
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:9371–9382
https://doi.org/10.1007/s11227-022-05018-w

1 3

Hybrid CPU–GPU implementation of the transformed
spatial domain channel estimation algorithm for mmWave
MIMO systems

Diego Lloria1 · Pablo M. Aviles2 · Jose A. Belloch2 · Sandra Roger1 ·
Carmen Botella‑Mascarell1 · Almudena Lindoso2

Accepted: 22 December 2022 / Published online: 13 January 2023
© The Author(s) 2023

Abstract
Hybrid platforms combining multicore central processing units (CPU) with many-
core hardware accelerators such as graphic processing units (GPU) can be smartly
exploited to provide efficient parallel implementations of wireless communication
algorithms for Fifth Generation (5G) and beyond systems. Massive multiple-input
multiple-output (MIMO) systems are a key element of the 5G standard, involving
several tens or hundreds of antenna elements for communication. Such a high num-
ber of antennas has a direct impact on the computational complexity of some MIMO
signal processing algorithms. In this work, we focus on the channel estimation stage.
In particular, we develop a parallel implementation of a recently proposed MIMO
channel estimation algorithm. Its performance in terms of execution time is eval-
uated both in a multicore CPU and in a GPU. The results show that some com-
putation blocks of the algorithm are more suitable for multicore implementation,
whereas other parts are more efficiently implemented in the GPU, indicating that a
hybrid CPU–GPU implementation would achieve the best performance in practical
applications based on the tested platform.

Keywords Graphic processing units · Multicore CPU · MIMO communication
systems · Channel estimation

 * Jose A. Belloch
 jbelloc@ing.uc3m.es

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-05018-w&domain=pdf

9372 D. Lloria et al.

1 3

1 Introduction

High performance computers with parallel computing capabilities are used in mul-
tiple segments of the industry [1, 2]. Most of the current fastest supercomputers are
built from nodes containing several multicore central processing units (CPU) and
one or multiple graphic processing units (GPU).1 Many computationally expen-
sive problems can be tackled by appropriately leveraging both kinds of processing
elements, or a combination of them through hybrid CPU–GPU implementations.
This requires an application-based customized analysis to identify possible bottle-
necks and link properly each computational resource with the appropriate task, so
that overall computational performance is maximized. In particular, digital signal
processing for wireless communications is one of the fields which has largely ben-
efited from these devices, as it is the case for efficient multiple-input multiple-output
(MIMO) algorithm’s implementations [3, 4].

In current 5G and future 6G systems, the use of millimetre Wave (mmWave) fre-
quencies is one of the key technology drivers towards achieving enhanced Mobile
Broadband services (eMBB) [5, 6]. In mmWave, the use of beamforming techniques
with highly directional beams is mandatory to increase the gain of the communi-
cation link between Transmitter (Tx) and Receiver (Rx). This is achieved in prac-
tice by using massive MIMO systems, with several tens or hundreds of antenna ele-
ments. One of the drawbacks of massive MIMO communications is that they often
require more complex signal processing techniques, that could benefit from efficient
implementations. In this work, we focus on the channel estimation stage of a mas-
sive MIMO system. Recently, a Transformed Spatial Domain Channel Estimation
method (TSDCE) for analog mmWave MIMO systems has been proposed in Ref.
[7], which has been shown to outperform other approaches based, for instance, on
orthogonal matching pursuit (OMP) [8] or Discrete Fourier Transform (DFT) pro-
cessing [9]. The core operations of the method are mainly based on the Fast Fou-
rier Transform (FFT) and Singular Value Decomposition (SVD), which are suitable
for parallel processing. Although reference [7] shows that TSDCE’s complexity is
below well-known channel estimation schemes, it could still benefit from a parallel
implementation of its main blocks.

A first approach to efficiently implement the TSDCE method was carried out by
the authors in Ref. [10], through exploring the parallelism of the quad-core ARM
Cortex-A53 processor contained in the embedded Xilinx Zynq UltraScale+ EG Het-
erogeneous MPSoC system [11]. Results of such multicore implementation allowed
to identify some constraints and bottlenecks in the implementation. For instance, the
multicore implementations of the block based on FFT were in some cases less effi-
cient than the sequential implementation, suggesting that a GPU-based implementa-
tion could be better suited for such block. Furthermore, cellular base stations could
in practice accommodate non-embedded devices with larger general purpose GPUs,
which could run channel estimation methods such as the TSDCE.

1 http:// top500. org.

http://top500.org

9373

1 3

Hybrid CPU–GPU implementation of the transformed spatial domain…

In this work, we assess the potential benefits of a hybrid CPU–GPU implementa-
tion of the TSDCE method. We now consider a general purpose platform composed
of an eight-core CPU and a high-end CUDA-based GPU which allow, not only to
combine CPU and GPU code, but also to exploit the potential of the numerical alge-
bra libraries in both versions, namely, CPU (BLAS [12] and LAPACK [13]) and
GPU (cuBLAS and cuSOLVERS).2 The execution times on CPU and GPU of the
three main computing blocks of the algorithm (two of them based on FFT and the
third based on SVD) are assessed and compared to the sequential implementation
time (in a single CPU core). The reason to change the considered platform from
the one used in Ref. [10] is that the latter is of embedded nature and presents a
low-end Mali GPU [14] with limited computational performance regarding float-
ing point precision [15, 16]. The results indicate that each main computing block
benefits from a different implementation, supporting the need to complement the
multicore-based analysis in Ref. [10] with a hybrid CPU–GPU overall implementa-
tion assessment.

The remainder of the paper is structured as follows. Section 2 presents the basis
of the TSDCE channel estimation procedure. In Sect. 3, we describe the hybrid
CPU–GPU implementation of the TSDCE. Next, in Sect. 4, we detail the experi-
mental evaluation. Finally, Sect. 5 provides some concluding remarks.

2 TSDCE algorithm: fast channel estimation for mmWave channels

2.1 Channel model

Let us assume a single-user mmWave MIMO geometric channel [17, 18], where
both the Tx and Rx are equipped with a uniform linear array (ULA) of nt and nr
antenna elements, respectively. L denotes the number of scatterers, each one con-
tributing with a single Tx-Rx propagation path. The complex channel coefficient
for each path is defined by �l , l = 1,… , L , while �l and �l stand for the Angle-of-
Arrival (AoA) and Angle-of-Departure (AoD), respectively. Using the full paramet-
ric model, the channel is expressed as:

where � ≜
[|�1|,∠�1,�1,�1,… , |�L|,∠�L,�L,�L

]T is the parameter vector. Note
that |�l| and ∠�l stand for the magnitude and phase of each channel coefficient. �l -s
are independent identically distributed (i.i.d.) random variables with distribution
�l ∼ CN

(
0, �2

�

)
 . AoAs (�l) and AoDs (�l) are drawn from a uniform distribution

∈ [0, 2�].
The antenna array responses at the Tx and Rx, under a half-wavelength antenna

separation assumption, can be expressed as, respectively:

(1)�(�) =

√
ntnr

L

L∑
l=1

�l�r
(
�l

)
�
H
t

(
�l

)
,

2 https:// docs. nvidia. com/ cuda/ index. html.

https://docs.nvidia.com/cuda/index.html

9374 D. Lloria et al.

1 3

The problem of estimating the channel �(�) becomes a problem of estimating the
parameters in � . MmWave channels are highly sparse, as demonstrated by measure-
ments [19]. Hence, the L paths are likely to be separated from each other, which
simplifies the channel estimation task.

2.2 Pilot‑based training phase

A previous step to the estimation of the channel using the TSDCE or similar meth-
ods is the open-loop pilot-based training phase, where a set of possible Tx and Rx
directional beams is tested. More specifically, the beam search space is given by a
codebook comprising P and Q codewords/directions at the Tx and Rx side, respec-
tively. An observation matrix is formed after transmitting the pilot symbol through
the Q × P direction combinations.

The process is as follows: A pilot symbol s , known by Tx and Rx, is transmitted
and received through a subset of P ≤ Nmax and Q ≤ Nmax spatial directions, respec-
tively. Nmax denotes the maximum number of angle quantization levels. Note that
this parameter is limited due to assuming realistic phase shifters with limited angle
resolution. In the analog beamforming case, the Tx and Rx have only one radio-
frequency chain, so the beamforming and combining operations are carried out in
the analog domain [7].

Beamforming/combining vectors are calculated to match the channel response
[20], so � = �t

(
�̄�p

)
 for p = 0, 1,… ,P − 1 , and � = �r

(
�̄�q

)
 for q = 0, 1,… ,Q − 1 .

For each {q, p} direction pair, the received signal is

where � ∈ ℝ
+ is the transmit power. The noise term � ∼ CN

(
0,�

�

)
 is a complex

additive white Gaussian noise 1 × nr vector with covariance �
�
= �2

n
�nr

 , where �nr
stands for the nr × nr identity matrix. The symbol s is set to 1 during training for the
sake of simplicity. Hence, the system signal-to-noise ratio is given by �∕�2

n
.

The observation matrix is obtained after transmitting the pilot symbols through
the Q × P directions

(2)�t(�l) =
1√
nt

�
1, e−j� cos�l ,⋯ , e−j�(nt−1) cos�l

�T
,

(3)�r(�l) =
1√
nr

�
1, e−j� cos�l ,⋯ , e−j�(nr−1) cos�l

�T
.

(4)yq,p =
√
��H

q
��p s + �

H
q
�,

(5)� =

⎡
⎢⎢⎢⎣

y0,0 y0,1 ⋯ y0,P−1
y1,0 y1,1 ⋯ y1,P−1
⋮ ⋮ ⋱ ⋮

yQ−1,0 yQ−1,1 ⋯ yQ−1,P−1

⎤
⎥⎥⎥⎦
=
√
��(�) + �.

9375

1 3

Hybrid CPU–GPU implementation of the transformed spatial domain…

The noise matrix � ∈ ℂ
Q×P contains i.i.d. ∼ CN

(
0, �2

n

)
 elements, and � ∈ ℂ

Q×P
encodes the channel parameter vector �.

Elements in the observation matrix can be rearranged to separate the effect of the
different path components

In the above expression, the observation matrix is written as a sum of path con-
tributions �(l)(�l) ∈ ℂ

Q×P , each one being dependent on a parameter vector
�l =

[|�l|,∠�l,�l, �l

]T . This formulation paves the way for the implementation of
the TSDCE method.

2.3 TSDCE method

TSDCE is an iterative algorithm which works over the observation matrix � to esti-
mate the parameters of the channel. Fig. 1 shows the main steps or building blocks
of the TSDCE. It also includes the representation of the input and output signals in
the most relevant steps through an example, where the observation matrix shows the
presence of three significant paths in the channel (i.e. L = 3).

The process starts with the estimation of the parameters of the largest gain path
component (l = 1). First, a two-dimensional inverse FFT (2D-IFFT) is applied to
the observation matrix, resulting in matrix � . Then, a cropping procedure extracts
the upper-left submatrix which contains the relevant information, leading to a new
matrix �̄�

𝐂
 . The rest of the paths are estimated using the same procedure, although

the cropped matrix is updated by successive interference cancellation to remove
the contribution of the estimated paths, leading to a new matrix �̄�′

𝐂
 . By perform-

ing a SVD of �̄�′

𝐂
 , an estimate of the contribution of the current path component is

obtained, achieving a rank-one approximation by means of the dominant singular
value. In the next step, a 2D sample Autocorrelation Function (2D-ACF) is applied
due to its denoising properties. The resulting matrix (the phase angles of its ele-
ments) contains the information for estimating �l and �l . Finally, as discussed in

(6)� =
√
�

L�
l=1

�
(l)(�l) + �.

Fig. 1 Steps of the TSDCE method. Most computationally demanding blocks are highlighted in grey

9376 D. Lloria et al.

1 3

Ref. [7], spatial frequency estimation is carried out in a four-stage process, which
allows to estimate the path complex coefficient (both |�̂�l| and ∠�̂�l).

Note that the most computationally demanding blocks of the TSDCE algorithm
are highlighted in grey in Fig. 1.

3 Hybrid CPU–GPU TSDCE implementation

The implementation of the TSDCE method used a desktop computer with an
NVIDIA GeForce RTX 3060 GPU and an Intel Core i7-9700F with 8 core proces-
sors running at 3.0 GHz and 4GB DDR4-2666 RAM, although only 4 out of the 8
cores have been used as in Ref. [10]. Each CPU core is equipped with a 256 KiB L1
data cache and a 256 KiB L1 instruction cache. The cores share a 2MB L2 unified
cache. The maximum bandwidth is 41.6 GB/s. The GPU was composed of one of
the newest NVIDIA Ampere architectures and gathers a total of 3584 CUDA cores
spread in 28 GPU multiprocessors.3

We tackled the TSDCE implementation by focusing on the three most compu-
tationally demanding individual blocks: IFFT, SVD and 2D-ACF (see Fig. 1), with
the aim of exploring an efficient hybrid solution. The GPU implementation used the
cuBLAS and cuSOLVER libraries for linear algebra, and the FFT library cuFFT.4
The 2D-ACF block has been implemented mainly through an IFFT, a matrix conju-
gate and a matrix product. The implementation in the multicore CPU has been done
through the OpenMP programming model with the analogous linear algebra librar-
ies, namely, BLAS [12] and LAPACK[13], and the FFTW library [21]. The specific
routines used for the multicore CPU implementation where already reported in Ref.
[10].

Table 1 shows the specific routines used for the GPU implementation and a
description of their usage. We detail next which functions have been used for the
implementation of each of the blocks under study:

– IFFT block: The implementation of the IFFT block requires only the usage of
the cuFFTPlanMany and cufftExecZ2Z routines.

– SVD block: First, the cublasZgeam routine is called to obtain the transpose
of matrix �̄�′

𝐂
 . Then, the SVD of �̄�′

𝐂
 is calculated by using the cusolverDn-

ZgesvdbufferSize and cuSolverDnZgesvd routines. Finally, to calculate
the rank-one approximation after the SVD, the cublasZgemm routine is called.

– 2D-ACF block: to implement this block, first an FFT is obtain through the use of
the cufftPlan2d and cufftExecZ2Z routines. Next, as an intermediate step,
an element-wise matrix product is performed. Finally, the inverse FFT is applied
over the result of the previous step.

3 https:// www. nvidia. com/ conte nt/ PDF/ nvidia- ampere- ga- 102- gpu- archi tectu re- white paper- v2. pdf.
4 https:// docs. nvidia. com/ cuda/ index. html.

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://docs.nvidia.com/cuda/index.html

9377

1 3

Hybrid CPU–GPU implementation of the transformed spatial domain…

Ta
bl

e
1

 R
ou

tin
es

 o
f c

uF
FT

, c
uB

LA
S

an
d

cu
SO

LV
ER

 u
se

d
to

 im
pl

em
en

t t
he

 T
SD

C
E

m
et

ho
d.

 O
p
(�

) s
ta

nd
s f

or
 m

at
rix

 id
en

tit
y,

 tr
an

sp
os

e
or

 c
on

ju
ga

te
 o

f �

Li
br

ar
y

Ro
ut

in
e

O
pe

ra
tio

ns

cu
FF

T
c
u
ff
t
P
l
a
n
2
d

In
iti

al
iz

at
io

n
re

qu
ire

d
to

 u
se

 c
uF

FT
c
u
ff
t
E
x
e
c
Z
2
Z

C
om

pu
te

s t
he

 F
FT

 o
f a

 d
ou

bl
e

co
m

pl
ex

 re
ct

an
gu

la
r m

at
rix

cu
B

LA
S

c
u
b
l
a
s
C
r
e
a
t
e

In
iti

al
iz

at
io

n
re

qu
ire

d
to

 u
se

 c
uB

LA
S

c
u
b
l
a
s
Z
d
s
c
a
l

Sc
al

es
 a

 d
ou

bl
e

co
m

pl
ex

 v
ec

to
r b

y
a

sc
al

ar
c
u
b
l
a
s
S
e
t
M
a
t
r
i
x

C
op

ie
s a

 su
bm

at
rix

 fr
om

 a
 m

at
rix

 �
 in

 h
os

t m
em

or
y

to
 a

 m
at

rix
 �

 in
 d

ev
ic

e
m

em
or

y
c
u
b
l
a
s
G
e
t
M
a
t
r
i
x

C
op

ie
s a

 su
bm

at
rix

 fr
om

 a
 m

at
rix

 �
 in

 d
ev

ic
e

m
em

or
y

to
 a

 m
at

rix
 �

 in
 h

os
t m

em
or

y
c
u
b
l
a
s
Z
g
e
a
m

C
om

pu
te

s �
O
p
(�

)
+
�
O
p
(�
)

c
u
b
l
a
s
Z
c
o
p
y

C
op

ie
s a

 d
ou

bl
e

co
m

pl
ex

 v
ec

to
r t

o
an

ot
he

r d
ou

bl
e

co
m

pl
ex

 v
ec

to
r

c
u
b
l
a
s
Z
g
e
m
m

C
om

pu
te

s �
O
p
(�

)O
p
(�
)
+
�
�

cu
SO

LV
ER

c
u
s
o
l
v
e
r
D
n
C
r
e
a
t
e

In
iti

al
iz

at
io

n
re

qu
ire

d
to

 u
se

 c
uS

ol
ve

r
c
u
s
o
l
v
e
r
D
n
Z
g
e
s
v
d
_
b
u
ff
e
r
S
i
z
e

C
al

cu
la

te
 th

e
si

ze
s n

ee
de

d
fo

r p
re

al
lo

ca
te

d
bu

ffe
r f

or
 th

e
co

m
pu

ta
tio

n
of

 th
e

SV
D

c
u
s
o
l
v
e
r
D
n
Z
g
e
s
v
d

C
om

pu
te

s t
he

 S
V

D
 o

f a
 d

ou
bl

e
co

m
pl

ex
 re

ct
an

gu
la

r m
at

rix
 u

si
ng

 a
 Q

R
 m

et
ho

d

9378 D. Lloria et al.

1 3

Table 1 also describes the cublasCreate, cublasZdscal, cublasSet-
Matrix, cublasGetMatrix and cublasZcopy routines of cuBLAS library
which perform auxiliary steps such as initialization, copy, and data transfer, which
have been used also in the SVD and 2D-ACF blocks as needed.

4 Experiments

The experimental evaluation assumes equal values for the parameters P, Q, nr and nt
for the sake of simplicity (note that in more realistic systems these parameters may
differ), which implies that the size of the observation matrix � is directly nr × nt .
The values that have been evaluated are 16, 32, 64, 128, and 256. Although the
TSDCE algorithm also depends on the number of path components L, the evalua-
tions in this work are focused on the execution time to estimate one of the paths.
Thus, the results are independent of L. In order to better assess the performance
enhancement of the GPU and multicore CPU implementations, the Speedup meas-
ure has been used, which is defined as the quotient between the execution time with
a single CPU core over the execution time with the GPU or with several CPU cores
(2, 3 or 4). For each block under analysis and each processing element, 30 time
measurements have been recorded and sorted in ascending order. The final Speedup
value has been calculated as the average of the 5 central values to avoid bias due to
outliers.

The execution time of the IFFT block is assessed in Fig. 2, representing the
Speedup for the IFFT block using 2, 3 or 4 CPU cores and when using the GPU
as the number of antennas increases. Note that these results depend exclusively
on P and Q. It can be observed that the GPU achieves the largest Speedup values
in all cases, which is around 2. The maximum Speedup is 2.75 and appears for

Fig. 2 Speedup for the IFFT block by using 2, 3, 4 CPU cores and GPU

9379

1 3

Hybrid CPU–GPU implementation of the transformed spatial domain…

nr = 256 , indicating that in massive MIMO systems, the IFFT block largely ben-
efits from a GPU implementation. In fact, the Speedup values for the multicore
implementations are in several cases under 1, an effect that was already observed
in Ref. [10] for the implementation of the 2D-ACF block, also based on FFT.

The Speedup results for the SVD block are shown in Fig. 3. Note that the SVD
execution time depends mainly on nr and nt . As it can be seen, in this case the
Speedup is larger in the multicore CPU options than in the GPU, regardless of the
number of cores and with a maximum of 1.6, i.e. it is lower than the one of the
IFFT block. It is worth noting that the GPU Speedup is below 1, which implies

Fig. 3 Speedup for the SVD block by using 2, 3, 4 CPU cores and GPU

Fig. 4 Speedup for the 2D-ACF block by using 2, 3, 4 CPU cores and GPU

9380 D. Lloria et al.

1 3

that the execution time of the SVD on GPU is inefficient and worse than the sin-
gle-core CPU implementation.

Finally, Fig. 4 shows the Speedup for the 2D-ACF block as a function of the
number of antennas. The Speedup values are in all cases superior with the GPU,
showing a remarkable increase with respect to the CPU Speedup values for nr ≥ 64 .
For instance, when nr = 256 , the GPU Speedup is larger than 4 in contrast to only
around 1.5 on the CPU. Since the 2D-ACF is based on FFT processing, it is also
interesting to compare its Speedup results with those for the IFFT block in Fig. 2. For
nr ≤ 64 , the GPU Speedups have similar trends for both blocks, with larger Speedup
values for the IFFT case. The reason for this Speedup difference may come from
the data transfers between GPU and CPU necessary for the additional operations in
the 2D-ACF. However, when nr ≥ 128 , the GPU Speedup for the 2D-ACF block is
much higher than for the IFFT. As the number of antennas grows, the time spent for
data transfers in the 2D-ACF is negligible within the overall execution time, which
becomes dominated by the algebraic operations with large matrices.

5 Conclusion

In this paper, a hybrid CPU–GPU implementation of a transformed spatial domain
MIMO channel estimation algorithm has been performed, with the aim of exploring
the optimal link between computational resource and algorithm’s computing block.
The results have been obtained in terms of execution time for a single path channel
estimation and are represented through the speedup over a single-core implementa-
tion. Under the assumption of equal antenna and beam search space dimensions, it was
observed that the multicore resources are less efficient for FFT-related computational
blocks, showing in several cases speedup values under 1, as already happened in a pre-
vious work focused only on multicore implementation. Regarding SVD-related com-
putations, in this case the multicore options are more advantageous than the GPU pro-
cessing, confirming that each of the three main algorithm’s computing blocks could
benefit from a different implementation type. In future works, the general multi-path
case will be considered to explore the impact of the iterative nature of the algorithm on
the optimal computational resource management.

Author Contributions All authors contributed equally to this work.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Thanks to Grant PID2020-113785RB-100 funded by MCIN/AEI/10.13039/ 501100011033 and the Ramón
y Cajal Grant RYC-2017-22101. Thanks to the Spanish Ministry of Science and Innovation under Grants
PID2019-106455GB-C21 and PID2020-113656RB-C21, as well as the Regional Government of Madrid
throughout the projects MIMACUHSPACE-CM-UC3M and PEJD-2019-PRE/TIC-16327.

Availability of data and materials No additional data or materials available.

Declarations

Conflict of interest The authors declare that they have no known competing financial interest or personal relation-

9381

1 3

Hybrid CPU–GPU implementation of the transformed spatial domain…

ships that could have appeared to influence the work reported in this paper.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Czarnul P, Proficz J, Drypczewski K (2020) Survey of methodologies, approaches, and challenges in parallel
programming using high-performance computing systems. Sci Program 2020

 2. Belloch JA, Amor-Martin A, Garcia-Donoro D, Martínez-Zaldívar FJ, Garcia-Castillo LE (2019) On the
use of many-core machines for the acceleration of a mesh truncation technique for FEM. J Supercomput
75(1):1686–1696

 3. Roger S, Ramiro C, Gonzalez A, Almenar V, Vidal AM (2012) Fully parallel GPU implementation of a
fixed-complexity soft-output MIMO detector. IEEE Trans Veh Technol 61(8):3796–3800

 4. Ramiro C, Roger S, Gonzalez A, Almenar V, Vidal AM (2013) Multicore implementation of a fixed-com-
plexity tree-search detector for MIMO communications. J Supercomput 65(3):1010–1019

 5. Roh W, Seol J, Park J, Lee B, Lee J, Kim Y, Cho J, Cheun K, Aryanfar F (2014) Millimeter-wave beamform-
ing as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results.
IEEE Commun Mag 52(2):106–113

 6. Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M (2020) Toward 6G networks: use cases and tech-
nologies. IEEE Commun Mag 58(3):55–61

 7. Roger S, Cobos M, Botella-Mascarell C, Fodor G (2021) Fast channel estimation in the transformed spatial
domain for analog millimeter wave systems. IEEE Trans Wirel Commun 20(9):5926–5941

 8. Lee J, Gil G-T, Lee YH (2014) Exploiting spatial sparsity for estimating channels of hybrid MIMO systems
in millimeter wave communications. in IEEE Global Communications Conference

 9. Montagner S, Benvenuto N, Baracca P (2015) Channel estimation using a 2D DFT for millimeter-wave sys-
tems. in IEEE 81st Vehicular Technology Conference (VTC Spring)

 10. Aviles PM, Lloria D, Belloch JA, Roger S, Lindoso A, Cobos M (2022) Performance analysis of a mil-
limeter wave MIMO channel estimation method in an embedded multi-core processor. J Supercomput
78:14756–14767

 11. Xilinx Inc, Zynq UltraScale+ MPSoC data sheet: overview. DS891 (v1.7) 2018
 12. Dongarra J, Croz JD, Hammarling S, Hanson RJ (1985) A proposal for an extended set of Fortran basic

linear algebra subprograms. in ACM Signum Newsletter, pp 2–18
 13. Tomov S, Dongarra J, Baboulin M (2008) Towards dense linear algebra for hybrid GPU accelerated man-

ycore systems. LAPACK Working Note, Tech. Rep. 210, Oct. [Online]. Available: http:// www. netlib. org/
lapack/ lawns pdf/ lawn2 10. pdf

 14. Olson T (2010) Mali-400 MP: a scalable GPU for mobile devices. in Hot3D Session. Proceedings Interna-
tional Conference on High Performance Graphics

 15. Belloch JA, Leon G, Badia JM, Lindoso A, San Millan E (2021) Evaluating the computational perfor-
mance of the Xilinx Ultrascale+ EG heterogeneous MPSoC. J Supercomput 77(1):2124–2137 (January)

 16. Trompouki MM, Kosmidis L (2016) Towards general purpose computations on low-end mobile GPUs. in
2016 Design, Automation & Test in Europe Conference & Exhibition, DATE 2016, Dresden, Germany,
March 14–18, 2016, pp 539–542

 17. Alkhateeb A, El Ayach O, Leus G, Heath RW (2014) Channel estimation and hybrid precoding for mil-
limeter wave cellular systems. IEEE J Select Top Signal Process 8(5):831–846

 18. Ge X, Shen W, Xing C, Zhao L, An J (2022) Training beam design for channel estimation in hybrid
mmWave MIMO systems. IEEE Trans Wirel Commun 21(9):7121–7134

http://creativecommons.org/licenses/by/4.0/
http://www.netlib.org/lapack/lawnspdf/lawn210.pdf
http://www.netlib.org/lapack/lawnspdf/lawn210.pdf

9382 D. Lloria et al.

1 3

Authors and Affiliations

Diego Lloria1 · Pablo M. Aviles2 · Jose A. Belloch2 · Sandra Roger1 ·
Carmen Botella‑Mascarell1 · Almudena Lindoso2

 Diego Lloria
 diego.lloria@uv.es

 Pablo M. Aviles
 paviles@ing.uc3m.es

 Sandra Roger
 sandra.roger@uv.es

 Carmen Botella-Mascarell
 carmen.botella@uv.es

 Almudena Lindoso
 alindoso@ing.uc3m.es

1 Computer Science Department, Universitat de València, Valencia, Spain
2 Depto. de Tecnología Electrónica, Universidad Carlos III de Madrid, Leganés, Spain

 19. Akdeniz MR, Liu Y, Samimi MK, Sun S, Rangan S, Rappaport TS, Erkip E (2014) Millimeter wave chan-
nel modeling and cellular capacity evaluation. IEEE J Sel Areas Commun 32(6):1164–1179

 20. Zhang C, Guo D, Fan P (2016) Tracking angles of departure and arrival in a mobile millimeter wave chan-
nel. in 2016 IEEE International Conference on Communications (ICC), May, pp 1–6

 21. Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Hybrid CPU–GPU implementation of the transformed spatial domain channel estimation algorithm for mmWave MIMO systems
	Abstract
	1 Introduction
	2 TSDCE algorithm: fast channel estimation for mmWave channels
	2.1 Channel model
	2.2 Pilot-based training phase
	2.3 TSDCE method

	3 Hybrid CPU–GPU TSDCE implementation
	4 Experiments
	5 Conclusion
	References

