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Abstract

Runtime systems can significantly reduce the cognitive complexity of scientific
applications, narrowing the gap between systems engineering and domain science
in HPC. One of the most important angles in this is automating data migration in a
cluster. Traditional approaches require the application developer to model communi-
cation explicitly, for example through MPI primitives. Celerity, a runtime system for
accelerator clusters heavily inspired by the SYCL programming model, instead pro-
vides a purely declarative approach focused around access patterns. In addition to
eliminating the need for explicit data transfer operations, it provides a basis for effi-
cient and dynamic scheduling at runtime. However, it is currently only suitable for
accessing array-like data from runtime-controlled tasks, while real programs often
need to interact with opaque data local to each host, such as handles or database
connections, and also need a defined way of transporting data into and out of the vir-
tualised buffers of the runtime. In this paper, we introduce a graph-based approach
and declarative API for expressing side-effect dependencies between tasks and mov-
ing data from the runtime context to the application space.

Keywords Runtime system - DAG - Accelerator - Data flow - API

1 Introduction

Modern scientific and High Performance Computing (HPC) is a challenging
environment for software engineering. In order to increase compute throughput
despite the ever tighter constraints on power efficiency, modern supercomputer
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hardware embraces heterogeneous processor architectures, deep memory hierar-
chies with non-uniform access characteristics and specialized network topologies.
Most of the increasing complexity is directly passed onto the application devel-
oper in the form of intricate APIs and in some cases entirely disjoint program-
ming models allowing optimal utilization of the available technologies in every
use case. While the resulting increase in up-front development cost can be accept-
able for large-scale applications such as general-purpose simulation toolKkits,
specialized single-use codes for novel discovery will not have the development
budget required to test a research hypothesis that might turn out to be a dead-end.

Distributed Memory Runtime Systems are an established concept for easing
select aspects of the complexity in these heterogeneous systems, such as perfor-
mance portability, optimizing execution schedules with unbalanced loads or auto-
matic data migration between computation steps. They typically incur a trade-off
between expressiveness, correctness guarantees, and the level of permitted user
control.

The mission statement of Celerity [14], a task-based distributed memory runt-
ime system for accelerator clusters, is to make programming heterogeneous HPC
systems more accessible and time-efficient by facilitating low-effort porting of
single-node SYCL [11] accelerator programs. The Celerity model decomposes a
problem into compute tasks and their data dependencies, using subdivision of the
computational index spaces to transparently distribute work onto a cluster. Celer-
ity exposes a declarative, data-flow-based API operating on virtualized buffers,
inferring dependencies and necessary data transfers in the distributed program
and relieving the programmer of manual scheduling decisions and data migration.

Celerity’s APIs allow it to statically guard against unmanaged buffer accesses
and race conditions between tasks, greatly reducing the potential for program-
ming errors. The runtime implementation benefits from an information-dense
API that supports the generation of efficient execution schedules, while the user
is assured of their code’s correctness by an expressive programming paradigm,
allowing them to focus on core algorithm development instead.

A notable use of Celerity is the Cluster-accelerated magnetohydrodynamics
simulation CRONOS [9], which demonstrates the viability of the Celerity model
for real-world applications. It is also sufficiently generic to serve as the basis for
further abstractions like the Celerity High-level API [15], a programming model
exposing data transformations using composable functional operator pipelines
similar to the C++20 ranges library.

While domain-specific problems can be fully described by compute tasks and
data dependencies between them, real codes need additional features to perform
I/O operations with side effects. Incremental porting from single-node SYCL
applications, an important development goal of Celerity, further requires data
movement between the legacy host application and runtime-controlled virtual
buffers.

In this paper, we present an approach to augmenting the Celerity execution
model with declarative mechanisms for tracking I/O side effects and safely mov-
ing data out of the managed context on pre-existing synchronization points.
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2 Related Work

We compare our novel developments in Celerity to state-of-the-art runtime sys-
tems based on their coherence model and synchronization behavior.

SYCL [11] is an industry-standard, single-source programming model for par-
allel software targeting hardware accelerators. A multitude of implementations
exist, with backends for GPUs [1], multi-core CPUs, and application-specific
FPGAs [10]. Its execution model is fundamentally asynchronous, and scheduling
is constrained by implicit and explicit data dependencies on buffers. SYCL is the
primary influence on the API of Celerity, which aims to ease porting from single-
node SYCL programs to distributed-memory applications.

Legion [3] is a runtime system for distributed heterogeneous architectures
including GPU clusters. It models task parallelism through manual subdivision
of programs into hierarchical tasks in accordance with user-controlled data parti-
tioning. Legion tasks are spawned and awaited asynchronously based on futures,
giving the runtime’s out-of-order scheduler the freedom to migrate tasks between
nodes. Unlike other systems, there is no notion of a “main thread” driving the
execution flow, instead, any task (starting with a single fop-level task) has the
freedom to issue more parallel work as it executes.

SkePU [6, 7] is a skeleton programming system targeting single-node execu-
tion on CPUs or GPUs or distributed execution on an MPI-based backend. Skel-
etons are higher-order constructs such as Map, Reduce or Scan that can be effi-
ciently implemented on all target backends. SkePU follows a synchronous model
where skeleton computations are performed in lock-step with the main program
flow. Memory coherence between host and device containers (and in a distributed
setting, within a container partitioned between MPI ranks) must be established
manually using flush commands.

Kokkos [5, 16] is a single-source programming model targeting various high-
performance computing architectures. It optimizes performance portability by
building abstractions on both the compute and memory hierarchy of modern
hardware. Kokkos has both synchronous and asynchronous APIs for dispatching
work, depending on how output data is passed back to the caller. The user explic-
itly controls in which memory space data resides in and for which access pattern
the data layout is optimized, e.g. with row-major or column-major matrix layouts.

3 The Celerity Runtime System

Celerity is a high-level C++4 API and runtime system bringing the SYCL [11]
accelerator programming model to distributed-memory clusters. Using an
enhanced declarative description of data requirements, it transparently distributes
compute kernels onto the nodes of a cluster while maintaining an API very close
to its single-node ancestor. Celerity has evolved significantly beyond what has
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previously been published [13, 14], so we give a broad overview of the interface
and execution model.

using mat = buffer<float, 2>;
const range<2> size{256, 256};

void diag(handler& cgh, mat& M, float d) {
accessor m{M, cgh, access::one_to_one{}, write_only, no_init};
cgh.parallel_for(size, [=](item<2> i) {
m[i] = i[0] == i[1] 7 d : 0;
b
}

void mul(handler& cgh, mat& A, mat& B, mat& C) {
accessor a{A, cgh, access::slice<2>{1}, read_only};
accessor b{B, cgh, access::slice<2>{0}, read_only};
accessor c{C, cgh, access::one_to_one{}, write_only, no_init};
cgh.parallel_for(size, [=](item<2> i) {
c[i]l = 0;
for(size_t k = 0; k < i.get_range(0); ++k) {
c[i] += al[i[0]]1[k] * b[k][i[11];
}
b
}

void is_diag(handler& cgh, mat& C, float d, buffer<bool>& ok_buf) {
accessor c{C, cgh, access::one_to_one{}, read_only};
auto ok_r = reduction(ok_buf, cgh, sycl::logical_and<bool>{},
property: :reduction::initialize_to_identity{});
cgh.parallel_for(size, ok_r, [=](item<2> i, auto &ok) {
ok.combine(c[i] == (i[0] == i[1] 7 d : 0));
b;

int main() {
distr_queue q;
mat A{size}, B{size}, C{size};
q.submit ([=] (handler& cgh) { diag(cgh, A, 2); });
q.submit ([=] (handler& cgh) { diag(cgh, B, 3); 1});
q.submit ([=] (handler& cgh) { mul(cgh, A, B, C); });
buffer<bool> ok{1};
q.submit ([=] (handler& cgh) { is_diag(cgh, C, 6, ok); });
return /* ok[0] is true */ 7 EXIT_SUCCESS : EXIT_FAILURE;

Listing 1: Simple Celerity program computing the product of two diagonal matrices.

Listing 1 exemplifies the source code of a typical Celerity application. The main
function allocates three two-dimensional buffers for square matrices and instan-
tiates a distributed queue. It then launches a sequence of kernels that initialize A
and B as diagonal matrices (diag function) and compute the naive matrix product
C :=A - B (mul function). Finally, the result is verified by launching a fourth kernel
that computes the expected value of each ¢;; and combines the results using a distrib-
uted reduction over the & & operator.

Work is submitted to the asynchronous distributed queue in the form of command
group functions, which are implemented as lambdas receiving a command group
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handler called cgh in the example. A command group declares a set of buffer
requirements and specifies the work to be executed.

Buffer access is guarded by accessors, which bind buffers to the command group
handler and inform Celerity of the mode of access and the access ranges through
range mappers (here one to_ one and slice). Captured inside the kernel func-
tion that is passed on to parallel for, these accessors facilitate reading and
writing of the actual buffer contents.

All submissions to the distributed queue happen asynchronously and instruct
Celerity to build an internal representation of data requirements and execution
ranges. The actual scheduling, distribution and execution of the submitted kernels
within the cluster is transparently managed by the runtime. The completion of all
submitted command groups is finally awaited implicitly by the ~distr queue ()
destructor.

As indicated by the comment in the last line of main, Celerity does not have
a designated mechanism for transporting data managed by the runtime back to the
host application. Closing this gap is non-trivial and a core contribution of this work,
for which workarounds need to be inserted currently.

3.1 Celerity’s Graph-Based Execution Model

Execution of a Celerity program is distributed unto nodes, where a designated mas-
ter node creates the execution schedule for the entire cluster and determines how
data and computational load is distributed. This centralized approach has the poten-
tial to incorporate dynamic scheduling decisions such as load balancing at runtime
without requiring costly synchronization between equal nodes in a distributed sched-
uling setting. By relying on fully asynchronous work assignment, Celerity is able to
avoid the scalability problems that a more traditional lock-step implementation of
centralized scheduling would be certain to encounter.

As command groups are submitted from the application thread of a Celerity pro-
gram, a coarse-grained, directed acyclic graph (DAG) called the task graph is con-
structed. Each command group creates a corresponding task node, and data depend-
encies between command groups manifest as true- or anti-dependencies as if the
entire program was executed on a single node.

On the master node, the scheduler then constructs a fine-grained command graph
that models the distributed executions and all data transfers that arise with it. Com-
mands are always bound to a particular node, but the precise projection of tasks onto
commands varies with the task type. For example, device execution tasks, which are
generated from command groups invoking handler: :parallel for (), may
be split such that each worker node receives one part of the total execution range.

Figure 1 shows possible task and command graphs for the program in Listing 1.
While the task graph reflects the high-level dependency structure visible in the
source code, the command graph contains only dependencies induced by the sub-
ranges executed on each node.

Within task and command graph, dependencies are assigned based on the access
modes of buffer accesses and the submission order. For example, a command group
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Tasks Commands (Node 0) Commands (Node 1)
diag exec diag [0..128, ] exec diag [128..256, *]
write A write A [0..128, x] write A [128..256, x|
diag exec diag [0..128, ] exec diag [128..256, x|
write B write B [0..128, ] write B [128..256, *]

Y Y
push to 1 push to 0
read B [0..128, %] read B [128..256, *]

await push from 1 B await push from 0
write B [128 .256, ] write B [0..128, ]

mul exec mul [O..128, ] exec mul [128..256, ]
read A read A [0..128, %] read A [128..256, %]
read B read B [x, %] read B [x, ]
write C' write C' [0..128, *] write C' [128..256, |
A A4
is_diag exec is_diag [0..128, %] exec is_diag [128..256, ]
read C read C' [0..128, x] read C [128..256, *]
write ok write, ok [] write, ok []
—» —» —>» true dependency = ------ # data transfer

Fig. 1 Task graph (left) and command graph (right) arising from Listing 1 for two nodes in stable Celer-
ity. Kernel execution commands show the 2-dimensional iteration sub-range and the resulting data
requirements as assigned by the scheduler. In each dimension, the interval a..b includes a but excludes b,
and x denotes the entire range. The necessary inter-node data exchange generates auxiliary push / await
push command pairs

with write access followed by a command group with read access to the same buffer
region will generate a true dependency, while the inverse order will generate an
anti-dependency.

A unique concept in Celerity, and one of the fundamental points where its API dif-
fers from SYCL, are range mappers. These projections, required on each accessor,
inform the runtime which portions of each buffer an arbitrary subdivision of the execu-
tion space will access.

The stream of serialized commands is forwarded to the respective worker nodes,
which place them into their executor queue. The executor of each worker node will
then make its own local scheduling decisions to best allocate its resources to the pend-
ing commands. While all nodes construct identical task graphs in parallel, the com-
mand graph structure only exists on the master node in its full form. Pure worker nodes
only reconstruct the relevant dependency graph locally from the serialized commands.

4 Modeling Node-Local Side Effects
SYCL and Celerity share the concept of host tasks that asynchronously schedule
the execution of arbitrary code on the host, avoiding host-device synchronization

and scheduler stalls. Similar to device tasks, host tasks can read and write buffers

@ Springer



156 International Journal of Parallel Programming (2023) 51:150-171

through the accessor mechanism. Additionally, they are able interact with operating
system APIs such as file I/O and reference objects allocated in the main thread, since
they operate in the same address space. As soon as multiple host tasks references
a single resource, the resulting synchronization or ordering constraints need to be
enforced during execution.

The only synchronization primitive offered by Celerity are cluster-wide barriers
that can be inserted between command groups through the aptly-named distr
queue::slow_full sync() APL These barriers additionally serialize the
execution on each node and synchronize between the main and executor threads of
the runtime.

In order to avoid race conditions around node-local state, the application devel-
oper must currently insert such a barrier in any place where an invisible node-local
dependency exists between two tasks. This “sledgehammer synchronization” is not
only error-prone, but also detrimental to application performance due to the subse-
quent stalling of work submission.

In the following, we want to explore how to establish ordering on node-local
state while conserving as much scheduling freedom as possible through an in-graph
mechanism.

4.1 Node-Local Side Effects and Dependencies in Related Work

SYCL offers host tasks for asynchronously executing arbitrary C++ code. In addi-
tion to implicit data dependencies arising from buffer accesses, a user is free to
add control-flow dependency edges using the handler: :depends_on () APL
These dependencies ensure correct ordering around side effects.

Legion forbids side-effects inside task code since its scheduler will dynami-
cally migrate tasks between nodes. To perform I/O work, Legion offers specialized
Launchers that permit attaching global resources to a task.

SkePU forbids side effects inside skeleton user functions to ensure protability
between CPU and accelerator backends. Since it uses lock-step execution, code con-
taining side effects can be freely interspersed with skeleton calls as long as the nec-
essary memory coherence is established using flush commands. In the distributed
setting, SkePU offers the external facility for constraining code with cluster-
global side effects to a single MPI rank.

Kokkos has support for light-weight task parallelism using the host spawn
facility. Spawing a task will yield a future which can be named as a prerequisite to
a successor task, introducing a scheduling dependency. Aside from the naming, this
approach is identical to SYCL.

4.2 Dataflow-Centric: Host Objects and Declarative Side Effects

Even though the closely-related SYCL sets a precedent for explicit control-flow
dependencies, the depends on API is primarily intended for the alternative,
explicit memory management added in SYCL 2020 a feature that is fundamentally
at odds with the transparent coherence model of Celerity.
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To the contrary, adopting this approach would introduce room for user error that
does not exist for buffer data dependencies since no connection could be made between
a dependency declaration and the actual side effect.

As a novel data-flow centric API, we introduce the concept of host objects and side
effects as shown in Listing 2. Similar to how buffers and accessors manage distributed
data, they provide an expressive and safe interface for creating data-flow dependencies
between command groups.

A host object is a wrapper to a reference or value type with semantics that are
entirely user-defined, but for which access is guarded by the runtime. Any host object
is guaranteed to outlive its last observing host task, so no dangling reference problems
arise from deferred kernel execution.

A side effect, when defined in a command group, grants the host task access to a
host object and communicates the resulting local ordering constraints to the runtime.
The host object—side effect duality is deliberately similar to the one between buffers
and accessors, both in SYCL and Celerity.

template <typename T>

class host_object {
host_object (T&& obj);

};

template <typename T>

class host_object<T&> {
host_object(std: :reference_wrapper<T> obj);

};

template <>

class host_object<void> {
host_object();

};

enum class side_effect_order { relaxed, exclusive, sequential };
template<side_effect_order> struct /# ezposition only */ order_tag {};
inline constexpr order_tag<side_effect_order::relaxed> relaxed_order;
inline constexpr order_tag<side_effect_order::exclusive> exclusive_order;
inline constexpr order_tag<side_effect_order::sequential> sequential_order;

template <typename T, side_effect_order Order = sequential>
class side_effect {
side_effect(const host_object<T>& object, handler& cgh,
order_tag<Order> = {} /* for class template argument deduction */);
/* reference-type */ operatorx() const; // when T is not void
/* pointer-type */ operator->() const; // when T is not woid

};

Listing 2: Host Object and Side Effect API
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int main() {
distr_queue q;
host_object<std::ofstream> ofs("file.txt");
q.submit ([=] (handler& cgh) {
side_effect e{ofs, cgh, /# sequential by default */3};
cgh.host_task(on_master_node, [=] { *e << "Hello "; 1});
H;
q.submit ([=] (handler& cgh) {
side_effect e{ofs, cgh, sequential_order /#* deduction tag */};
cgh.host_task(on_master_node, [=] { *e << "world!"; 1});

b
Listing 3: Using side effects to serialize writes to a shared file handle

The example in Listing 3 shows how a file handle is wrapped in a host object to
capture it in a host task. Thereafter, accessing the handle itself is only possible by
constructing a side effect. This statically guarantees that the object state can only be
observed inside host tasks and resulting ordering constraints are always known to
the runtime.

To guard against the accidental observation of non-managed state, we assert at
compile time that a command group function does not capture by reference' unless
it is passed with the allow by ref tag. Since buffers and host objects have
shared-pointer semantics internally, by-value captures are always sufficient in ker-
nels interacting with them.

4.3 Accurate Scheduling Constraints through Side Effect Orders

By default, side effects as proposed above will always serialize execution between
host tasks observing the same object. Since host objects are opaque and the pre-
cise semantics of interactions within the host task cannot be further inspected by the
runtime, this can be overly restrictive. For example, incrementing an atomic counter
from multiple host tasks does not need to introduce any scheduling or synchroniza-
tion constraints, but the user should still be able to rely on the runtime for the live-
ness guarantees on the host object.

Choosing between different scheduling guarantees for side effects is reminis-
cent of access modes on buffer access. However, the read—write dichotomy itself
is not a good fit for this new use case: First of all, whether two “writing” side
effects can be scheduled concurrently or not depends on the level of synchroniza-
tion employed by the object itself, which is outside of Celerity’s control. Also, for

' In C++, references and types transitively containing references are not considered standard layout
types, so this property can be conservatively verified using std: :is_standard layout v<>.
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buffers, the access modes are instructive of implicit data movement by the runt-
ime, which does not apply to host objects either.

We therefore propose three distinct side effect orders that can optionally be
specified when a side effect is declared:

— sequential order: The task cannot be re-ordered against or executed concur-
rently with any other task affecting the same host object.

— exclusive order: The task may be re-ordered, but not executed concurrently
with any other task affecting the same host object.

— relaxed order: The task may be executed concurrently with and freely re-
ordered against other tasks affecting the same host object.

Relaxed-order side effects are sufficient if the contained object provides syn-
chronization internally, or if the task only performs inherently thread-safe non-
mutating accesses while any mutating operations in other tasks occur in the con-
text of a sequential-order side effect.

procedure ApDDSIDEEFFECT(¢, h) Legend

if sp, exists A (r(t,h) # sequential V A;, = () then ¢ task
D «— D U {(t — sn)} i

end if h host object

if r(t, h) = sequential then Sh last task with sequential
D—DuU{{t—t)|teA} side effect on h
Ap <0 r(t,h) side effect order of task ¢ on
Shp et host object h

else Ay active conflict set of tasks on h

C—CuU{(t=t)|t eA,

1 r(t, h) = exclusive V r(t', h) = exclusive} D set of dependenciesd
Ap — Ap U {t} (directed edges)
end if C set of conflicts
end procedure (undirected edges)

Algorithm 1: Generating dependency and conflict edges for side effects on the task graph.
This algorithm also applies to the command graph, where states (D,C, A, s) are tracked
separately per worker instead.

An exclusive-order side effect is indicated when execution order is irrelevant,
but concurrent accesses would violate synchronization requirements. This is
superior to a relaxed-order side effect combined with manual locking if the lock
would have to be held for any significant amount of time. Instead of stalling exec-
utor threads, each worker node is able to generate efficient local schedules around
the resulting constraints ahead of time.

A sequential-order side effect must be used when re-ordering would change the
semantics of the node-local state in a way that invalidates results, or concurrency
on execution would violate synchronization requirements. This is the strongest
guarantee and also the default behavior.

Note that between a pair of tasks affecting the same host object, the more
restrictive side effect order decides the level of freedom with respect to re-
ordering and concurrency. As a consequence, relaxed side effects give a stronger
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task 1
sequential H
task 3
A relaxed H
task 4 v
relaxed H task §
exclusive H
task 6

sequential H conflict <—>

true dependency —»

task 2
exclusive H

Fig.2 Mixed task graph originating from side effects with different orders on a single host object H.
Sequential-order side effects serialize against other tasks using temporal dependencies, whereas exclu-
sive-order side effects introduce conflict edges to otherwise concurrent tasks. No edge arises between the
two relaxed tasks 3 and 4, so this pair remains concurrent. The associated command graph (not shown
here) will have an equivalent structure

guarantee than an unmanaged reference-capture of the raw object would, since
they are guaranteed to not be re-ordered against sequential effects.

To implement re-ordering constraints, we augment the task and command graph
structures to track undirected conflict edges between tasks in addition to the existing
directed dependency edges. Conflict edges indicate mutual exclusion between tasks,
a strictly weaker requirement than the serializing dependencies impose. Task and
command graphs thus become mixed graphs as seen in Fig. 2 Algorithm 1 shows
how dependencies and conflicts are derived from side effects.

As evaluating the necessary concurrency constraints of arbitrary operations on
a host object requires intricate knowledge of its API guarantees, we consider the
explicit specification of side effect orders an advanced feature. The sequential
default guarantees scheduling correctness until an exact set of constraints proves
beneficial for a specific problem.

4.4 Opportunistic Scheduling of Mixed Command Graphs

The output of the existing Celerity scheduler is a stream of commands per node con-
sisting of kernel execution ranges, metadata, and an list of prior command identifiers
that it depends on. These commands are serialized to worker nodes in a topological
order of the directed dependency graph. Executors do not need to reconstruct the
command graph from this stream, but can instead maintain a set of eligible com-
mands which contains all those that have no remaining unmet dependencies. The
executor can then perform local scheduling on the eligible set to dynamically opti-
mize resource utilization.

With the addition of conflict edges to the command graph, we extend the local
scheduler to handle mutual exclusions between commands. The theory behind effi-
cient scheduling around conflict graphs has been studied in the context of sched-
uling tasks with known completion times on a fixed number of general-purpose
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processors [2]. For certain classes of graphs, optimal solutions can be found
efficiently [4].

Because Celerity has no a priori knowledge of kernel execution times and aims
to minimize latencies by intentionally leaving low-level allocation of resources like
GPU cycles to the operating system scheduler, the scheduling target is to maximize
the number of active concurrent tasks.

A correct but sub-optimal implementation could execute all eligible conflicting
commands sequentially in receiving order. This however misses potential concur-
rency between tasks, and to properly harness the increased scheduler freedom, we
instead find the largest conflict-free set of eligible commands.

As a classic NP-hard graph theory problem, the Maximum Independent Set can
be found in exponential time through backtracking [8], although other, more effi-
cient algorithms exist [12, 17]. Since we expect the eligible set to be rather small
most of the time, we implement a simple backtracking solution that will yield suf-
ficient performance in the common case. Independent of the algorithm, the expo-
nential growth of run time can thwart potential efficiency gains of the scheduler, so
we stop backtracking early after rejecting 100 candidate solutions to limit evaluation
time to a constant on degenerate graphs.

This method is opportunistic as the full set of eligible commands may not be
known at the time a scheduling decision is made. Commands should begin execu-
tion as soon as they arrive to minimize latency, so waiting for a certain filling degree
is infeasible. However, since we expect most commands to have an execution time
that greatly exceeds that of command generation, executors will have a well-filled
command queue and thus the full set of eligible commands for one earlier time step
most of the time.

5 Data Extraction from Runtime-Managed Structures

Although the Celerity runtime mostly concerns itself with distributing work while
keeping actively managed buffer data coherent between nodes, real-world appli-
cations must be able to convert existing in-memory data into Celerity data struc-
tures on startup and extract buffer contents and host object state once execution has
completed.

The former is already available in Celerity today: like in SYCL, buffers can be
initialized from a pointer to host memory on construction, assuming that all nodes
pass identical initialization data. In the same fashion, host objects can be constructed
from arbitrary values.

There is however no native way for the application to observe buffer data or host
object state in the main thread after their construction. Instead, host tasks must be
used to export data through the file system or copy them to a user-controlled data
structure that can be accessed once the asynchronous task has finished executing.

Stalling the main thread for synchronization with such a host task interrupts
the asynchronous submission of more work, negatively impacting performance
by starving workers until the barrier is cleared. However, Celerity already has
explicit synchronization points where this performance impact is anticipated:
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The non-recurring implicit shutdown on queue destruction, where each node
awaits all currently pending commands, and explicit barriers issued through
distr queue::slow full sync().

int main() {
bool host_ok;
{
distr_queue q;
/7 ...
buffer<bool> ok{1};
q.submit ([=] (handler& cgh) { is_diag(cgh, C, ok); });

q.submit(allow_by_ref, [=, &host_ok] (handler& cgh) {
accessor passed_acc{ok, cgh, access::all{}, read_only_host_task};
cgh.host_task(on_master_node, [=, &host_ok] {
host_ok = passed_acc[0];
b
s
} // await implicit synchronization shutdown from ~“distr_queue()
return host_ok 7 EXIT_SUCCESS : EXIT_FAILURE;

Listing 4: Reference-capture workaround for retrieving buffer data. Necessary data transfers
are requested through a host task accessor and awaited in the queue destructor.

Both of these synchronization points currently serve as a workaround to manually
extract managed data using a host task. Listing 4 shows how the verification result
from Listing 1 can be observed from the application thread by reference-capturing a
result value and relying on the implicit shutdown as a synchronization point.

While functionally correct, this method is non-obvious, requires significant boil-
erplate, and can easily lead to undefined behavior if the application developer does
not ensure that the reference-captured object outlives the synchronization point. In
the following, we present a programming model allowing the extraction of arbitrary
managed data data by-value and without the aforementioned hazards using existing
synchronization points.

5.1 Data Extraction in Related Work

SYCL knows three ways of accessing buffer data outside of asynchronous tasks:
By constructing a host _accessor, by explicitly synchronizing a host-coherent
buffer via handler::update host (), and by issuing a copy operation to
a user-managed host data pointer via handler: :copy (). Constructing a host
accesser stalls the submitting thread until dependencies are satisified and memory
coherence is established. Similarly, explicit copying must be followed up with a call
too event::wait () to synchronize with the main threads. The latencies caused
by both of these approaches is often more acceptable in SYCL’s single-node context
than it would be in Celerity’s distributed setting.

In Legion, any task can access data produced by its sub-tasks without additional
synchronization by awaiting the corresponding future. This execution model has no
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task 1 task 2 task 1 task 2 data-flow
S write A .. write A dependency
task 3 task 3
rfw A r/w A backward
serialization
Y
task 4 task 5 task 4
read A forward
serialization

dependency
shutdown epoch shutdown

Fig.3 Ad-hoc synchronization with broadcast commands (left, implied) and in-graph synchronization
with epoch tasks (right). The barrier epoch becomes the effective producer of A, so task 5 receives a
data-flow dependency on it. Serialization dependencies are inserted whenever no other transitive depend-
encies exist to the preceding or succeeding epoch to enforce correct temporal ordering

direct correspondence to Celerity, since Legion has no notion of a main thread of
execution.

In Kokkos, some operations such as parallel reduce will implicitly syn-
chronize with the main thread when the output argument is a user-defined scalar
variable. In all other cases, the user is expected to issue a fence operation in order to
perform explicit synchronization, and/or establish memory coherence by construct-
ing a data view that is accessible on the host side.

SkePU allows accessing data inside containers on the host side after manually
flushing it to establish coherence within its lock-step execution.

5.2 Attaching Data Requirements to Synchronization Points with Epochs

In stable Celerity, barrier synchronization and convergence on runtime shutdown
and is orchestrated using ad-hoc control commands which are sent to workers like
regular commands, but are not part of the command graph.

While this enables a less involved implementation, it is not compatible with
Celerity’s graph-based mechanisms of orchestrating and tracking the necessary data
migrations ahead of any synchronization point that wants to extract buffer data. The
first step is therefore to integrate these synchronization points into the task and com-
mand graphs.

To that end, we introduce the concept of epoch tasks and commands that fully
serialize execution on each node by placing appropriate dependencies in the graphs.
In this model, each task or command (except for the first epoch) has exactly one
preceding epoch, and no task or command can ever depend on an ancestor of its
preceding epoch.

Figure 3 illustrates the approach. We begin by inserting an epoch task in to the
task graph, from which the scheduler generates exactly one epoch command per
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node. To ensure correct temporal ordering, each epoch graph node receives a for-
ward serialization true-dependency on the entire previous execution front, and all
nodes without other true-dependencies (pure producers) receive a backward seriali-
zation true-dependency on the preceding epoch.

On each worker node, all synchronizing API calls block the application thread
until the local executor reaches the epoch command.

Since dependency information from before an epoch is irrelevant for generat-
ing future command dependencies, as an optimization, all commands preceding an
epoch can be eliminated from the graph once the epoch command has been issued
to executors and the epoch can be regarded as the producer of any value currently
available on that node.

5.3 Extracting Buffer Data and Host Object State with the Captures API

With epoch-based synchronization in place, the runtime can attach data dependen-
cies onto synchronization commands and thus automatically generate data migra-
tions for reading up-to-date buffer contents on every node.

To safely inspect buffer contents and host objects without introducing unneces-
sary additional submission stalls, we propose captures, a declarative API for attach-
ing data requirements to shutdown and barrier epochs, which will be returned to the
caller as snapshots by value.

template <typename T, int Dims>
class buffer_data {
decltype(auto) operator[](size_t idx);
}s
template <typename T, int Dims>
class capture<buffer<T, Dims>> {
using value_type = buffer_data<T, Dims>;
explicit capture(buffer<T, Dims> buf);
}
template <typename T>
class capture<host_object<T>> {
using value_type = T;
explicit capture(host_object<T> ho);
}
class distr_queue {
template <typename T> typename capture<T>::value_type
slow_full_sync(const capture<T>& cap);
template <typename... Ts> std::tuple<typename capture<Ts>::value_type...>
slow_full_sync(const std::tuple<capture<Ts>...>& caps);

template <typename T> typename capture<T>::value_type
drain(const capture<T>& cap);

template <typename... Ts> std::tuple<typename capture<Ts>::value_type...>
drain(const std::tuple<capture<Ts>...>& caps);

Listing 5: Capture API around celerity::distr_queue (excerpt)
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Listing 5 shows how the distr queue class is extended to allow data extrac-
tion at existing synchronization points. The existing slow full sync () barrier
primitive gains additional optional parameters, and shutdown convergence can be
triggered explicitly using the drain () function. Both functions either accept a sin-
gle capture or a tuple of captures and returns a single value or tuple of values as a
result.

Each capture adds the necessary dependencies and data transfers to the gener-
ated epoch nodes and creates a snapshot of the data once the epoch has executed.
As Celerity requires all MPI processes to perform the same sequence of API calls in
order to allow centralized scheduling without worker-to-master communication, all
nodes must currently request identical captures.

Listing 6 shows how the verification result from Listing 1 can be inspected
in the application thread on the shutdown convergence explicitly triggered by
distr queue::drain().

int main() {

/7 ...

buffer<bool> ok{1};

q.submit ([=] (handler& cgh) { is_diag(cgh, C, ok); });

return q.drain(capture{ok}) [0] 7 : EXIT_FAILURE;
}

Listing 6: Data retrieval through the high-level capture construct. Data transfers are
generated and awaited inside the drain() function.

Figure 4 shows the DAGs resulting from the capture-augmented Listing 6. With
the switch to epoch-based synchronization, the graphs first shown in Fig. 1 now
explicitly include the data requirement on the result buffer ok.

The introduction of the side-effect and capture—drain APIs eliminate all strictly
necessary uses of by-reference captures in kernels that have been encountered dur-
ing Celerity development so far.

6 Evaluation

While work focuses primarily on API expressiveness and programmability, the
introduction of declarative side effects promises a performance improvement. Con-
versely, the introduction of epoch-based synchronization increases internal complex-
ity, so the proposed changes demand further assessment.

We evaluated Celerity’s performance on the Marconi 100 supercomputer in Bolo-
gna, Italy, which holds rank 18 of the TOP500 list as of November 20212%. Each
node is powered by dual-socket IBM POWER9 AC922s and 256 GB of RAM, while
inter-node communication is handled by dual-channel Infiniband EDR with a unidi-
rectional bandwidth of 12.5 Gbit/s.

2 https://www.top500.org/lists/top500/1ist/2021/11
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write ok write, ok [*] // \\ write, ok [#]
* /
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await push <1 - await push <0
write, ok [*] write, ok [*]
reduction reduction
read, write ok [x] read, write ok []
Y

epoch shutdown epoch shutdown epoch shutdown
read ok read ok [x] read ok [#]

Fig.4 The updated task and command graph, first seen in Fig. 1, after the introduction of epochs and
capture-based data extraction following Listing 6. The reduction operation in verify () places the ok
buffer in the pending reduction state indicated by the subscript in read, and write,. A reduction command
is generated as the result of the data requirement in the shutdown epoch which reverts the buffer back to
the distributed state

Although this system is GPU-accelerated and Celerity is built around accelera-
tor computation, no device kernels are executed as part of the benchmarks. Celer-
ity unconditionally depends on a SYCL implementation for type definitions such as
sycl::range, but results are expected to be independent of the backend choice.
For the following evaluation, we compiled against the most recent development
version of hipSYCL? on with Clang 12.0.1 as the host compiler and IBM Spec-
trum MPI 10.4.0 as recommended on Marconi 100.

For all multi-process benchmarks, we allocated 4 Celerity processes per cluster
node through SLURM except for the 1- and 2-process case, where all processes were
mapped to a single node. Since Celerity currently requires one process per compute
device, this matches the typical configuration on a system with 4 GPUs per node.
Each measurement was repeated 10 times.

3 https://github.com/illuhad/hipSYCL/commit/1046a787
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Fig.5 Latency of barrier synchronization primitives (95% confidence intervals). slow full sync
(blue and orange curves) has additional communication cost compared to the MPI baseline (green curve).
Epoch-based synchronization (blue curve) further adds a constant overhead for graph generation that is
amortized for higher node counts (Color figure online)
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Fig. 6 Efficiency gains from replacing global barrier synchronization (blue curve) with side-effect
dependencies (orange curve) to serialize a chain of 10 host tasks (95% confidence intervals). The local
method does not require communication between worker nodes. Timings are measured using a single
slow full sync barrier per run, which is included as a baseline (green curve) (Color figure online)

Figure 5 compares the latency of Celerity’s slow full sync synchroniza-
tion primitive against a synchronous MPI Barrier. The latency of the Celerity
implementation is elevated compared to the explicit MPI call as the broadcast-syn-
chronization command or epoch command has to be sent to each worker before they
can initiate their own MPI_ barriers,. The epoch-based version is additionally
delayed by graph generation overhead with a polynomial factor.

Figure 6 compares the overhead of serializing host tasks through barrier synchro-
nization (the necessary workaround in stable Celerity) to the novel, local method
using side effects. The benchmark measures a chain of 10 empty host tasks, seri-
alized either through calls to slow full sync or side effects on a common
host object. The local method, which only requires the introduction of scheduling
dependencies, has much lower latency than the global barrier method, which intro-
duces unnecessary synchronization between nodes.

Figure 7 shows the performance implications of introducing shutdown epochs
on graph generation in the master node. We measured the time required to con-
struct task and command graphs for 4 synthetic topologies: chain, an artificial
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Fig. 7 Isolated time measurements for task and command graph generation on the master node. Introduc-
ing a shutdown epoch requires forward serialization dependencies which cause measurable overhead if
the execution front is large. This is pronounced for the artificial and degenerate soup topology of a set of
disconnected tasks

chain of command groups that require all-to-all communication between worker
nodes; soup, an artificial, loose collection of disconnected tasks; jacobi, the task
chain resulting from a 2D Jacobian solver; and wave_sim, the graph of a wave
propagation stencil.

While accepting the extra work of generating a shutdown epoch will increase
runtime unconditionally, this is especially pronounced for graphs with a large execu-
tion front, such as the artificial and degenerate soup topology. As expected, generat-
ing a forward serialization dependency from each task in the execution front and
subsequently updating tracking structures has a measurable overhead. Graphs that
more closely resemble real-world applications, which typically manifest as a chain
of time steps, have a much smaller execution front and are therefore affected to a
much smaller degree. As the number of nodes increases, scheduling is dominated by
satisfying data dependencies instead. For adverse patterns such as the all-to-all com-
munication required by the chain topology, this increase can be superlinear.

The approach to finding an optimal schedule on conflict graphs introduced in 4.4
has a worst-case runtime dependent on the number of allowed backtracking can-
didates. We measure the effect of this limit on synthetic conflict graphs which are
generated by adding uniformly-sampled conflict edges to a set of disconnected com-
mand nodes. Fig. 8 visualizes the effects of varying the candidate limit, which con-
firms our choice of 100 as a reasonable trade-off.

To summarize, the introduction of declarative side effects has a net-positive per-
formance impact, which will help overall system performance as we expect their use
to arise repeatedly during application life cycle. As data extraction from runtime-
managed structures is usually only relevant on shutdown, we argue that the demon-
strated increase in synchronization latency has minimal impact on overall runtime
and is justified by the improved programmability.
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Fig. 8 Backtracking search for the largest conflict-free command set has exponential runtime behavior
which must be cut short to cap scheduling latency in the executor. For a wide range of conflict-graph
configurations, a limit of 100 backtracking candidates reduces worst-case execution time to the order of
tens of microseconds, while backtracking beyond that limit will only yield diminishing returns in inde-
pendent set size (Color figure online)

7 Conclusion

In this work, we have investigated how a graph-based distributed-memory runtime
system can be extended with safe, declarative APIs to track dependencies on opaque
node-local objects and transfer runtime-managed data back to the application thread
to ease porting of legacy applications.

Specifically, we added the concept of host objects and side effects to the Celer-
ity runtime system, a declarative mechanism for guarding access to and generating
scheduling constraints around arbitrary node-local objects.

We further introduced the captures mechanism that allows observing snapshots
of Celerity-managed data in the application thread without introducing unnecessary
stalls in the asynchronous execution flow. In order to model the required data move-
ments, existing synchronization points were fully integrated into the task and com-
mand graphs as epochs, which allow the expression of captured ranges as ordinary
dependencies.

Experimentally, we confirmed that declarative node-local side effects are much
more efficient than the previously necessary workaround employing barrier synchro-
nization. While the epoch-based execution model required for data extraction can
incur measurable overhead for command generation, this time is quickly amortized
in a highly parallel setting.

Since evaluation was performed purely on synthetic benchmarks, the practical
effects of the proposed extensions on programming effort and runtime performance
of real-world applications remain to be seen.

7.1 Future Work
There is further potential in exploring the design space of the captures and side

effects APIs. A mechanism to capture different buffer subranges on different nodes
would allow a non-Celerity portion of the user program to continue operating in a
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distributed-memory fashion. Further, side effects are currently node-local by defi-
nition, but an application might also introduce cluster-wide side effects as well by
writing to a parallel file system. Such global side effects should introduce edges in
the Celerity graph model as well.
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