
Computing (2023) 105:999–1017
https://doi.org/10.1007/s00607-022-01081-6

SPEC IAL ISSUE ART ICLE

Predicting number of threads using balanced datasets for
openMP regions

Jordi Alcaraz1 · Ali TehraniJamsaz2 · Akash Dutta2 · Anna Sikora1 ·
Ali Jannesari2 · Joan Sorribes1 · Eduardo Cesar1

Received: 30 April 2021 / Accepted: 6 April 2022 / Published online: 30 April 2022
© The Author(s) 2022

Abstract
Incorporating machine learning into automatic performance analysis and tuning tools
is a promising path to tackle the increasing heterogeneity of current HPC applications.
However, this introduces the need for generating balanced datasets of parallel applica-
tions’ executions and for dealing with natural imbalances for optimizing performance
parameters. This work proposes a holistic approach that integrates a methodology for
building balanced datasets of OpenMP code-region patterns and a way to use such
datasets for tuning performance parameters. The methodology uses hardware perfor-
mance counters to characterize the execution of a given region and correlation analysis
to determine whether it covers an unique part of the pattern input space. Nevertheless,
a balanced dataset of region patterns may become naturally imbalanced when used for
training a model for tuning any specific performance parameter. For this reason, we
have explored several methods for dealing with naturally imbalanced datasets for find-
ing the appropriated way of using them for tuning purposes. Experimentation shows
that the proposed methodology can be used to build balanced datasets and that such
datasets, plus a combination of RandomForest and binary classification, can be used to
train amodel able to accurately tune the number of threads ofOpenMPparallel regions.

Keywords Hardware performance counters · Machine learning · Parallel
applications · Performance tuning · OpenMP

Mathematics Subject Classification 68-02 · 68-11 · 68T07 · 68T10

This work has been granted by the Ministerio de Ciencia e Innovación MCIN
AEI/10.13039/501100011033 under contract PID2020-113614RB-C21 and by the Generalitat de
Catalunya GenCat-DIUiE (GRC) project 2017-SGR-313. We would like to thank the Research IT team
(https://researchit.las.iastate.edu/) of Iowa State University for their continuous support in providing
access to HPC clusters for conducting the experiments of this research project.

B Jordi Alcaraz
jordi.alcaraz@uab.cat

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-022-01081-6&domain=pdf
http://orcid.org/0000-0002-9640-6763
https://orcid.org/0000-0003-0090-4109
https://orcid.org/0000-0001-8672-5317
https://orcid.org/0000-0002-8868-7382
https://orcid.org/0000-0002-9729-8557
https://researchit.las.iastate.edu/

1000 J. Alcaraz et al.

1 Introduction

The increasing heterogeneity and complexity of current HPC systems escalates the
difficulty of performance analysis and optimization of parallel applications. This is
further compounded as novel problems appear and the number of significant tuning
parameters increases. Logically, this fact also affects the premises on which perfor-
mance analysis and tuning tools are built. We claim that these kind of tools should
incorporate new strategies, such as machine learning (ML), to further adapt to the
characteristics of current HPC systems.

In this work, we limit the scope of the research to applications parallelized using
OpenMP as the mainstreammulti-threaded programming model for the HPC commu-
nity. To be able to incorporate ML techniques into performance analysis and tuning
tools, we must be able to first identify the features that allow for the characterization
of parallel applications. In this sense, the work we presented in [1] showed that a
signature built with the values of a subset of hardware performance counters can be
used to characterize a set of OpenMP parallel regions.

However, there is also the problem of building representative and balanced datasets
for training purposes which is considered a crucial problem in machine learning and
data mining [2] because in the presence of significant imbalances the accuracy cannot
be a representative of the true performance of a classifier [3]. In the case of OpenMP
regions, this problem can take two different forms:

– with the objective of building a balanced search space of code patterns, how to
determine if a given parallel region pattern shall be included in a training set or
not.

– with the objective of tuning performance parameters, how to deal with naturally
imbalanced datasets.

An illustrative example could help clarify the problem and why it can take two dif-
ferent forms. Suppose a bankwants to useML to train amodel to assess the default risk
of its customers. First, the dataset must include instances of all potential customers,
that is, it must be representative of all potential customers classes. Second, the indi-
viduals included in the dataset must be uniformly distributed among these classes,
that is, the dataset must be balanced. In this way, biases due to over/underrepresented
classes or the fact of ignoring some classes could be avoided. However, regardless of
the characteristics of each class of clients, the number of clients who will meet their
obligations is significantly greater than the number who will not. Consequently, from
the point of view of default risk, the set includes two highly imbalanced classes (it
is naturally imbalanced) and a naive model trained with such a dataset will tend to
predict that customers will always pay because this result will maximize the accuracy
of the model.

Something similar happens in the case of executions of OpenMP parallel regions,
the dataset must be balanced and representative to avoid bias in the models, but, in
terms of performance parameters such as the number of threads, its distribution would
be highly uneven because a few performance parameter values usually lead to the best
performance for many executions.

123

Predicting number of threads using balanced datasets... 1001

For tackling the problem of creating representative and balanced datasets we pre-
sented in [4] an approach for systematically decidingwhether a givenOpenMPparallel
region pattern covers a unique portion of the search space that is not currently consid-
ered covered by in a training set. The search space is the N-dimensional space defined
by the valid combinations of N hardware performance counters values. In this space a
pattern is an OpenMP fragment of code that abstracts different regions with a similar
behaviour. However, a training set that is balanced and representative of a space of
OpenMP patterns’ executions may be naturally imbalanced when used for optimiz-
ing the value of a performance parameter. Consequently, we have focused our efforts
on exploring the main approaches for dealing with naturally imbalanced datasets for
tackling the natural imbalance of a training set used for tuning the number of threads
of a region.

Therefore, the objective of this paper is to present a holistic perspective for building
representative and balanced datasets of OpenMP patterns and tackling their natural
imbalance when used for tuning purposes. To fulfill this objective, we summarize
the contribution made in [4] introducing a refinement for reducing the number of
executions of the patterns, and present the study that has been done to determine
which are the best approaches for dealing with naturally imbalanced datasets for
tuning performance parameters.

Consequently, the main contribution of this work is to introduce a methodology
that is able to: 1) build a balanced and representative training set of OpenMP parallel
regions and 2) overcome its natural imbalance to train a model able to predict the best
value of a tuning parameter (as a use case, the number of threads).

This work is organized as follows. Section 3 summarizes the methodology for
determining if a given parallel region pattern shall be included in the dataset. Section 4
shows how the proposedmethodology can be used to build and validate a dataset using
a set of kernels extracted from different benchmarks. Section 5 describes the study of
the different methods for dealing with natural imbalanced datasets for the particular
case of predicting the best number of threads for an OpenMP region. Related works
are discussed in Sect. 2. Finally, Sect. 6 concludes this paper and discusses potential
future work.

2 Related work

Similar works appear in the literature which focus on classification of parallel regions
by leveraging analytical models or machine learning to identify parameters such as
the number of threads or scheduling.

DiscoPoP [5] is a tool designed to locate opportunities for parallelism in sequential
programs and give suggestions to the user as to their potential implementations. Dis-
coPoP identifies small regions of code called computational units (CU), which follow
the read-compute-write pattern, and arranges them in a data dependency graph. The
dependencies identified by DiscoPoP are used in order to find 4 types of patterns [6].
For each of them an OpenMP construct is proposed for producing the parallelized
version of the input program. In [7] dynamic features generated by DiscoPoP are used
in order to train classifiers to classify loops in a sequential program as parallelizable or

123

1002 J. Alcaraz et al.

not. Thework in [8] presents a similar approach using program dependence graphs and
other features to train an ML model used to predict the probability of a code regions
being parallelizable. In [9], profiling data is used to extract information about a region
and SVM are used to decide whether a candidate loop should be parallelized or not.
These approaches use ML techniques for discovering parallelizable regions, while
our proposal uses these techniques for automatically tuning performance parameters
associated to each parallel region.

Kernel Tuning Toolkit (KTT) is an autotuning tool for OpenCL and CUDA kernels
[10]. KTT uses an automatic search of the tuning space to determine a configuration
for one or more kernels with shared tuning parameters. In [11] performance is consid-
ered a function of performance counters and hints that the relationship between tuning
parameters and performance counters is portable for different GPUs and problem
inputs. Decision Trees are used to predict performance counters for unknown config-
urations. A benchmark redundancy reduction approach is presented in [12]. The main
idea is to extract non-overlapping sections of code from benchmarks, characterize
them using a set of static and dynamic features, and use clustering to select the subset
of representative sections for accelerating system selection.

The approach in [13] focuses on using active-learning instead of empirical evalu-
ation for performance tuning. It uses a particular implementation of regression trees
called dynamic trees in order to find an appropriate selection of parameter values inside
a defined parameter space. In [14], a compiler based approach is taken to predict the
number of threads and scheduling policy of OpenMP applications. This approach
uses ANN to predict scalability and Support Vector Machines (SVMs) to select the
scheduling policy.

APARF [15] is an adaptative runtime framework to enhancepeformanceofOpenMP
task-based programs. It makes use of PAPI to obtain performance events and trains an
ANN to find which scheduling scheme should be used to obtain the optimal perfor-
mance in unseen programs.

All these works propose using ML techniques for tuning a set of performance
parameters using data collected during the execution of the application. This indicates
that, like us, several other groups are biding for these techniques in order to overcome
the difficulties introduced by the growing complexity of current HPC hardware and
software. However, to the best of our knowledge, none of them tackle the problem
of building and using balanced and representative training sets as we propose in this
paper, which could jeopardize the results obtained.

3 Generating balanced dataset of OpenMP patterns

This section summarizes the methodology presented in [4] to determine whether a
given OpenMP parallel region pattern covers a portion of the feature space that is
not represented by the training set so far. Finding an effective solution to this issue is
significant in ensuring a balanced and representative dataset. Intuitively, including one
or more patterns which are nearly identical will not provide any further information
and are a source of imbalance which reduces the quality of the dataset.

123

Predicting number of threads using balanced datasets... 1003

Characterization
of the candidate

Building
candidate

representation
Pattern

collection

 No

Yes

Correlated?
Correlation

analysis: kernel
and collection

Discard
kernel

Candidate
kernel Add

Fig. 1 Methodology for determining whether a pattern should be included or not in the training set

This methodology assumes that the set of hardware counters necessary to charac-
terize the execution of a code region has been previously determined. We have used
the results obtained in [1], which shows that, for the architecture used in this work,
18 hardware counters (of the 58 generic counters available) are enough to character-
ize the execution of an OpenMP parallel region. This set includes counters related to
branch prediction, use of the cache hierarchy, and the type and number of instructions
executed.

Figure 1 shows the general scheme of the proposed methodology. The pattern
collection represents the current training dataset, which we assume to be balanced.
We consider that if the signature1 of a candidate kernel is not highly correlated with
any pattern in the pattern collection, it covers a new part of the input space and should
become a new pattern in the collection.

In the case that we locate an OpenMP kernel which appears to be an attractive
candidate for inclusion in the dataset, we use the following steps to verify whether or
not it covers a new portion of the input space:

– Characterization of the candidate kernel. The kernel is executed to obtain its
signature for each combination of number of threads and affinity.

– Building candidate kernel representation. After the kernel’s data is available,
the signatures are joined creating a representation of the candidate kernel as a
vector that will be used in the correlation analysis.

– Correlation analysis. Correlation analysis is performed between the new vector
and the vectors of each pattern already in the pattern collection to determine the
extent of their similarity. If the candidate kernel is highly correlated with at least
one pattern in the collection, it is discarded. Otherwise, it is considered to cover a
new portion of the input space and it is added to the collection as a new pattern.

3.1 Characterizing and building the representation of the candidate kernel

The first step for assessing a candidate kernel consists of generating its signatures. In
order to obtain the kernel’s signature for the OpenMP parallel region it must be exe-
cuted multiple times (for ensuring statistical significance) for all possible combination
of the number of threads and thread affinity parameters.

In addition, with the objective of increasing the accuracy of the kernel’s signatures,
multiple executions are required to obtain all the counters’ values, where each execu-
tion measures one set of counters. Consequently, the total number of executions of the
candidate kernel can be computed using Eq. (1).

n_executions = n_times ∗ counter_sets ∗ thread_aff ini ties ∗ n_cores (1)

1 a signature is defined as values of a representative set of hardware counters [1]

123

1004 J. Alcaraz et al.

All the information gathered in these executions is used to build a vector of signa-
tures ordered by the number of threads, affinity and repetition number.

3.2 Correlation analysis

The last step of themethodology consists of performing a correlation analysis between
the candidate kernel representation (vector of signatures) and the representation of all
patterns in the current pattern collection.

Spearman’s rank correlation and Kendall’s tau [16] are applied to establish whether
the candidate kernel covers a new region of the input space or not. If both methods
indicate that the candidate kernel is not highly correlated to any patterns in the cur-
rent collection and it logically represents a different region, the candidate kernel will
become a pattern and be added to the collection.

The reason for using these two correlations is that Spearman’s rank correlation is
based on deviation between two series of data and is more sensitive to data errors and
discrepancies, while Kendall’s tau is based on concordance (and discordance) of data
pairs and is effective for detecting trends. In almost all cases, both of them will lead
to the same inferences and so the verification of this serves to increase the robustness
of our method.

Consequently, if the candidate kernel is highly correlated with at least one pattern
in the collection, i.e., it is at least correlated to the signature corresponding to any
problem size of one patterns already in the dataset with a Spearman’s r> 0.9 and
Kendall’s tau> 0.8, the kernel is discarded as it does not cover a new portion of the
input space. Otherwise, the candidate kernel is considered to cover a new portion of
the input space and it is added to the collection as a new pattern.

For doing so, the kernel must be executed for all the problem sizes included in the
pattern collection to obtain the corresponding signatures. Initially, we had selected 43
problem sizes ranging from small (few thousands elements in each vector) to huge
problems sizes (a few billion elements) with the objective of stressing every level of
the memory hierarchy. Later, we wondered if it was possible to reduce the number of
problem sizes without reducing the quality of the dataset and, therefore, reduce the
size of the dataset and the time to compute all the signatures for a new pattern (Eq. 1
by 43 sizes).

Therefore, we have defined a systematic way for determining the problem sizes.
The general idea is that small problem sizes are defined using the size of the different
cache level in one socket, and bigger problem sizes are proportional to the size of the
last level cache (LLC) and the number of sockets.

Specifically, we use the knowledge about the systemmemory hierarchy and proceed
in the followingway (the process is illustrated using theXEONE5645processor shown
in Fig. 2):

– To stress the private cache levels (L1 and L2 in example)number of private
levels x number of cores problem sizes are defined (12 in the example),
starting with the size of one lowest level cache (32KB in the example) and ending
with the accumulated size of all private caches (1.5MB in the example as shown
in Fig. 2b). So, in the example, the resulting small problems sizes would be (in

123

Predicting number of threads using balanced datasets... 1005

(a) (b) (c) (d)

Fig. 2 Memory hierarchy of XEON E5645’s socket: a size of each memory level; b total memory per level;
64KB problem size with one thread (c) and two threads (d)

KB): 32, 64, 96, 128, 160, 192, 256, 512, 768, 1024, 1280 and 1536. It is worth
noticing that for certain combination of number of threads there will be access to
the L3, but, in general, we are keeping most of the memory accesses in the private
cache levels.

– To stress the shared cache levels (L3 in the example)sixproblemsizes are defined;
the first slightly bigger that the accumulated size of all private caches (2MB in the
example) and the last slightly smaller that the shared cache size (11.5MB in the
example). In this case, we are sure that most memory accesses are done within the
cache hierarchy, specially in the L3.

– Using RAM. The biggest problem sizes are defined to force a significant number
of accesses to the main memory. In this case, we define number of sockets
+ 1 problem sizes, starting with a size slightly bigger that the LLC size (12.5MB
in the example), gradually increasing the size of the problem in the same amount
for each socket (second problem of 25MB in the example), and generating a last
problem size (the biggest case) incremented by a 50% (37.5MB in the example).

This approach achieves two significant objectives:

1. The number of problem sizes (21 for the presented example) is tailored to the
complexity of the underlying hardware, i.e., the dataset will also be balanced with
respect to the memory hierarchy because the number of cases will be adequate to
reflect its characteristics.

2. We have a more precise control of which executions are stressing each memory
level. This opens the possibility of future refinements for dataset design and its use
to train ML models.

4 Validation of themethodology

The proposed methodology has been applied to incrementally construct a dataset of
OpenMP parallel patterns and an artificial Neural Network (ANN), described below,
has been leveraged to validate the set and demonstrate the importance of using a
balanced dataset. Figure 3 summarizes the workflow followed in this validation:

– Phase 1: Building the pattern collection applying the steps described in Sect. 3.

123

1006 J. Alcaraz et al.

Pattern
collection

Pattern detection
model

Phase 1: Build
pattern collection

See Figure 1

Neural network

Phase 2: Validation

Fig. 3 Summary of the experimentation workflow

Table 1 Artificial Neural Network Architecture

Layer Neurons Inputs Activation Weight Constraint Dropout

Input N/A 18 N/A N/A 0%

Hidden 1 18 18*18 SELU Clip [− 10.0, 10.0] 10%

Hidden 2 16 18*16 SELU Clip [− 10.0, 10.0] 10%

Output 8 16*8 Softmax Clip [− 10.0, 10.0] 0%

– Phase 2: Validating the collection by showing that an ANN trained for classifying
code regions using a balanced dataset is highly accurate, even for patterns that
have not been considered in the creation of the dataset. It is worth noticing that
[4] also shows that the accuracy of the trained model is significantly higher when
using a balanced dataset than when using an imbalanced one.

The candidate kernels for building the training set have been extracted from two
different well-known benchmarks:

– STREAM(SustainableMemoryBandwidth inHigh PerformanceComputers) [17]
is a synthetic benchmark composed of simple vector kernels tomeasure sustainable
memory bandwidth.

– POLYBENCH [18, 19] is a collection of benchmarks with multiple kernels.
Its version 4 includes 23 different benchmarks divided in different categories
(datamining, linear algebra, medley and stencils).

The ANN used for this experimentation and hardware is a Fully-connected, Feed-
forward Neural Network and its architecture is shown in Table 1.

Scaled Exponential Linear Units (SELU) activations were selected for the hidden
layers of the network, which provide several benefits: self-normalizing, cannot die
as Rectified Linear Units do, and do not produce vanishing or exploding gradients
[20]. The output layer of the network uses a Softmax function paired with Categorical
Cross-Entropy, allowing the network to perform classification for multiple classes.
Therefore, the network outputs a vector of probabilities for a given instance in the
dataset belonging to each pattern.

All the experiments were conducted on a DELL T7500 with two XEON E5645
processors. Each processor, depicted in Fig. 2, features sixmulti-threaded cores, access
to 96GB of shared RAM and three levels of cache (32KB L1 and 256KB L2 for each
core, and 12MB L3 shared between all the cores). In addition, [1] shows that OpenMP

123

Predicting number of threads using balanced datasets... 1007

Table 2 Spearman(S) and Kendall(K) maximum correlation coefficients for STREAM

Copy Triad Add Scale

S K S K S K S K

Copy 0.82 0.78 0.86 0.82 0.85 0.83

Triad 0.82 0.78 0.99 0.95 0.99 0.93

parallel regions in this platform can be characterized by the values of 18 hardware
counters.

To characterize a candidate kernel on this platform all the combinations (9000
according to Eq. (1)) of the following parameters must be executed:

– Number of threads: from 1 to 12 threads.
– Thread affinity: close and spread.
– Number of executions: 75 to attain statistical significance.
– Number of counter sets: 5 to cover the 18 counters.

To fully characterize a pattern on this platform, all these combinations are repeated
using 21 different problem sizes to stress all the memory levels (as explained in Sect.
3.2). MATE [21, 22] is used to acquire the hardware performance counters values for
each of these executions and to compute the signatures for each kernel.

4.1 Building the pattern collection

The first group of candidate kernels is extracted from the STREAM benchmark. It
contains four simple OpenMP kernels designed to represent the behavior of vector
style applications:

– Copy. A simple copy between two vectors: c[i] = a[i].
– Add. Addition of two vectors: c[i] = a[i] + b[i].
– Scale. Scalar multiplication: c[i] = scalar ∗ a[i].
– Triad. Mix of Add and Scale: c[i] = scalar ∗ a[i] + b[i].
As the pattern collection is initially empty, it is initialized using the Copy kernel

and then the methodology is applied for the remaining candidates.
Once the pattern collection has been initialized with all the Copy signatures, and

one significant signature has been computed for Add, Scale and Triad, we perform
correlation analysis. Table 2 shows that the values of Spearman’s rank and Kendall’s
tau between the three candidate kernels (Add, Scale and Triad) and the pattern in the
collection (Copy) are below the conditions (r> 0.9 and tau> 0.8) established in the
methodology for considering them to be covering the same region of the input space.
However, Table 2 also shows that there is a very strong correlation between Add, Scale
and Triad, which is clearly above the threshold.

As a result, only one of the candidates has been included in the pattern collection.
The chosen pattern is Triad because it is the result of the composition between Add
and Scale, i.e., it is logically the most general one. Consequently, after applying the

123

1008 J. Alcaraz et al.

Fig. 4 Spearman rank and Kendall’s tau correlation between POLYBENCH discarded kernels and the
pattern collection

methodology to the kernels extracted from STREAM, the pattern collection contained
the following patterns:

– Copy. Pattern abstracting accesses (reads and/or writes) to consecutive memory
positions.

– One dimensional group. Pattern abstracting operations involving only one-
dimensional vectors.

Next, we extend the pattern collection using POLYBENCH, from which we
extracted 29 new candidate kernels. After executing all the parallel kernels of
POLYBENCH and generating their candidate kernel representations (signature), we
incrementally detected new patterns and added them to the pattern collection. These
new detected patterns are described as follows:

– Reduction. Pattern abstracting reduction operations, such as adding all the elements
of a vector: total = ∑

c[i].
– Stride. Pattern abstracting accessing elements with a stride: c[stride · i] =
a[stride · i].

– Rows stride. Pattern abstracting operations involving column-wise traversal of a
matrix: c[i · N][j] = a[i · N][j].

– Matri x × Vector . Pattern abstracting different matrix-vector operations, such as
the matrix-vector multiplication: A = B × v.

– Matri x × Matri x . Pattern abstracting different matrix-matrix operations, such
as the matrix-matrix multiplication: C = A × B.

– Stencil. Pattern abstracting stencil operations, such as: A[i][j] = A[i − 1][j] +
A[i + 1][j] + A[i][j − 1] + A[i][j + 1]
Figure 4 shows the correlation of the kernels extracted from POLYBENCH and the

8 detected patterns. It can be seen that all these kernels are highly correlated to at least
one of the patterns in the collection.

Summarizing, the dataset obtained from the STREAM and POLYBENCH bench-
marks is composed of the following patterns: Copy, One dimensional group, Stride,
Rows stride, Reduction, Matri x × Vector , Matri x × Matri x , Stencil.

4.2 Validating the pattern collection

In order to validate the collection obtained in the previous subsection, which also
validates the proposed methodology, we have used this collection to train the ANN
for producing a pattern classification model.

123

Predicting number of threads using balanced datasets... 1009

Table 3 Accuracy of the ANN
when using the kernels that do
not represent any pattern in the
collection

Number of kernels Accuracy

Copy 3 93%

1D group 3 90%

Stride 3 91%

Rows stride 0 –

Reduction 0 –

Matrix × Vector 5 90%

Matrix × Matrix 5 87%

Stencil 12 99%

The pattern dataset is composed of 302400 signatures representing the 8 detected
patterns. The dataset is divided randomly into a training set composed of the 80%
signatures and a test set composed of 20% of the signatures. The network has been
trained for 24 epochs using batches with 100 signatures and obtaining a final loss of
0.0301 and accuracy of 98.93%.

Next, a validation set has been built using the signatures of the kernels considered,
but discarded in the previous section, and several new kernels extracted from the NAS
Parallel Benchmarks (NPB) [23]. Specifically, we used the following ten OpenMP
parallel kernels extracted from the NPB:

– Add_BT and rhs_norm_BT. These kernels correspond to the add and rhs_norm
BT’s functions, respectively.

– normztox_CG, norm_temps_CG, rhorr_CG, z_alpha_p_CG, pr_beta_p_CG, and
qAp_CG. They are regions that have been extracted from different CG’s functions.

– l2norm_LU. It corresponds to the l2norm LU’s function.
– ssor_LU. It is a region extracted from the LU’s ssor function.

Table 3 shows the very high accuracy of the trained classification model on the
signatures of the kernels extracted from the STREAMand POLYBENCH benchmarks
that do not have been chosen for building any of the pattern representations (discarded
kernels).

Table 4 shows the results produced by the pattern classification model for the 10
kernels extracted from the NPB. In this case, we are proceeding the other way around
because there was no previous correlation analysis for telling us to which pattern is
correlated each of these kernels. Consequently, to validate the classification offered
by the model, we have computed the correlation coefficients of each kernel signature
to the patterns in the dataset. Figure 5 shows both correlation coefficients (Spearman’s
rank and Kendall’s tau) between the NPB candidate kernels and the patterns in the
dataset. It is clearly observed that the plotted results align with the classification given
by the model. In addition, these kernels have been manually analyzed to confirm that
they correspond to the detected patterns. These results demonstrates that the ANN can
also be used to detect candidate patterns not included yet in the dataset.

123

1010 J. Alcaraz et al.

Table 4 Classification of the
kernels extracted from the NPB
using the ANN

NAS kernel Predicted Pattern

Add_BT One dimensional group (97%)

l2norm_LU Reduction (88%)

norm_temps_CG Reduction (100%)

normztox_CG One dimensional group (100%)

pr_beta_p_CG One dimensional group (99%)

qAp_CG Reduction (94%)

rhorr_CG Reduction (100%)

rhs_norm_BT Reduction (88%)

ssor_LU One dimensional group (98%)

z_alpha_p_CG One dimensional group (84%)

Fig. 5 Correlation coefficients between NPB kernels and the pattern collection

5 Naturally Imbalanced Datasets: Predicting the ideal number of
threads

Using the methodology presented in Sect. 3 it is possible to create datasets where no
parallel region patterns and problem sizes are underrepresented. However, when it
comes to tuning a performance parameter, the dataset may become naturally imbal-
anced because it is natural for some values of the parameter to be the best for a
significant number of cases.

In this section, we present the results obtained after exploring several techniques
when dealing with this kind of dataset for tuning the number of threads of an OpenMP
region using the dataset built in Sect. 4.1.

First, we show how the ideal number of threads is determined and why the con-
sidered dataset becomes naturally imbalanced when used for predicting the value of
this performance parameter. Next, we present the results obtained when using this
dataset for training an ANN similar to the one used in Sect. 4.2, and also the ones
generated using a decision tree with the default parameters of scikit-learn. In the
case of cost-sensitive learning, weights are applied to classes with the parameter:
class_weight=balanced. In this way, we highlight that the problem lies in the training

123

Predicting number of threads using balanced datasets... 1011

Fig. 6 Ideal number of threads, according to Pi(X), for all the executions stored in the dataset

set because results are unsatisfactory for both methods. In addition, we established a
base case for comparison. Finally, we show and discuss the results obtained for each
of the explored methods and point out the one that has produced the best results so far.

5.1 Ideal number of threads and consequences of dataset natural imbalance

For determining the ideal number of threads for a given execution of a kernel, we use
the performance index defined in [24]. This index, computed using Eq. 2, relates the
execution time of a kernel using a certain number of threads (Tt (X)) with the efficiency
obtained for that number of threads (E(X)). The value that minimizes (Pi(X)) is the
number of threads (X) that optimizes the performance (time)withoutwasting resources
(cores).

Pi(X) = Tt (X)

E(X)
= X · Tt (X)2

Tt (1)
(2)

Figure 6 shows the results of optimizing Pi(X) for all the executions stored in the
dataset. It can be seen that 7 is the best number of threads only in 1.6% cases, while
12 is the best in 37%. There is a clear imbalance that cannot be fixed by eliminating
elements from the dataset without loosing too much information. Nevertheless, we
have used the dataset as it is for training models with different ML techniques (SVM,
logistic regression, KNN, ANN and Decision Trees DT). We have kept the models
produced by the ANN and the DT, because they are significantly more accurate than
the rest.

The training of these techniques has been performed using the patterns in the col-
lection and the resulting models have been tested using the same patterns plus a set
of non perfectly correlated kernels. We believe that this experiment is more realistic
than using the leave one out cross-validation without checking if there are still similar
kernels in the training set. Summarizing:

– Patterns in the training set (8): copy, reduction, rows, stride, 1D-Group,
Mat×Mat , Mat×Vect and stencil, which correspond to the groups determined
in Section 4.1.

– Patterns in the test set (16): the ones in the training set plus 2D-Stencil, 1D-
Stencil, scale, add, stride16, stride2, stride4 and Mat×MatOpt .

123

1012 J. Alcaraz et al.

Considering Eq. 1 and the number of problem sizes (21), the number of signatures
stored in the dataset for each pattern is 37800, that is, 302400 signatures in the training
set and 604800 signatures in the test set. Consequently, it is important to highlight that
the objective of this exploration is not to determine the performance improvement for
each case, but the accuracy of the trained models in determining the number of threads
that maximizes, according to Eq. 2, the performance of an OpenMP code region.

Figure 7a and 7b show the results for a simplemulti-layerANNand aDecision Tree.
Results are displayed with stacked bars showing: the number of times the prediction
successfully finds the ideal thread number (First); the number of times the predicted
number is the second best value using the performance index (Second); and the number
of times the prediction underestimates the number of threads which at least does not
waste resources (Higher).

In this case the model created by DT obtains better results in almost all cases.When
tested with cases used in the training, DT shows almost 100%, while ANN gets around
80%. In the other cases, except for the stride kernels, DT gets at least 60% accuracy
between First and Second, while ANN shows poorer results. The prediction for the
stride kernels is consistently underestimating the number of threads, which hints that
this case should be further analyzed.

5.2 Exploringmethods for dealing with naturally imbalanced datasets

Once we realized that the imbalance in the dataset is tampering the trained models,
we focused on exploring the main ways to deal with it [25]:

– Datamethods are re-sample strategies which may consist of under/over-sampling
using the available data or generating new synthetic data. Oversampling can be
achieved with random replication (suffers from overfitting [26]) or with the gen-
eration of synthetic data with different heuristics, such as SMOTE [27].

– In algorithmic methods, existing machine learning techniques are modified to
prevent underrepresented classes from being ignored. Among these approaches
we have cost-sensitive learning [28].

– Ensemble methods train multiple learning models to obtain a prediction, each
model can be obtained using the sameor differentmachine learning techniques. For
obtaining the overall results, the methods runs all the trained models and applies
the decision criterion, such as the average or weighted average of the answers,
or the most frequent answer. An example of a well known ensemble method is
Random Forest, which is an ensemble of multiple decision trees, generated using
different data from the same dataset [29].

First, we tested the re-sampling strategies: random over-sampling and multiple
SMOTE implementations. We quickly realized that they were not producing the
expected results. For example, Figure 8 shows that using SMOTE the accuracy in
the test cases decreases for all the kernels.

Next, we explored the cost-sensitive algorithmic approach to counter the imbalance
in the dataset applying inversely proportional costs (error) to the frequency of each
label, so the errors are proportionally bigger in the less represented labels than the
errors for the most represented labels. Figures 7c and 7d show that both models have

123

Predicting number of threads using balanced datasets... 1013

(a) Decision Tree (b) Artificial Neural Network

(c) Decision Tree with cost (d) Artificial Neural Network with cost

(e) Random Forest (f) Ensemble Artificial Neural Network

(g) Random Forest binary classifier (h) Random Forest binary classifier with cost

Fig. 7 Predicting the number of threads using machine learning and multiple balancing approaches

123

1014 J. Alcaraz et al.

(a) Decision Tree (b) Artificial Neural Network

Fig. 8 Predicting the number of threads balancing using SMOTE

improved the accuracy, especially the one produced by an ANN. However, the model
produced by the DT is still significantly more accurate.

These results are encouraging, but we thought that there was still room for improve-
ment, so ensemble learningmethods has been also explored. In the case ofDT,Random
Forest is the natural ensemblemodel. The random forest was implemented using scikit-
learn with the default configuration which uses 100 estimators, where each estimator
uses a random subset of features. In addition, an ensemble of multiple ANNs with
the same architecture has been used, in this case, the number of estimators is equal to
the number of features (19, 18 counters + thread affinity). In both cases, each model
is trained with a subset of the data, generating different models which depend on the
randomly selected data in each case.

Figure 7e shows that ensemble of ANNs did not improve the accuracy of the pre-
diction, although the training time of the ensemble is 20X higher that the one of a
single ANN (approximately 10 hours). However, Fig. 7f shows that the accuracy of
the ensemble model produced by the Random Forest has significantly improved espe-
cially for the stride kernels. In these cases, although the accuracy remains low, it has
more than doubled.

Finally, we tested the one-against-all binary classification [30] approach with and
without cost-sensitive learning. The problem is divided into 12 different models, each
class being a thread configuration, where each individual model is trained to identify
only one class. This test has only been done with Random Forest as it has shown better
accuracy than the ANN.

The results (shown in Fig. 7g) with binary classification improve the ones obtained
with the previous Random Forest. Two strides cases achieve more than 40% accuracy
for the two best cases in the performance index, and matrix multiplication reaches a
96%. For the remaining classes, the accuracy is above 70%. On the contrary, applying
cost-sensitive and binary classification all-together does not increase the accuracy.
This is because with binary classification all of available information about the other
classes is discarded, consequently this affects the calculated loss value.

This exploration of methods when dealing with naturally imbalance datasets is not
yet exhausted, e.g. we are still analyzing the use of GANS as a re-sampling method
because of the precision of this kind of networks to capture the distribution of the

123

Predicting number of threads using balanced datasets... 1015

elements of a dataset [31]. However, the results obtained so far show that advanced
methods, in particular the combination of Random Forest with binary classification,
for dealing with naturally imbalanced datasets reach an accuracy level that hints the
robustness of our initial hypothesis about the advantages of incorporating ML into
performance analysis and tuning tools.

6 Conclusions and futureWork

We have developed an holistic perspective for building balanced and representative
datasets, tackling their natural imbalance when used for training a ML approach for
tuning performance parameters. For building a dataset, the methodology is focused
on determining whether a given OpenMP parallel region pattern covers a portion of
the feature space that is not represented in the set so far. In this proposal, an OpenMP
pattern is represented by the signatures of a representative kernel, calculated for various
problem sizes, and correlation is used to decide if a given kernel could be representative
of a pattern covering a new portion of the feature space.

The use of the proposed methodology has been illustrated through its application
to the set of kernels extracted from well-known benchmarks (STREAM and POLY-
BENCH) for a particular architecture. This process has allowed for the construction
of a preliminary dataset, which has been used for training a model for optimizing the
number of threads executing a parallel region.

For training this model, we have had to deal with the natural imbalance of a dataset
when it comes to tuning performance parameters and have found, after an extensive
exploration, that a combination of the ensemble method Random Forest and binary
classification produces the highest accuracy.

The results obtained show that the proposed methodology allows for systematically
generating balanced datasets, that using a balanced datasets has a significant impact on
the classification accuracy, and that theMLmethod for tuning performance parameters
must be carefully chosen to avoid the effects of the natural imbalance appearing in
this case.

Our next step will be to extend the methodology for using datasets to train robust
ML methods for tuning more performance parameters. Upon reaching this goal, it is
conceivable that thesemethods could be applied to automatically tune the combination
of key performance parameters (number of threads, affinity, or scheduling policy) that
will be used in a given region. In conclusion, the holistic perspective described in this
work is a significant step towards an autonomous system for addressing performance
issues for OpenMP regions.

Funding Open Access Funding provided by Universitat Autonoma de Barcelona.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

1016 J. Alcaraz et al.

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alcaraz J, Sikora A, César E (2019) Hardware counters’ space reduction for code region character-
ization, in Euro-Par 2019, ser. Lecture Notes in Computer Science, R. Yahyapour, Ed., vol. 11725.
Springer, 2019, pp 74–86

2. Nguyen GH, Bouzerdoum A, Phung SL (2009) Learning pattern classification tasks with imbalanced
data sets, in Pattern Recognition, P.-Y. Yin, Ed. Rijeka: IntechOpen, ch. 10

3. Nath A, Subbiah K (2018) The role of pertinently diversified and balanced training as well as test-
ing data sets in achieving the true performance of classifiers in predicting the antifreeze proteins.
Neurocomputing 272:294–305

4. Alcaraz J, Sleder S, TehraniJamsaz A, Sikora A, Jannesari A, Sorribes J, Cesar E (2021) Building
representative and balanced datasets of openmp parallel regions, In: 2021 29th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 67–74

5. Li Z, Jannesari A, Wolf F (2013) Discovery of potential parallelism in sequential programs, In: 42nd
international conference on parallel processing, pp 1004–1013

6. Norouzi M, Wolf F, Jannesari A (2019) Automatic construct selection and variable classification in
openmp. Proc ICS 2019:330–341

7. Fried D, Li Z, Jannesari A, Wolf F (2013) Predicting parallelization of sequential programs using
supervised learning, In: 2013 12th international conference on machine learning and applications,
vol. 2. IEEE, pp 72–77

8. Maramzin A, Vasiladiotis C, Lozano R, Cole M, Franke B (2019) It looks like you’re writing a parallel
loop: a machine learning based parallelization assistant, In: Proceedings of the 6th ACM SIGPLAN
International Workshop on AI-SEPS, 2019, pp 1–10

9. Tournavitis G, Wang Z, Franke B, O’Boyle MF (2009) Towards a holistic approach to auto-
parallelization: integrating profile-driven parallelism detection and machine-learning based mapping.
ACM Sigplan notices 44(6):177–187

10. Filipovič J, Petrovič F, Benkner S (2017) Autotuning of opencl kernels with global optimizations, In:
Proceedings of the 1st Workshop on AutotuniNg and ADaptivity AppRoaches for Energy Efficient
HPC Systems, ser. ANDARE’ 17, NY, USA

11. Filipovic J, Hozzová J, Nezarat A, Olha J, Petrovič F (2021) Using hardware performance counters to
speed up autotuning convergence on gpus, ArXiv

12. de Oliveira Castro P, Kashnikov Y, Akel C, PopovM, JalbyW (2014) Fine-grained benchmark subset-
ting for system selection, In: Proceedings of Annual IEEE/ACM International Symposium on CGO,
ser. CGO ’14, NY, USA, p 132–142

13. Balaprakash P, Gramacy R, Wild S (2013) Active-learning-based surrogate models for empirical per-
formance tuning, Proceedings - ICCC, pp 1–8, 09

14. Wang Z, O’Boyle MF (2009) Mapping parallelism to multi-cores: a machine learning based approach,
In: PPOPP Proceedings of the 14th ACM SIGPLAN, pp 75–84

15. Qawasmeh A, Malik AM, Chapman BM (2015) Adaptive openmp task scheduling using runtime
apis and machine learning, In: 2015 IEEE 14th international conference on machine learning and
applications (ICMLA). IEEE, pp. 889–895

16. Jäntschi L, Bolboaca S-D (2005) Pearson versus spearman, kendall’s tau correlation analysis on
structure-activity relationships of biologic active compounds. Leonardo Electron J Practices Tech-
nol 6:76–98

17. McCalpin JD (1995) Stream: Sustainable memory bandwidth in high performance computers, Link:
www.cs.virginia.edu/stream/

18. Yuki T (2014) Understanding polybench/c 3.2 kernels, In: International workshop on Polyhedral Com-
pilation Techniques (IMPACT), pp. 1–5

19. Yuki T, Pouchet L-N (2015) Polybench 4.0, accessed: April 21 2020. [Online]. Available: https://www.
cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-
alpha-4.0/polybench.pdf

123

http://creativecommons.org/licenses/by/4.0/
www.cs.virginia.edu/stream/
https://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf
https://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf
https://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/polybench.pdf

Predicting number of threads using balanced datasets... 1017

20. Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-normalizing neural networks, In:
Advances in neural information processing systems, pp 971–980

21. Martínez A, Sikora A, César E, Sorribes J (1970) Elastic: A large scale dynamic tuning environment,
Scientific Programming, vol. 22,

22. Sikora Morajko A, Caymes-Scutari P, Margalef T, Luque E (2007) Mate: Monitoring, analysis and
tuning environment for parallel/distributed applications. Concurrency Comput: Pract Exp 19:1517–
1531

23. Bailey DH, Barszcz E, Barton JT, Browning DS, Carter RL, Dagum L, Fatoohi RA, Frederickson PO
et al (1991) The nas parallel benchmarks. Int J Supercomput Appl 5(3):63–73

24. César E, Moreno A, Sorribes J, Luque E (2006) Modeling master/worker applications for automatic
performance tuning. Parallel Comput 32:568–589

25. Kotsiantis S, Kanellopoulos D, Pintelas P (2005) Handling imbalanced datasets: A review. GESTS
ICSSE 30:25–36

26. Batista GEAPA, Prati RC,MonardMC (2004) A study of the behavior of several methods for balancing
machine learning training data. SIGKDD Explor Newsl 6(1):20–29

27. Kovács G (2019) Smote-variants: A python implementation of 85 minority oversampling techniques.
Neurocomputing 366:352–354

28. Elkan C (05 2001) The foundations of cost-sensitive learning, In: Proceedings of the 17th international
conference on artificial intelligence, vol. 1,

29. Biau G (2010) Analysis of a random forests model. JMLR 13:05
30. Lorena A, Carvalho A, Gama J (2008) A review on the combination of binary classifiers in multiclass

problems. Artif Intell Rev 30(1–4):19–37
31. Gangwar AK, Ravi V (2019)Wip: Generative adversarial network for oversampling data in credit card

fraud detection, in Information Systems Security

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Jordi Alcaraz1 · Ali TehraniJamsaz2 · Akash Dutta2 · Anna Sikora1 ·
Ali Jannesari2 · Joan Sorribes1 · Eduardo Cesar1

Ali TehraniJamsaz
tehrani@iastate.edu

Akash Dutta
adutta@iastate.edu

Anna Sikora
anna.sikora@uab.cat

Ali Jannesari
jannesari@iastate.edu

Joan Sorribes
joan.sorribes@uab.cat

Eduardo Cesar
eduardo.cesar@uab.cat

1 Universitat Autònoma de Barcelona, Bellaterra, Spain

2 Iowa State University, Ames, USA

123

http://orcid.org/0000-0002-9640-6763
https://orcid.org/0000-0003-0090-4109
https://orcid.org/0000-0001-8672-5317
https://orcid.org/0000-0002-8868-7382
https://orcid.org/0000-0002-9729-8557

	Predicting number of threads using balanced datasets for openMP regions
	Abstract
	1 Introduction
	2 Related work
	3 Generating balanced dataset of OpenMP patterns
	3.1 Characterizing and building the representation of the candidate kernel
	3.2 Correlation analysis

	4 Validation of the methodology
	4.1 Building the pattern collection
	4.2 Validating the pattern collection

	5 Naturally Imbalanced Datasets: Predicting the ideal number of threads
	5.1 Ideal number of threads and consequences of dataset natural imbalance
	5.2 Exploring methods for dealing with naturally imbalanced datasets

	6 Conclusions and future Work
	References

