
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:10252–10276
https://doi.org/10.1007/s11227-023-05070-0

1 3

BALANCER: bandwidth allocation and cache partitioning
for multicore processors

Agustín Navarro‑Torres1 · Jesús Alastruey‑Benedé1 · Pablo Ibáñez1 ·
Víctor Viñals‑Yúfera1

Accepted: 16 January 2023 / Published online: 4 February 2023
© The Author(s) 2023

Abstract
The management of shared resources in multicore processors is an open problem
due to the continuous evolution of these systems. The trend toward increasing the
number of cores and organizing them in clusters sets out new challenges not con-
sidered in previous works. In this paper, we characterize the use of the shared cache
and memory bandwidth of an AMD Rome processor executing multiprogrammed
workloads and propose several mechanisms that control the use of these resources
to improve the system performance and fairness. Our control mechanisms require
no hardware or operating system modifications. We evaluate Balancer on a real sys-
tem running SPEC CPU2006 and CPU2017 applications. Balancer tuned for perfor-
mance shows an average increase of 7.1% in system performance and an unfairness
reduction of 18.6% with respect to a system without any control mechanism. Bal-
ancer tuned for fairness decreases the performance by 1.3% in exchange for a 64.5%
reduction of unfairness.

Keywords Multicore processors · Memory hierarchy · Memory bandwidth · Shared
last-level cache (LLC) · Cache occupancy · AMD Rome

 * Agustín Navarro-Torres
 agusnt@unizar.es

 Jesús Alastruey-Benedé
 jalastru@unizar.es

 Pablo Ibáñez
 imarin@unizar.es

 Víctor Viñals-Yúfera
 victor@unizar.es

1 Dpto. Informática e Ingeniería de Sistemas - I3A, Universidad de Zaragoza, Zaragoza 50018,
Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05070-0&domain=pdf

10253

1 3

BALANCER: bandwidth allocation and cache partitioning for…

1 Introduction

Processors have an increasing number of cores and execution threads. For instance,
AMD integrates up to 64 cores capable of executing 128 threads in the Rome and
Milan microarchitectures [1], and the IBM Power10 processor can execute up to 120
threads, either with 15 SMT8 cores or 30 SMT4 cores [2]. This trend places greater
pressure on shared resources, whose capacities, especially the last-level cache (LLC)
and off-chip memory bandwidth, should be scaled and/or shared in the best possible
way.

Shared resources can be managed by imposing limits on their use by one or more
threads. In this way, each thread can only use its allocated quota, thus reducing
interference with other threads. In recent years, commercial processors such as Intel
Xeon [3], ARM ThunderX [4], or AMD EPYC [5, 6], have included hardware sup-
port for users to control the allocation of both LLC space and memory bandwidth to
processor threads.

Hardware support for LLC space management has given rise to many propos-
als pursuing one or more goals, such as improving system performance [4, 7–15]
or fairness [16, 17], facilitating server consolidation and/or ensuring quality of ser-
vice (QoS) [11, 18–23], isolating tasks to decrease the worst case execution time
(WCET) [24], decreasing the Turnaround Time [25], or seeking Social Welfare [26].

However, since processor support for memory traffic management is more recent,
work on this topic is scarcer. Specifically, we are aware of only three proposals that
control the memory bandwidth allocation to improve performance [11] or to support
server consolidation [18, 27].

As shown in Table 1, almost all previous works focus on Intel memory hierar-
chies, where the LLC is shared among all cores, but there are no proposals specifi-
cally designed for a clustered LLC organization, such as the one used by AMD in its
contemporary processors [5, 6]. We believe that this type of clustered organization
is a promising trend, since increasing the number of processor cores makes a cache
shared by all cores more inefficient in terms of access latency and interconnect net-
work traffic. In fact, clustered organizations can be found in recent high-performance
processors such as AMD EPYC [5, 6], IBM Power 10 [2], Fujitsu A64FX [28].
Moreover, a clustered design allows the desired growth in the number of transistors
to be achieved economically by integrating a set of separately manufactured dies
(chiplets in AMD terminology [29]) into a passive module.

Focusing on the AMD EPYC, the LLC is shared among only a few cores and the
main memory access links form a hierarchical tree that terminates in several DRAM
channels (details in Sect. 2). In this case, the management of LLC and memory
bandwidth may become more complex, as the potential occurrence of local, inter-
mediate, or global bottlenecks may have to be taken into account. Moreover, the
application behavior in clustered hierarchies, especially when all the cores are run-
ning threads, has also not been studied. Not knowing this behavior makes it difficult
to choose existing control mechanisms or to propose new ones.

Therefore, this paper focuses on the efficient execution of multiprogrammed
workloads on a real instance of a clustered core-LLC organization. However, the

10254 A. Navarro-Torres et al.

1 3

ideas used in the design could be applied to other processors, even with shared
LLC. We propose very simple mechanisms, with negligible software overhead,
that rely on existing monitoring and control support and require no hardware or
operating system changes. The goal is to improve system performance and thread
fairness by selecting certain cores, for which the space they occupy in the LLC
and/or the memory bandwidth available to them will be dynamically limited or
increased.

This paper makes the following contributions:

• We characterize the execution of the single-threaded, memory-intensive bench-
marks of the SPEC CPU2006 and CPU2017 suites on an AMD Rome proces-
sor. The performance of each application running separately is studied in regard
to both the allocated LLC capacity and memory bandwidth. Interference among
applications in multiprogrammed workloads is also analyzed. Two key findings
emerge. First, by limiting cache allocation we have found applications whose
performance is barely affected, but whose memory bandwidth consumption
increases significantly, negatively affecting system performance. Second, to esti-
mate global memory bandwidth saturation it is best to look at memory access
latency, because when off-chip memory traffic enters into a saturation regime,
small increases in bandwidth can lead to significant increases in memory access
latency.

Table 1 Summary of papers on resource management with real machine experimentation

LLC, last-level cache, which can be inclusive (I) or non-inclusive (NI); BWmem, memory bandwidth; IC,
interconnect; MC, memory controller; Freq, core frequency; BWdisk, disk bandwidth; #Cores, number
of cores; Prefhw, hardware prefetcher; Net, Internet connection. The rows are arranged in chronological
order of the processor on which the mechanisms are applied

Processor Resources Goal

Merlin [19] Intel Westmere LLCI, IC, MC Consolidation
Cook et al. [12]
Sun et al. [13]
Pons et al. [25]

Intel Sandy Bridge
Intel Sandy Bridge
Intel Sandy Bridge

LLCI
LLCI, Prefhw
LLCI

Performance
Performance
Turnaround time

Heracles [20]
Ginseng [26]
Dirigent [22]
Selfa et al. [16]
vCAT [24]
DCAPS [8], DCAT [14]
Chen et al. [23]

Intel Haswell
Intel Haswell
Intel Haswell
Intel Haswell
Intel Haswell
Intel Haswell
Intel Haswell

LLCI, Freq, Net
LLCI
LLCI, Freq
LLCI
LLCI
LLCI
LLCI, Freq,
BWdisk, #Cores, Net

Consolidation
Social welfare
Consolidation
Fairness
WCET
Performance
Consolidation

Kpart [7]
Dicer [21]

Intel Broadwell
Intel Broadwell

LLCI
LLCI

Performance
Consolidation

SWAP [4] Cavium ThunderX LLC Performance
Kim et al. [15], CPPF [10]
Hypart [11]
Copart [18]
EMBA [27]
LFOC [17]

Intel Skylake-SP
Intel Skylake-SP
Intel Skylake-SP
Intel Skylake-SP
Intel Skylake-SP

LLCNI
BWmem
LLCNI, BWmem
BWmem
LLCNI

Performance
Performance
Consolidation
Consolidation
Fairness

10255

1 3

BALANCER: bandwidth allocation and cache partitioning for…

• Based on the characterization findings, we propose Balancer, a new set of mech-
anisms that controls LLC space and memory traffic allocations to improve sys-
tem performance and fairness when running multiprogrammed workloads.

• We evaluate Balancer with the aforementioned workload and processor and com-
pare it with other state-of-the art LLC partitioning proposals. Balancer tuned
for performance improves the average speedup of the applications by 7.1% and
reduces the execution unfairness by 18.6%, with respect to the uncontrolled sys-
tem. Balancer tuned for fairness reduces the execution unfairness by 64.5% in
exchange for a 1.3% slowdown.

This paper is organized as follows. Section 2 describes the execution environment,
the monitoring and control tools, and the workloads used in the characterization and
the evaluation. Section 3 analyzes the impact of LLC occupancy and main memory
traffic on the execution of multiprogrammed workloads. Section 4 details the Bal-
ancer mechanisms. Section 5 shows and analyzes the experimental results regarding
performance and fairness. Section 6 compares our proposal with the related work,
and Sect. 7 concludes. Appendix A provides information on how to obtain Balancer
code and reproduce all the experiments.

2 Experimental environment and methodology

This section shows the main features of the selected server, the monitoring and con-
trol tools, and the employed workloads.

2.1 AMD Rome core organization

AMD launched in 2019 a family of processors aimed at the high-performance server
segment. These models are based on the Zen 2 microarchitecture, code-named
Rome [1]. Specifically, we have selected a server with a 64-core EPYC 7702P pro-
cessor. The main characteristics of this system are specified in Table 2.

The 7702P processor is made up of up to eight compute core dies (CCDs)
that are connected to each other and to off-chip memory via an I/O die (Fig. 1).

Table 2 Main features of the selected server

Processor
Cores × Threads

AMD EPYC 7702P
64 × 2

L1 cache (I, D)
L2 cache
LLC

8-ways, 32 KiB (per core)
8-ways, 512 KiB (per core)
16-ways, 16 MiB, non-inclusive (per CCX)

Main memory 256 GiB DDR4, 8 channels, nominal peak BW: 204.8 GB/s
TurboBoost
Hyperthreading

Disabled
Disabled (1 thread/core),
except for the core executing Balancer, see Sect. 4

OS CentOS 8.2, kernel 4.18.0

10256 A. Navarro-Torres et al.

1 3

Each CCD integrates two core complex (CCX) units that share an I/O connec-
tion. In turn, each CCX has four cores capable of executing eight threads shar-
ing a 16 MiB victim LLC, i.e., the LLC gets populated with the cache blocks
evicted from the four L2 caches of a CCX. This non-inclusive content manage-
ment is also implemented in other recent processors such as ARM Neoverse [30]
and Intel Skylake-SP [31]. Although there are 256 MiB of LLC in total, note that
the four cores of a CCX cannot store cache blocks outside of their 16 MiB LLC.

2.2 Monitoring & control tools

In order to characterize the applications and then guide the Balancer control
mechanisms, we use hardware counters that are read through their correspond-
ing model-specific registers (MSR) [32]. GNU/Linux makes the MSR registers
accessible through access to the files /dev/cpu/[0-N-1]/msr, where N
is the number of cores. Hardware counters record events that occur during the
execution of an application. For example, we can measure retired instructions,
elapsed cycles, or misses experienced in the LLC of the CCX where an applica-
tion is executed.

Moreover, there are specific banks of MSRs registers, belonging to AMD64
Technology Platform Quality of Service Extensions (AMD QoSE) [33] devoted to
monitoring and enforcing limits on LLC allocation and memory read bandwidth
on a per-thread basis. This is achieved with a 16-bit per-thread binary mask. Each
bit of the mask enables each thread to use a particular sixteenth fraction of the
LLC (1/16 = 1 MiB). Several threads can mark the same fraction(s), implying
competitive sharing of the same LLC subset. Similarly, the memory read band-
width can be limited per thread. This is achieved by writing an unsigned integer

Fig. 1 AMD Rome 7702P clustered memory hierarchy. The multichip module has nine dies: eight CCD
dies and one I/O die. In total there are 64 2-SMT cores (2SMT C) organized in 8 CCDs, each one with
2 CCX. Each CCX has a 16 MiB LLC shared by four cores [1] (color figure online)

10257

1 3

BALANCER: bandwidth allocation and cache partitioning for…

to a specific MSR register, that sets a maximum read bandwidth in 1/8 GB/s
increments.

2.3 Workload

We use multiprogrammed workloads [34, 35] composed of a subset of the bench-
marks from the SPEC CPU2006 and CPU2017 suites.1 Specifically, we selected
the 33 memory-intensive single-threaded applications as suggested in [36]. These
applications have been compiled with the GCC version and flags recommended by
SPEC [37, 38]. We will first characterize each application running alone on the sys-
tem and then with other independent applications in a variety of multiprogrammed
situations. For the latter we generated one hundred mixes, which we use in the char-
acterization and evaluation sections, made up of applications from the SPEC sub-
set. In addition, we generated another ten different mixes that we use in Sect. 5.2 to
adjust the parameters of our proposal.

Each mix consists of 64 instances (one for each core) randomly chosen from
the 33 applications, so that any of the 33 applications have the same probability of
occurrence, regardless of their execution time. For each application, we randomly
selected a reference input data set from among those offered by SPEC (excluding
test and train input data sets). Hence, zero, one, or more instances of the same appli-
cation, with the same or different inputs, may appear in a particular mix.

During a mix execution, each application/input pair is pinned to a different core.
A mix ends when its slowest application finishes its first execution (e.g., application
D in Fig. 2). The rest of the applications are restarted with the same input and on
the same core as they finish. Only complete executions are taken into account; this
avoids over-representing the first phases of an application. In addition, in order to
characterize each application, its behavior is first averaged within each mix, con-
sidering all the cores in which it appears and all the instances running on them; the
same application in another mix with different partners may be executed a different
number of times in a different number of cores, and might behave in a different way.

Fig. 2 Example of applications
completions in a mix execution
(color figure online)

1 Both SPEC CPU2006 and SPEC CPU2017 can be ordered at the following URL:
 https:// www. spec. org/ order. html.

https://www.spec.org/order.html

10258 A. Navarro-Torres et al.

1 3

Consequently, to obtain the metrics of an application we proceed as follows: first
for each mix, compute the average of each application (all the completed instances
in all cores); then for each application compute the average again over the values
obtained across the one hundred mixes.

This method of mixing and collecting results has been used, except for the varia-
tion in inputs, in previous works [8, 10, 15].

3 Characterization

Regardless of whether the applications are run alone or in a multiprogrammed
way, they are characterized by seven metrics: (1) CPI, cycles per instruction, (2)
DMPKI, demand misses in the LLC per thousand instructions, (3) MPKI, total
misses (demand + prefetch) in the LLC per thousand instructions, (4) HPKI, total
hits (demand + prefetch) in the LLC per thousand instructions, (5) L3Lat, memory
latency of LLC read misses, common to the four CCX cores, (6) L3Occ, average
LLC occupancy, and (7) rBW, read traffic with memory, in GB/s. Table 3 shows the
formulas used to calculate each metric from specific hardware counters of core or
CCX scope.

3.1 Performance versus LLC capacity

In this subsection, we characterize the behavior of the applications running alone
when varying the LLC capacity from 0 to 16 MiB with 1 MiB steps, with hardware
prefetching enabled.

Figure 3 shows in the graphs, from left to right, CPI, DMPKI, and MPKI for
each allocated LLC capacity. Each graph shows three lines corresponding to 410.
bwaves (blue), 471.omnetpp (green), and 554.roms (red), representative of
the three main trends observed in all applications.

Most cache partitioning mechanisms proposed so far use miss and speedup
curves, similar to those of CPI and DMPKI shown in Fig. 3, to decide how much
LLC space should be allocated to each application [7, 17, 39]. In these two graphs
we can distinguish two behaviors. On the one hand, 471.omnetpp clearly takes

Table 3 Metrics calculation
from hardware counters [32, 33]

Metric Formula Scope

CPI PMCx076 / PMCx0C0 Core
DMPKI PMCx043 / (PMCx0C0 / 1000) Core
MPKI L3PMCx06 / (PMCx0C0 / 1000) Core
HPKI (PMCx043 + PMCx071 + PMCx05A) /

(PMCx0C0 / 1000)
Core

L3Lat (L3PMCx90 * 16) / L3PMCx9A CCX
L3Occ QOS L3 Occupancy Core
rBW ((L3PMCx06 * 64) / 230) / Time Core

10259

1 3

BALANCER: bandwidth allocation and cache partitioning for…

advantage of its available space in the LLC: CPI and DMPKI decrease signifi-
cantly as the allocated space in the LLC increases. We can say that the behavior
of 471.omnetpp is sensitive to the available LLC size.

In contrast, 410.bwaves and 554.roms clearly waste the space they take
in the LLC. Both metrics remain virtually constant as the LLC allocation bounds
extend. We would say that the behavior of these two applications is insensitive to
the available LLC size. Consequently, partitioning mechanisms based on these
metrics would take cache space away from applications such as 410.bwaves
and 554.roms and give more space to applications, such as 471.omnetpp.

But if we analyze the MPKI graph, the miss rate considering both processor
and prefetch requests, while 471.omnetpp and 410.bwaves maintain the
same behavior, 554.roms now shows a large decrease in MPKI as the available
LLC space increases. Therefore, the MPKI metric would lead us to classify 554.
roms as sensitive to LLC size, contrary to the DMPKI and CPI metrics. This
behavior is due to the prefetcher being effective in preloading the private caches
with the data to be used, which eliminates demand misses. In other words, the
prefetcher reuses the data stored in the LLC and, therefore, the more capacity the
LLC has, the higher the hit rate. As a result, giving more LLC capacity to this
type of applications does not imply a direct benefit for them but it does for the
system, since it decreases the traffic with memory.

As far as we know, the behavior observed in 554.roms with respect to the
MPKI metric has not been previously highlighted and therefore it has not been
considered when designing resource allocation mechanisms. Balancer will con-
sider these applications as being cache sensitive and therefore will not limit their
available LLC space so as not to increase bandwidth consumption. As we will
show in Sect. 4.2, higher bandwidth consumption can increase memory access
latency, which in turn implies a performance degradation of all applications run-
ning on the system.

Characterization highlights. The MPKI metric, or its complementary HPKI,
measures the benefit associated with LLC occupancy more comprehensively than
CPI or DMPKI, which are the metrics commonly used in previous work. The

Fig. 3 CPI, DMPKI, and MPKI for increasing LLC allocation limits (1/16 MiB steps) (color figure
online)

10260 A. Navarro-Torres et al.

1 3

variation in CPI or DMPKI only reflects the benefit that affects the application itself,
while MPKI or HPKI, in addition, reflects the benefit that is achieved for the system.

3.2 Performance versus memory bandwidth

Next, we characterize the behavior of applications not running alone with increasing
throttling of the available memory bandwidth or, in other words, as memory conten-
tion grows due to increasing aggregate traffic. For this purpose, we have used the
Triad application.

Triad is a kernel of the STREAM2 benchmark [40]. STREAM is considered as
the de-facto benchmark to measure sustainable main memory bandwidth. It is a sim-
ple synthetic program that we use to generate data traffic between the CPU and main
memory.

Triad performs simple operations on vectors: A[j] = B[j] + scalar ∗ C[j] . Vectors
A, B, and C are larger than L2 + LLC to ensure that there is no data reuse. We ran
each of the selected applications alongside 0, 3, 7, 15, 31, and 63 Triad instances.
The application to be characterized is pinned on the first core of the first CCX, and
each Triad is pinned on another core, trying to occupy the maximum number of
CCDs with an even split between CCXs. This thread scheduling runs the application
on the AMD EPYC 7702P in configurations that first increase the number of active
CCDs (from one to four and eight), then increase the number of active CCX per
CCD (from one to two), and finally the number of cores per CCX (from one to two
and four), see Table 4.

Figure 4 shows read traffic with main memory (gray bars, left Y-axis) and mem-
ory latency (black bars, right Y-axis), both averaged for all applications vs. the num-
ber of co-executed Triads (X-axis). The read traffic saturation point is reached at
around 105 GB/s with only seven Triad instances. However, latency continues to
grow as the number of Triad instances increases beyond seven, from 378 to 676
cycles with equal data traffic.

Table 4 Activation of AMD
EPYC 7702P components
according to the number of
Triad instances that are executed
together with the application to
be characterized. Recall that this
processor integrates 64 cores
organized in eight CCDs, each
with two CCXs, which in turn
have four cores each

Triads # active CCD # active CCX per
CCD

active
cores per
CCX

0 1/8 1/2 1/4
3 4/8 1/2 1/4
7 8/8 1/2 1/4
15 8/8 2/2 1/4
31 8/8 2/2 2/4
63 8/8 2/2 4/4

2 The STREAM source code is available at the following URL:
 https:// www. cs. virgi nia. edu/ stream/ FTP/ Code/.

https://www.cs.virginia.edu/stream/FTP/Code/

10261

1 3

BALANCER: bandwidth allocation and cache partitioning for…

Fig. 4 Read memory traffic (left Y-axis) and memory access latency (right Y-axis) vs. number of Triads
(X-axis) (color figure online)

Fig. 5 CPI increase when running with multiple Triads (color figure online)

10262 A. Navarro-Torres et al.

1 3

Figure 5 shows the performance impact of increased latency. For each application
it can be seen how its CPI increases as memory contention grows. On average, the
progressive growth of traffic induces an increase in execution time of 5, 20, 34, 49,
and 61% when an application contends with 3, 7, 15, 31, and 63 Triads, respectively.
In 5 applications, increases of more than 80% are observed when co-executing with
63 Triads.

Characterization highlights. Memory access latency is a better indicator than
memory traffic for assessing memory contention. The increase in latency is a more
direct measure of the impact on application execution time. In addition, memory
latency increases if the request rate increases beyond the point of traffic saturation,
allowing different degrees of contention to be identified.

3.3 Multiprogrammed workload

Finally, we analyze the behavior of the applications on a fully loaded system, run-
ning one application on each of the 64 cores. Each application appears about two
hundred times in the one hundred mixes, and is run under different conditions,
determined by the other sixty-three co-executing applications.

Figure 6 shows the averages of the metrics (CPI, DMPKI, etc.) for those two hun-
dred instances, along with a vertical bar linking the minimum and maximum val-
ues. Average memory latency is between 500 and 600 cycles for all applications,

Fig. 6 CPI, DMPKI, MPKI, HPKI, L3Occ, and L3Lat. For each metric and application, the mean value
and a vertical bar linking the minimum and maximum values are shown (color figure online)

10263

1 3

BALANCER: bandwidth allocation and cache partitioning for…

reaching peaks of 650 for most of them. This indicates that memory traffic is always
well above the saturation point.

Regarding LLC occupancy, application behavior is very diverse. Eight applica-
tions occupy on average more than 6 MiB, three of them reaching maximums of
12 MiB, while five other applications occupy on average less than 2 MiB. The vari-
ation among runs of the same application is also large. The difference between the
minimum and maximum is greater than 3 MiB in 24 applications.

The benefit applications get from the space they occupy in the LLC is also very
diverse as noted in Sect. 3.1. Applications such as 410.bwaves, 433.milc,
434.zeusmp, 462.libquantum, and 481.wrf waste the space they occupy in
the LLC since HPKI is practically zero in all their executions, regardless of the LLC
capacity they fill. On the contrary, applications such as 471.omnetpp, 403.gcc,
429.mcf, 450.soplex, and 473.astar show significant differences between
maximum and minimum values in occupancy, CPI, MPKI, and HPKI. These appli-
cations take advantage of the space in LLC in a clear way, reducing their execu-
tion time if they get more space. Finally, in applications such as 436.cactusAMD,
437.leslie3d, 519.lbm, 549.fotonik3d, and 554.roms we note signifi-
cant variations in LLC occupancy that do not translate into CPI and DMPKI differ-
ences, but do translate into MPKI and HPKI differences. Therefore, these applica-
tions do not get a direct benefit by occupying more space in the LLC, but they can
bring a benefit to the system by reducing the traffic with the main memory.

Characterization highlights. When running multiprogrammed workloads, it is
common for the traffic generated by memory requests to congest the DRAM chan-
nels. This results in high memory latencies, which in turn affects application exe-
cution time. The LLC space occupied by applications is very diverse and varies a
lot among executions. The behavior reported in Sect. 3.1 is repeated when running
applications on multiprogrammed workloads.

4 Balancer: bandwidth allocation and cache partitioning

This section introduces Balancer, a set of new mechanisms for allocating shared
resources to the cores of a multicore processor. The first one, CCO (Control of LLC
Occupancy), manages the sharing of space in the LLC. The second, CMT (Control
of Memory Traffic), manages the amount of read memory bandwidth. Both can be
tuned to act together in LLC occupancy and read bandwidth (CCO+CMT).

Unlike other proposals, Balancer can be easily applied to clustered organizations
because it can make different decisions in each cluster in a decentralized manner, in
response to their particular cache utilization and bandwidth consumption.

These mechanisms have been implemented on a server based on an AMD 7702P
processor. The scripts have been developed in Python3, and are executed in user
space (Appendix A). A specific thread, called Balancer, executes such scripts every
second. We define epoch as the time interval that elapses between two executions
of the scripts triggered by Balancer. First, the monitored events recorded in the
hardware counters are read, and the metrics of interest are calculated. The last ten
values of these metrics are then averaged. This calculation prevents one-off peaks

10264 A. Navarro-Torres et al.

1 3

from triggering the imposition of constraints, and also prevents events in the distant
past that are no longer relevant from affecting the values of the metrics. The Bal-
ancer thread is pinned to the first core of the first CCX, being this core the only one
that has hyperthreading enabled. The other cores run their applications with hyper-
threading disabled and zero overhead due to the execution of Balancer. This spatial
decision to assign the Balancer thread to one or another CCX is irrelevant since its
overhead is absolutely negligible. We have measured with perf [41] the CPU time
consumed by the Balancer thread (monitoring + control). This time represents 0.1%
of the execution time of all system cores.

4.1 Control of LLC occupancy (CCO)

4.1.1 Motivation

LLC space can become a scarce resource if there is competition among applica-
tions. Considering the overall benefit to the system, it would be desirable to allocate
more space to the applications that can take the most advantage of it. The idea is
to foster a good reuse of the data stored in the LLC to improve the performance of
individual cores and, in the process, generate less main memory traffic. We calcu-
late the reuse ratio as the number of hits that each block fetched to LLC receives,
i.e., HitsLLC∕MissesLLC . However, different applications may need more or less LLC
space to achieve the same reuse ratio. It would be desirable to give priority to those
applications that achieve a higher reuse ratio while occupying less LLC space.

4.1.2 Proposal

We define a new metric, the number of hits per miss and MiB occupied (HpMO), to
compare the LLC space usage efficiency of applications. This metric is directly pro-
portional to the reuse ratio and inversely proportional to the space occupied in LLC.
Hit, miss, and occupancy rates (HPKI, MPKI, and L3Occ) are sampled in each CCX
LLC. For each core of a CCX, HpMO is calculated as follows:

HpMO quantifies for each core the profit obtained with the cache blocks it has in
the LLC, either evicted from L2 or brought by prefetching. The higher the HpMO,
the better the space utilization in the LLC and vice versa. For example, a core with a
20% reuse ratio and 5 MiB occupancy has a very low HpMO value of 0.05, evidenc-
ing little benefit from LLC occupied space.

Balancer considers that a core is using the space it occupies in LLC inefficiently if
its HpMO is less than a certain threshold X. In this case, the core will be constrained
in a shared 1 MiB partition (minimum LLC fraction, as described in Sect. 2.2). This
LLC partition is shared by all cores, constrained or not. Consequently, the LLC size
occupied by all restricted cores is at most 1 MiB, leaving the other 15 MiB for the
exclusive use of the unrestricted cores. In this way, CCO allows other applications to

(1)HpMO =

HitsLLC

MissesLLC ⋅ OccupancyLLC

10265

1 3

BALANCER: bandwidth allocation and cache partitioning for…

take advantage of the space left over in the LLC, reducing MPKI and main memory
traffic. Figure 7a shows the CCO control algorithm for one core, which applies to all
cores in the system every epoch. The proper values for the HpMO threshold depend
slightly on the mechanism target, performance or fairness, and will be studied in
Sect. 5.2.

In the unlikely event that there is only one unconstrained core in a CCX, no new
limits will be imposed. Finally, constraints on a core are removed when a phase
change is detected. We assume that a phase change has occurred when the behav-
ior of the program with respect to the LLC has experienced a significant change,
which justifies Balancer to re-evaluate the metrics of interest. Therefore, the metric
to detect a phase change must be related to LLC, since a change in other metrics
such as branch predictor misses or L1D accesses might not correlate with a sig-
nificant change with respect to LLC. We used total requests (demand and prefetch)
instead of misses because they are not affected by external behaviors, e.g., change
in LLC partition or phase change in other applications. Balancer considers that a
phase change exists if the number of LLC prefetch and demand requests per kilo
instructions of a core (HPKI +MPKI) differs by more than 20% from the previous
measurement.

4.2 Control of memory traffic (CMT)

4.2.1 Motivation

As we have seen in Sect. 3, memory latency is a good proxy of communication con-
tention between the executing cores and main memory. That is, when memory traf-
fic reaches the limit supported by the system, the increased rate of requests to main

Fig. 7 COC a and CMT b
control algorithms (color figure
online)

10266 A. Navarro-Torres et al.

1 3

memory translates into an increase in memory latency which, in turn, affects the
performance of running applications, as shown in Fig. 4.

4.2.2 Proposal

Balancer considers that memory access congestion exists if the memory access
latency exceeds a certain threshold Y. Figure 7b shows the CMT control algo-
rithm for one core, which applies to all cores in the system every epoch. The aver-
age latency of the off-chip memory requests made by each CCX is monitored. If it
exceeds the threshold Y, the read bandwidth consumption of each core in that CCX
is examined. The core responsible for the largest one is selected, and its bandwidth
limited to 2.5 GB/s. If the selected core was already limited, its bandwidth limit
is further decreased by 10%, until reaching a minimum that would correspond to
an equal distribution between cores, i.e., 1/64 of 105 GB/s, the peak rBW meas-
ured. Again, the proper values for the CCX latency threshold depend slightly on the
mechanism target, performance or fairness, and will be studied in Sect. 5.2.

As in CCO, constraints on a core are removed when a phase change is detected.

4.3 Balancer: simultaneous control of LLC occupancy and memory traffic
(CCO+CMT)

CCO and CMT can be combined to obtain better performance than that achieved by
each mechanism separately. CCO is conservative in that it limits occupancy to cores
that waste LLC, in the hope that the freed capacity will be leveraged by the remain-
ing cores to improve overall performance. In contrast, CMT is aggressive in that it
limits traffic in applications that consume high memory bandwidth, even though it
may be contributing to good performance. Therefore, we propose combining both
controls, but first applying CCO, to gradually improve LLC occupancy in succes-
sive epochs and then CMT. Thus, when a control epoch starts, firstly CCO acts: the
HpMO of each core is compared with threshold X in each CCX, and the cores with-
out LLC occupancy limits that are below the threshold are confined in the 1 MiB
partition. Secondly, CMT will act as explained only on those CCXs that have not
experienced new confinements, i.e., on CCXs with latency above threshold Y the
highest traffic core is selected and its bandwidth limited.

5 Balancer evaluation

In this section, we evaluate our proposal (Balancer), and compare it with a system
without control (Uncontrolled) and with three control mechanisms using cache
partitioning: (1) equal sharing of resources through static allocation, i.e., 4 MiB of
LLC and 1.6 GB/s bandwidth per core (Static), (2) static UCP guided by DMPKI
(UCPd), and (3) static UCP guided by MPKI (UCPm). UCP stands for Utility-based
Cache Partitioning [39].

10267

1 3

BALANCER: bandwidth allocation and cache partitioning for…

5.1 Metrics and baseline system

As a baseline system we will use Static, which is positioned at one extreme of
the performance/fairness tradeoff: it does not allow dynamic sharing (i.e., surplus
hardware resources cannot be exploited by cores with scarcity), and it is intrinsi-
cally fair in terms of hardware resources (i.e., equal resource partitioning). Of
course, reporting values relative to the baseline system does not exclude mutual
comparison between the rest of the mechanisms, but it facilitates discussion when
focusing on individual application behaviors, which in some metrics have very
different absolute values.

As a performance metric we use the speedup relative to the baseline system.
To assess execution fairness, we use the metric M1 defined by Kim et al. [9].

Unlike other metrics such as the harmonic CPI, M1 is a pure unfairness metric,
independent of performance rewards. For a mechanism mec controlling the exe-
cution of a mix of applications, M1 is calculated as:

where IPC_mec
i
 is the IPC of application i when running in a system controlled by

the mec mechanism, and IPC_sta
i
 is the IPC when running in the baseline system.

5.2 Design space exploration

For decision-making, Balancer uses two thresholds on HpMO and CCX latency
values, Sects. 4.1 and 4.2, respectively. To analyze their impact on performance
and fairness, we ran ten new mixes under Balancer control using a set of thresh-
olds for HpMO (from 0.03 to 0.07 with steps of 0.01) and CCX latency (from 300
to 450 with steps of 50). Figure 8 shows the average value of speedup (Y-axis)
and M1 (X-axis) obtained by each configuration across all the mixes in our work-
load. The results of each evaluated configuration are shown with the combina-
tion of a shape and a color. The shapes specify the latency thresholds while the
colors indicate the HpMO thresholds. For example, a yellow square represents
the speedup and unfairness for a configuration with thresholds of 0.05 and 400
cycles for the HpMO and latency thresholds, respectively. The gray shapes show
the results of CTM-only Balancer while the circles show the results of CCO-only
Balancer. The horizontal and vertical dashed lines represent the speedup and
unfairness results, respectively, for Uncontrolled.

Variations in the CCX memory latency threshold significantly affect fair-
ness and performance. Reductions in the latency threshold improve fairness,
as the CMT mechanism imposes more traffic constraints on cores, approaching
an equal sharing of memory bandwidth among all cores. CMT always achieves
drastic reductions in unfairness, although in some configurations it produces

(2)M1(mec) =
∑

i

∑

j

(

IPC_stai

IPC_meci
−

IPC_staj

IPC_mecj

)

10268 A. Navarro-Torres et al.

1 3

performance losses. In the best case, CMT manages to divide the M1 metric by
3.17 with respect to Uncontrolled.

On the other hand, variations in the HpMO threshold affect performance but have
negligible effects on fairness. CCO always has a positive impact on performance. It
achieves a speedup varying between 0.1 and 4.0% with a small loss of fairness.

By combining CCO and CMT and properly selecting thresholds, the Balancer
resource control can be directed to different targets, matching the performance/
fairness tradeoff at will. For their detailed evaluation with the one hundred mixes
cited in Sect. 2.3 we select two control solutions, Balancer-P and Balancer-
F (Table 5). Balancer-P is intended to optimize performance, uses values of
0.06 and 450 for the HpMO and latency thresholds respectively, and achieves a
speedup of 7.01% with respect to Uncontrolled, with a 32.9% reduction in unfair-
ness. Balancer-F is designed to optimize fairness, uses values of 0.04 and 300 for
the HpMO and latency thresholds respectively, and achieves a 66.0% reduction in
unfairness, although it produces a 1.2% performance loss with respect to Uncon-
trolled. As an example of minimum unfairness we have discarded the CMT-only
system (gray inverted triangle in Fig. 8), because it achieves a slight reduction in
unfairness but with a significant loss of performance.

Fig. 8 Speedup and unfairness for balancer with different thresholds. Different colors and shapes repre-
sent results for different HpMO and latency thresholds, respectively. Green dashed lines correspond to an
Uncontrolled system (color figure online)

Table 5 Balancer-P and
Balancer-F thresholds (color
figure online)

Metrics Balancer-P Balancer-F

HpMO, hits/(misses⋅MiB) X = 0.06 X = 0.04
CCX mem. latency, cycles Y = 450 Y = 300

10269

1 3

BALANCER: bandwidth allocation and cache partitioning for…

5.3 Performance

Figure 9 shows, for each application, the speedup obtained by all mechanisms
with respect to the Static baseline system. The last group of bars on the right
shows that, on average, all mechanisms improve performance against Static.
However, only Balancer-P outperforms Uncontrolled. Balancer-P focuses on
improving overall system performance. Since it limits bandwidth to those cores
that cause high memory latencies, it causes 7 applications out of 33 to lose per-
formance with respect to Uncontrolled, being 549.fotonik3d_r the worst
case with a 0.45 slowdown. However, Balancer-P outperforms Uncontrolled in 14
out of 18 SPEC CPU2006 applications and 12 out of 15 SPEC CPU2017 applica-
tions, and achieves an average improvement of 7.1%, with a maximum speedup of
42.4% on 429.mcf.

Balancer-F, on the other hand, improves fairness by more aggressively limiting
main memory traffic, resulting in performance losses relative to Uncontrolled in
10 applications out of 33 selected. Yet Balancer-P outperforms Uncontrolled in
11 out of 18 SPEC CPU2006 applications and in 12 out of 15 SPEC CPU2017
applications, with average performance only 1.3% worse.

Notice that Balancer-P slows down five applications with respect to Static
(471.omnetpp, 473.astar, 500.perl, 520.omnetpp, 557.xz). These
are weak applications in the sense that they take up few resources when in com-
petition with other applications, as can be seen from the L3Occ data in Fig. 6.
Therefore, these applications achieve better performance if they are allocated
4 MiB of LLC without competition. The two Balancer configurations lose the
least with respect to Static, with quite a difference in some cases with respect to
all other mechanisms. In other words, Balancer manages to protect these weak
applications better than the other mechanisms.

Fig. 9 Speedup of the selected SPEC CPU2006 and CPU2017 applications for all control mechanisms
relative to Static (color figure online)

10270 A. Navarro-Torres et al.

1 3

5.4 Fairness

Table 6 shows the average value of M1 obtained by each mechanism for all the
mixes in our workload. Note that M1 is an unfairness metric and therefore the lower
the better.

Uncontrolled presents the highest value of unfairness (M1 = 851). This is an
expected result as each application uses the resources it needs without regard to the
impact on other applications. UCPd and UCPm manage to reduce the unfairness by
25% and 18% with respect to Uncontrolled, but at the cost of a significant loss of
performance, as we have seen in the previous section. Balancer-F, on the other hand,
achieves a much larger reduction in unfairness, 64.5% less than Uncontrolled, with a
performance loss of only 1.3%. Even the performance optimized version, Balancer-
P, manages to reduce the unfairness to values similar to those of UCPd and UCPm
with a very significant performance improvement.

An important benefit of improving system fairness is that execution time predict-
ability increases. Less variability in the execution time of applications facilitates
scheduling decisions and minimizes unexpected charges for services.

Figure 10 shows, for each application, the maximum, minimum, 75th, and 25th
percentiles of the IPC values obtained for all application instances run in the differ-
ent workload mixes. Values are shown for the two Balancer configurations and for
Uncontrolled.

Balancer-F reduces the variability in IPC with respect to Uncontrolled in all
applications except 502.gcc. The reduction is very significant in many applica-
tions. As an example, with Balance-F, the difference between the 25th and 75th

Table 6 Average M1 execution
fairness

Balancer-P Balancer-F Uncontrolled UCPd UCPm

693 298 851 634 698

Fig. 10 IPC variability: 75th and 25th percentiles and maximum and minimum values (color figure
online)

10271

1 3

BALANCER: bandwidth allocation and cache partitioning for…

percentiles is less than 10.0% in 20 of the 33 applications, and greater than 20.0%
in only 5 applications. With Uncontrolled, the difference is greater than 10.0% for
all applications and greater than 20.0% for 23 out of 33. Balancer-P also reduces
the variability compared to Uncontrolled in most applications, 26 out of 33, but to a
lesser extent than Balancer-F.

5.5 Number of cores and scalability

An alternative to limiting memory bandwidth is to decrease the number of cores
used to run applications. By loading the system with a smaller number of applica-
tions, each application has a larger fraction of resources at its disposal.

To test the impact on system performance of leaving cores idle, we ran 10,000
SPEC CPU2006 and CPU2017 applications on our system using 64 cores (all active,
one pinned application per core), 56 cores (1 idle core per CCD) and 48 cores (1
idle core per CCX). In all experiments, the Balancer thread is active, and when an
application terminates and frees a core, the next application to run on it is the one
with the lowest cumulative execution time. This ensures that all applications are rep-
resented uniformly, regardless of their individual running time.

Running the 10,000 applications on 64 cores took 15 h 52 min, on 56 cores (87%
of our processor’s total capacity) it took 17 h 27 min (10% more), and on 48 cores
(75% of our processor’s total cores) it took 18 h 10 min (13% more). Therefore, we
have not seen any performance improvement from leaving cores idle. In terms of
performance it is best to keep the system at its maximum possible load.

Works such as García et al. [17] or Xiao et al. [10] use a maximum of 80% and
40% of the processor cores respectively to evaluate their mechanisms. García et al.
uses 8, 12 and 16 cores to analyze the impact of the number of applications on fair-
ness. Xiao et al. uses only 8 cores because they do not have enough masks to run
their algorithm with a larger number of cores. Our algorithm does not have any limi-
tation on masks. Nor have we perceived a performance improvement that would jus-
tify the use of fewer cores than the maximum available in our processor.

6 Related work

Most previous proposals for shared resource control act on the LLC to improve over-
all system performance or fairness [4, 7–18, 39], or turnaround time [25]. Among
them we highlight KPART [7], DCAPS [8] and LFOC [17]. They use demand miss
rate and IPC curves, which are dynamically computed, to guide application clus-
tering and LLC partitioning. LFOC identifies in a first step the applications with
IPC insensitive to the LLC capacity and isolates them in a single partition with two
cache ways. Balancer uses this same technique with two differences: i) LFOC uses
DMPKI to guide this decision while Balancer uses HpMO. This implies that in
some cases LFOC may increase bandwidth consumption. ii) Balancer uses a single

10272 A. Navarro-Torres et al.

1 3

cache way partition to isolate applications because its selection algorithm is more
restrictive than that of LFOC.

Some of these proposals also use memory traffic to drive their decisions [7,
19–21, 23]. However, only CoPart acts directly on this resource in addition to act-
ing on LLC [18]. Our proposal acts on both resources. So, CoPart is the proposal
that most closely resembles ours. CoPart acts on the LLC and memory traffic of
a 16-core Intel Xeon to improve fairness. It first performs profiling to determine
the sensitivity of each application to the slowdown it experiences when the cache
or available bandwidth gets reduced. Then, applications are dynamically ranked
according to whether they need more resources or are able to give up the ones they
have. CoPart formulates LLC and memory bandwidth allocation as an economy
problem, where resources are reallocated from one application to another using a
heuristic looking for maximum fairness.

The main problem of all these mechanisms is the complexity of the control/moni-
toring actions that classify the applications. An example is the use of the miss rate
curve. Usually, the mechanisms require the execution of each application with dif-
ferent resource limits to obtain such behavior models. This classification has to be
repeated periodically to detect application phase changes. Moreover, this problem
is more critical as the number of cores increases. In contrast, our proposals monitor
simple metrics to detect inefficient use of LLC or excessive latency due to band-
width abuse.

Another important limitation of these mechanisms is that their heuristics, when
changing the allocation of resources to an application, only consider the achieved
self-profit, without taking into account the impact on the system. On the contrary,
the mechanisms proposed in Balancer identify inappropriate uses of resources in
order to prevent them and improve system performance.

On the other hand, other proposals only act on memory traffic [11, 27, 42–46].
EMBA limits the memory traffic of the applications that use more bandwidth [27]. It
does this progressively and observes the impact on system performance. The mecha-
nism stops increasing the limitations when it detects a loss in performance. In addi-
tion, it restarts when it detects a phase change in one of the applications. The mecha-
nism is tested with only eight cores, and unlike our proposal, it does not control LLC
allocation.

PABST focuses on controlling memory traffic by restricting request rates and
changing the priority of memory requests [42]. However, it is evaluated on a simu-
lator, and requires extra hardware. In contrast, our proposal runs on real hardware.
Other works that also use simulation instead of real hardware are [43–46]. These
works propose new schedulers for the main memory controller to improve system
performance and/or fairness.

Finally, we have considered comparison with several of these state-of-the-art LLC
control mechanisms, but it has not been possible for several reasons. Most authors
rely on closed source codes, making it very difficult to ensure that a third-party
implementation is truthfully conforming to their approach. We are aware of only
two works that provide open source codes, ElSayed et al. [7] and Pons et al. [25].
However, both mechanisms are intended for Intel processors with an inclusive LLC
and no clustering of cores and resources. In contrast, the AMD organization uses

10273

1 3

BALANCER: bandwidth allocation and cache partitioning for…

non-inclusive LLCs grouped in CCXs serving clusters of cores, which compete for
main memory bandwidth through two levels of routing, first the CCD I/O and then
the die I/O. Therefore, adjusting these mechanisms to a hierarchical organization
requires in-depth changes that go beyond code adaptation. For example, it is neces-
sary to decide whether to establish a single control mechanism throughout the sys-
tem or a mechanism per shared LLC in every CCX. Moreover, it is necessary to
find the AMD hardware counters, if they exist, equivalent to the Intel ones. In our
attempt to port these mechanisms, we were unable to compile the code of Pons et al.
and obtained unsatisfactory results when running that of ElSayed et al. For these
reasons, we decided to leave them out of comparison.

7 Conclusions

This paper presents a detailed characterization of the execution of the subset of sin-
gle-threaded, memory-intensive test programs of the SPEC CPU2006 and CPU2017
suites on an AMD Rome processor. This analysis focuses on the impact of available
LLC and memory bandwidth on the performance of an application. We have identi-
fied a type of application whose performance is barely affected when its allocated
LLC space decreases, but whose memory bandwidth consumption increases signifi-
cantly, negatively affecting system performance. We have also found that memory
access latency is a better indicator than memory traffic for assessing memory access
contention. As far as we know, this is the first time that these findings have been
highlighted.

From the characterization work, we have proposed strategies that impose limits
on LLC space utilization and memory traffic to specific applications. These con-
straints improve performance and/or fairness of multiprogrammed workloads, on
average, with respect to a system with no control. Specifically, Balancer-P, tuned
for performance, improves IPC 7.1% and reduces unfairness 18.6% compared to
the system without control, while Balancer-F, tuned for fairness, reduces unfairness
64.5% in exchange for a 1.3% loss in performance. Balancer requires no hardware or
operating system modifications. Our proposal is the only one, to our knowledge, that
controls LLC occupancy and memory traffic on an AMD processor with 64 cores
organized in clusters.

Appendix A: Paper artifact description appendix

Artifact description

The paper reports experiments that characterize the execution of the single-threaded,
memory-intensive benchmarks of the SPEC CPU2006 and CPU2017 suites on an
AMD Rome processor. It also reports experiments to evaluate Balancer, a new set of
mechanisms that controls LLC space and memory traffic allocations to improve sys-
tem performance and fairness when running multiprogrammed workloads. We have

10274 A. Navarro-Torres et al.

1 3

published in a public repository the Balancer code and the information necessary
to reproduce the experiments for the characterization: https:// github. com/ agusnt/
BALAN CER.

Experimental framework

Hardware

We have used a server with a 64-core EPYC 7702P processor and 256 GiB of DDR4
DRAM. Both TurboBoost and Hyperthreading options were disabled. See Table 2
for more details.

Operating system

CentOS 8.2, kernel 4.18.0.

Compilers

Benchmarks have been compiled with gcc version 7.5.0.

Applications

The scripts that run the experiments are developed in Bash and Python 3.6.8.

Libraries and versions

 The following Python libraries have been used: numpy, psutil, and json.

Input datasets

 The workload chosen involves a subset of the single-threaded, memory-intensive
applications from SPEC CPU2006 and CPU2017 suites and the Triad applica-
tion of the STREAM benchmark. Both SPEC CPU2006 and SPEC CPU2017 can
be ordered at the following URL: https:// www. spec. org/ order. html. The STREAM
source code is available at the following URL: https:// www. cs. virgi nia. edu/ stream/
FTP/ Code/.

Authors’ contribution ANT has performed experimentation and data processing. All authors have pro-
posed experiments, analyzed their results, wrote the main manuscript text and reviewed the manuscript.
ANT prepared the figures. PI and VVY sought funding for the project.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. All
authors acknowledge support from grants (1) PID2019-105660RB-C21 / AEI / 10.13039/501100011033
from Agencia Estatal de Investigación (AEI) and European Regional Development Fund (ERDF), (2)

https://github.com/agusnt/BALANCER
https://github.com/agusnt/BALANCER
https://www.spec.org/order.html
https://www.cs.virginia.edu/stream/FTP/Code/
https://www.cs.virginia.edu/stream/FTP/Code/

10275

1 3

BALANCER: bandwidth allocation and cache partitioning for…

gaZ: T58_20R research group from Aragón Government and European Social Fund (ESF), and (3) 2014-
2020 "Construyendo Europa desde Aragón" from European Regional Development Fund (ERDF).

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Mattioli M (2021) Rome to Milan, AMD continues its tour of Italy. IEEE Micro 41(4):78–83. https:// doi.
org/ 10. 1109/ MM. 2021. 30865 41

 2. Starke WJ, Thompto BW, Stuecheli JA, Moreira JE (2021) Ibm’s power10 processor. IEEE Micro 41(2):7–
14. https:// doi. org/ 10. 1109/ MM. 2021. 30586 32

 3. Herdrich A, et al. (2016) Cache QoS: from concept to reality in the Intel® Xeon® processor E5-2600 v3
product family. In: HPCA, pp. 657–668

 4. Wang X, et al. (2017) SWAP: effective fine-grain management of shared last-level caches with minimum
hardware support. In: HPCA, pp. 121–132

 5. Kashyap A (2020) High performance computing: tuning guide for AMD EPYCTM 7002 Series Processors.
Pub. 56827, rev 1.0

 6. Karamatas C (2022) AMD EPYC 7003 series microarchitecture overview. Pub. 57075, rev 3.0
 7. El-Sayed N, et al. (2018) KPart: a hybrid cache partitioning-sharing technique for commodity multicores.

In: HPCA, pp. 104–117
 8. Xiang Y, et al. (2018) DCAPS: dynamic cache allocation with partial sharing. In: EuroSys
 9. Kim S, et al. (2004) Fair cache sharing and partitioning in a chip multiprocessor architecture. In: PACT,

pp. 111–122
 10. Xiao J, et al. (2019) CPpf: a prefetch aware llc partitioning approach. In: ICPP
 11. Park J, et al. (2018) Hypart: a hybrid technique for practical memory bandwidth partitioning on com-

modity servers. In: PACT
 12. Cook H, et al. (2013) A hardware evaluation of cache partitioning to improve utilization and energy-

efficiency while preserving responsiveness. In: ISCA, pp. 308–319
 13. Sun G, et al. (2019) Combining prefetch control and cache partitioning to improve multicore perfor-

mance. In: IPDPS, pp. 953–962
 14. Xu M, et al. (2018) DCat: dynamic cache management for efficient, performance-sensitive infrastruc-

ture-as-a-service. In: EuroSys, pp. 1–13
 15. Kim Y, et al. (2019) Application performance prediction and optimization under cache allocation tech-

nology. In: DATE, pp. 1285–1288
 16. Selfa V, et al. (2017) Application clustering policies to address system fairness with Intel’s cache alloca-

tion technology. In: PACT, pp. 194–205
 17. Garcia-Garcia A, Saez JC, et al. (2019) LFOC: a lightweight fairness-oriented cache clustering policy

for commodity multicores. In: ICPP
 18. Park J, et al. (2019) CoPart: coordinated partitioning of last-level cache and memory bandwidth for

fairness-aware workload consolidation on commodity servers. In: EuroSys
 19. Tembey P, et al. (2014) Merlin: application- and platform-aware resource allocation in consolidated

server systems. In: SOCC, pp. 1–14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MM.2021.3086541
https://doi.org/10.1109/MM.2021.3086541
https://doi.org/10.1109/MM.2021.3058632

10276 A. Navarro-Torres et al.

1 3

 20. Lo D et al (2016) Improving resource efficiency at scale with Heracles. ACM Trans Comput Syst
34(2):1

 21. Nikas K, et al. (2019) DICER: diligent cache partitioning for efficient workload consolidation. In: ICPP.
ICPP 2019

 22. Zhu H, et al. (2016) Dirigent: enforcing qos for latency-critical tasks on shared multicore systems. In:
ASPLOS, pp. 33–47

 23. Chen S, et al. (2019) Parties: QoS-aware resource partitioning for multiple interactive services. In: Proc
of the Twenty-Fourth Intl Conf on Architectural Support for Programming Languages and Operating
Systems, pp. 107–120

 24. Xu M, et al. (2017) vCAT: dynamic cache management using cat virtualization. In: RTAS, pp. 211–222
 25. Pons L et al (2020) Phase-aware cache partitioning to target both turnaround time and system perfor-

mance. IEEE Trans Parallel Distrib Syst 31(11):2556–2568
 26. Funaro L, et al. (2016) Ginseng: market-driven llc allocation. In: USENIX ATC, pp. 295–308
 27. Xiang Y, et al. (2019) Emba: efficient memory bandwidth allocation to improve performance on Intel

commodity processor. In: ICPP
 28. Fujitsu: A64FX® Microarchitecture Manual Ver. 1.6 (2021)
 29. Naffziger S, et al. (2021) Pioneering chiplet technology and design for the AMD EPYCTM and RyzenTM

processor families : Industrial product. In: ISCA, pp. 57–70
 30. Pellegrini A et al (2020) The arm neoverse N1 platform: building blocks for the next-gen cloud-to-edge

infrastructure soc. IEEE Micro 40(2):53–62. https:// doi. org/ 10. 1109/ MM. 2020. 29722 22
 31. Doweck J et al (2017) Inside 6th-generation Intel Core: new microarchitecture code-named Skylake.

IEEE Micro 37(2):52–62. https:// doi. org/ 10. 1109/ MM. 2017. 38
 32. Advanced micro devices: processor programing reference (PRR) for AMD Family 17h Model 20h,

Revision A1 Processors. Rev 3.07 (2020)
 33. Advanced micro devices: AMD64 technology platform quality of service extensions. Pub. 56375, rev

1.01 (2018)
 34. Agarwal A, Hennessy J, Horowitz M (1988) Cache performance of operating system and multipro-

gramming workloads. ACM Trans Comput Syst 6(4):393–431. https:// doi. org/ 10. 1145/ 48012. 48037
 35. Eyerman S, Eeckhout L (2008) System-level performance metrics for multiprogram workloads. IEEE

Micro 28(3):42–53
 36. Navarro-Torres A, et al. (2019) Memory hierarchy characterization of SPEC CPU2006 and SPEC

CPU2017 on the Intel Xeon Skylake-SP. PLOS ONE, 1–24
 37. Standard performance evaluation corporation: SPEC CPU 2006. https://www.spec.org/cpu2006/
 38. Standard performance evaluation corporation: SPEC CPU 2017. https://www.spec.org/cpu2017/
 39. Qureshi MK, et al. (2006) Utility-based cache partitioning: a low-overhead, high-performance, runtime

mechanism to partition shared caches. In: MICRO, pp. 423–432
 40. McCalpin JD (1995) Memory bandwidth and machine balance in current high performance computers.

IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, 19–25
 41. De Melo AC (2010) The new linux “perf” tools. In: Linux Kongress, Vol. 18. http:// vger. kernel. org/

~acme/ perf/ lk2010- perf- paper. pdf
 42. Hower DR, et al. (2017) PABST: proportionally allocated bandwidth at the source and Target. In:

HPCA, pp. 505–516
 43. Ebrahimi E, et al. (2010) Fairness via source throttling: a configurable and high-performance fairness

substrate for multi-core memory systems. In: ASPLOS, pp. 335–346
 44. Ipek E, et al. (2008) Self-optimizing memory controllers: a reinforcement learning approach. In: ISCA,

pp. 39–50
 45. Mutlu O, et al. (2007) Stall-time fair memory access scheduling for chip multiprocessors. MICRO,

146–160
 46. Nesbit KJ, et al. (2006) Fair queuing memory systems. In: MICRO, pp. 208–222

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/MM.2020.2972222
https://doi.org/10.1109/MM.2017.38
https://doi.org/10.1145/48012.48037
http://vger.kernel.org/%7eacme/perf/lk2010-perf-paper.pdf
http://vger.kernel.org/%7eacme/perf/lk2010-perf-paper.pdf

	BALANCER: bandwidth allocation and cache partitioning for multicore processors
	Abstract
	1 Introduction
	2 Experimental environment and methodology
	2.1 AMD Rome core organization
	2.2 Monitoring & control tools
	2.3 Workload

	3 Characterization
	3.1 Performance versus LLC capacity
	3.2 Performance versus memory bandwidth
	3.3 Multiprogrammed workload

	4 Balancer: bandwidth allocation and cache partitioning
	4.1 Control of LLC occupancy (CCO)
	4.1.1 Motivation
	4.1.2 Proposal

	4.2 Control of memory traffic (CMT)
	4.2.1 Motivation
	4.2.2 Proposal

	4.3 Balancer: simultaneous control of LLC occupancy and memory traffic (CCO+CMT)

	5 Balancer evaluation
	5.1 Metrics and baseline system
	5.2 Design space exploration
	5.3 Performance
	5.4 Fairness
	5.5 Number of cores and scalability

	6 Related work
	7 Conclusions
	Appendix A: Paper artifact description appendix
	Artifact description
	Experimental framework
	Hardware
	Operating system
	Compilers
	Applications
	Libraries and versions
	Input datasets

	References

