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Abstract
The use of Graphics Processing Units to accelerate computational applications is 
increasingly being adopted due to its affordability, flexibility and performance. 
However, achieving top performance comes at the price of restricted data-parallel-
ism models. In the case of sequence alignment, most GPU-based approaches focus 
on accelerating the Smith-Waterman dynamic programming algorithm due to its 
regularity. Nevertheless, because of its quadratic complexity, it becomes impracti-
cal when comparing long sequences, and therefore heuristic methods are required to 
reduce the search space. We present GPUGECKO, a CUDA implementation for the 
sequential, seed-and-extend sequence-comparison algorithm, GECKO. Our proposal 
includes optimized kernels based on collective operations capable of producing arbi-
trarily long alignments while dealing with heterogeneous and unpredictable load. 
Contrary to other state-of-the-art methods, GPUGECKO employs a batching mecha-
nism that prevents memory exhaustion by not requiring to fit all alignments at once 
into the device memory, therefore enabling to run massive comparisons exhaustively 
with improved sensitivity while also providing up to 6x average speedup w.r.t. the 
CUDA acceleration of BLASTN.
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1  Introduction

The GPGPU computing model (General-purpose computing on graphics pro-
cessing units) [1] is becoming more and more widely applied in nearly all 
research fields that require intensive computation [2]. For instance, GPU com-
puting is becoming the standard for both recent and traditional disciplines, such 
as Machine Learning [3], Chemistry [4] or Physics [5], whose experiments are 
largely inconceivable without hardware accelerators [6]. However, the low cost 
and versatility of these devices come at a price: performance is directly subjected 
to how well the computing problem can be modelled using data parallelism. Such 
imposition can become a strong barrier towards the acceleration of certain appli-
cations. This is generally the case in the field of bioinformatics [7], where a large 
deal of the applications is irregular in nature (e.g. dependent on inherent pat-
terns), and hence their parallelization in GPU architectures is typically not imme-
diate nor does it yield significant speedup [8]. For instance, sequence compari-
son algorithms [9–11] are made of several independent processes which usually 
require computing hash values, dynamic programming tables, large I/O opera-
tions, sorting procedures, etc., all of which add up to the difficulty of adapting 
irregular applications to the data parallelism paradigm. Therefore, merely porting 
CPU-based algorithms into GPUs is not sufficient to achieve an adequate level of 
performance [12], but rather redesigning and adapting the algorithm is required.

Furthermore, besides the technical difficulties of transforming irregular CPU-
based algorithms into regular GPU-based, the field of sequence comparison is 
accompanied by a tremendous explosion in data availability, with databases 
growing exponentially both in size [13] and length. In fact, the ability to exhaus-
tively align these massive genomes results in numerous advantages, such as pro-
viding new insight into the evolution of species [14] or developing specialized 
treatments in precision medicine [15], among others. Nevertheless, the trend of 
increasingly more and larger genomes is creating a series of computational bot-
tleneck in the field of sequence comparison that cannot be properly addressed by 
current software method, for which current software methods cannot cope.

This remains true even in the case of hardware accelerators, since the major-
ity of GPU sequence-comparison implementations are oriented towards optimal 
alignment using the dynamic programming Needleman-Wunsch or Smith-Water-
man algorithm [16]. These algorithms represent exceptional examples of multi-
fold GPU acceleration even when data dependencies exist, achieving up to a 100x 
speedup compared to CPU-based versions. Examples of this category include 
CUDALIGN [17] or SW# [18], which reportedly can compute full-chromosome 
comparisons in several hours [19], despite the two-orders-of-magnitude speedup. 
While proposals such as CUDALIGN can also make use of further GPU devices 
to speed up the comparison even more, the approach can require a consider-
able amount of compute time if we consider a full-genome comparison, which 
requires a quadratic number of comparisons. This typically results in around 500 
chromosome comparisons per pair of species. Moreover, and besides the differ-
ence in complexity, exact and heuristic alignments can be more or less adequate 
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depending on the goals of the sequence comparison experiment. Therefore, the 
lack of a GPU-capable alternative to exact dynamic programming algorithms 
motivates the necessity of redesigning heuristic and seed-and-extend sequence 
comparison algorithms for GPU devices to cope with the enormous search spaces 
derived from all-vs-all chromosome comparisons.

Current heuristic methods typically employ either alignment-free [20] or 
seed-and-extend [21] strategies. While the first serve their purpose as extremely 
fast approximations that require nearly no computational resources (e.g. 
CHROMEISTER [22]), fine-grained alignments are often needed for in-depth 
genetic analyses, and these require the actual calculation of alignments which in 
turn consumes more computing time. Examples of seed-and-extend algorithms 
include MEGABLAST [23] and GECKO [24]. To the best of our knowledge, 
MEGABLAST is the only seed-and-extend algorithm that has been subject of a 
GPU implementation (namely GBLASTN [25]). However, its purpose is mostly 
focused on the comparison of several small query sequences with large databases, 
and therefore it is not prepared for chromosome-level comparisons. In this manu-
script we present GPUGECKO, a CUDA [26] implementation for GPU devices 
of the seed-and-extend and ungapped sequence-comparison algorithm designed 
to be able to handle massive all-vs-all chromosome (or any type of nucleotide 
sequence) comparisons. Based on GECKO, our proposal describes how to over-
come several challenges and limiting factors of the irregular sequence compari-
son algorithm when deployed on GPUs. These include: 

1.	 An unknown and explosive number of alignment seeds, which results in unbal-
anced load.

2.	 The arbitrary length of extended alignments, which requires careful synchroniza-
tion mechanisms to avoid unbalance, branch divergence and warp stalling.

3.	 The overlap of seeds and their extension, which can result in redundant computa-
tion.

The main contributions of this manuscript towards the overcoming of such limita-
tions are two novel kernels that make use of parallel reductions to work coopera-
tively in a fine-grained fashion, which results in effectively dealing with irregu-
larity without requiring expensive synchronization mechanisms.

Moreover, we show that GPUGECKO is not only faster, but also more sensi-
tive in terms of the number of detected alignments than state-of-the-art meth-
ods since no masking of low complexity regions nor removal of highly repetitive 
seeds is performed. To the best of our knowledge, GPUGECKO is the only native 
seed-and-extend sequence comparison software capable of fully aligning whole 
mammalian chromosomes in under one minute on average on a GeForce 980 
GTX device. The GPUGECKO software is free to use and can be downloaded 
and compiled from its GitHub repository [27].

Furthermore, even if the proposed strategies are described for the applica-
tion domain of DNA sequence comparison, these mechanisms for GPU acceler-
ation are also applicable in any scenario involving string comparison [28]. For 
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instance, sequence alignment algorithms have already been used for plagiarism 
detection [29]. Thus, GPUGECKO can be adapted into using an extended alpha-
bet to enable the comparison of massively sized books or any text source while 
benefiting from the hardware acceleration improvements.

2 � Background

In this section, the internals of the original GECKO algorithm are introduced in 
order to facilitate the understanding of the different kernels proposed in the GPU 
implementation.

The original GECKO algorithm performs the comparison of two DNA strings 
employing secondary memory to offload the enormous size of the data structures 
generated by the processing of chromosome-sized sequences. This is an interesting 
feature, since it enables to run virtually any comparison that would otherwise result 
in memory exhaustion (eventually crashing) in most algorithms. However, this fea-
ture generates longer delays due to the input/output disk operations (i.e. reading and 
writing), which end up affecting performance negatively, especially when running 
multiple instances in parallel.

The GECKO workflow begins by first building a dictionary of overlapping words 
(i.e. a mapping between DNA strings of fixed size k and their positions, see Table 1 
for related definitions) and saving it to secondary memory. This is repeated for both 
input sequences. Secondly, each dictionary is sorted by the numeric value of words. 
Afterwards, equal words from the query and reference sequences are matched 
together into tuples containing the value of the word itself and its position. These 
tuples are known as seeds since they are used as starting or seeding points of the 
posterior alignments (see “From words to alignments” in the Supplementary Mate-
rial for more details). This part of the process is typically quadratic in the number of 
equal words, and thus responsible for most of the memory consumption, especially 
when sequences are closely related or extremely long. Lastly, the seeds need to be 
sorted in order to enable filtering and posterior extension.

From the perspective of parallelism, the original GECKO implementation1 
included a coarse-grained parallel strategy at the task-level, namely using three 
threads to compute the dictionaries (one for the query, reference and reverse-com-
plement of the reference sequence) and two threads to compute the generation and 
matching of seeds. Additionally, a variable number of threads was used to perform 
sorting (of both words and seeds) in batches along with a final merge.

In the following subsections, more details regarding the algorithmic workflow of 
GECKO are included.

1  Source code can be found at https://​github.​com/​otorr​eno/​gecko.

https://github.com/otorreno/gecko
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2.1 � Words and seeds generation

Each word wi or substring of fixed size k in the sequence has to be indexed prior to 
the matching in order to enable a computationally efficient retrieval of equal words, 
resulting in the computation of n − k + 1 words. A collision-free indexation of DNA 
words can be computed as shown in Equation 1:

where hi is the numerical value of word wi and v(x) maps each letter of the alphabet 
A = {A,C,G,T} to an integer value {0, 1, 2, 3} . Such indexation is particularly use-
ful for hash-table approaches (i.e. two equal words will map to the same position 
in the table). Nevertheless, other common indexation approaches include the use of 
probabilistic hash tables [30], tree-based structures [31] or even data-compression 
algorithms [32]. In the case of GECKO, the dictionaries need to be sorted to enable 
the matching between words of both sequences in O(n + m) time (being n,  m the 
number of words in each dictionary), which results in the generation of seeds.

Note that the size k of the words plays a key role in the efficiency of seed-and-
extend algorithms. In essence, it represents a trade-off between speed and sensitiv-
ity, with small k values detecting more seeds but being more sensitive to random 
matches, and vice versa.

The resulting number of seeds is unpredictable and depends mostly on the relat-
edness of the sequences being compared. For example, if the first ≈ 30 megabase 
pairs of the comparison between chromosome X of Homo sapiens and Mus muscu-
lus were split in ≈ 8,000 pieces of equal size (roughly 4,000 by 4,000 base pairs per 
split), most of the splits would contain less than 100 seeds, whereas some of them 
would contain almost 10,000,000 seeds.

In order to handle such extreme variation, most algorithms limit the number of 
seeds generated by high-frequency words (such as low-complexity regions [33]). 
While this approach effectively reduces the search space, it also implies a loss of 

(1)hi =

k∑

j=0

|A|k ∗ v(si+j)

Table 1   Brief definition of common terms used in sequence alignment and particularly in seed-and-
extend algorithms

Term Definition

Sequence String of nucleotides [A, C, G, T] and N as the unknown character
Query Sequence for which it is wanted to know its similarity to another sequence
Reference Sequence for which a query is being aligned to
Word Substring of size k in position p in a sequence
Seed/hit Tuple of two equal words which occur both in the query and reference
Alignment Highly similar segment between two sequences
Sensitivity The ability of a heuristic method to detect existing alignments
Identity The sum of pairwise equal nucleotides in an alignment divided by its length
Coverage The total aligned nucleotides divided by the length of the query sequence
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sensitivity. With such limitations in mind, in this manuscript we propose an inte-
gral acceleration of the seed-and-extend algorithm capable of producing exhaus-
tive and unfiltered results by leveraging the compute capabilities of modern GPU 
architectures.

2.2 � Extension of seeds

The seed-extending module will be described before the filtering process since a 
general knowledge of the seed-extension is required beforehand. The seed-extending 
module of GECKO can be defined as the optimization problem of finding the pair of 
offsets p1, p2 that maximize the alignment score si,j of a given seed, namely:

where i,  j are the coordinates of the seed in both sequences and the function 
g(qi, rj) returns 1 if qi = rj and -1 otherwise. Note that the optimization func-
tion is subject to the boundaries of the sequences, namely 0 ≤ p1 < min(i, j) and 
0 ≤ p2 < min(|q| − i, |r| − j) . A heuristic stopping condition is added such that the 
scoring of the function cannot drop below zero or otherwise the iterative search 
may run until exhausting the sequence length while trying to find the optimal set 
of parameters [34]. The resulting seed extended by p1 and p2 is called a High-scor-
ing Segment Pair (or HSP) with score si,j , and represents an ungapped alignment 
between two regions of the query and reference sequences.

2.3 � Filtering of seeds

The filtering of seeds is an essential step in the GECKO workflow that greatly 
reduces the computation time of the extension step. It allows for a large number 
of the generated seeds to be filtered due to their close proximity to one another. 
As an example, consider two exactly equal DNA segments with composition 
x0, x1, ..., xk, ..., xn surrounded by unequal segments. First, the number of words will 
be all of the overlapping substrings S = {s0∶k, s1∶k+1, ..., sn−k∶n} . Secondly, since the 
composition of both sequences is equal, there will be a seed for each of the words 
listed. However, given that each of these seeds belongs to the same segment, the 
alignment extension will result in the very same HSP. Thus, adjacent seeds can be 
filtered out up to a maximum distance of two word sizes or 2k base pairs (given 
an equal match/mismatch scoring system), since the score can only reach 0 after as 
many misaligned nucleotides have been matched as those contained in the original 
seed.

(2)si,j = argmaxp1,p2

p2∑

l=−p1

g(qi+l, rj+l)
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3 � Methods

The following sections describe the methodology of the proposed algorithm 
GPUGECKO. Section 3.1 briefly addresses the modules that comprise the seed-and-
extend algorithm and analyses the computational load of each stage in the origi-
nal GECKO algorithm. Section 3.2 describes how GPUGECKO employs a batch-
ing strategy to process sequence comparisons of virtually any size. Afterwards, the 
details, metrics and designs of each kernel are discussed in Sect. 3.3.

3.1 � Algorithm description and workload analysis

In short, the seeded sequence comparison algorithm in GECKO can be divided into 
(1) creating a dictionary (index) of the overlapping words of equal size for each of 
the sequences and sorting them by their value, (2) linear matching of similar words 
between both dictionaries into seeds (hits) and (3) extension of seeds into aligned 
HSPs. A workflow diagram is shown in Fig. 1, featuring all stages of the GPU algo-
rithm. Note that the query sequence needs to be compared against both the reference 
and the reverse complementary of the reference sequence. This is required in order 
to enable detection of a certain type of evolutionary event (i.e. inversions). Further-
more, all computation is performed within the GPU device from start to finish with 
the exception of the final filtering and writing of HSPs to disk.

Table  2 shows the amount of computing time spent at each of the stages in 
the original GECKO implementation. The depicted values were obtained from 
the sample dataset used throughout the rest of the manuscript, which is aimed at 

Fig. 1   Seed-and-extend 
sequence comparison algorithm 
in GPUGECKO. Note that the 
reverse complement step is run 
only once in a second execution 
of the workflow as a substitute 
of the input reference sequence. 
Blank steps represent GPU ker-
nel programs, whereas striped 
ones represent host programs



8706	 E. Perez‑Wohlfeil et al.

1 3

representing real-world sequence comparison scenarios (see the Sample dataset in 
Sect. 4.1). The lower and upper confidence intervals were calculated from the aver-
aged and normalized runtimes.

It can be observed from Table 2 that the most time-consuming step is the genera-
tion of words, although closely followed by the sorting of both words and seeds and 
finally the seed generation and extension. Although the seed filtering and reverse 
complement stages only require a small fraction of the computing time (around 
2%), these were also included in the GPU pipeline to achieve higher speedup, since 
otherwise (given Amdahl’s law [35]) the theoretical speedup is limited. Moreover, 
when comparing mammalian chromosomes in CPU-based algorithms, the filtering 
of seeds can require around 100 seconds, whereas the extension of seeds can take 
around 10 minutes. Therefore, all stages were implemented as GPU kernels in order 
to enable the maximum theoretical speedup, even when only a reduced speedup 
could be achieved due to lesser computational requirements.

3.2 � Subsequence batching

The seed-and-extend sequence comparison algorithm is irregular in the number of 
seeds and in the length of the alignments (HSPs). However, it is the generation of 
seeds which is particularly difficult, since its quadratic growth can quickly exhaust 
memory.

In the CPU implementation of GECKO, secondary storage was used to offload 
seeds (as well as words and HSPs) from the main memory. While this approach ena-
bles virtually any system to run massive comparisons, it also has a strong impact 
on performance both from the perspective of speed and more importantly, on other 
processes running in the system due to the massive amounts of data that need to 
be written to disk. In particular, a single execution is likely to overlap computation 
with I/O operations; however, given enough parallel instances, the latency of the I/O 
requests might cause long waiting times for running threads due to reading and writ-
ing of intermediate results.

Table 2   Analysis of the computing requirements per stage in the CPU version of GECKO

From left to right, (1) processing stage, (2) average computing percentage, (3) standard deviation of the 
computing time and (4) upper and lower boundaries of computing percentage as given by the confidence 
interval at � = 95%

Processing step � time (%) � time (%) Lower (%) Upper (%)

Reverse complement 2.16 1.16 1.44 2.88
Words dictionary 27.83 14.37 18.92 36.73
Words sorting 27.08 13.66 18.61 35.55
Seed generation 10.22 7.02 5.87 14.57
Seed sorting 21.65 23.56 7.05 36.26
Seed filtering 1.63 1.32 0.81 2.45
Seed extension 9.44 6.61 5.34 13.54
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In the case of GPUGECKO, given that the number of seeds is unknown until 
actual computation, a batching procedure is proposed to split the sequences in sub-
sequences on which to run the algorithm separately, eventually merging the result-
ing HSPs. The batching procedure is depicted in Fig. 2, where each subsequence is 
shown as an independent dotted square. Alignments are represented as black dots 
which contain sets of words and seeds along the x- and y-axis (query and reference 
sequence, respectively). This mechanism prevents the explosion in the number of 
seeds that occurs in other state-of-the-art algorithms (see Sect. 4.2) while also ena-
bling to fully run the algorithm without requiring to offload data to secondary mem-
ory in the host when main memory is not sufficient.

In this line, the proposed implementation leverages the compute capabilities of 
GPUs by trading off storage space for time, therefore running every stage as a com-
bination of host and device memory without requiring to offload data structures 
to secondary memory. In fact, only the initial loading of the input sequences into 
CPU memory and the final writing of alignments from CPU memory require disk 
operations.

However, using a batching procedure penalizes the performance of the execution 
with additional data transfers between the host and device even when pinned host-
memory is used. Thus, batching implies multiple data transfers needing memory 
allocations and deallocations in each processing stage, as each stage has different 

Fig. 2   Example of batched sequence comparison. The query sequence is represented in the x-axis, 
whereas the reference and reverse complement sequences are represented in the y-axis. Both sequences 
are split into subsequences and computed independently. Notice that the execution workflow is com-
puted not only on the query and reference sequence, but also on the query and the reverse complement 
of the reference. The zoomed square shows how small HSPs comprise the main similarity signal. The 
sequences employed for this example are Gallus gallus (common chicken) chr. 18 and Meleagris gal-
lopavo (common turkey) chr. 20
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memory requirements. In order to minimize the latter, a memory pool strategy is 
employed, i.e. all memory is allocated as a single large chunk at the initialization of 
the algorithm. This enables us to replace system allocations (which can be very slow 
due to memory fragmentation, context-switching, etc.) with pointers addressing var-
iables throughout the large memory chunk. This allows to turn multiple memory 
allocations into simple arithmetic operations.

Another side effect of this procedure is that the set of words (and their sorting) 
belonging to a row or column are processed b times (being b the number of sub-
sequences in the comparison). Notice that this does not occur for seeds nor HSPs, 
which are dependent on the words from both the query and the reference. Conse-
quently, they are completely different at each subsequence since only the calcula-
tion of words of one of the sequences is repeated (depending on whether a query or 
reference stride is used). Although this is computationally redundant, the alternative 
of storing these words in host memory for its reutilization in next iterations does not 
yield significant speedup since costly I/O transfers through PCI bus are required. In 
addition, this solution also increases the requirements of pinned memory in the host.

Still, the size of the subsequences must be carefully chosen: if it is too small there 
will be a large number of data transfers and kernel launches with little work, which 
result in poor performance; on the contrary, larger sizes will risk spawning too many 
seeds at once that will not fit into the memory of the device. To overcome this limi-
tation, we performed an empirical study regarding the balance between subsequence 
size, seed generation, input sequences and performance and included a trade-off 
parameter to control the subsequence size as a function of the memory of the device.

However, from a biological perspective, it is important to mention that divid-
ing the original sequence into subsequences risks breaking HSPs into two parts, 
especially when these are close to the boundaries of the subsequence. A Monte 
Carlo [36] simulation was run to calculate the proportion of HSPs being affected 
by this mechanism in the sequence comparison between Homo sapiens chr X and 
Mus musculus chr X. In particular, the location and length of HSPs were mod-
elled using a uniform and exponential distribution, respectively, each with the cor-
responding parameters as extracted from the sequence comparison (further details 
can be found in the Supplementary Material). The simulation resulted in an average 
of 1.14 ∗ 10−3% HSPs being split in two as a consequence of the batching strategy. 
While this result cannot be generalized to all other sequence comparisons, it can be 
extrapolated that more distant sequences will potentially result in less split HSPs, 
whereas more closely related sequences will result in more. Nevertheless, a trade-off 
between accuracy and speed is already expected in the context of seed-and-extend 
algorithms as a result of utilizing exact words of size k as seeds for alignments.

3.3 � Kernel implementation

In this section, each stage of the developed CUDA workflow is addressed and ana-
lysed in terms of performance metrics. In the case of kernels where sorting libraries 
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were employed, a reasoned discussion is provided based on computational complex-
ity. From an implementation perspective, two things should be noted: 

1.	 The data structures and representation of words (up to k = 32 ), seeds and align-
ments within the device are:

•	 Words, which are represented by tuples of 64- and 32-bit integers which 
encode the numerical hash value as calculated in Equation 1 and the position 
of the word in the sequence, respectively. Both are materialized as pairwise 
arrays.

•	 Seeds, which are represented as a single 64-bit integer which encodes the two 
32-bit positional values of the words that conform the seed (transformed into 
a main diagonal and a single positional value, see Sect. 3.3.4).

•	 Alignments, which are coded as two 32-bit integers which act as offsets to the 
original seed value and are also implemented as arrays.

2.	 The execution configuration (particularly thread block size) can be changed 
depending on the CUDA device (see [37]) except for the seed extension kernel, 
where the number of block threads must match the size of the word k.

3.3.1 � Words and reverse‑complement kernel

The words kernel is in charge of computing the individual words that compose a 
subsequence, as well as assigning each of them a unique numerical value. A key-
value pair is built for each possible overlapping word wi in the subsequence, with 
the key corresponding to the numerical hash hi and the value corresponding to the 
original position in the sequence (see Sect. 2.1). In particular, each thread in a thread 
block calculates the numerical value of an overlapping word w of size k = 32 (which 
corresponds to 32 nucleotides in a segment of 32 bytes) by adding the value of the 
nucleotide at position i times 4 to the power of i. This means that thread ti in block 
bj is in charge of calculating the 32-word starting at position i + j ∗ blocksize . Note 
that each word is consecutively overlapped by one byte and therefore shared mem-
ory is employed to cache tthreads + k bytes per block prior to computing the hash. 
This is required or otherwise the one-byte-shift per thread will split transactions in 
two, thus reducing global load efficiency. The storing of both key and value per each 
word is fully coalesced as long as the number of threads per block is divisible by 4, 
since each thread will perform a consecutive global store instruction on aligned sec-
tions that will begin at a multiple of the number of threads per block.

The design of the words kernel is dictated by the way in which the input 
sequences are indexed. That is, whether the query and reference sequences are 
stored either as a char array or as a larger data type (i.e. 4 or 8-byte types). Using a 
1-byte per nucleotide strategy results in balanced computation and memory band-
width, whereas increasing bandwidth by fetching larger data types at once results 
in reduction of instructions issued per cycle due to stall by execution dependency. 
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Moreover, the encoding of multiple nucleotides into a single byte (e.g. two) is not 
considered since: 

1.	 The actual nucleotide values of the words are only used twice throughout the 
pipeline, namely at the words kernel and at the seed extension kernel. Therefore 
the encoding and decoding would represent significant overhead for the limited 
use.

2.	 DNA sequences are typically stored as FASTA files which use the standard ASCII 
encoding of one byte per character. The changing of such encoding would have to 
be carried out somewhere, potentially at the host side in order to minimize PCI 
transfers.

3.	 Three bits would be required in order to represent the four nucleotides plus the 
letter N (i.e., the unknown nucleotide), which removes nearly all advantages of a 
two-bit encoding.

Thus the best performance is achieved by (1) keeping the one-byte per nucleotide of 
the original encoding and (2) caching DNA segments into shared memory to prevent 
unaligned accesses from the overlapping indexing. This results in a coalescent ker-
nel with 100% global load efficiency, 100% global store efficiency and almost full 
occupancy. Further improvement is achieved when looping over the current k-mer 
by replacing as many integer instructions (which create instruction dependencies) as 
possible with cached constants.

In a similar fashion, the reverse-complement kernel calculates the reverse-com-
plementary strand of the reference sequence, which also needs to be compared 
against the query input. Nevertheless, as opposed to the words kernel, there is no 
“walking pattern” in the reverse complement kernel, since threads in a block access 
consecutive memory segments (and not overlapping ones). Therefore, the kernel 
will achieve 100% efficiency in both the load and the global storage without requir-
ing shared memory caching. In combination with asynchronous streaming transfers 
and a pinned-memory layout, the reverse-complement kernel is able to modestly 
improve acceleration depending on the size of the sequences while freeing up the 
host CPU and also compensating for the host-to-device transfers.

3.3.2 � Sorting words

Sorting is a key aspect in the original GECKO algorithm, as well as one of the most 
time-consuming steps. The sorting of keys is used twice per execution (for words 
and seeds) to enable both the generation of seeds and the filtering of these in a prior 
step to their extension. The fact that GECKO and GPUGECKO require massive 
sorts (particularly in the case of sorting seeds) represents a strong advantage since 
sorting procedures are one of the most widely researched GPU algorithms in exist-
ence. This implies that GPUGECKO can always be revisited and updated with faster 
sorting methods, thus improving performance.

In the present case, the sorting method to choose must be able to deal efficiently 
with (1) millions of elements at once and (2) long numbers. Regarding (1), our 
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scenario comprises large sequences (such as mammalian chromosomes) which will 
typically require sorting from 106 to 108 pairs (see Table 3 in Sect. 4.1) when using 
a subsequence batching procedure as described previously. Regarding (2), each ele-
ment being sorted is either the numerical value of the word (in the range [0, 264) ) or 
the seed-diagonal value (in the range [0, 232) ). These characteristics are appropri-
ate for the merge sort algorithm [38], since its complexity is only dependent on the 
number of items, particularly O(N ∗ logN) , as opposed to radix sort [39], which is 
also dependent on the size of the keys ( O(k ∗ N) approximately, being k the size of 
the key). This implies that, since keys are 64-bit long in both sorting cases, more 
items than can be fitted in the memory of the device would be required in order for 
the complexity of radix sort to pay off.

Regarding implementation, the mergesort algorithm of the ModernGPU library 
[40] was used along with a custom memory allocator that reduces memory alloca-
tions. Such optimization was deemed necessary given the number of times that sort-
ing is performed per each subsequence as a result of batching. Source code for the 
custom memory allocator is provided in the Supplementary Material.

3.3.3 � Generation of seeds

Once words are sorted, seeds can be spawned by matching equal words. This proce-
dure consists of sweeping both word collections (query and reference) while keeping 
two indices that are incremented depending on key equality. That is, the query index 
is incremented if the key is smaller than the reference key, and vice versa. Since 
these two dictionaries are sorted, the sweep is purely linear, i.e. each key is visited 
only once. Therefore, in order to make an efficient GPU implementation of the ker-
nel, it is required to overcome challenges which are related to both the architecture 
(strict linear complexity of the CPU counter version) and the application domain 
(irregularity in the distributions). These include: 

Table 3   Sequences included in the sample dataset, sorted by search space (i.e., the product of the 
lengths)

The number of seeds corresponds to the total number of seeds generated using a word size of k = 32 . 
Note that the names of the mammalian genomes (i.e. from the third row on) have been abbreviated with 
the first three and two letters of the genus and species, respectively, and the number of chromosomes

Sequences Query len. Ref. len. Search sp. Seeds

Myco. hyop. 232, 7422 892,725 898,121 801 × 109 0.4 × 106

Esch. coli B, K12 4,478,925 4,558,627 20, 417 × 109 3.6 × 106

GALGA18, MELGA20 10,494,880 9,898,897 103, 887 × 109 0.6 × 106

ORYLA6, DANRE25 23,318,240 37,418,471 872, 532 × 109 71 × 106

SUSSC11, BOSTA12 79,119,489 90,363,562 7, 149, 518 × 109 12 × 106

HOMSAX, MUSMUX 151,099,878 163,484,862 24, 702, 542 × 109 730 × 106

HOMSA1, GORGO1 225,279,443 211,487,502 47, 643, 786 × 109 3, 136 × 106
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1.	 Load balancing. A mechanism must be considered to balance how many seeds are 
calculated per block, since this number is unpredictable and can vary quadrati-
cally between blocks.

2.	 Synchronization at the grid level. A lightweight mechanism is needed to coordi-
nate the writing of seeds per block such that performance is unaffected (e.g. large, 
shared memory buffers would impact negatively on occupancy).

3.	 Synchronization at the block level. Threads belonging to a block also require 
orchestration to write data without interleaved gaps.

4.	 High overhead per little work. Each seed requires only a small amount of com-
putation while still requiring data retrieval and storage.

The two main mechanisms involved in the seed-generating kernel, namely load 
balancing and synchronization at the thread and block level are depicted in Algo-
rithm 1. Note that the abbreviations tx , bx and gx are used for threadIdxx , blockIdxx 
and gridDimx , respectively.

Regarding load balancing, a simple function of the family 1
x
 is employed to dis-

tribute increasingly smaller sizes of work items (encoded as a range of sorted words 
to process) in order to prevent blocks from locking up entire streaming multiproces-
sors, while others are idling. This enables to achieve full and uniform utilization of 
the multiprocessors with virtually no overhead.

Regarding writing synchronization, two mechanisms are devised. The first one is 
aimed at dealing with the distribution of the average number of seeds, whereas the 
second one is devised to handle the distribution that accounts for a potentially quad-
ratic number of seeds (see Sect. 2.1).

The first one is based on a static division of the memory space such that each 
block has a reserved memory space. While of limited size, this space enables blocks 
to write seeds without requiring inter-block communication. In fact, only intra-block 
synchronization (i.e. per thread) is required to write to this memory space. To do 
so, we take advantage of the fact that the word dictionaries are sorted: if thread ti 
does not generate a seed, then we know that ti+j does not generate a seed either. This 
means that after identifying the first matching thread ts that does generate a seed, we 
can pinpoint the range of threads ts, ts+1, ..., ti that have generated seeds and there-
fore perform a consecutive write, which effectively translates not only in a coalesced 
write, but also on avoiding the insertion of gaps between writes (otherwise these 
gaps would quickly fill up the reserved space). From an implementation perspective, 
determining the first position ts can be performed quickly by computing a shuffle-
warp min reduction of the thread indices that produced seeds of the warp (see Line 
10). In conjunction with another reduction (either as a sum of the number of seeds in 
the current warp, or as a max reduction of the thread indices), all threads are made 
aware of the positions where the writes will take place, thus avoiding the insertion 
of gaps between writes.

The second mechanism, which is concerned with the quadratic number of seeds, 
includes fewer but much larger and unowned memory spaces. Since these are not 
mapped to blocks, their access is controlled by an atomic counter such that when a 
block’s dedicated memory space is exhausted, the atomic counter returns the next 
unowned memory space (see Line 14). Unless the kernel is governed by atomic 
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operations, this does not represent a negative impact on performance, especially 
since these operations are only required rarely (in fact they occur less than a few 
hundred times per execution).

The workflow of the seed-generating kernel proceeds as follows: 

1.	 Process the query dictionary into successive batches of increasingly smaller sizes. 
Each block is assigned a batch and begins by performing a binary search on the 
reference dictionary in order to find the first reference key which has a greater or 
equal value than that of the query batch.

2.	 The query keys (and positions) are cached into shared memory in warp-sized chunks 
which get coalesced into a single transaction (see Line 6). Cached query keys only 
require to be updated once the last query key is found to be smaller than the current 
reference key. The reference keys (and positions) are also cached into shared memory 
and updated in every matching iteration in chunks of 32 memory-aligned items.

3.	 Each block computes query keys one by one against consecutive warp-sized refer-
ence keys and writes the results to the corresponding memory space using shuffle 
min reduction. Depending on the outcome of the matching comparisons, the next 
query key is computed or the next block of keys is fetched.

4.	 Once each block has finished, seeds are compacted to remove the gaps corre-
sponding to the in-between writing sections reserved to every block. Doing so 
decreases the number of elements to sort and facilitates the posterior filtering.

This procedure results in a kernel that achieves full coalescence and full shared 
memory efficiency. In fact, the limitation of the kernel is the stalling caused by 
execution dependency as a collateral effect of using the warp shuffle instructions 
in order to synchronize threads at the block level. Nevertheless, this approach is 
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more efficient than using temporary shared memory to distribute indices, since 
arithmetic operations also need to be performed on these.

3.3.4 � Sorting and filtering of seeds

In the case of words sorting, tuples of keys and values were sorted only by their 
numerical hash key. However, in the case of seeds, the sorting has to be done on 
both the diagonal value of the seed and its positional value in the query or reference 
sequence since doing otherwise prevents from filtering adjacent seeds and hence 
the removal of duplicates. State-of-the-art GPU sorting algorithms are not designed 
for multiple key sorting, but rather for one key and one value [41] or one key and 
multiple values [42]. In order to achieve the maximum performance, we propose 
to merge both the diagonal value and the positional value into a single 64-bit key. 
This approach has several advantages over a custom sorting implementation that 
handles multiple keys, particularly (1) the fastest state-of-the-art sorting algorithm 
can be used and revisited, as explained before, (2) the merging of the diagonal and 
positional value can be done in constant time when seeds are created and (3) no 
additional comparison overhead is added to the sorting algorithm, preventing perfor-
mance degradation. In essence, the merging of diagonal and positional values into 
one key is possible because of the ternary relationship d = x − y , which produces 
a single 64-bit key. Moreover, this key combines the positional information of both 
query and reference while also being suitable to be sorted upon. Equation 3 shows 
the calculation of the merged key.

where dprev is the original diagonal value calculated as dprev = pquery − preference , 
dlength is the maximum length of diagonal calculated as dlength = max(qlength, rlength) , 
pquery and preference are the positions of the seed in the query and reference sequences 
and qlength, rlength are the lengths of the input sequences. Notice that Equation  3 
separates the space into as many consecutive segments as the number of diagonals 
(which is ndiagonals = qlength + rlength ), each of size dlength and thus fitting pquery such 
that order is conserved. Due to the key being 64 bits in size, the upper bound for the 
length of the input sequences (assuming qlength = rlength ) is calculated as follows in 
Equation 4:

(3)dmerge = dprev ∗ dlength + pquery

(4)

264 = ndiagonals ∗ dlength2
64

= (qlength + rlength) ∗ max qlength, rlength2
64

= 2 ∗ qlength ∗ qlength2
64

= 2 ∗ q2
length

√
264

2
= qlength
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Which gives us an estimated upper bound of qlength = 2, 147, 483, 648 ∗
√
2 ≈ 3 ∗ 109 . 

Given that there is an upper bound for the length of chromosomes [43] and that 
the estimated upper bound for the merged key is several times superior to the size 
of mammalian and plant chromosomes, this strategy can be used in any scenario. 
Moreover, since the sorting of seeds is applied to each subsequence from the batch-
ing procedure, it is rather unlikely that a GPU device has enough memory to store 
the seeds produced by splits of size 3 gigabase pairs at once. In short, the previous 
procedure enables to sort seeds (which require two keys to be sorted) at once with-
out sacrificing functionality nor speedup.

After the sorting of seeds is completed, filtering needs to be performed. Only seeds 
whose positional value is sufficiently close (typically less than twice the size of the seed) 
to a preceding seed in the same diagonal can be filtered out. Such filtering can be seen as 
a stream compaction operation in which the seeds that do not satisfy the given condition 
of proximity and diagonal value are first marked for removal and then followed by a scan 
and scatter operation.

3.3.5 � Seed‑extension

Each seed can be extended into an arbitrary sized HSP. Thus, a GPU kernel running more 
than one seed per block easily results in branch divergence (for the size range of HSPs can 
vary several orders of magnitude, typically from 100 bp to over 40,000 bp), and even worse, 
in a thread block being held on a SM for as long as the largest HSP requires. Such behaviour 
derives in blocks locking a higher amount of resources and therefore in increasing latency 
and degrading occupancy and performance. In this line, GPUGECKO proposes a one-block-
per-seed kernel where each block runs 32 threads in complete lock step, aligning contiguous 
32-byte sections of DNA first in the forward direction and then in the reverse direction.
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Algorithm 2 shows the pseudocode for the seed-extending kernel. Note that for 
illustration purposes, boundary checks for beginning and ending of the sequences 
are not shown. As can be seen, the kernel begins computation by fixing the score 
of the current seed at 32, which corresponds to the 32 matching nucleotides of 
the two equal words. Then, until the score drops below zero, the kernel keeps 
aligning consecutive segments of 32 nucleotides (or 32 bytes). This is done in 
parallel by all of the 32 threads of the block: each thread compares one nucleotide 
addressed by the query position seedx − 32 + threadIdxx and the reference posi-
tion seedy − 32 + threadIdxx (note that when computing the opposite direction, the 
value 32 is added instead of subtracted). The values seedx and seedy correspond 
to the origin position of the seed in both sequences. The threadIdxx value, which 
contains the id of the current thread, is added to the computation so that each 
thread calculates a consecutive nucleotide. Next, the outcome of the nucleotide 
comparison (per thread) is stored in variable sim either as a 1 or a 0. This enables 
to employ a sum and reduction approach where all threads participate in an itera-
tive summation and a final exchange of the number of matched nucleotides per 
segment of 32 nucleotides (line 10). Last, the score and the current position of the 
alignment (in respect to the seed) are updated in order to fetch another segment of 
32 nucleotides. Also notice that no branch divergence can occur in this scenario, 
and that sequence access by each thread is consecutive, hence resulting in almost 
fully coalesced access. Every warp’s access to the sequence will require on aver-
age two transactions, as opposed to a fully coalesced access with only one. This 
is due to the memory alignment of the sequence, which is stored as a char array, 
and therefore seeds can start at any position in the sequence, sometimes spanning 
across two memory segments and hence requiring two transactions. Regarding 
the performance of the kernel, the most limiting factor is the number of arith-
metic operations performed on every segment of 32 nucleotides (i.e. 32 bytes), 
which result in execution dependency being the most limiting factor. Therefore, 
further optimizations in the kernel should target computation (and particularly 
instruction-level parallelism) as opposed to maximizing memory bandwidth.

Still, besides the optimizations for the actual computation of the seed exten-
sion, an algorithmic optimization is also included in the kernel. A large deal of 
seeds might be spaced throughout the same diagonal at a distance which is larger 
than the maximum gap to filter them out (seeds closer than twice the length of a 
seed can be filtered without losing sensitivity). In a parallel execution, this can 
result in recomputing most of those seeds, since no synchronization mechanism 
is foreseen. Since block synchronization is a costly mechanism, we overcome 
this scenario by including a static partitioning of the seeds, i.e. each block will 
compute not only one but several adjacent seeds, enabling it to detect whether 
a particular seed overlaps with the following seed without requiring inter-block 
communication. In short, the addition of the partitioning mechanism along 
with a shared-memory buffering prior to storage in global memory can acceler-
ate the seed-extension kernel multi-fold (up to 14x in the case of Escherichia 
coli) depending on the amount of closely spaced seeds, compared to the default 
full-recomputation approach. In theory, further improvement can be achieved 
by increasing the number of seeds per block; however, this also results in less 
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occupancy in cases where no such “repetitive seeds” exist. Thus, the seeds per 
block were balanced experimentally among all comparisons and set to 32.

3.4 � CUDA multi‑process service

As discussed in Sects. 1 and 2, the seed-and-extend algorithm is affected mainly by 
three sources of irregularity: (1) huge input sequences, (2) unpredictable and quad-
ratic generation of seeds and (3) arbitrary length of alignments. This implies that 
the performance of each kernel is bounded by different irregularity sources, includ-
ing memory, computation, host to device transfers, memory allocation overhead, 
etc. Moreover, if the size of the available memory grows linearly, the number of 
words that can be processed per subsequence grows linearly as well. However, with 
a linear increase in the number of words, seeds grow quadratically, which translates 
into a higher imbalance between kernels and a much bigger risk of seed explosion 
and consequent memory exhaustion (particularly because the number of seeds is not 
known). Besides such behaviour, and in order to enable both low-end and high-end 
GPUs to run GPUGECKO, the complete algorithm is optimized to utilize between 
4 and 6 GB of device RAM. Nevertheless, a mechanism is also considered to take 
advantage of higher-end GPUs with larger memories, such as e.g. the RTX 3090 
with up to 24 GB of RAM. This approach consists of executing whole compari-
sons in splits using the CUDA Multi-Process Service (CUDA MPS), which enables 
to run each subsequence in parallel within the same GPU. This is possible since 
(1) each subsequence execution is limited to around 5 GB of GPU RAM and thus 
several subsequences can be launched; and (2) the overlap between kernels that are 
bounded by computation, memory or other factors enables to achieve speedups close 
to the number of subsequences (see Sect. 4.4). Scripts are also provided in the offi-
cial repository to automate the process of running a multi-split comparison within a 
CUDA MPS instance.

4 � Results and discussion

In this section, the proposed method is tested in terms of speedup, performance 
and quality of results on different hardware devices. First, a comparison against 
the sequential CPU version of GECKO is provided on a per-kernel basis. Second, a 
comparison between the multi-core version of GECKO, the GPU accelerated version 
of BLASTN [44], namely GBLASTN [25], and GPUGECKO2 is shown as state-
of-the-art comparison. This experiment is also complemented with a discussion 
on the decisions regarding the hardware implementation differences of GBLASTN 
and GPUGECKO. Third, a hardware comparison is featured including the last four 
microarchitecture generations of CUDA devices. Last, an experiment regarding all-
vs-all chromosome comparison of mammalian species is included to serve as use 
case. All experiments were set up with a minimum of 80% alignment identity.

2  Source code is available at https://​github.​com/​esteb​anpw/​cudag​ecko.

https://github.com/estebanpw/cudagecko
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4.1 � Infrastructure and datasets

The following servers were employed: 

1.	 The 980 GTX configuration includes 2x Intel Xeon E5-2698 v3 processor at 2.3 
GHz, 256 GB of RAM and 4x NVIDIA GeForce GTX 980 with 4 GB of GDDR5 
RAM.

2.	 The 1080 Ti configuration includes 1x Intel Xeon E5-2609v4 at 1.7 GHz, 32 GB 
of RAM and 2x NVIDIA GeForce GTX 1080 Ti with 11 GB of GDDR5X RAM.

3.	 The 2080 Ti configuration includes 1x Intel Xeon E5-2630V4 at 2.2 GHz, 64 GB 
of RAM and 2x NVIDIA GeForce RTX 2080 Ti with 11 GB of GDDR6 RAM.

4.	 The 3090 RTX configuration includes 1x Intel Xeon E5-2609v4 at 1.7 GHz, 64 
GB of RAM and 1x NVIDIA GeForce RTX 3090 with 24 GB of GDDR6X RAM.

Each test included in advance was executed 10 times and averaged. Unless indicated 
otherwise, all executions were performed in the 980 GTX configuration server.

The dataset employed in the comparisons contains seven pairs of sequences 
(totalling 14 sequences) from different species and of increasing size (in particular, 
bacteria and mammalian chromosomes). Table 3 shows the pairs of sequences along 
with the length, search space and number of seeds per comparison at k = 32 . In 
order to enable reproducibility, reference numbers of each sequence were included 
in the Supplementary Material.

4.2 � State‑of‑the‑art comparison

In this section, the performance and quality of results of GPUGECKO are com-
pared to both GECKO and the CUDA implementation of the well-known algorithm 
BLASTN (GBLASTN). GECKO was included to serve as baseline in regard to the 
GPU methods and also due to its competitiveness for small sequences, as it will be 
shown. Note that aligners based on dynamic programming (such as CUDALIGN) 
are not included in the comparison due to the unfair difference in runtime (for exam-
ple, the optimal alignment of chromosome 22 of Homo sapiens and Gorilla gorilla 
can take over 26,000 seconds using 3 GPUs [17], whereas the heuristic seed-and-
extend algorithms require less than a hundred).

Depending on the goal of the sequence comparison experiment, researchers 
might be interested in two scenarios: (1) an exhaustive comparison where no heu-
ristic seed filtering is employed (besides the default provided by seed-and-extend 
methods) and (2) a heuristic comparison where each method applies its default fil-
tering technique. In this section, experiments for both scenarios are performed. Note 
that filtering heuristics are usually based on partially discarding words that are very 
frequent in order to avoid seed explosion. However, this can result in less sensitivity, 
especially in segments containing many repetitions and DNA duplications. Last, the 
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standalone version of the CPU-based GECKO was executed single-threaded in the 
exhaustive comparison (as baseline) and with up to four cores in the heuristic com-
parison, which is the standard setting when running GECKO. Note that the multi-
core support follows the original task-parallelism approach as provided in the origi-
nal implementation, which in average uses between three to four cores at maximum.

The experiments are described in terms of runtime, speedup and sensitivity of 
the alignments. The reported local alignments were restricted to a minimum of 80% 
of identity calculated as nidents ÷ alignmentlength , and the coverage was calculated as 
the percentage of unique base pairs from the query identified in the alignments to 
the reference ( nidents ÷ querylength ), i.e. the proportion of the query found in the ref-
erence. It should be mentioned that this definition of coverage is not the one from 
genetic sequencing but rather from sequence alignment (see e.g. [23]).

Figure 3 shows the runtime for each of the methods (namely GECKO, GBLASTN 
and GPUGECKO) depending on whether they are run exhaustively (solid lines) or 
with heuristic seed-filtering techniques (dotted lines). The same runtimes along with 
coverage values are also shown in Tables 4 and 5.

On the one hand, in the exhaustive mode, GBLASTN is the fastest for the smaller 
sequences (particularly bacteria), but it is not able to process the larger compari-
sons where the number of generated seeds does not fit entirely into global mem-
ory (thus the solid line corresponding to GBLASTN is only present for the three 
smallest sequences). Notice that the nearly constant runtime of GPUGECKO in the 
smaller sequences is due to its worst-case memory allocation policy, which prevents 

Fig. 3   Runtime comparison plot between GECKO, GBLASTN and GPUGECKO in both modes (exhaus-
tive and seed-filtering). The solid lines represent the exhaustive executions (no filtering), whereas 
the dotted lines include the heuristic filtering of seeds and in the case of GECKO, multicore support. 
GECKO is shown in red with circle data points, GBLASTN is shown in blue with triangle data points, 
and GPUGECKO is shown in green with squared data points. The x-axis shows each comparison in the 
sample dataset along with the approximate search space in bp2 . The y-axis shows the runtime in seconds 
in log10 scale
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memory exhaustion from quadratic seed explosion (more details in Sect. 4.3) at the 
expense of an initialization penalty factor. On the other hand, as sequences become 
larger, GPUGECKO outperforms GBLASTN even when comparing its exhaustive 
mode against the heuristic mode of GBLASTN (dotted lines in Fig. 3, meaning that 
higher alignment coverage can be achieved while also lowering the runtime).

When comparing GECKO and GPUGECKO, it can be observed that GECKO 
obtains close runtimes to GPUGECKO for the smallest sequence comparison. But 
as longer sequences are compared, both the efficient exploitation of the massive par-
allelism available in the GPU and the drastic reduction of I/O transfers enable to 
obtain high speedups in favour of GPUGECKO. A per-kernel comparison between 
the sequential CPU and the accelerated GPU version is available in the Supplemen-
tary Material.

Table 4   Exhaustive sequence comparison between GECKO, GBLASTN and GPUGECKO

The first column comprises the abbreviation of the sequence comparison. The following three column 
pairs represent the runtime (averaged 10 times) as well as the coverage reported as a percentage over the 
query sequence assuming a minimum of 80% similarity of the alignments for each of the methods. The 
abbreviation “DNF” stands for “Did Not Finish”

Exhaustive run GECKO (sequential) GBLASTN GPUGECKO

Comparison T (s) Cov. (%) T (s) Cov. (%) T (s) Cov. (%)

HYO-HYO ( 8 × 1011) 5.65 90.10 0.73 92.80 4.08 94.93
B-K12 ( 2 × 1013) 18.51 93.14 3.94 91.08 4.23 94.66
GAL-MEL ( 1×14) 30.91 49.85 51.32 58.53 4.36 59.61
ORY-DAN ( 8 × 1014) 157.09 0.23 DNF DNF 7.14 0.25
SUS-BOS ( 7 × 1015) 242.64 5.59 DNF DNF 9.67 5.67
HOM-MUS ( 2 × 1016) 1,371.83 0.99 DNF DNF 35.71 1.02
HOM-GOR ( 5 × 1016) 10,211.80 66.31 DNF DNF 100.82 69.98

Table 5   Non-exhaustive sequence comparison employing seed-filtering techniques between GECKO, 
GBLASTN and GPUGECKO

The first column comprises the abbreviation of the sequence comparison. The following three column 
pairs represent the runtime (averaged 10 times) as well as the coverage reported as a percentage over the 
query sequence assuming a minimum of 80% similarity of the alignments for each of the methods. The 
abbreviation “DNF” stands for “Did Not Finish”.

Heuristic run GECKO (4 cores) GBLASTN GPUGECKO

Comparison T (s) Cov. (%) T (s) Cov. (%) T (s) Cov. (%)

HYO-HYO ( 8 × 1011) 2.69 90.10 0.90 92.22 3.59 94.91
B-K12 ( 2 × 1013) 10.01 93.14 2.61 91.06 3.75 94.65
GAL-MEL ( 1 × 1014) 13.90 49.82 44.79 58.23 4.01 59.29
ORY-DAN ( 8 × 1014) 39.44 0.21 11.09 0.15 4.72 0.22
SUS-BOS ( 7 × 1015) 98.18 5.48 67.78 5.59 8.29 5.00

HOM-MUS ( 2 × 1016) 179.10 0.96 57.88 0.87 16.58 0.98
HOM-GOR ( 5 × 1016) 2,098.03 66.29 DNF DNF 41.52 69.66
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In terms of coverage (the higher, the better, see Table  4), GPUGECKO pro-
vides the most alignments at the same level of similarity (80% of identity), whereas 
GECKO and GBLASTN follow closely behind. The small differences observed are 
because GPUGECKO is prepared to compute extremely repeating seeds, whereas 
other methods have internal limits that aim to prevent memory exhaustion. Note that 
overall low coverage values do not imply a lack in sensitivity of seed-and-extend 
algorithms, but rather a combination of biological factors, such as sequence relat-
edness, evolutionary pressure, number of shared genes. The validity of seed-and-
extend methods for sequence alignment has been studied numerous times (e.g. see 
[45–47]).

When heuristic seed filtering is enabled (dotted lines in Fig.  3 and Table  5), 
GPUGECKO follows the same speedup trend when compared to GECKO, ranging 
between 1 and 2 orders of magnitude (up to 49x, except for the first comparison). 
Moreover, GBLASTN is able to compute all but the last comparison (which is the 
most computationally intensive one due to the high similarity of the sequences) and 
is again the fastest on the set of small bacteria sequences but loses performance as 
the size of the sequences grows. In this line, GPUGECKO achieves between 2x 
and 11x compared to GBLASTN in the rest of the dataset, with an average of 6x 
speedup. The coverage values show that each method detects between 1% to 10% 
less alignments when compared to the exhaustive versions. As in the previous case, 
GPUGECKO achieves the highest coverage in all cases with the exception of the 
Sus scrofa and Bos taurus comparison, where GBLASTN detects the highest num-
ber of alignments.

4.3 � Implementation differences between GBLASTN and GPUGECKO

In order to understand the differences in runtime between GBLASTN and 
GPUGECKO, it is mandatory to discuss their implementation. Besides implementa-
tion decisions, there is also the algorithmic difference regarding subsequence batch-
ing: while GBLASTN attempts to run a whole comparison at once (which is faster in 
essence but results in exceeding the limitations of physical memory for medium- to 
large-sized sequences), GPUGECKO splits it into batches to take advantage of the 
computing power of the GPU. Moreover, as stated previously, GPUGECKO always 
performs a worst-case allocation and initialization (and subsequent deallocation) 
of the memory structures in the device and the pinned-memory in the host. This 
results in preventing potential buffer overflows from the number of generated seeds, 
although at the expense of a constant initialization penalty which is not amortized 
until larger sequences are employed. Regarding implementation, the first differ-
ence is the number of kernels that are implemented in the GPU, since GPUGECKO 
runs integrally in the graphics device, whereas in the case of GBLASTN, only three 
kernels are executed within the GPU, namely the reference scan, the table lookup 
and the mini-extension. These kernels correspond to the matching of words from 
the query to the reference (equivalent to generating the seeds) and their extension. 
However, notice that the generation of words (their hashing) is performed within the 
host, as opposed to GPUGECKO. Also note that the gapped extension procedure 
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in GBLASTN is not implemented in a GPU kernel, nor is it analysed here since 
GPUGECKO does not produce gapped alignments either.

Regarding the matching of words, GBLASTN scans the reference in segments 
such that each thread maps a region of the reference and queries the lookup table 
for matches. At a first step, the matches are not extended nor saved, and the only 
thing recorded is whether the reference word has a match or not. This effectively 
avoids branch divergence, as all threads do nearly the same. Afterwards, each match 
will be computed knowing that all threads will have to perform extension, thus 
reducing branching divergence. However, it comes at the price of performing lots 
of global atomic operations (to record the words), which is further reduced by writ-
ing in batches. In the case of GPUGECKO, the matching of words is split into two 
steps, namely (1) sorting words by their hash first and (2) matching them linearly. As 
opposed to GBLASTN, where words are inserted into a table and then consulted, in 
GPUGECKO all words are first sorted to enable matching in near-constant time. As 
explained before, this presents the advantage of employing the merge sort algorithm 
in the device, which has received lots of improvements over time.

As a last step, the extension in GBLASTN is performed by giving each thread 
a different seed. This approach comes with several problems (as explained in 
Sect.  3.3.5), particularly branch divergence and block locking (a block will last 
in the SM as long as one thread has not finished extending resulting in increased 
latency). In GPUGECKO, this is avoided by running one block of 32 threads per 
seed in lockstep, thus completely removing both problems.

4.4 � GPU hardware comparison

In this section, a runtime comparison between cards corresponding to the last gen-
erations of CUDA microarchitectures is presented, including Maxwell (980 GTX), 
Pascal (1080 Ti), Turing (2080 Ti) and Ampere (3090 RTX). The difference in num-
ber of CUDA cores ranges from 2,048 (980 GTX) to 10,496 (3090 RTX), while the 
difference in memory size ranges between 4 GB and 24 GB (other hardware metrics 
such as the memory type or bus width are not mentioned in the sake of clarity). 
The sample dataset was run using the CUDA MPS instance. Regarding the num-
ber of subsequences and memory usage, (1) the 980 GTX was run with only one 
subsequence of 4 GB of memory, (2) the 1080 Ti and 2080 Ti were run using two 
subsequences of 5 GB of memory each and (3) the 3090 RTX was run using 5 sub-
sequences of 4.5 GB of memory each.

Figure 4 shows the runtime for all comparisons in the sample dataset for each 
of the tested GPU cards. Almost no performance gain is observed in the smaller 
comparisons, which is expected since not enough work is available. This is the 
case up until the Homo sapiens Chr. X and Mus musculus Chr. X comparison, 
where the difference in runtime becomes more evident, especially between Pas-
cal and Turing generations (almost 2x). Moreover, in the case of the largest com-
parison, namely Homo sapiens Chr. 1 vs Gorilla gorilla Chr. 1, GPUGECKO 
achieves an average speedup of 1.55x from one card generation to the next one, 
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which is in fact in concordance with the average speedup reported across several 
device generations for a variety of algorithms [48]. Lastly, the overall achieved 
speedup between the 980 GTX and 3090 RTX is 3.69x, which is considerable 
given the differences in bandwidth and number of cores (4.17x and 5x higher, 
respectively).

4.5 � All‑versus‑all chromosome comparison

In this section, we show how GPUGECKO can be used by researchers to per-
form large-scale research in comparative genomics. Using only one GeForce 
980 GTX, we compared all chromosomes between Homo sapiens and Mus 
musculus, which accounts for 504 chromosome comparisons ranging in sizes 
from 47 megabase pairs to 242 megabase pairs and creating search spaces up to 
4.5 ∗ 1016 bp2 . All executions were run without limiting the number of repeti-
tive words nor seeds, thus exhaustively generating all alignments which contain 
at least one seed of size k = 32 . The runtime for the complete experiment was 
3 hours and 39 minutes, or an average of 26 seconds per pair of chromosomes 
comparison. A heatmap containing the coverage per comparison is available in 
the Supplementary Material. The same comparison is made in only 110 min-
utes (less than two hours, an average of 13 seconds per pair of chromosomes) 
using seed-skipping policies without sacrificing sensitivity significantly, see the 

Fig. 4   Runtime comparison plot of GPUGECKO between different CUDA microarchitectures. The 
x-axis shows each comparison in the sample dataset along with the approximate search space. The y-axis 
shows the runtime in seconds
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Supplementary Material for a comparison of coverage and runtime between the 
exhaustive and the seed-skipping mode.

5 � Conclusions

In this manuscript, we have introduced GPUGECKO, a new CUDA-GPU algorithm 
for the irregular seed-and-extend sequence comparison method. On the one hand, 
from a computational and hardware acceleration standpoint, GPUGECKO over-
comes several challenges that (to the best of our knowledge) have not been addressed 
before in any other GPU sequence comparison algorithm. These comprise: 

1.	 Massive search space. GPUGECKO is able to divide the input search space into 
smaller comparisons to effectively cope with the irregular computing stages. We 
have shown how to implement this strategy and prevent its performance draw-
backs (namely additional host-to-device transfer time penalties and increased 
work redundancy) by using custom memory pools and pinned memory, and pro-
viding a formula to balance the number of seeds per subsequence.

2.	 Complete GPU acceleration. While other approaches only deploy specific func-
tions of the original algorithm as CUDA kernels, GPUGECKO features a com-
plete GPU pipeline. This has resulted in a high speedup in regard to the sequential 
CPU version, and moreover, in a greater acceleration when compared to the GPU 
implementations of other software.

3.	 Overcoming the source of irregularity. We have proposed two new kernels that 
address the largest sources of irregularity, namely (1) the unpredictable and quad-
ratic generation of seeds and (2) the extension of arbitrarily long alignments. 
These kernels are able to overcome both challenges by working in a cooperative 
fashion using parallel reductions while reducing branch divergence and block 
synchronization.

On the other hand, from a bioinformatics perspective, GPUGECKO is the first 
fully GPU-native algorithm capable of comparing huge DNA sequences (such as 
plant or mammalian chromosomes), typically requiring under a minute mark per 
chromosome comparison. We have shown that it is able to compare exhaustively 
any two chromosomes faster (up to 10x and an average of 6x in the exhaustive and 
non-exhaustive fashion compared to GBLASTN, respectively) while providing a 
higher degree of alignment coverage. When running with seed-skipping policies, 
GPUGECKO is also faster while still providing a higher level of alignment cover-
age in most of the cases. In the same line, GPUGECKO enables researchers to per-
form extremely large-scale sequence comparison experiments with full exhaustive-
ness, for instance being able to compare all chromosomes of two species (which 
accounts around 500 comparisons) in less than 4 hours using only one GPU. Pre-
viously, these experiments could only be carried out with dynamic-programming-
based algorithms, which took up to 10 hours per each comparison and, more impor-
tantly, do not always represent the best approach to tackle a pairwise sequence 
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comparison (such as in the case of global alignments which include long genome 
rearrangements).

Still, several lines of research remain open for future work in GPUGECKO. 
These include: 

1.	 Multi-gpu computing support. Due to the subsequence batching procedure, each 
grid comparison can be run independently among any number of GPUs. While 
there is a huge potential for speedup, careful mechanisms must be devised to 
synchronize the fetching of subsequence data without resulting in PCI transfer 
stalls.

2.	 Perform gapped alignments. GPUGECKO can report alignments of a minimum of 
32 bp, and thus a gap-including mechanism could help improve signal detection 
between closely spaced HSPs.

3.	 Automatic prediction of seeds. If the number of seeds is known prior to computa-
tion (or approximated) the factor used to separate memory spaces for words or 
seeds could be fine-tuned, resulting in larger speedups.
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