist some frameworks that aim to generate stencil code not only for CPUs, 
but also for hardware accelerators. DeVito [25] is a framework capable of generat-
ing highly optimized code given symbolic equations expressed in Python, special-
ized in, but not limited to, stencil codes. It internally uses OpenMP/OpenACC to 
target GPUs and MPI for distributed platforms. YASK [26] is another framework 
that allows the creation of high-performance stencil codes for distributed CPUs and 
GPUs, although it is focused on optimizations for Intel devices and it does not sup-
port other platforms. None of these proposal exploits several vendor-specific pro-
gramming models and tools to target simultaneously different devices in heterogene-
ous environments.

There are works that propose an efficient GPU algorithm for computing stencils 
with arbitrary patterns, such as [26–32]. These works propose the use of stencil 
frameworks capable of automatically transforming stencil patterns that appear in a 
given C source code into optimized CUDA code. However, they do not support dis-
tributed environments. The advanced optimization techniques considered in some of 
these works include exploiting task granularity adjustment at runtime, depending on 
device performance [31], or the use of concurrent kernels, taking into account data 
dependencies in order to better exploit underlying GPU hardware resources [32].

There are other works oriented toward executing large stencil computations 
for distributed systems using GPU coprocessors, some of them based on parallel 
skeletons, such as [33–42]. These works achieve a better performance due to the 
use of this kind of hardware accelerators. In particular, Muesli [42] and SkelCL 
[39] are good examples of skeleton-based solutions that fall in this category. 
However, they do not implement a full overlapping of data communication and 
computation, combining the overlapping opportunities in transfers between host 
and devices with communication and synchronization across nodes. Thus, GPU 
coprocessors can sometimes be idle while waiting to be fed by data. Most of these 
works require the programmer to indicate operations in the correct order. Only 
[34] includes a technique to automatically deduce dependences and determine the 
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execution order of the different tasks, but it still needs the inclusion of a synchro-
nization primitive to properly synchronize the operations related to the exchanges 
of ghost-zones (parts of the grid that are shared across devices).

Finally, we should mention other popular, general-purpose programming 
frameworks for heterogeneous systems that are not specific for stencils, but that 
can be used to develop a distributed application to compute a stencil on a paral-
lel, heterogeneous system. They can also be used to build higher abstractions for 
programming stencil applications on this kind of platforms.

OpenMP [43] is a classical and extensively used programming model for 
multi-core shared-memory systems. Modern compilers have full support for 
the latest versions of OpenMP, which include features to offload the computa-
tion to devices such as GPUs. Although there are plenty of academic proposals 
to extend OpenMP to distributed memory systems, the model does not include a 
native communication system across nodes. Moreover, programming asynchro-
nous operations to manage several devices and overlap computation for GPUs is 
not trivial [44]. Thus, the programmer should rely on an external communication 
model, such as MPI, and devise complex structures and synchronization mecha-
nisms to move data across remote GPUs.

RAJA [45] is a portability layer that enables C++ applications to leverage var-
ious programming models, and thus architectures, with a single-source codebase. 
RAJA targets loop kernel parallelism for C++ applications by relying on standard 
C++11 language features for its external interface, and common programming 
model extensions such as OpenMP and CUDA for its implementation. RAJA is 
designed to integrate with legacy codes simply and to provide a model for the 
development of new codes that are portable from inception. However, Raja does 
not include mechanisms to do inter-node communication. Thus, as in OpenMP, 
applications targeting distributed memory systems usually rely on message-pass-
ing models, such as MPI, manually dealing with the complexities of the synchro-
nization of the devices and the data movements (see e.g., [46]).

The Kokkos C++ library [47] enables applications and domain libraries to 
achieve performance portability on diverse manycore architectures by unifying 
abstractions for both fine-grain data parallelism and memory access patterns. Its 
most recent extension [48] includes support for hierarchical parallelism, contain-
ers, task graphs and arbitrary-sized atomic operations. Kokkos Remote Spaces 
[49] adds distributed shared memory (DSM) support to Kokkos. It enables a 
global view of data for a convenient multi-GPU, multi-node and multi-device 
programming. It is built on top of libraries implementing a PGAS model or even 
MPI one-sided communications. However, it provides a fine grain communica-
tion model that does not scale well even with several GPUs in the same node, 
as reported by the authors [49]. More complex data descriptions could be used 
to manually express aggregate communications, but dealing with the same com-
plexity as expressing communications in a message-passing style. Finally, the 
Kokkos mechanism to perform efficient data transfers across different memory 
spaces (deep-copy) implies synchronization fences, preventing the program-
mer from exploiting the full potential of overlapping device computation with 
communication.
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SYCL [50] is a standard model for cross-platform programming with several 
implementations and compilers, such as DPC++ in Intel OneAPI (DPC++) or 
hipSYCL. Kernels and host tasks are organized by a task graph that is implic-
itly constructed by the SYCL runtime. The control flow and the data transfers 
needed are derived from programmer declarations of the input/output role of the 
buffers used by computations. Both computations and device-host communica-
tions can be implicit and asynchronous. Celerity [12] extends the ease of use of 
the SYCL domain-specific embedded language to distributed clusters. While the 
execution of parallel kernels is still handled by the SYCL runtime on each indi-
vidual worker node, the Celerity runtime acts as a wrapper around each compute 
process, handling the data partition and the inter-node communication and sched-
uling. The programmer declares a range mapper that indicates to the runtime sys-
tem the data elements to be accessed by each range of elements. This allows the 
inter-process communications for the data partition to be derived. Indeed, Celer-
ity includes a neighborhood range mapper that is specifically indicated to express 
the access pattern of symmetric stencil computations. The communications 
derived for asymmetric stencils are non-exact, including non-needed communica-
tions or elements, but they can still be programmed. Celerity is a good candidate 
to implement stencil computations for distributed multi-GPUs.

In order to build a higher abstraction for stencil computations on distributed 
multi-GPU environments, we decided to rely on two parallel programming tools 
developed by our research group. Controllers [10] is a heterogeneous parallel pro-
gramming model implemented as a C library. It transparently manages the coor-
dination, communication and kernel launching on different heterogeneous com-
puting devices. It exploits native or vendor-specific programming models and 
compilers, such as OpenMP, CUDA, or OpenCL, enabling the potential perfor-
mance obtained by using them. It supports asynchronous operations using both 
data buffers and selected subparts of them. Hitmap [11] is a distributed program-
ming library, built on top of MPI, that simplifies the partition and communication 
of data structures in distributed memory environments. It allows the construction 
of customized and reusable communication patterns in terms of data-access pat-
terns and partition policies chosen at runtime. They can express the exact com-
munications needed for both symmetric and asymmetric stencil computations of 
any order. Moreover, a precompiled program or library using Hitmap calculates, 
at runtime, the communication pattern for the given data-access pattern, adapting 
itself to the chosen stencil. Controllers also uses Hitmap to abstract the manage-
ment of the data structures across accelerators and host. Hitmap is included in the 
Controller release. Thus, they are perfectly coupled and seem appropriate to build 
higher-level abstractions for stencil computations on distributed GPUs. The fol-
lowing section provides additional information on these tools.

To facilitate comparison, Table 1 summarizes the features of some of the sten-
cil-computations frameworks discussed in this section. As can be seen, among 
the main frameworks analyzed, only Celerity presents part of the heterogeneous 
portability features of our proposal.
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3  EPSILOD building blocks: Hitmap and Controllers

Gorlatch and Cole defines a parallel skeleton as “a programming construct (or a 
function in a library), which abstracts a pattern of parallel computation and inter-
action. To use a skeleton, the programmer must provide the code and type defini-
tions for various application-specific operations, usually expressed sequentially. 
The skeleton implementation takes responsibility for composing these operations 
with control and interaction code in order to effect the specified computation, in 
parallel, as efficiently as possible” [51]. Our proposal, EPSILOD, is an efficient 
framework to allow the execution of large stencil computations on distributed, 
heterogeneous systems, thanks to the use of a skeleton specially designed to 
carry out stencil computations. EPSILOD relies on an internal mechanism of the 
Controllers model and the Hitmap library to start asynchronous communications 
when the runtime detects that a part of a data structure has been fully updated. 
Afterward, it automatically launches the next tasks and synchronizes execution 
and communication. Thus, the opportunities for overlapping computation and 
data movement are maximized.

This section presents an overview of the programming tools used to implement 
our stencil skeleton. We discuss the core concepts of the Hitmap library and the 
Controllers programming model, focusing on those exploited by our proposal. They 
are both implemented as libraries of functions written in C99. They are built with 
an object-oriented paradigm, comprising multiple structures, each one with its cor-
responding API of C functions, that work like classes. They are compatible with any 
C99/C++ compiler, and they are easily interoperable with other libraries and paral-
lel programming models.

Table 1  Main features of the 
frameworks described in the 
related work

Multi-GPU Support for several GPU devices in the same node. Mul-
tinode: Support for distributed computing across GPU devices in 
several distributed nodes. Heterogeneous portability: Built on top of 
a heterogeneous programming layer that targets different program-
ming models for supporting GPUs of different type/vendor on each 
compilation or run. Mixed GPUs: Support for mixing GPU devices 
of different types/vendors on the same execution with load balancing
∗ Examples of parallel solutions used to program stencils on multi-
GPU systems
‡ Examples of domain-specific frameworks used for stencil applica-
tions in multi-GPU systems

Framework Multi-GPU Multinode Heterogene-
ous port-
ability

Mixed GPUs

SkelCL ∗ X
Muesli ∗ X X
DeVito ‡ X X
YASK ‡ X X
Celerity X X X
EPSILOD X X X X
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The source code of both modules is freely available on the repository of the 
Trasgo group.1

3.1  Hitmap

The Hitmap library [11] provides a portable interface to manage distributed arrays 
and other data structures. It is built on top of MPI, providing higher-level abstrac-
tions. It implements functions to efficiently create, handle, map and communicate 
hierarchical tile arrays. The library supports three main sets of functionalities:

• Tiling functions Hitmap provides the HitTile structure, a kind of fat-pointer. It 
stores, alongside the pointer to the memory space, metadata related to the size, 
dimensions and partitions of an array. The index domains of the tiles are declared 
and queried using the interface associated to the HitShape structure. Accessing 
these abstract arrays is performed using a generic function hit, with a variable 
number of index parameters.

• Mapping functions The HitTopology and HitLayout structures provide abstrac-
tions for modular functionalities for the partition and mapping of data structures 
across virtual processes. The library includes from common n-dimensional parti-
tion policies to heterogeneous partitions based on different weights for each pro-
cess that can be used for load balancing in heterogeneous environments.

• Communication functions They allow the creation of reusable communication 
patterns, HitPattern, based on a given HitLayout distribution. They provide 
an abstraction of a message passing programming model to communicate tiles 
between multiple virtual processes. Each new pattern is built in terms of the 
runtime information found in a layout object. Thus, they transparently adapt the 
communication structure to any change in the distribution policy or number of 
processes.

More architecture details and use cases of the Hitmap library can be obtained in 
[11].

3.2  Controllers programming model

Controllers [10] is a heterogeneous programming model implemented as a library 
that enables performance portability across CPU-cores (using OpenMP), GPUs 
(using CUDA or OpenCL), Intel FPGAs (using Intel FPGA SDK for OpenCL), or 
Xilinx FPGAs (using Xilinx Vitis). The Controllers model integrates the use of dif-
ferent vendor specific technologies through different backends coordinated by the 
same runtime layer, effectively handling the architectural differences between dif-
ferent computing devices [52]. The programmer can write a single generic portable 
kernel code that can target different kinds of devices. The programmer can also pro-
vide different versions of the same kernel, optimized for different devices, including 

1 https:// gitlab. com/ trasgo- group- valla dolid/ contr ollers.

https://gitlab.com/trasgo-group-valladolid/controllers


9417

1 3

EPSILOD: efficient parallel skeleton for generic iterative…

code and features of the vendor or low-level programming model if needed. These 
kernels are then compiled with the desired vendor or native compiler. All object files 
generated by these compilers are then linked together. In this way, programs devel-
oped using the Controllers model include executable codes for all the backends and 
their runtime support, allowing the program to select at runtime the most efficient 
kernel for the type of device chosen, either from different vendors or from different 
families of the same vendor. Controllers also allows the declaration of host-tasks, a 
special type of kernel that are executed within a host-space backend. The host-tasks 
allow generic host operations, such as calls to I/O operations.

For programming the host coordination code, the Controllers framework pro-
poses an abstract class, called Controller. A Controller object is associated with a 
particular instance of a device during its construction. Each object transparently 
manages the coordination and communication of the host code with that device. 
For the transparent and portable management of data structures, Controllers uses 
the HitTile abstraction of the Hitmap library (described in Sect.  3.1) to encapsu-
late variables and data structures, such as multi-dimensional arrays. The HitTiles 
can be allocated only in the host, only in the device (internal variables), or in both 
host and device sides (tied variables). The hit function is used in host and kernels 
as an abstraction to transparently access data with both functional and performance 
portability. It provides a portable view, with consistent row-major order, across any 
device and the host.

When programming a kernel or host-task, the programmer should also provide 
information that includes the role of each parameter (input/output). By analyzing 
the dependencies of launched kernels and host-tasks, the Controllers model auto-
matically handles the execution order, asynchronous data transfers between host and 
devices, and ensures that computations are performed on up-to-date data, regardless 
of what entity executes them (host or devices). Controllers extends the HitTile struc-
ture with more meta-data related to the location and state of the data in the device, 
that is internally used to automatically keep the memory consistency across the dif-
ferent memory hierarchies.

4  Parallel stencil skeleton

This section discusses the proposed parallel stencil skeleton from the programmer’s 
point of view, through the description of the programming interface. It presents with 
examples: (a) How to provide a stencil description; (b) a description of a generic 
kernel provided with the skeleton that can use any stencil description; (c) a kernel 
generation tool to build more efficient kernels from stencil descriptions; and (d) how 
to call the parallel stencil skeleton with both the generic kernel and an optimized 
kernel.

The section then provides a description of the skeleton implementation, includ-
ing how it distributes the load, coordinates data transfers and inter-node communi-
cations and achieves an efficient overlap of computation and communication using 
device computation partition and asynchronous techniques.
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4.1  Interface and usage

The proposed stencil skeleton is presented as a reentrant, higher-order function 
written in C99, compatible with any modern C/C++ compiler. The function 
solves a fixed number of iterations of a geometric stencil computation, applying 
the stencil operator to each element of an n-dimensional array. It is implemented 
using the Hitmap library and the Controllers programming model. As we will see, 
from a programmer’s perspective, the interface is simple to understand and its use 
is straightforward.

Stencil Description.
The stencil operator is expressed by a Stencil Description that comprises the 

following data: (a) A Shape, expressed as a HitShape object, indicating the dis-
tance to the farthest neighbor (or radius) on each dimension and direction; (b) 
a Pattern, an array of weights/coefficients for each element in the shape, with 
zeros in the elements that should be ignored, and positive/negative weights for 
the actual neighbors; and (c) a Division Factor for the weighted sum. Listing 1 
shows an example of a stencil description for a classic 2D 4-point star stencil, to 
solve Poisson’s equations of heat transfer using a Jacobi method.

The skeleton provides a generic kernel that works for any Stencil Description. 
The user can also provide a more optimized kernel code. Moreover, a tool to gen-
erate specific kernels from Stencil Descriptions is also provided.

The Generic Kernel.
The generic kernel included in the skeleton works for any kind of stencil, once 

provided its Description (shape, pattern, and division factor). It works by iterating 
over the stencil pattern elements. For each element, the corresponding neighbor 
is accessed, multiplied by the weight, and summed into the result. The internal 
implementation of the generic kernel for 2D stencils is shown in Listing 2. The 
arguments provided to the kernel, related to the pattern size (begin_x, begin_y, 
end_x, and end_y), are automatically provided by the skeleton from the Stencil 
Description’s shape.
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Kernel Generation Tool (KGT).
The use of a single generic kernel for any type of stencil computation is ineffi-

cient in terms of performance. Using nested loops and accessing all the elements 
of the stencil pattern, regardless of their weights, derives in a performance pen-
alty for the generic kernel. This performance penalty is especially noticeable for 
stencils with patterns where most elements have a weight of zero.

We provide a tool, called Kernel Generation Tool (KGT), that is able to gener-
ate a tailored, more efficient kernel from the very same Stencil Description the 
generic kernel uses. The generated kernel avoids accesses to elements that do not 
participate in the computation, as well as the usage of loops. We refer to this kind 
of kernels as specific kernels. The KGT is currently implemented as a Bash+Awk 
script. It receives a C code file as the argument with the Stencil Descriptions in 
the same format discussed previously (see Listing 1). The script traverses the 
stencil pattern and generates a code without loops that directly accesses neigh-
bors with positive/negative weight values, avoiding elements with zero weight. 
Thus, these kernels require less memory bandwidth and achieve a higher through-
put than the generic kernel. The kernels are generated with the necessary Con-
trollers wrapper syntax. Listing 3 shows the stencil kernel generated by the tool, 
from the stencil description provided in Listing 1. The user can try to optimize 
the generated kernels further to achieve even higher throughput.

In Sect. 5.1, we provide a performance comparison between the generic kernel 
and a tailored kernel generated by the KGT tool for different test scenarios.
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Skeleton function prototype.
Listing 4 presents an excerpt of the header file of the skeleton function, show-

ing the function prototype and the type definitions for the initialization and results 
output functions provided by the user. The skeleton function has the following 
parameters: 

1. The sizes of the space array on each dimension, provided as an array of integers.
2. The Stencil Description: 

(a) A HitShape object describing the stencil shape.
(b) The stencil pattern, an array of weights for each stencil element in the 

shape.
(c) The division factor for the weighted sum. This argument is used only with 

the generic kernel, and it is ignored when using specific or custom kernels.

3. The number of iterations to apply the operator.
4. The name of the stencil kernel to use, or a NULL pointer to use the generic kernel.
5. A pointer to a function to initialize the values of the space array. This function 

will receive a HitTile with the part of the array assigned to the local process, the 
number of dimensions of the array, and information about the boundary condi-
tions. Line 2 of the header file excerpt shows the type definition for this function.

6. A pointer to a function to output the results of the computation. This function has 
the same parameters as an initialization function. Line 3 of the header file excerpt 
shows the type definition for this function.

Listing 5 shows an example program calling the stencil skeleton function using 
the generic kernel provided with the skeleton. The example uses the 2D 4-point 
star stencil for Poisson’s equation described in Listing 1.
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Registering new kernels.
Listing 6 shows an example of using the skeleton function with a kernel written 

manually by the user or generated with the provided tool (KGT). These kernels must 
be registered to be used in the skeleton function. This is done with the macro-func-
tion REGISTER_STENCIL. This macro-function receives the name of the stencil ker-
nel to be registered as the argument. The macro expands into the special kernel proto-
type required by the Controllers model, and into a host wrapper function that launches 
the kernel. The name of the kernel used, passed to the stencil skeleton function as the 
fourth argument, is transparently translated to a pointer to the wrapper function, which 
launches the device kernel with the Controllers framework. All the low-level details are 
hidden from the programmer.
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4.2  Implementation details

This section describes the main ideas to implement the skeleton structure with effi-
cient overlapping of computation, data transfers, and inter-node communications.

Distribution of the global array.
The skeleton program is launched as an MPI application. Internally, the ranks of 

the MPI processes in the same node determine the associations between processes 
and each of the available devices in the node. A Controller object is automatically 
created on each process to manage the associated device.

The skeleton receives the sizes of the global array as input. It uses Hitmap’s 
topology and layout functions, to organize the available MPI processes in a grid 
and divide the index space evenly among them. Partition can be done in con-
tiguous bands by the first dimension of the array or in two or three dimensional 
blocks. See Fig.  1. The partition method is chosen by configuring the skel-
eton function. For heterogeneous clusters, we also introduce a second skeleton 

Fig. 1  Partition of the global array to different processes by contiguous bands (left) or two-dimensional 
blocks (right)
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version using a specific layout function that makes a weighted division of the 
index domain in horizontal bands. The amount of rows mapped to each process 
is proportional to the relative weight of that process. Weights are provided by the 
programmer, according to the estimated or previously measured computational 
power of the different devices used by the MPI processes. Thus, the computa-
tion load can be balanced across different types of devices. See Fig. 2. The skel-
eton creates a HitShape object to represent the part of the global index domain 
mapped to the local process.

Subparts of the local arrays.
The stencil shape received as parameter contains the radiuses of the sten-

cil pattern on each dimension and direction. They are used to create space for 
halos, memory zones to have copies of remote data not owned by the process, but 
needed to compute the local cells.

We distinguish three different non-overlapping parts in each process’ local 
array (see Fig. 3):

Fig. 2  Partition of the global array to different processes by contiguous bands using a previously deter-
mined weighted distribution

Fig. 3  Left: Asymmetric irregular 2D stencil pattern definition and its graphical representation. Middle: 
The different parts and extended shape calculated for the local part of an array. Right: Different instances 
of border sub-parts to be communicated to neighbor processes
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• Halos: Elements of the local arrays not owned by the process, but needed to 
compute the local part. These elements are not assigned to the process by the 
partition function. They are included in the local part during the expansion of the 
shape determined by the stencil radiuses and should be received on every itera-
tion from the neighbor processes. They are the outermost elements of the local 
arrays, and they are not updated on the local process.

• Borders: These are the elements owned by the local process that are duplicated 
as halos in other processes. They are updated locally and they should be sent to 
their corresponding neighbors on every iteration.

• Inner: The innermost elements of the local arrays, skipping halos and borders. 
These elements are updated on every iteration, and they are not communicated to 
any neighbor.

Figure 3 shows a highly asymmetric stencil pattern (on the left), and the correspond-
ing halos and extended shape generated for a local array (in the middle). Hitmap 
provides functionalities to extend the shape of the local part of the array accord-
ing to the information concerning radiuses. The extension automatically takes into 
account that it should not be expanded beyond boundaries in the first or last pro-
cesses of each dimension.

The skeleton proceeds to allocate memory for the expanded local part of the array 
including the halos. Each process allocates memory for two local arrays: One to 
store the data computed in the previous iteration, and another to store the results of 
the current iteration. The skeleton uses one HitTile object as a handler to manage 
each array. A functionality of the Controller object is used to allocate each HitTile. 
This functionality creates two related memory images for a HitTile, one in the host 
and one in the device.

Before the first iteration, the user’s data-initialization function is called to intro-
duce the initial values in the array. The data are copied into the device memory 
image. After computing each iteration, the handlers (HitTiles) of the two arrays are 
swapped to exchange their internal meta-data, including the data pointers in host 
and device. This relocates the new computed data in the array of previous results, 
avoiding array data copies. After all the iterations have been executed, the results are 
copied from the device to the host, and the user’s output function is called on each 
process. The user’s function can use the functionalities provided by Hitmap to easily 
write a distributed array in the file system.

Generation of the communication pattern.
At the same time that the halos and extended shape of the local array are deter-

mined, the same analysis of the stencil pattern is used to automatically calculate 
the inter-node communications needed across iterations. The elements with nonzero 
weights in the pattern indicate the borders which should be effectively sent to neigh-
bor processes and received in the halos. For each dimension of the processes grid, 
it is checked whether communication is needed from/to the previous and next pro-
cesses, also computing the width of the border or halo to communicate from the 
shape of the stencil. For asymmetric stencils, the widths could be different for each 
direction, and communications in just one direction may be needed. In partitions of 
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two or three dimensions, if the pattern has nonzero weights in diagonal positions 
with respect to the cell to compute, communications are also needed for the corners 
of the borders or halos, with processes which are also in diagonal positions in the 
processes grid. In these cases, some data in the corners of the borders should be 
communicated to more than one process. See an example in the leftmost corner of 
Fig. 3 (right).

Let d be the number of dimensions of the partition, or processes grid. The maxi-
mum number of active border send operations, or active halo receive operations, is 
3
d − 1 . The processes at the limits of the grid deactivate the send/receive operations 

in directions where there is no neighbor process.
The communication pattern to be repeated on each iteration for the local process 

is defined by the active borders/halos and the shapes of the corresponding pieces. 
This pattern is used in two ways. First, to build an inter-process communication pat-
tern. Hitmap provides a functionality to build a HitPattern object in terms of borders 
and halo shapes. The shapes’ intersections lead to exact communications. No data 
is communicated if it is not needed, and no data is communicated more times, or to 
more processes, than needed. The HitPattern contains the information to perform 
the MPI communication operations for all the data movements indicated during its 
construction. Hitmap provides functionalities to perform the communications of a 
HitPattern at any moment.

Second, the pattern is used to coordinate data transfers from and to the device. 
Hitmap allows the declaration of hierarchical tile structures: A HitTile can be a sub-
selection of a given part of another HitTile. Thus, it is possible to declare HitTiles 
for each part of a border, for a halo, or for the inner part of the local array. Their 
internal data pointers indicate the first element of the sub-selection, and the meta-
data indicates the sizes and strides needed to access the data. Controllers provides 
functionalities to move data from/to the device for a HitTile. The Controllers model 
abstracts the underlying hardware details of the different devices and the low-level 
communication mechanisms from the skeleton. Each Controller object used in the 
program transparently leverages the native or vendor-specific programming model 
for the chosen device, such as CUDA or OpenCL, to perform these data trans-
fers. This allows the skeleton to achieve data-transfer throughputs similar to those 
of the native or vendor-specific models [52]. If the tile to move is a sub-selection, 
appropriate data movements for only that specific part of the array are executed. 
The Controllers backends transparently use the proper CUDA or OpenCL functions 
to efficiently transfer sub-selections of an array, which can include non-contiguous 
memory pieces. These data transfers are done asynchronously by the Controllers 
runtime.
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Overlapping of computation and communication.
In order to obtain the maximum possible overlapping of computation, data trans-

fers and inter-process communications, we should consider separately the dependen-
cies between the halos, borders and inner part of the local and remote arrays.

Algorithm  1 shows the order of operations performed by the skeleton on each 
iteration. It uses arrays of HitTiles representing borders and halos, and two extra 
HitTiles for inner parts. Those that start with the prefix new are sub-selections of 
the local array for computing new values on this iteration (newTile). Those that start 
with the prefix old are sub-selections of the local array that holds the data of the 
previous iteration (oldTile). Recall that the number of borders is 3d − 1 , d being the 
number of dimensions of the partition, or processes grid. There are two Boolean 
arrays, activeBorders and activeHalos. Their elements are set on positions where 
there is a communication to send out that border, or to receive in that halo, accord-
ing to the stencil pattern and the position of the local process in the processes grid.

The computation in the local array can start as soon as the halos computed 
remotely in the previous iteration have reached the device. The computation for 
the borders and the inner part can be launched as separate computations. The 
skeleton splits the computation and works in two stages (see Fig.  4). As soon 
as the computation of the local borders has finished, the data transfer and inter-
process communication of the new border values can start. These data transfers 
and communications can be done asynchronously, overlapping with the compu-
tation in the inner part of the local array. For data sizes that really need parallel 
distributed computing, the computation load in the inner part of the local array is 
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far higher than in the borders, maximizing the opportunities to hide the latencies 
of data transfers and inter-process communications.

The Controllers model allows the launch of a kernel using HitTiles which are 
sub-selections of another tile. Thus, launching the kernels to compute the borders 
and the inner part separately is straightforward. The kernels are enqueued and 
executed asynchronously in the device. The Controllers runtime ensures that: (1) 
Requests for data transfers are not started until the kernels using the data are not 
yet finished; and (2) kernels are not started if there are pending data transfers 
for their parameters. Controllers offers an explicit synchronization operation to 
wait in the host until all the pending operations for a given HitTile have finished 
(kernel executions and/or data transfers). We use this to synchronize the start of 
the inter-process communications with the end of the data transfers of the borders 
from the device. This explicit synchronization is needed because these operations 
work on different tiles (although they are sub-selections of the same tile). Finally, 
the iterations loop is unrolled once, to avoid the unneeded communication of 
halos at the end of the last iteration.

Figure  5 shows an example image obtained with the NVIDIA Visual Profiler 
during the execution of some iterations of the skeleton in two processes with two 
NVIDIA Titan Black GPUs in two different nodes, interconnected with 10Gb Eth-
ernet. It shows the computation-communication overlap achieved. The small blue 
rectangles represent the computation of the borders. Brown rectangles represent 
both the data transfers from GPU to CPU of the borders, and the data transfers from 
CPU to GPU of the received halos. Green rectangles represent the time dedicated to 
inter-process data communication. Finally, the big blue rectangles represent the time 
dedicated to the computation of the inner part of the local arrays. As can be seen, the 
computation of the inner part of the local arrays completely overlaps the CPU-GPU 
transfers and inter-process data communications.

Fig. 4  Computations and data movements performed on each iteration of the proposed skeleton
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5  Experimental studies

In this section, we discuss the results of three different experimental studies to 
test our proposal in different scenarios, with different types of stencils: 

1. Strong and weak scalability of the skeleton in up to 48 NVIDIA GPUs in 12 
distributed nodes.

2. Comparison with the strong and weak scalability obtained by a Celerity imple-
mentation of the same stencil computations, in up to 32 NVIDIA GPUs in eight 
distributed nodes.

3. Strong and weak scalability of the skeleton in a heterogeneous node comprising 
both NVIDIA and AMD GPUs, using load balancing techniques.

All tests were performed using single precision floating-point (FP32) calculations 
to leverage the highest amount of compute units in the GPUs. We have not con-
sidered half precision (FP16) representation, since it is not a native data type in 
certain GPUs, and our goal is to maximize compatibility across heterogeneous 
devices. Regarding double precision (FP64), its use is not optimal in terms of 
GPU computing resource utilization. Thus, it does not present the most demand-
ing scenarios for synchronization and computation/communication overlapping.

5.1  Experimental study 1: strong and weak scaling in CTE‑POWER

We have selected several stencil operators in 2D, including compact, non-com-
pact, symmetric, and asymmetric stencils.

• 2D 4-point compact stencil (Jacobi).
• 2D 9-point compact stencil.
• 2D 9-point non-compact, second order stencil.
• 2D 5-point non-compact, asymmetric stencil.

Fig. 5  Timeline from a profiling session of the execution of a Jacobi 2D stencil in 2 distributed NVIDIA 
Titan Black GPUs
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A visual representation of the 2D stencils described is shown in Fig. 6. For these 
stencils, we compare the performance of the EPSILOD generic kernel and the ker-
nels automatically generated by the KGT tool (referred to as specific kernels).

The experimentation platform chosen is the CTE-POWER cluster of BSC (Bar-
celona Supercomputing Center). Each node has four NVIDIA 16GB Tesla V100 
GPUs and two IBM Power9 8335-GTH @ 2.4GHz CPUs. They are interconnected 
with an Infiniband network. The stencils are executed in up to 48 GPUs in 12 dis-
tributed nodes. They are interconnected with an Infiniband network. The input array 
size for strong-scale experiments is 44 000 × 44 000, that is near the maximum size 
that fits in a 16GB Tesla V100 GPU. For weak-scaling analysis, the size of the array 
grows proportionally to the number of GPUs, increasing the size in one different 
dimension with each additional GPU. Each experiment executes 15 repetitions of 
1000 iterations of each stencil, with enough load to obtain representative and sta-
ble results. Strong and weak scalability have been tested with the parallel skeleton 
proposed using both the generic and the automatically generated kernel implementa-
tions. Performance measures are the execution times of the program for the stencil 
computation part, excluding initialization and output of results.

The deviations of the measures are small in general. On specific experiments 
using 16 and 32 GPUs (four and eight nodes respectively), we obtained a high devi-
ation with inconsistent mean values. The BSC’s staff reported that some nodes for 
those configurations contained malfunctioning GPUs with lowered computational 
performance. The corresponding experiments were discarded and the malfunction-
ing GPUs were not used again. However, our quota did not allow us to re-run the 
experiments needed to obtain a meaningful average. Thus, we present results for the 
minimum execution time value observed for each experiment, which is consistent 
with the trend of the means for the normal performance scenarios.

Fig. 6  Visual description of the 
2D stencils tested
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Figure 7 shows the execution times for the strong scalability tests with the 2D 
stencils, with logarithmic scale in the y-axis. Figure 8 shows the execution times 
for the weak scalability tests with the 2D stencils. In both cases, the plots on the 
left present the results with the generic kernel, and the plots on the right using the 
automatically generated kernel.

Table 2 shows the GFLOPS achieved by our proposal in the weak scalability 
tests for the 2D 9-point stencil. Only the GFLOPS for one of the tested stencils 
are provided for readability reasons. Nevertheless, all the other stencils behave 
similarly in terms of GFLOPS scalability. We choose to show the data for the 
2D 9-point stencil, since it achieves the highest GFLOPS of all the tested sten-
cils due to its high pattern density (i.e., high element utilization per memory line 
accessed).

From the results obtained we can make the following observations:

• In the weak scaling experiments, we observe smaller execution times when 
using one or two GPUs than when using four GPUs or more. This is explained 
by the architecture of the cluster nodes. There are four GPUs on each node 

Fig. 7  Strong scalability in CTE-Power for 2D stencils. Left: Generic kernel. Right: Automatically gen-
erated kernels using the KGT tool described in Sect. 4.1

Fig. 8  Weak scalability in CTE-Power for 2D stencils. Left: Generic kernel. Right: Automatically gener-
ated kernels using the KGT tool described in Sect. 4.1
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grouped in two different zones, with different CPUs (NUMA nodes), and dif-
ferent power and ventilation areas. With four GPUs executing in the node, 
there are two devices executing in the same zone, and both devices experiment 
a little performance degradation.

• We also observe a very good weak scalability, specially for the optimized kernel. 
With up to four GPUs, inter-process communication is fast, as it is done inter-
nally in the node. With eight or more, there are also inter-process communica-
tions using the network. We observe no relevant execution time increment when 
using more than four GPUs, indicating that all the data transfers and communi-
cations are fully overlapped with the computation.

• The strong scaling results also show how good the overlapping is, with a parallel 
efficiency of more than 90% with up to 48 GPUs.

• Regarding performance, the execution time is dominated by the computation of 
the inner part. The kernels of these stencil computations are memory-bound. The 
performance differences between different stencils are mainly originated by the 
lower or higher memory bandwidth needed to access the neighbor elements. In 
general, non-compact stencils perform worse than compact ones. For stencils 
accessing a similar amount of memory lines, slight performance differences can 
be appreciated depending on the number of arithmetic operations per cell. These 
differences are more noticeable when using the less optimized generic kernel. 
For example, the 2d9 non-compact stencil presents the higher execution times. 
It accesses more memory lines than the others due to the higher stencil radius 
( r = 2 on each of the four directions). The 2d4 stencil is faster because it has 
a lower number of floating point operations per cell. In the case of the asym-
metric 2d5 stencil, the effects of the higher radius on two directions, zero-radius 
in another two, and the number of floating point operations are compensated, 
obtaining a similar performance to the 2d9 compact stencil. Nevertheless, the 
communication pattern of the asymmetric 2d5 stencil derives in a pipeline struc-
ture, simpler than the full neighbor synchronization structure of the other sten-
cils. Thus, its performance suffers less from occasional small delays on remote 
synchronizations. This is noticeable in the strong scaling tests when using the 
automatically generated kernel for 32 or 48 GPUs. The load of the inner part 
becomes so small that the inter-process synchronization effects become relevant. 
Also, in the same situations, the higher volume of communication of the 2d9 
non-compact stencil leads to a little lower performance for a high number of 
GPUs.

5.2  Experimental study 2: comparison with celerity implementations

We have conducted an experimental study to compare the performance achieved 
using our proposal with the one obtained using Celerity [12], a state-of-the-art tool 
for distributed heterogeneous computing. Celerity uses MPI for inter-node commu-
nications, and SYCL to manage the heterogeneous devices. Strong and weak scala-
bility have been tested for optimized implementations of the following stencil opera-
tions using both our parallel skeleton and a Celerity-based application:
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• 2D 4-point compact stencil (Jacobi).
• 2D 9-point compact stencil.
• 2D 9-point non-compact, second order stencil.
• 2D 5-point non-compact, asymmetric stencil.

The experimentation platform is again the CTE-POWER cluster of BSC, com-
prising nodes with four NVIDIA Tesla V100 GPUs. We use Celerity 0.2.1, built 
on top of hipSYCL v0.9.1. Each experiment is executed three times. The num-
ber of iterations is 1 000 for all experiments. The stencils are executed in up to 
32 GPUs in eight distributed nodes. In this case, we do not present results for 
48 GPUs. The reason is that, in our experimental setup, we found that Celer-
ity takes so much time in this configuration that it would consume our entire 
quota resources. The Controllers model has a much lower memory footprint 
than Celerity for the distributed arrays on the devices. Thus, it is not possible 
to experiment with the sizes used in the previous experimental study. For a fair 
comparison, the array sizes in this study are smaller. The array size for strong-
scaling experiments is 30 000×30 000, which is near the maximum size that fits 
in a 16GB Tesla V100 GPU using Celerity. For weak-scaling analysis, the size 
of the array grows in all dimensions proportionally to the number of GPUs.

Figure 9 shows the comparison between the Celerity implementation and our 
proposal in terms of strong scaling, and Fig. 10 in terms of weak scaling.

Table  3 shows the GFLOPS achieved by the Celerity implementation and 
our proposal in the weak scalability tests of this experimental study, for the 2D 
9-point stencil. As it was the case in the previous experimental study, the 2D 
9-point stencil achieves the highest GFLOPS of all the tested stencils, for both 
the Celerity implementation and our proposal. It also shows a scaling behavior 
that is similar for all of the tested stencils. However, we also consider of interest 
to show the GFLOPS achieved by both implementations in the case of the 2D 
4-point stencil, since it is the only scenario in which the Celerity implementa-
tion achieves higher GFLOPS than our proposal for some number of GPUs. That 
data are shown in Table 4.

As the load is smaller than in the previous experimental study, the impact of 
the data transfers and communications is higher, affecting scalability in some 
situations. It can be noted that our proposal outperforms the Celerity implemen-
tations for every type of stencil tested, except in the simplest stencil (the 2D 
4-point stencil) when using fewer than 32 GPUs, which show a similar behavior. 
Our proposal has a better management of communications, reducing their num-
ber for non-symmetric stencils, and improving the computation-communication 
overlapping on each iteration.

Regarding the corresponding memory footprints, Celerity presents a memory 
footprint around 8 GB, while EPSILOD presents a memory footprint of less than 
1 GB. Based on these results, our guess is that Celerity may be introducing extra 
copies of some matrix structures that are not needed for this specific kind of 
application, although the study of the exact reasons are beyond the scope of this 
paper.
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5.3  Experimental study 3: using different GPU types

We conduct an experimental study to test the performance achieved with our pro-
posal in a heterogeneous node which features different kinds of GPUs. We con-
duct the tests in the node Manticore, comprising 2 32GB NVIDIA Tesla V100 
GPUs, and 2 AMD Radeon PRO WX 9100 GPUs. Weak scalability is tested for 
specific kernel implementations of the 2D stencils presented.

In this experiment, we first use the basic skeleton that maps the same amount 
of data to each process and device. Then, we use the skeleton version that uses 
static load-balancing techniques. This latter version uses a different layout func-
tion from the ones provided by the lower-level Hitmap library. It includes a 
parameter for the programmer to provide an array of weights that indicates the 
relative amount of data to supply to each specific GPU device. We have experi-
mentally estimated the weights for each GPU in the node to redistribute the com-
puting array in a balanced way across the processes. The weight for the V100 
GPUs is normalized to 1 in all cases. The weights for the Radeon GPUs are 0.41 
for the 2D 9-point non-compact, and 0.46 for the other stencils. For these weak-
scaling experiments, we start with a size of 44 000 × 44 000 in a Tesla V100 GPU, 

Fig. 9  Strong scaling comparison for a Celerity implementation and our proposal using different 2D 
stencils

Fig. 10  Weak scaling comparison for a Celerity implementation and our proposal using different 2D 
stencils
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and the array size increases in the first dimension proportionally to the accumu-
lated weight of the GPUs used to execute the program. Figure 11 shows the exe-
cution times obtained. The results show that with minimal modifications, the pro-
posed skeleton can use static load-balancing techniques and achieve good weak 
scalability for 2D stencils in heterogeneous platforms comprising different types 
of GPUs.

Table 5 shows the GFLOPS obtained in the case of the 2D 9-point stencil (the 
stencil that achieves the highest amount of GFLOPS). For readability reasons, only 
the GFLOPS for one of the tested stencils are provided. Nevertheless, the other sten-
cils present a GFLOPS scaling behavior similar to the 2D 9-point stencil.

5.4  Summary of results

We can summarize our main findings as follows:

• Regarding strong and weak scaling in CTE-POWER, we observe a very good 
weak scalability, specially for the optimized kernel. We also observe that the 
execution time does not increase with more than four GPUs, indicating that all 
the data transfers and communications are fully overlapped with the computa-

Fig. 11  Execution times for weak scaling tests using 2D stencils in a node with two different types of 
GPUs: NVIDIA V100, AMD Radeon PRO WX 9100. Left: Basic skeleton with the same amount of data 
per GPU. Right: Skeleton with irregular distribution to balance the workload

Table 5  GFLOPS comparison for the weak scalability of the basic skeleton and the skeleton with stati-
cally load-balanced array distribution, when executing the 2D 9-point stencil

2D 9-point stencil GFLOPS 1 Tesla V100 2 Tesla V100 2 Tesla V100, 1 
Radeon PRO WX 
9100

2 Tesla V100, 2 
Radeon PRO WX 
9100

EPSILOD, unbalanced distri-
bution

1239.86 2478.34 1762.18 2216.63

EPSILOD, balanced distribu-
tion

1239.97 2478.48 3044.86 3657.75
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tion. Strong scaling also demonstrate how good the overlapping is, with a paral-
lel efficiency of more than 90% with up to 48 GPUs.

• Regarding the comparison with Celerity implementations, our proposal outper-
forms the Celerity implementations for every type of stencil tested, except in the 
simplest stencil when using fewer than 32 GPUs, where performance is similar. 
This is due to our better communications management.

• Regarding the use of different GPU types with different computation power 
simultaneously, the results show that simple, static load-balancing techniques 
allow to achieve good weak scalability with the proposed skeleton.

6  Conclusions

In this paper, we present EPSILOD, an improved parallel programming skeleton for 
iterative stencil computations on distributed multi-GPUs. It supports any type of 
n-dimensional geometric stencils (compact, non-compact, symmetric, or asymmet-
ric) of any order. It is compatible with any C/C++ programming environment. The 
stencils are described with simple data structures that determine the neighbors and 
their weights. The data partition, synchronization and communications are automati-
cally derived using that information. It splits the computation in the devices to maxi-
mize the overlapping of computation and communication. The skeleton provides a 
generic kernel, a tool to generate more specific and efficient kernels from the sten-
cil description, and the possibility to use kernels manually written and optimized 
by the programmer. It exploits the Controllers model and the Hitmap library for an 
efficient management of the devices and MPI communications. We also provide an 
additional version supporting techniques to balance the load when using different 
types of GPUs in the same platform, from different vendors or with different compu-
tational power.

We present results for experimental studies testing the strong and weak scalability 
obtained for different stencils using a cluster with up to 12 nodes with 32 NVIDIA 
V100, or a heterogeneous node with 2 NVIDIA V100 GPUs and 2 AMD Radeon 
Pro WX 9100 GPUs. We also compare the scalability obtained with the implemen-
tation of the same stencils using a state-of-the-art programming framework for dis-
tributed heterogeneous devices: Celerity, built on top of MPI and SYCL. The results 
show that our proposal can obtain good strong and weak scalability for the 2D sten-
cils tested, outperforming the Celerity implementations. They also show that a good 
scalability can be obtained using the integrated load-balancing techniques when 
exploiting nodes with different types of GPUs.

Future work includes improving the skeleton to support more heterogeneous envi-
ronments with more types of devices, and including new optimization techniques. 
Regarding more complex iterative stencils with several computational stages, such 
as stencils that are second-order in time, staggered-grid stencils that read and write 
multiple grids over two stages, and algorithms with absorbing boundary conditions, 
among others, we plan to extend the functionalities of EPSILOD to support them. In 
any case, these improvements will extend the framework following the fundamentals 
of the solutions proposed in this work.
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