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Abstract
In this paper, techniques for dynamic load balancing of the cellular automata par-
allel execution are presented for the case of domain space partitioned along two 
dimensions. Starting from general closed-form expressions that allow to compute 
the optimal workload assignment in a dynamic fashion when partitioning takes place 
along only one dimension, we tailor the procedure to allow partitioning and balanc-
ing along both dimensions. Both qualitative and quantitative experiments are carried 
out that assess performance improvement in applying load balancing for the case of 
two-dimensional partitioned domain, especially when the load balancing takes place 
along both dimensions.
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1 Introduction

The simulation of complex systems is a very compute intensive task that can strongly 
benefit from the support of modern parallel computer systems. Cellular automata (CA) 
have proven their suitability for systems whose behaviour can be described in terms of 
local interactions [1]. CA were studied by John von Neumann to study self-reproduc-
tion problems [2] and have been developed by numerous researchers and applied in 
both theoretical and scientific fields ([3–8]). Due to their local and independent rules, 
complex systems simulations can be easily implemented on parallel machines.

Parallel computing [9] has undoubtedly proved its effectiveness in many application 
scenarios (e.g. [10]). Nevertheless, overhead can arise due to the parallelization process 
itself, which can reduce the obtainable benefits ([11–14]). This is due to the fact that 
individual processing elements cannot carry out their computation in isolation since 
parallel activities must exchange data during the computation (e.g. the halo exchange 
in CA parallel execution - [15]). This need for synchronization, together with an unbal-
anced workload assignment, can strongly affect the overall parallel execution time. 
Though CA can benefit from local synchronization [16] (i.e. each processing element 
requires to exchange halo borders only with neighbour processing elements), compu-
tational performances in CA parallel execution can be degraded especially when the 
dynamics of the modelled phenomenon is confined in a sub-region of the entire cellular 
space and further expands during the simulation [17]. As a consequence, an effective 
load balancing technique can mitigate this problem.

In parallel computing, load balancing (LB) [18] is referred to as the technique for 
properly partitioning the computation between the processing elements of a parallel 
computer, in order to obtain an optimal use of resources, with the purpose of reduc-
ing the overall execution times. In this paper, we present a dynamical LB procedure in 
the case of two-dimensional cellular automata partitioned along both X and Y dimen-
sions, where load balancing can take phase either on one or both dimensions. Our work 
extends [19], where an analytical procedure that allows to calculate the optimal assign-
ment of the workload, referred to mono-dimensional space partitioning, is presented. 
In particular, the closed-form expressions of [19] are purposely exploited for the case 
of two-dimensional partitioning. The paper is organized as follows. In Sect. 2, the par-
allel execution of CA models is discussed. In Sect. 3, the analytic procedure for the 
optimal workloads assignment for the case of mono-dimensional CA partitioning is 
summarized. In Sect. 4, two kinds of two-dimensional load balancing techniques are 
presented. In Sect. 5, experimental results, referred to both a qualitative and quantita-
tive analysis, are shown. Eventually, conclusions and future developments are given in 
Sect. 6.

2  Parallel execution of cellular automata

Cellular automata (CA) can be easily adopted to model and simulate complex sys-
tems characterized by a high number of interacting elementary components. Thanks 
to their implicit parallel nature, CAs can be productively parallelized across multiple 
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parallel machines to scale and speed up their execution. Execution of CA on both 
sequential and parallel computers consists in a step-by-step evaluation the transition 
function for each cell of the cellular space.

The parallelization of CA execution can be efficiently achieved by partitioning 
the initial cellular space into different regions (or territories), which are assigned 
to the different processing elements (node) (e.g. [12, 20, 21]), as shown in Fig. 1. 
Each node is in charge of executing the transition function of all the cells belonging 
to the region it manages. Since for any cell the computation of the transition func-
tion depends on the state of its neighbourhood, in order to keep parallel execution 
consistent, the states of these boundary cells (often called halo cells in the CA litera-
ture) must be exchanged between neighbouring nodes at each computation step. As 
seen in Fig. 2, the border area of a region (the halo cells) is divided into two differ-
ent sub-areas: the local border and the mirror border. The local border is managed 
by the local node, and its content is replicated in the mirror border of the adjacent 
node.

3  Dynamic load balancing of cellular automata

Load balancing techniques [22] can be mainly classified in static or dynamic based 
on whether the computation load is statically distributed to processing elements 
before execution, or where it is dynamically assigned during the parallel execu-
tion. When the distribution of the computational load is known a priori or can be 

Fig. 1  The cellular space partitioned into regions which are associated with parallel computing nodes. 
Two alternative types of partitioning are shown, mono-dimensional and two-dimensional

Fig. 2  Border areas of four adjacent nodes in the case of two-dimensional partitioning
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easily predicted, static LB may be the most appropriate choice. Nevertheless, as for 
the case of CA modelling of natural phenomena, the evolution of the workload is 
unknown before execution, and a static mapping can lead to a critical imbalance, 
thus leading to the need of a dynamic load balancing.

In general, the LB phase does not take place at each step but is carried out at a 
predefined step rate or when a significant unbalanced condition occurs. An analyti-
cal procedure is presented in [19], which describes how the load balancing phase is 
achieved for mono-dimensional partitioning. In particular, the goal is to achieve a 
perfectly balanced execution among adjacent nodes by keeping their so-called step 
times as uniform as possible, where a step time is defined as the time needed by a 
node to execute one computational step. At each step, step times are collected and 
stored by each node and then sent to a specific master node that is in charge of estab-
lishing the optimal workload exchanges among nodes during the LB phase.

Let us consider a set of N nodes/regions arranged in a linear topology where each 
node has only one near node on the left and only one near node on the right, as 
shown in Fig. 3. Let Si and Ti , with 0 ≤ i < N , be the size (i.e. the number of col-
umns) and the step time of region i, respectively. The load balancing problem can be 
stated as determining, for given (Si, Ti), 0 ≤ i < N , the values of workload exchanges 
Δxi, 0 ≤ i < N − 1.

Δxi values can be computed through formulas taken from [19], and in particular 
by expression (1) in which:

The formulas above have been obtained by considering a different LB problem, 
linked to the original one, where the mathematical formulation turns out to be more 
tractable and consists in a linear system that requires few algebraic manipulations 
in order to be solved in O(N) steps, where N is the number of computing nodes (cf. 
[19] for details).

In the next section, we show how to exploit these formulas to the case of two-
dimensional CA partitioning.

�Δxi =
ti

i + 2
+

N−2∑
j=i+1

(i + 1)tj

(j + 1)(j + 2)

ti = − (i + 1)Ŝi+1 +

i∑
j=0

Ŝj

Fig. 3  Load balancing scheme for CA partitioned and balanced along the x dimension. For each node i, 
S
i
 represents the size (i.e. the number of columns in this case), T

i
 the experienced step time and Δx

i
 the 

workload exchange between nodes i and i + 1
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4  Load balancing of two‑dimensional partitioned cellular automata

In this section, we show the implementation of the LB procedure referred to the case 
of CA partitioned along both x and y dimensions. In particular, we present the case 
where the LB phase takes place only along one dimension (i.e. the x dimension) and 
the one where LB is performed along both dimensions.

In two-dimensional partitioning, the cellular space is partitioned in Nx and Ny 
nodes along the x and y dimensions, respectively. As a consequence, the nodes 
are specified by a pair (x, y) and the sizes and step time are indicated as Sx

x,y
 , Syx,y 

and Tx,y , with 0 ≤ x < Nx and 0 ≤ y < Ny , where Sx and Sy denote the size along x 
and y dimensions. Given that Sx

x,y
 is invariant with respect to y, we can indicate this 

quantity simply as Sx
x
 . In other words, Sx

x
 is the size of the xth partition along the x 

dimension. The same applies also for Syx,y , which can be replaced by Syy . Figure  4 
shows the local/mirror borders exchange that now occurs between each node and its 
8 neighbours.

The formulas outlined in Sect. 3 can be exploited also for the two-dimensional 
partitioned case, but need to be adapted to this scenario. In particular, the formulas 
are now computed for each x and y load balancing separately. For the load balancing 
of along the x dimension, the (Si, Ti) values of the previous section are here replaced 

by 
�
Sx
i
,
∑Ny−1

y=0
Ti,y∕Ny

�
 , that is we take the x size and the average of the step times of 

the nodes belonging to the ith partitioning along x. The LB phase along the y dimen-
sion is carried out analogously.

4.1  Load balancing along one dimension

In this section, we present the LB procedure for two-dimensional CAs partitioned 
only along one dimension, let us say x (see Fig. 5).

(1)Δxi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ci
�Δxi

if �Δxi ≥ 0, �Δxi ≤ Ŝi
i�

j=i−k
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�
�Δxi −

i�
j=i−k

Ŝj

�
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∑i
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Ŝj,
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cjŜj + ci+k+2

�
−�Δxi −

i+k+1�
j=i+1

Ŝj
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Ŝj,
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Ŝj + Ŝi+k+2, k ≥ 0
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In order to simplify the message exchange scheme, two phases are envisioned: 
in the first, the usual border exchange is carried out, while the effective workload 
exchange takes place in a second phase. This choice was driven by the complex-
ity of performing the workload exchange in a single phase. In particular, diago-
nal exchanges turn out to be quite “tricky”, due to the fact that both x work-
load exchange and y border exchange have to be considered at the same time. 
In our approach, the diagonal workload exchange is avoided by exchanging also 
the y mirror border when the x workload exchange takes place. For example, let 
us consider the workload exchange between node A and B in Fig.  6 (the same 
applies to nodes C and D). Differently from a typical two-dimensional neighbour 
data exchange (see Fig. 4) the transferred data (the grey part) also include the y 
mirror border of the portion of columns to be transferred. After the exchange, 
node B will host a coherent portion of its mirror border without retrieving it from 
node C. The correctness of the approach is guaranteed by the border exchange 
carried out in the first phase, which ensures mirror borders are already updated 
before being included in the subsequent workload exchange. The advantage of 
this approach appears to be more significant when the load balancing is carried 
out also for the y dimension, as in the case detailed in the next section.

Fig. 4  Local/mirror border exchanges in two-dimensional partitioning. On the left, local borders of the 
central nodes are copied to the mirror borders of the neighbours. On the right, the local borders of the 
neighbours are copied to the local border of the central node

Fig. 5  One-dimensional load balancing. The figure shows the configuration of the CA model before and 
after the LB phase
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4.2  Load balancing along both dimensions

In this section, we present the LB methodology application also for the case when 
workload is exchanged along both x and y dimensions. The effect of this two-
dimensional load balancing is shown in Fig. 7.

The comparison between Figs. 5 and 7 clearly suggests that performing both 
x and y LB results in a more fair workload distribution and thus leading to better 
overall performances, as shown in the following Experimental Results section. 
Analogously to the one-dimension LB case, the LB is performed in more than 
one phase. Specifically, the first phase is devoted to the border exchange, the sec-
ond one concerns the x workload exchange, while the last one regards workload 
distribution along the y dimension.

Fig. 6  Adjacent nodes workload exchange along the x dimension including y mirror borders. In the first 
phase (1), the borders are exchanged along y dimension, while, in the second phase (2), the workload 
(highlighted in grey) is actually exchanged along x dimension

Fig. 7  Two-dimensional load balancing. The figure shows the configuration of the CA model before and 
after the LB phase
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5  Experimental results

In this section, we summarize the results of the carried out experiments in order to 
evaluate the effectiveness of the proposed load balancing approaches. Two sets of 
experiments were envisioned aiming to test the goodness of these approaches from 
both qualitative and quantitative point of view.

All the experiments were carried out on a workstation composed of 2 nodes, each 
equipped with a 20 core/40 threads Intel(R) Xeon(R) E5-2650 v3 CPU 2.30 GHz 
and with 32 GB RAM. The MPI technology was used for message exchanges among 
processing elements. As a measure of performance, speed-up rates have been calcu-
lated and compared for three different scenarios: (i) non-balanced parallel execution, 
(ii) LB applied on x dimension and (iii) LB applied on both x and y dimensions.

For the qualitative analysis, the CA model consists of a simple ball moving 
throughout the CA space, while a computational fluid dynamics model, namely the 
SciddicaT landslide CA model, is exploited so as to carry out the quantitative per-
formance analysis for a real-case test-bed scenario.

5.1  Qualitative experiments: the moving ball CA model

The ball CA model consists of a set of active and inactive cells. Active cells are 
those cells falling inside a given ball area, while inactive cells are the remaining 
ones. The initial configuration of this CA model is portrayed in Fig. 8.

At each time step, the transition function is designed in order to move the ball 
diagonally through CA space. In addition, the active cells transition function also 
executes a certain “dummy” computation so as to increase the computational load 
for these cells. In such a way, the considered model execution is characterized by 
a “graphically identifiable” computational load moving across the CA domain dur-
ing the execution advancement, thus giving rise to the dynamic load unbalance 
conditions required for properly assessing the effectiveness of the proposed LB 
techniques.

The configuration parameters adopted in this first set of experiments are detailed 
in Table 1.

At the beginning of the CA execution, the CA space is equally split among nodes 
as seen in Fig. 8. Just after the first LB phase takes place, the new space partitioning, 
for the two considered LB approaches, turns out to be the one shown in Fig. 9a and 
b, respectively.

Fig. 8  Initial configuration of 
the ball CA model
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Afterwards, the second LB phase execution produces the partitioned schema to 
be as in Fig. 10a for the LB taking place only for the x dimension, and in Fig. 10b 
for the case when LB is performed for both dimensions. As one can notice, this 
new space partitioning adequately adapts to the new ball position.

As it can noted from the previous figures, both LB procedures turn out to dis-
tribute the workload quite fairly among the processing elements, while the second 
LB strategy, namely balancing along both dimensions, turns out to be even more 
effective. For example, looking at Fig. 10a we can see a case in which balancing 
only along x dimension does not achieve a fully balanced condition as the three 
central nodes do not have any portion of the ball assigned to them. This is not 
the case for the approach in which both x and y are balanced, as it can be seen in 
Fig. 10b.

A similar balancing behaviour can be observed also after the last LB phase as 
shown in Fig. 11a and b,

Table 1  Configuration 
parameters of the qualitative 
experiment

Parameter Value

Total steps 400
LB step rate 10
MPI processes 9
CA size 500 × 1000 cells
Ball radius 125 cells

Fig. 9  The Ball CA model and space partitioning after the first LB step

Fig. 10  The Ball CA model and space partitioning after the second LB step
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5.2  Quantitative experiments: the SciddicaT CA model

As previously stated, a second set of experiments is devoted to quantitatively analyse 
the benefits of the proposed LB by measuring the improvements achieved in terms 
of execution time reduction. In these tests, we adopt a real-case testbed consisting of 
the SciddicaT CA debris flow model [23].

5.2.1  The SciddicaT CA model

SciddicaT is a simplified landslide model able to simulate the dynamics of a generic 
fluid-type flow over a real topographic surface. The experiments have been carried 
out on a real-case scenario representing the DEM (Digital Elevation Model) of the 
Tessina landslide, which occurred in Northern Italy in 1992 ([23]). Figure 12 shows 
the landslide covering area (highlighted in light grey). The landslide source, i.e. the 
area where the landslide was triggered, is represented by the area highlighted in dark 
grey which corresponds to the higher topographic elevation of the landslide. During 
the event, the landslide expands to lower topographic altitudes, thus progressively 
interesting all the area coloured in grey. As evident, the CA model of this landslide 
event can be a good candidate for suitably testing a load balancing approach. Indeed, 
the cells interested in the landslide vary during the simulation, thus producing a 
dynamic load unbalanced condition.

5.2.2  Experimental results

In this section, we report the results referred to a second set of experiments for 
assessing the performance improvement. The main configuration parameters of 
these experiments are shown in Table 2.

Figure 13 shows speedup curves for the three scenarios of interest, i.e.: (i) for the 
standard non-balanced execution, (ii) for the case in which the LB is applied only on 
the x dimension and (iii) for the case when both x and y load balancing takes place. 
As one can notice, the achieved results confirm what expected, namely, both LB 
strategies exhibit performance advantages with respect to the non-balanced execu-
tion and, in addition, the strategy of balancing on both dimensions clearly outper-
forms the one dimension LB strategy.

Fig. 11  The Ball CA model and space partitioning after the last LB step
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Fig. 12  The 1992 Tessina landslide topographic map. The grey colouring represents the area affected by 
the landslide. The darker grey area refers to the landslide source

Table 2  Configuration 
parameters of the SciddicaT 
model experiments

Parameter Value

Total steps 4000
LB step rate 32
MPI processes 1–36
CA size 566 × 732 cells
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By looking at Fig. 13 there are other two interesting observations to make:

• The trend of the curves is a bit “oscillating” and results in being a bit different 
with respect to an ideal speed-up curve. This phenomenon is due to the model-
specific load distribution across the CA space. In this context, indeed, the paral-
lel performance can be quite sensitive to the adopted space partitioning schema 
based on how this latter adapts to the specific model load distribution. In other 
words, given a partitioning, the more loaded portions of space could fall only 
in some nodes, leaving the others completely unloaded, or can be quite equally 
distributed across the nodes. This trend behaviour is quite evident looking at the 
non-balancing case, since the partitioning remains fixed during the entire execu-
tion. In fact, as we move from a fixed partitioning to a more properly load-bal-
anced one, the trend becomes smoother and smoother, as expected for typical 
speed-up curves.

• The achieved speed-up values turn out to be quite modest compared to the theo-
retical achievable speed-ups. This is due, again, to the specific load distribution 
of the Sciddica model and is particularly significant for the non-balanced sce-
nario. As a consequence, rather than considering the mere speed-up values, it can 
be more interesting to show the percentage of improvement of the LB strategies 
with respect to the non-balanced execution. To this aim, Fig. 14 witnesses signif-
icant improvements due to the considered load balancing techniques especially 
for the case of both dimensions load balancing.

A last set of experiments has been carried out in order to evaluate and compare the 
burden related to communication and synchronization. The aim is to confirm that 
the communication burden is much lower with respect to the synchronization burden 
and can be considered negligible in the majority of real-world application scenarios. 
In particular, we set up a configuration of 16 nodes ( 4 × 4 ) using the not balanced 
version, the only-X balanced version and the both-X-and-Y balanced version. We 
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profiled the execution by simply recording the duration times for the MPI asynchro-
nous send/receive operations (in order to estimate the communication burden) and 
the actual transition function computation for all the cells (in order to estimate the 
effective computation time). The total parallel execution times have been recorded as 
well. The ratio between the communication burden and effective computation results 
in being 0.2% for all the 3 versions, whereas the ratio of the synchronization burden 
and the effective computation results 28.6% for the non-balanced version, 19.3% for 
the only-X balanced version and 18.2% for the both-X-and-Y balanced version. These 
simple experiments allow us to conclude that: (i) the communication burden can be 
considered negligible with respect to the synchronization burden, as expected, (ii) 
the load balancing advantages are confirmed by the reduction of the synchronization 
burden, and (iii) the 18.2% ratio for the both-X-an-Y balanced version suggests that 
there is still room for further improvements in the load balancing algorithm.

6  Conclusions

In this paper, we focused on the load balancing of the parallel execution of cellular 
automata when the cellular space is partitioned along two dimensions. In particular, 
we present and compare two possible strategies: the first referred to the case of load 
balancing performed along only one of the two partitioning dimensions, while the 
second referred to the case when the load balancing is applied along both dimen-
sions. Two sets of experiments have been carried out. The first set of experiments 
aims to assess the performance improvement from a qualitative point of view, by 
showing how the CA space partitioning dynamically adapts to changes in the model 
computational load. The second set of experiments was based on a real testbed 
model, namely the SciddicaT landslide CA model, in order to qualitatively assess 
the performance improvement in terms of speed-up. All experiments have confirmed 
performance improvements for both strategies with respect to non-balanced parallel 
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execution. In addition, as expected, balancing along both x and y dimensions results 
in an even better speedup improvement.

Future work is geared to improve the load balancing technique for the two-dimen-
sional partitioned CA domain, by introducing a more fine-grained load balancing 
strategy where we abandon a grid-like space partitioning, thus obtaining a higher 
degree of freedom in partitioning the space.
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