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Abstract
Hybrid platforms combining multicore central processing units (CPU) with many-
core hardware accelerators such as graphic processing units (GPU) can be smartly 
exploited to provide efficient parallel implementations of wireless communication 
algorithms for Fifth Generation (5G) and beyond systems. Massive multiple-input 
multiple-output (MIMO) systems are a key element of the 5G standard, involving 
several tens or hundreds of antenna elements for communication. Such a high num-
ber of antennas has a direct impact on the computational complexity of some MIMO 
signal processing algorithms. In this work, we focus on the channel estimation stage. 
In particular, we develop a parallel implementation of a recently proposed MIMO 
channel estimation algorithm. Its performance in terms of execution time is eval-
uated both in a multicore CPU and in a GPU. The results show that some com-
putation blocks of the algorithm are more suitable for multicore implementation, 
whereas other parts are more efficiently implemented in the GPU, indicating that a 
hybrid CPU–GPU implementation would achieve the best performance in practical 
applications based on the tested platform.
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1 Introduction

High performance computers with parallel computing capabilities are used in mul-
tiple segments of the industry [1, 2]. Most of the current fastest supercomputers are 
built from nodes containing several multicore central processing units (CPU) and 
one or multiple graphic processing units (GPU).1 Many computationally expen-
sive problems can be tackled by appropriately leveraging both kinds of processing 
elements, or a combination of them through hybrid CPU–GPU implementations. 
This requires an application-based customized analysis to identify possible bottle-
necks and link properly each computational resource with the appropriate task, so 
that overall computational performance is maximized. In particular, digital signal 
processing for wireless communications is one of the fields which has largely ben-
efited from these devices, as it is the case for efficient multiple-input multiple-output 
(MIMO) algorithm’s implementations [3, 4].

In current 5G and future 6G systems, the use of millimetre Wave (mmWave) fre-
quencies is one of the key technology drivers towards achieving enhanced Mobile 
Broadband services (eMBB) [5, 6]. In mmWave, the use of beamforming techniques 
with highly directional beams is mandatory to increase the gain of the communi-
cation link between Transmitter (Tx) and Receiver (Rx). This is achieved in prac-
tice by using massive MIMO systems, with several tens or hundreds of antenna ele-
ments. One of the drawbacks of massive MIMO communications is that they often 
require more complex signal processing techniques, that could benefit from efficient 
implementations. In this work, we focus on the channel estimation stage of a mas-
sive MIMO system. Recently, a Transformed Spatial Domain Channel Estimation 
method (TSDCE) for analog mmWave MIMO systems has been proposed in Ref. 
[7], which has been shown to outperform other approaches based, for instance, on 
orthogonal matching pursuit (OMP) [8] or Discrete Fourier Transform (DFT) pro-
cessing [9]. The core operations of the method are mainly based on the Fast Fou-
rier Transform (FFT) and Singular Value Decomposition (SVD), which are suitable 
for parallel processing. Although reference [7] shows that TSDCE’s complexity is 
below well-known channel estimation schemes, it could still benefit from a parallel 
implementation of its main blocks.

A first approach to efficiently implement the TSDCE method was carried out by 
the authors in Ref. [10], through exploring the parallelism of the quad-core ARM 
Cortex-A53 processor contained in the embedded Xilinx Zynq UltraScale+ EG Het-
erogeneous MPSoC system [11]. Results of such multicore implementation allowed 
to identify some constraints and bottlenecks in the implementation. For instance, the 
multicore implementations of the block based on FFT were in some cases less effi-
cient than the sequential implementation, suggesting that a GPU-based implementa-
tion could be better suited for such block. Furthermore, cellular base stations could 
in practice accommodate non-embedded devices with larger general purpose GPUs, 
which could run channel estimation methods such as the TSDCE.

1 http:// top500. org.

http://top500.org


9373

1 3

Hybrid CPU–GPU implementation of the transformed spatial domain…

In this work, we assess the potential benefits of a hybrid CPU–GPU implementa-
tion of the TSDCE method. We now consider a general purpose platform composed 
of an eight-core CPU and a high-end CUDA-based GPU which allow, not only to 
combine CPU and GPU code, but also to exploit the potential of the numerical alge-
bra libraries in both versions, namely, CPU (BLAS [12] and LAPACK [13]) and 
GPU (cuBLAS and cuSOLVERS).2 The execution times on CPU and GPU of the 
three main computing blocks of the algorithm (two of them based on FFT and the 
third based on SVD) are assessed and compared to the sequential implementation 
time (in a single CPU core). The reason to change the considered platform from 
the one used in Ref. [10] is that the latter is of embedded nature and presents a 
low-end Mali GPU  [14] with limited computational performance regarding float-
ing point precision  [15, 16]. The results indicate that each main computing block 
benefits from a different implementation, supporting the need to complement the 
multicore-based analysis in Ref. [10] with a hybrid CPU–GPU overall implementa-
tion assessment.

The remainder of the paper is structured as follows. Section 2 presents the basis 
of the TSDCE channel estimation procedure. In Sect.  3, we describe the hybrid 
CPU–GPU implementation of the TSDCE. Next, in Sect.  4, we detail the experi-
mental evaluation. Finally, Sect. 5 provides some concluding remarks.

2  TSDCE algorithm: fast channel estimation for mmWave channels

2.1  Channel model

Let us assume a single-user mmWave MIMO geometric channel  [17, 18], where 
both the Tx and Rx are equipped with a uniform linear array (ULA) of nt and nr 
antenna elements, respectively. L denotes the number of scatterers, each one con-
tributing with a single Tx-Rx propagation path. The complex channel coefficient 
for each path is defined by �l , l = 1,… , L , while �l and �l stand for the Angle-of-
Arrival (AoA) and Angle-of-Departure (AoD), respectively. Using the full paramet-
ric model, the channel is expressed as:

where � ≜
[|�1|,∠�1,�1,�1,… , |�L|,∠�L,�L,�L

]T is the parameter vector. Note 
that |�l| and ∠�l stand for the magnitude and phase of each channel coefficient. �l -s 
are independent identically distributed (i.i.d.) random variables with distribution 
�l ∼ CN

(
0, �2

�

)
 . AoAs ( �l ) and AoDs ( �l ) are drawn from a uniform distribution 

∈ [0, 2�].
The antenna array responses at the Tx and Rx, under a half-wavelength antenna 

separation assumption, can be expressed as, respectively:

(1)�(�) =

√
ntnr

L

L∑
l=1

�l�r
(
�l

)
�
H
t

(
�l

)
,

2 https:// docs. nvidia. com/ cuda/ index. html.

https://docs.nvidia.com/cuda/index.html
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The problem of estimating the channel �(�) becomes a problem of estimating the 
parameters in � . MmWave channels are highly sparse, as demonstrated by measure-
ments [19]. Hence, the L paths are likely to be separated from each other, which 
simplifies the channel estimation task.

2.2  Pilot‑based training phase

A previous step to the estimation of the channel using the TSDCE or similar meth-
ods is the open-loop pilot-based training phase, where a set of possible Tx and Rx 
directional beams is tested. More specifically, the beam search space is given by a 
codebook comprising P and Q codewords/directions at the Tx and Rx side, respec-
tively. An observation matrix is formed after transmitting the pilot symbol through 
the Q × P direction combinations.

The process is as follows: A pilot symbol s , known by Tx and Rx, is transmitted 
and received through a subset of P ≤ Nmax and Q ≤ Nmax spatial directions, respec-
tively. Nmax denotes the maximum number of angle quantization levels. Note that 
this parameter is limited due to assuming realistic phase shifters with limited angle 
resolution. In the analog beamforming case, the Tx and Rx have only one radio-
frequency chain, so the beamforming and combining operations are carried out in 
the analog domain [7].

Beamforming/combining vectors are calculated to match the channel response 
[20], so � = �t

(
�̄�p

)
 for p = 0, 1,… ,P − 1 , and � = �r

(
�̄�q

)
 for q = 0, 1,… ,Q − 1 . 

For each {q, p} direction pair, the received signal is

where � ∈ ℝ
+ is the transmit power. The noise term � ∼ CN

(
0,�

�

)
 is a complex 

additive white Gaussian noise 1 × nr vector with covariance �
�
= �2

n
�nr

 , where �nr 
stands for the nr × nr identity matrix. The symbol s is set to 1 during training for the 
sake of simplicity. Hence, the system signal-to-noise ratio is given by �∕�2

n
.

The observation matrix is obtained after transmitting the pilot symbols through 
the Q × P directions

(2)�t(�l) =
1√
nt

�
1, e−j� cos�l ,⋯ , e−j�(nt−1) cos�l

�T
,

(3)�r(�l) =
1√
nr

�
1, e−j� cos�l ,⋯ , e−j�(nr−1) cos�l

�T
.

(4)yq,p =
√
��H

q
��p s + �

H
q
�,

(5)� =

⎡
⎢⎢⎢⎣

y0,0 y0,1 ⋯ y0,P−1
y1,0 y1,1 ⋯ y1,P−1
⋮ ⋮ ⋱ ⋮

yQ−1,0 yQ−1,1 ⋯ yQ−1,P−1

⎤
⎥⎥⎥⎦
=
√
��(�) + �.
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The noise matrix � ∈ ℂ
Q×P contains i.i.d. ∼ CN

(
0, �2

n

)
 elements, and � ∈ ℂ

Q×P 
encodes the channel parameter vector �.

Elements in the observation matrix can be rearranged to separate the effect of the 
different path components

In the above expression, the observation matrix is written as a sum of path con-
tributions �(l)(�l) ∈ ℂ

Q×P , each one being dependent on a parameter vector 
�l =

[|�l|,∠�l,�l, �l

]T . This formulation paves the way for the implementation of 
the TSDCE method.

2.3  TSDCE method

TSDCE is an iterative algorithm which works over the observation matrix � to esti-
mate the parameters of the channel. Fig. 1 shows the main steps or building blocks 
of the TSDCE. It also includes the representation of the input and output signals in 
the most relevant steps through an example, where the observation matrix shows the 
presence of three significant paths in the channel (i.e. L = 3).

The process starts with the estimation of the parameters of the largest gain path 
component ( l = 1 ). First, a two-dimensional inverse FFT (2D-IFFT) is applied to 
the observation matrix, resulting in matrix � . Then, a cropping procedure extracts 
the upper-left submatrix which contains the relevant information, leading to a new 
matrix �̄�

𝐂
 . The rest of the paths are estimated using the same procedure, although 

the cropped matrix is updated by successive interference cancellation to remove 
the contribution of the estimated paths, leading to a new matrix �̄�′

𝐂
 . By perform-

ing a SVD of �̄�′

𝐂
 , an estimate of the contribution of the current path component is 

obtained, achieving a rank-one approximation by means of the dominant singular 
value. In the next step, a 2D sample Autocorrelation Function (2D-ACF) is applied 
due to its denoising properties. The resulting matrix (the phase angles of its ele-
ments) contains the information for estimating �l and �l . Finally, as discussed in 

(6)� =
√
�

L�
l=1

�
(l)(�l) + �.

Fig. 1  Steps of the TSDCE method. Most computationally demanding blocks are highlighted in grey
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Ref. [7], spatial frequency estimation is carried out in a four-stage process, which 
allows to estimate the path complex coefficient (both |�̂�l| and ∠�̂�l).

Note that the most computationally demanding blocks of the TSDCE algorithm 
are highlighted in grey in Fig. 1.

3  Hybrid CPU–GPU TSDCE implementation

The implementation of the TSDCE method used a desktop computer with an 
NVIDIA GeForce RTX 3060 GPU and an Intel Core i7-9700F with 8 core proces-
sors running at 3.0 GHz and 4GB DDR4-2666 RAM, although only 4 out of the 8 
cores have been used as in Ref. [10]. Each CPU core is equipped with a 256 KiB L1 
data cache and a 256 KiB L1 instruction cache. The cores share a 2MB L2 unified 
cache. The maximum bandwidth is 41.6 GB/s. The GPU was composed of one of 
the newest NVIDIA Ampere architectures and gathers a total of 3584 CUDA cores 
spread in 28 GPU multiprocessors.3

We tackled the TSDCE implementation by focusing on the three most compu-
tationally demanding individual blocks: IFFT, SVD and 2D-ACF (see Fig. 1), with 
the aim of exploring an efficient hybrid solution. The GPU implementation used the 
cuBLAS and cuSOLVER libraries for linear algebra, and the FFT library cuFFT.4 
The 2D-ACF block has been implemented mainly through an IFFT, a matrix conju-
gate and a matrix product. The implementation in the multicore CPU has been done 
through the OpenMP programming model with the analogous linear algebra librar-
ies, namely, BLAS [12] and LAPACK[13], and the FFTW library [21]. The specific 
routines used for the multicore CPU implementation where already reported in Ref. 
[10].

Table  1 shows the specific routines used for the GPU implementation and a 
description of their usage. We detail next which functions have been used for the 
implementation of each of the blocks under study:

– IFFT block: The implementation of the IFFT block requires only the usage of 
the cuFFTPlanMany and cufftExecZ2Z routines.

– SVD block: First, the cublasZgeam routine is called to obtain the transpose 
of matrix �̄�′

𝐂
 . Then, the SVD of �̄�′

𝐂
 is calculated by using the cusolverDn-

ZgesvdbufferSize and cuSolverDnZgesvd routines. Finally, to calculate 
the rank-one approximation after the SVD, the cublasZgemm routine is called.

– 2D-ACF block: to implement this block, first an FFT is obtain through the use of 
the cufftPlan2d and cufftExecZ2Z routines. Next, as an intermediate step, 
an element-wise matrix product is performed. Finally, the inverse FFT is applied 
over the result of the previous step.

3 https:// www. nvidia. com/ conte nt/ PDF/ nvidia- ampere- ga- 102- gpu- archi tectu re- white paper- v2. pdf.
4 https:// docs. nvidia. com/ cuda/ index. html.

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://docs.nvidia.com/cuda/index.html
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Table  1 also describes the cublasCreate, cublasZdscal, cublasSet-
Matrix, cublasGetMatrix and cublasZcopy routines of cuBLAS library 
which perform auxiliary steps such as initialization, copy, and data transfer, which 
have been used also in the SVD and 2D-ACF blocks as needed.

4  Experiments

The experimental evaluation assumes equal values for the parameters P, Q, nr and nt 
for the sake of simplicity (note that in more realistic systems these parameters may 
differ), which implies that the size of the observation matrix � is directly nr × nt . 
The values that have been evaluated are 16, 32, 64, 128, and 256. Although the 
TSDCE algorithm also depends on the number of path components L, the evalua-
tions in this work are focused on the execution time to estimate one of the paths. 
Thus, the results are independent of L. In order to better assess the performance 
enhancement of the GPU and multicore CPU implementations, the Speedup meas-
ure has been used, which is defined as the quotient between the execution time with 
a single CPU core over the execution time with the GPU or with several CPU cores 
(2, 3 or 4). For each block under analysis and each processing element, 30 time 
measurements have been recorded and sorted in ascending order. The final Speedup 
value has been calculated as the average of the 5 central values to avoid bias due to 
outliers.

The execution time of the IFFT block is assessed in Fig.  2, representing the 
Speedup for the IFFT block using 2, 3 or 4 CPU cores and when using the GPU 
as the number of antennas increases. Note that these results depend exclusively 
on P and Q. It can be observed that the GPU achieves the largest Speedup values 
in all cases, which is around 2. The maximum Speedup is 2.75 and appears for 

Fig. 2  Speedup for the IFFT block by using 2, 3, 4 CPU cores and GPU
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nr = 256 , indicating that in massive MIMO systems, the IFFT block largely ben-
efits from a GPU implementation. In fact, the Speedup values for the multicore 
implementations are in several cases under 1, an effect that was already observed 
in Ref. [10] for the implementation of the 2D-ACF block, also based on FFT.

The Speedup results for the SVD block are shown in Fig. 3. Note that the SVD 
execution time depends mainly on nr and nt . As it can be seen, in this case the 
Speedup is larger in the multicore CPU options than in the GPU, regardless of the 
number of cores and with a maximum of 1.6, i.e. it is lower than the one of the 
IFFT block. It is worth noting that the GPU Speedup is below 1, which implies 

Fig. 3  Speedup for the SVD block by using 2, 3, 4 CPU cores and GPU

Fig. 4  Speedup for the 2D-ACF block by using 2, 3, 4 CPU cores and GPU
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that the execution time of the SVD on GPU is inefficient and worse than the sin-
gle-core CPU implementation.

Finally, Fig.  4 shows the Speedup for the 2D-ACF block as a function of the 
number of antennas. The Speedup values are in all cases superior with the GPU, 
showing a remarkable increase with respect to the CPU Speedup values for nr ≥ 64 . 
For instance, when nr = 256 , the GPU Speedup is larger than 4 in contrast to only 
around 1.5 on the CPU. Since the 2D-ACF is based on FFT processing, it is also 
interesting to compare its Speedup results with those for the IFFT block in Fig. 2. For 
nr ≤ 64 , the GPU Speedups have similar trends for both blocks, with larger Speedup 
values for the IFFT case. The reason for this Speedup difference may come from 
the data transfers between GPU and CPU necessary for the additional operations in 
the 2D-ACF. However, when nr ≥ 128 , the GPU Speedup for the 2D-ACF block is 
much higher than for the IFFT. As the number of antennas grows, the time spent for 
data transfers in the 2D-ACF is negligible within the overall execution time, which 
becomes dominated by the algebraic operations with large matrices.

5  Conclusion

In this paper, a hybrid CPU–GPU implementation of a transformed spatial domain 
MIMO channel estimation algorithm has been performed, with the aim of exploring 
the optimal link between computational resource and algorithm’s computing block. 
The results have been obtained in terms of execution time for a single path channel 
estimation and are represented through the speedup over a single-core implementa-
tion. Under the assumption of equal antenna and beam search space dimensions, it was 
observed that the multicore resources are less efficient for FFT-related computational 
blocks, showing in several cases speedup values under 1, as already happened in a pre-
vious work focused only on multicore implementation. Regarding SVD-related com-
putations, in this case the multicore options are more advantageous than the GPU pro-
cessing, confirming that each of the three main algorithm’s computing blocks could 
benefit from a different implementation type. In future works, the general multi-path 
case will be considered to explore the impact of the iterative nature of the algorithm on 
the optimal computational resource management.
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