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Abstract
Deep learning has been widely adopted in automatic emotion recognition and has lead to significant progress in the field.

However, due to insufficient training data, pre-trained models are limited in their generalisation ability, leading to poor

performance on novel test sets. To mitigate this challenge, transfer learning performed by fine-tuning pr-etrained models on

novel domains has been applied. However, the fine-tuned knowledge may overwrite and/or discard important knowledge

learnt in pre-trained models. In this paper, we address this issue by proposing a PathNet-based meta-transfer learning

method that is able to (i) transfer emotional knowledge learnt from one visual/audio emotion domain to another domain and

(ii) transfer emotional knowledge learnt from multiple audio emotion domains to one another to improve overall emotion

recognition accuracy. To show the robustness of our proposed method, extensive experiments on facial expression-based

emotion recognition and speech emotion recognition are carried out on three bench-marking data sets: SAVEE, EMODB,

and eNTERFACE. Experimental results show that our proposed method achieves superior performance compared with

existing transfer learning methods.

Keywords Transfer learning � Emotion recognition � Facial expression-based emotion recognition � Speech emotion

recognition

1 Introduction

Emotions of human manifest in facial expressions, voices,

gestures, and postures. An accurate emotion recognition

system based on one or a combination of these modalities

would be useful in many downstream applications includ-

ing medical data analytics, robotics, human computer

interaction, affective computing, and automobile

safety [29, 30]. Literature has shown a strong focus on

applying facial expression recognition to building reliable

emotion recognition systems. However, this approach faces

another challenging problem as very subtle emotional

changes manifested in facial expression could go unde-

tected [29]. Recently deep learning techniques have been

applied to this research problem and achieved considerable

progress [1, 9, 16].

In addition to facial expression-based emotion recogni-

tion stream, speech signals, which are regarded as one of

the most natural media of human communication, carry

both content of explicit linguistic and information of

implicit paralinguistic expressed by speakers [46]. Due to

the richness of this source of information, over the last two

decades numerous studies and efforts have been devoted to

automatic and accurate detection of human emotions from

speech signals. Similarly to facial expression-based emo-

tion recognition, early attempts in speech emotion recog-

nition have utilised handcrafted acoustic features to

describe paralinguistic information [19, 38]. These meth-

ods have been surpassed by deep learning techniques,

& Duc Thanh Nguyen

duc.nguyen@deakin.edu.au

1 School of Information Technology, Deakin University, 75

Pigdons Road, Waurn Ponds, VIC 3216, Australia

2 Speech, Audio, Image and Video Technology (SAIVT)

Laboratory, Queensland University of Technology, 2 George

Street, Brisbane, QLD 4000, Australia

3 School of Food and Agricultural Sciences, The University of

Queensland, 5391 Warrego Hwy, Gatton, QLD 4343,

Australia

123

Neural Computing and Applications (2023) 35:10535–10549
https://doi.org/10.1007/s00521-023-08248-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08248-y&amp;domain=pdf
https://doi.org/10.1007/s00521-023-08248-y


which are capable of automatically and directly learning

features from training data.

Although deep learning-based approaches have made

great contributions to progressing the emotion recognition

research, those approaches strongly rely on training data

sets, which are supposed to capture sufficient and diverse

information about the problem domain. Furthermore, there

is often a domain shift between a source domain and a

target domain, which is unknown in practice. To adapt a

pre-trained model to a target domain, fine-tuning is often

adopted. To the best of our knowledge, fine-tuning is

arguably the most widely exploited method for transfer

learning while working with deep architectures. It begins

with a pre-trained model that has been trained on a source

domain and further refines the model on a target domain.

Compared with training from scratch, fine-tuning a pre-

trained off-the-shelf model on a target data set can con-

siderably boost up the performance of the model, whereas

lessening annotated data requirements on the target

domain [13]. However, pre-trained models (even after

being fine-tuned) are still limited in their generalisation

capability and thus often perform poorly on novel test sets.

This is due to irrelevant features learnt from source domain

may sill retain in a pre-trained model while important

features may be forgotten after fine-tuning.

To resolve these issues, the authors in [11] exploited a

progressive method, originally proposed by [35], to transfer

knowledge across three paralinguistic tasks: emotion,

speaker, and gender recognition. Nevertheless, this method

is computationally expensive as the number of task-de-

pendent models keeps growing proportionally to the

number of studied tasks [24]. Recently, Fernando

et al. [10] proposed PathNet for transfer learning between

various tasks. PathNet is a neural network in which path-

ways (also called agents) through different layers of the

network are learnt to specific tasks. Agents also hold an

accountability for determining which parameters to be

updated for subsequent learning. Pathways for different

tasks are selected using genetic algorithm [15].

Inspired by the success of PathNet in transfer learning in

multi-task learning problem, in this paper, we propose a

meta-transfer learning method for emotion recognition.

Specifically, we first investigate the effectiveness of Path-

Net in transferring emotional knowledge between different

visual data sets. We next investigate whether similar

techniques can be used for transferring emotional knowl-

edge from speech signal.

Meta-learning is a task-level learning approach with the

goal of accumulating experience from learning multiple

tasks. Model agnostic meta-learning (MAML) [39], a state-

of-the-art representative of this technique, learns to find the

optimal initialisation state to quickly adapt a base learner to

a new task. Similarly to MAML, our transfer learning also

acts as a meta-learner which learns an optimal pathway

from a source domain. The parameters learnt from that

optimal pathway then can be used as initialisation and

transferred into different target domains.

In summary, we make the following contributions in our

work.

• We introduce a novel transfer learning method for

emotion recognition based on PathNet to deal with the

problem of insufficient data and the catastrophic

forgetting issue commonly experienced in traditional

transfer learning techniques.

• We demonstrate the potential of our method in two case

studies: transferring emotional knowledge from one

visual/audio emotion data set into another visual/audio

emotion data set and from multiple speech emotion data

sets into a single speech emotion data set.

• We conducted extensive experiments on three com-

monly used benchmark emotion data sets: EMODB,

eNTERFACE, and SAVEE. Experimental results show

that our proposed method effectively transfers emo-

tional knowledge across domains and significantly

outperforms existing transfer learning schemes on all

the data sets and case studies.

The remainder of this paper is organised as follows. Sec-

tion 2 summarises related research. Section 3 presents our

proposed method. Section 4 reports our experimental

results, and Sect. 5 concludes the paper with remarks.

2 Related work

Facial expression-based emotion recognition has been a

well-studied research topic. A recent literature review of

deep learning for facial expression-based emotion recog-

nition can be found in [26]. In this section, we limit our

review to only deep learning-based speech emotion

recognition techniques.

2.1 Deep learning for speech emotion
recognition

Inspired by the success of deep learning in various fields,

many deep learning-based methods have been developed

for speech emotion recognition. For instance, Kim

et al. [20] proposed an architecture for extracting local

invariant features in spectral domain by combining long

short-term memory (LSTM), fully convolutional neural

network (FCN), and convolutional neural network (CNN).

In this method, long-term dependencies can be well cap-

tured, thereby making utterance-level features discrimina-

tive. Moreover, by embedding identity skip connections in

the architecture, this method could mitigate over-fitting.
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In [22], three-dimensional convolutional neural networks

were proposed to model spectro-temporal dynamics by

simultaneously extracting short-term and long-term spec-

tral features. Another manner to encode the temporal

information in utterances for emotion recognition is the use

of recurrent networks [44]. Recently, attention mecha-

nism [40] has been applied to further improve deep

learning-based emotion recognition [33, 44, 48, 49]. In [4],

speech emotion recognition was paired with speech-to-text

in a multi-task learning framework.

Spectrograms of speech signals can also be considered

as images on which CNNs can be applied [2, 5, 46]. For

instance, in [46], three channels of the Mel-spectrogram of

speech signal including static, delta, and delta delta were

treated as three channels of a colour image to be fed to a

CNN. Combination of multiple feature types, e.g. spec-

trogram-based features, Mel-frequency cepstrum coeffi-

cients, and wave-based features, for emotion recognition

has also been explored recently [49].

In order to handle the mismatch between training and

test data, Kim et al. [21] formulated emotion recognition as

a multi-task learning problem where gender and natural-

ness were considered as auxiliary tasks. Experimental

results on within-corpus and cross-corpus scenarios

showed that the multi-task learning approach could

improve the generalisation ability of the speech emotion

recognition system. Sahu et al. [36] exploited adversarial

auto-encoders for (i) compressing high-dimensional emo-

tional utterances into low-dimensional vectors without

sacrificing discriminative power of the utterances and (ii)

synthesising emotional features. This system mainly con-

centrates on detecting emotions at utterance-based level

instead of frame-based level.

Multimodal information also show their capability of

boosting up the performance of emotion recognition. For

instance, the authors in [29, 30] proposed deep architec-

tures for learning features from audio and video streams.

In [31], auto-encoders were used for learning representa-

tive yet compact audio-visual features while LSTM was

employed to model the sequential structure of these audio-

visual features.

2.2 Transfer learning in speech emotion
recognition

Deep learning-based emotion recognition is often hindered

by the lack of large and diverse databases for training deep

learning models. To address this issue, one often creates a

pre-trained model on some generic data sets, e.g. Ima-

geNet, and then fine-tunes the model on domain-specific,

i.e. emotion, data sets. Examples of this approach

include [18, 20–22, 28, 46, 47].

Transfer learning has also been adopted to address

cross-corpus and cross-language scenarios. For instance,

Latif et al. [23] proposed a transfer learning technique for

deep belief networks (DBNs) to recognise emotion from

various languages. Experimental results on five different

corpora in three different languages demonstrate the

robustness of the proposed method. These results also

indicate that use of a large number of languages and a

small part of target data during training could dramatically

strengthen the recognition accuracy. However, that method

was experimented independently on different data sets,

each of which acquired a different set of emotions.

Therefore, it is not clear if transfer learning could improve

the overall recognition performance on all the experi-

mented data sets.

Researchers have also explored whispered speech

emotion recognition, where different feature transfer

learning methods have been developed by utilising shared-

hidden-layer auto-encoders, extreme learning machines

auto-encoders, and denoising auto-encoders [6]. The key

idea of this approach is to develop a transformation for

automatically capturing useful features hidden in data, and

for transferring the learnt features from a source domain-

training (normal phonated speech) to a target domain-test

(whispered speech). In another study, Deng et al. [7]

pointed out that many speech emotion recognition systems

usually demonstrate poor performance on speech data

when there is significant difference between training and

test speech arising from the variations in the linguistic

content, speaker accents, and domain/environmental con-

ditions. To overcome this issue, an unsupervised domain

adaptation algorithm was introduced and trained by

simultaneously learning discriminative information from

labelled data and incorporating prior knowledge from

unlabelled data.

Although transfer learning has been widely applied to

emotion recognition, there still remain difficulties in

adapting a pre-trained model from a source domain to a

target domain. These difficulties include forgetting

important knowledge while transferring irrelevant knowl-

edge between the two domains.

3 Proposed method

We propose in this paper a meta-transfer learning method

by adopting PathNet [10] to solve the problem of emotion

recognition across domains. PathNet is suitable for insuf-

ficient data problems as its architecture, although being

large and complex, allows effective learning on small data

sets. This is because the learning is only applied to sub-

networks (i.e. pathways) with smaller number of parame-

ters. Our method includes two main components: an input
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pre-processing component for video/speech processing,

followed by a PathNet-based component for emotional

knowledge transferring in emotion classification. We

depict the pipeline of our method in Fig. 1.

For video stream, face detection is applied to extract all

face regions (see Sect. 3.1). For audio stream, we initially

extract three channels of the log Mel-spectrograms (static,

delta, and delta delta) from audio segments over all utter-

ances in the audio stream (see Sect. 3.2). Output of the pre-

processing component is subsequently fed into our Path-

Net-based component (see Sect. 3.3) to classify a final

facial expression or a speech emotion score. The PathNet-

based component can automatically find the optimal

pathway for the classification of emotion. In addition,

pathways in this PathNet-based component are learnt to

adapt to various target domains, and thus enabling the

transferring of emotional knowledge across domains. To

the best of our knowledge, our proposed method is the first

attempt to investigate PathNet in dealing with the dearth of

suitable data sets in emotion recognition. The procedures of

feature learning and our PathNet architecture are described

in more detail in the following subsections.

3.1 Video pre-processing

We assume that human emotions are obtained from facial

expressions. We further assume that there is at least one

human face in the input video stream. Therefore, we first

apply the well-known face detection algorithm in [42] to

extract all face regions from all image frames in the input

video stream. Each detected face is delineated by a

bounding box enclosing that detected face. In case where

the face detection algorithm detects no faces, the face that

has been most recently detected in previous frames in the

video stream is used. If the face detection algorithm pro-

duces more than one face in a frame, the face with highest

detection score is considered. This pre-processing step

results in a sequence of human faces that will be passed

into the PathNet-based component for feature learning and

emotion classification. Figure 2a illustrates this pre-pro-

cessing step.

As shown in the literature, there are other modern face

detection algorithms built upon deep learning techniques,

e.g. multi-task cascaded convolutional networks [45],

OverFeat [37], RetinaFace [8]. However, since our video

data includes relatively simple face images, e.g. plain

background, one face per video sequence, we found that

the cascaded face detector developed by Viola and Jones

in [42] is accurate enough for our task, while performing

very fast. In addition, the main focus of our work is the

transfer learning algorithm, which can be applied to dif-

ferent face detectors.

3.2 Audio pre-processing

Zhang et al. [46] pointed out that the handcrafted features,

such as RASTA-PLP [17], pitch frequency features,

energy-related features [41], formant frequency [43], zero

crossing rate (ZCR) [34], Mel-frequency cepstrum coeffi-

cients (MFCC) and its first derivative, linear prediction

cepstrum coefficients (LPCC), linear prediction coeffi-

cients (LPC) [32, 38], are not discriminative enough for

recognising subjective emotions. Therefore, in order to

enhance the performance of speech emotion recognition

system, instead of exploiting such hand-crafted features,

we create images from the log Mel-spectrograms of audio

segments over all utterances. As shown in the literature,

Mel-frequency-based features that can be extracted from

Mel-spectrograms have shown their capability of capturing

important characteristics of human speech and thus have

often been used in speech emotion recognition

(e.g. [2, 5, 46]). In addition, Mel-spectrograms can be

naturally shaped as 2D images, which are conventional

data format for CNNs.

Specifically, given a speech utterance (i.e. 1D signal),

F ¼ 64 Mel-filter banks (from 20 to 8000 Hz) are first

applied with a 25 ms Hamming window and 10ms over-

lapping to compute the log Mel-spectogram for the entire

signal. The Mel-spectrogram is then segmented by a con-

text window of T ¼ 64 frames (corresponding to 10 ms �
63 ? 25 ms = 655 ms) and 30 frame overlapping. On each

window, C ¼ 3 coefficients including static, delta, and

delta-delta coefficients are extracted, resulting in an image

in size F � T � C.

3.3 PathNet

3.3.1 Architecture

Our PathNet includes L ¼ 3 layers, each layer contains

M ¼ 20 modules. Each module contains 20 neurons and

functions as a neural network consisting of linear units,

Fig. 1 Pipeline of our method
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Fig. 2 Pre-processing steps for video and audio stream

Fig. 3 PathNet architecture
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followed by a transfer function (rectified linear units). For

each layer, the outputs of all modules in that layer are

averaged before being fed into active modules of the sub-

sequent layer. A module is active if it is shown in the path

genotype and currently validated. A pathway is a path

connecting active modules in all layers. A maximum of

N ¼ 4 distinct modules per layer are typically allowed in a

pathway. The final layer is only used for the task which is

being learnt and not shared with other tasks. Figure 3

illustrates our PathNet and its pathways. For the shake of

simplicity in illustration, we simplify the visualisation of

our PathNet’s architecture in the figure by drawing only ten

modules in each layer, up to two modules are activated in

each layer and allowed to be included in a pathway, and a

population of four random pathways are initialised.

Hyperparameters such as the number of layers, the

number of pathways, make some impact on the conver-

gence speed and accuracy of transfer learning. However,

exploring all possible combinations of these hyperparam-

eters is infeasible due to exploded number of combinations.

In our experiments, we investigated these hyperparameters

sequentially, starting with varying the number of layers

(e.g. L 2 ½3; 4�), then the number of pathways (e.g. starting

from 20). We empirically found that the transfer learning

method worked stably and consistently in terms of accu-

racy in a small range for L (e.g. L 2 ½3; 4�), while per-

forming best in terms of convergence speed, at our setting

(i.e. 3 layers and 20 pathways).

3.3.2 Pathway evolution and transfer learning

Emotional knowledge from a source domain is managed by

a pathway, that can be found by training the PathNet.

Training the PathNet on a domain includes finding an

optimal pathway for that domain, and, at the same time,

optimising the optimal pathway’s weights to fit that

domain. It is hard to formulate this kind of training as a

convex optimisation problem where conventional optimi-

sation techniques, e.g. gradient descent, can be applied. To

address this difficulty, genetic algorithms are often utilised.

Genetic algorithms simulate the natural selection process

and can be combined with other optimisation techniques

(for sub-optimisation tasks). In this work, we adopt the

binary tournament selection algorithm in [15] due to its

proven efficacy by supporting parallel architectures,

adaptivity of selection pressure to tournament size [27],

and independency of the scale of the fitness function [12].

Figure 4 illustrates the selection process in the binary

tournament selection algorithm. The entire algorithm and

its results are described in Fig. 5. The algorithm includes

three main steps as follows.

• Step 1: When the PathNet is trained on a training data

set of the source domain, at the beginning, a population

of S genotypes is randomly generated.

• Step 2: K ¼ 2 pathways are randomly selected from the

population. Each pathway is selected at a time and

represented by a N � L matrix of integers in the range

[1, 13]. These pathways are sequentially trained (i.e.

their weights are learnt) using stochastic gradient

descent for T epochs (a number of steps in each epoch

equals the number of training samples divided by mini-

batch size). The fitness of each pathway is calculated as

the recognition accuracy (i.e. the ratio of the number of

samples classified correctly and the total number of

training samples) on the training set of the source

domain.

• Step 3: Once the training of two pathways is completed,

the pathway with the bad performance (called loser) is

replaced by the pathway with the better performance

(called winner). The loser is then mutated with a

probability of 1=ðN � LÞ per each candidate of the

Fig. 4 Illustration of the binary tournament selection algorithm

in [15]. The genotypes of the population are viewed as a pool of

strings. One single cycle of the Microbial GA is operated by initially

randomly picking two, and subsequently compare their fitnesses to

determine Winner, Loser, and finally recombine where some propor-

tion of Winner’s genetic material infects the Loser, before mutating
the revised version of Loser
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genotype by adding a random integer in the range

½� 2; 2� to every element in winning pathway’s matrix.

Step 2 and 3 are repeated in G iterations (i.e. generations).

When the training process is completed, we achieve the

best pathway for the PathNet in the source domain.

To transfer the emotional knowledge learnt from a

source domain to a target domain, the best pathway learnt

in the source domain is fixed, i.e. its parameters are no

longer permitted to be modified. The remaining parame-

ters, which are not shown in that pathway, are reinitialised,

and are then again trained/evolved on a training set of the

target domain. As shown in our experimental results,

through this knowledge transferring mechanism, the emo-

tion recognition system can learn new emotional knowl-

edge from the target domain faster than learning from

scratch or using fine-tuning approach (i.e. fine-tuning a

source-domain pre-trained model in a target domain).

Training the PathNet in a target domain is done in a

similar way with that in the source domain. The only dif-

ference is that the best pathway achieved in the source

domain is always activated during the training process in

the target domain. Once the training on the target domain is

completed, we also achieve a best pathway, which best

contains new knowledge learnt from the target domain. We

illustrate the transfer learning process and its results in

Fig. 6.

There is a concern on the number of parameters in our

model as the PathNet architecture may stack up with a

large number of parameters, consequently leading to a

possibility that the model is prone to over-fitting. However,

as explained above, in each generation, although two

Fig. 5 Pre-training an emotion

recognition system in a source

domain using binary tournament

selection algorithm
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pathways are involved in the binary tournament selection

algorithm [15], only one pathway is trained at a time. In

other words, the two pathways are trained sequentially.

The algorithmic complexity of the binary tournament

selection algorithm relies on the population size S, the

number of individuals K selected in each tournament (e.g.

K ¼ 2 in the binary setting), and the number of generations

G. Selecting the winner requires ranking K individuals in a

tournament, leading to a complexity in OðKÞ. The loser is

replaced by the winner and then mutated. This makes the

population size unchanged, and therefore, technically the

overall computational complexity of the binary tournament

selection algorithm is OðS� K � GÞ. However, we

observed that the selection algorithm converged much

faster in reality, as good individuals could be selected after

every iteration.

4 Experiments

4.1 Data sets

We experimented our method on three benchmark data sets

as follows.

• eNTERFACE [25] is an audio-visual data set. This data

set includes 44 subjects and 1,293 video sequences with

proportions for women and men are 23% and 77%,

respectively. The subjects were asked to express 6

emotions including ‘‘anger’’, ‘‘disgust’’, ‘‘fear’’, ‘‘hap-

piness’’, ‘‘sadness’’, and ‘‘surprise’’.

• SAVEE [14] is an audio-visual data set recorded by

researchers (aged from 27 to 31 years) at the University

of Surrey. This data set was made by 4 native male

Fig. 6 Transfer learning of a

pre-trained emotion recognition

system in a target domain using

binary tournament selection

algorithm
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British speakers. All of them were also required to

speak and express 7 emotions including ‘‘anger’’,

‘‘disgust’’, ‘‘fear’’, ‘‘happiness’’, ‘‘sadness’’, ‘‘surprise’’,

and ‘‘neutral’’. The data set comprises of 120 utterances

per speaker, resulting in a total of 480 sentences.

• EMO-DB [3] is an acted speech corpus containing 535

emotional utterances with 7 different acted emotion

classes listed as ‘‘disgust’’, ‘‘anger’’, ‘‘neutral’’, ‘‘sad-

ness’’, ‘‘boredom’’, and ‘‘fear’’. These emotion classes

were stimulated by 5 male and 5 female professional

native German-speaking actors, generating 5 long and 5

short sentences German utterances used in daily

communication. These actors were asked to read

predefined sentences in the targeted 7 emotions. These

audio files are on average around 3 s long. They were

recorded using an an-echoic chamber with high-quality

recording equipment at a sampling rate of 16 kHz,

16-bit resolution, and mono channel.

In our experiments, we consider eNTERFACE as a large-

scale data set, and SAVEE and EMO-DB as small-scale

sets. This setting fits well the purpose our study, i.e.

addressing data scarcity in deep learning-based emotion

recognition using transfer learning. We show that directly

training our emotion recognition system on these small

data sets results in poor performance. Since those data sets

contain both audio and visual emotional information, we

also use them for comparison of facial expression-based

emotion recognition and speech emotion recognition.

4.2 Implementation details

To validate the ability of our transfer learning method, we

initially trained our PathNet on a source data set (e.g.

visual/audio eNTERFACE, visual/audio SAVEE) and then

transferred it to a target data set. In each experiment, a

population of 20 pathways were randomly generated on a

source/target data set. The pathway evolution algorithm in

Sect. 3.3.2 was applied with 200 generations. For each

generation, two pathways were randomly picked and

trained. A pathway was trained using stochastic gradient

descent with a learning rate of 0.02, mini-batch size of 64,

and T epochs; T was set to the number of training samples

divided by mini-batch size. Recall that, in transfer learning,

the best pathway, determined on a source data set, was

fixed and remained active, and the rest of the PathNet’s

parameters were re-initialised for searching for a new best

pathway on a target data set.

To evaluate our method and compare it with existing

ones, we applied k-fold cross-validation with k ¼ 5 on

experimented data sets (i.e. each data set was randomly

partitioned into k equal parts, one of which was used for

validation while the other ones were used for training). We

adopted emotion recognition accuracy and confusion

matrix, which reflects the accuracy of each method on

every emotion class, as performance metrics.

4.3 Results

We conducted various sets of experiments using our pro-

posed system to examine how well facial expression-based

emotion recognition and speech emotion recognition can

be improved when emotional knowledge is transferred

between different domains.

4.3.1 Facial expression-based emotion recognition

We first investigated our proposed meta-transfer learning

in facial expression-based emotion recognition where

emotional knowledge was transferred from one visual

emotion data set (called source data set) to another visual

emotion data set (called target data set). Specifically, in the

first setting, we trained from scratch our PathNet on visual

eNTERFACE (resulting in a model V_eNTER) and then

evolved it on visual SAVEE (resulting in a model

V_eNTER! SAV). Similarly, in the second setting, we

created a model V_SAV by training our PathNet on visual

SAVEE from scratch and then transferred V_SAV on

visual eNTERFACE to make a model V_SAV! eNTER.

Since SAVEE data set consists of an additional type of

emotion (‘‘neutral’’) compared to eNTERFACE data set, to

make transfer learning compatible to these two data sets,

only emotion classes commonly shared in both the datasets

were considered. Those common emotion classes include

‘‘anger’’, ‘‘surprise’’, ‘‘disgust’’, ‘‘fear’’, ‘‘happiness’’, and

‘‘sadness’’.

We report the recognition accuracy and confusion

matrices of our meta-transfer learning method in transfer-

ring facial expression-based emotional knowledge between

eNTERFACE and SAVEE data set in both settings in

Table 1 and Fig. 7. As shown in the results, in general, our

transfer learning method works well across both settings

with an overall accuracy of 94%. Although transfer

learning from visual SAVEE to visual eNTERFACE

Table 1 Results of transfer learning in facial expression-based emo-

tion recognition on visual eNTERFACE and visual SAVEE

Model Ang Sur Dis Fea Hap Sad Overall

VeNTER!SAV 0.93 0.94 0.96 0.92 0.94 0.95 0.94

VSAV!eNTER 0.96 0.95 0.81 0.96 0.97 0.97 0.94

V_eNTER! SAV denotes the PathNet model initially trained on

visual eNTERFACE and then transferred to visual SAVEE.

V_SAV! eNTER denotes the PathNet model initially trained on

visual SAVEE and then transferred to visual eNTERFACE
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achieves impressive results on several emotion classes (e.g.

‘‘happiness’’, ‘‘sadness’’), transfer learning from visual

eNTERFACE to visual SAVEE performs more consis-

tently across all emotion classes.

To show the effectiveness of our proposed meta-transfer

learning method, we compared it with other baselines.

Each baseline follows conventional training/testing setting

on a single domain, i.e. to train and test the emotion

recognition system on a data set. Specifically, we evaluated

our emotion recognition system when it was trained and

tested on either visual eNTERFACE or visual SAVEE. We

denote the PathNet model trained on visual eNTERFACE

as V_eNTER and the PathNet model trained on visual

SAVEE as V_SAV. We also compared our approach with

the work in [46] that applied fine-tuning for transfer

learning. Table 2 presents the results of this experiment. As

illustrated in Table 2, our meta-transfer learning method

achieves an overall accuracy of 94% for facial expression-

based emotion recognition in both settings (i.e. transfer

learning from visual eNTERFACE to visual SAVEE and

vice versa). This is the highest performance on both data

sets. The results show a significant improvement gained by

our transfer learning method (up to 6%) compared with

training a pre-trained model from scratch. Our transfer

learning also shows its superiority (up to 9% higher) over

the commonly used fine-tuning approach in emotion

recognition [46].

4.3.2 Speech emotion recognition

Next we evaluated our proposed meta-transfer learning in

speech emotion recognition. Similarly to facial expression-

based emotion recognition, we applied our method in

(a) Confusion matrix of facial expression-
based emotion recognition when transferring
emotional knowledge from visual eNTER-
FACE to visual SAVEE

(b) Confusion matrix of facial expression-
based emotion recognition when transferring
emotional knowledge from visual SAVEE to
visual eNTERFACE

Fig. 7 Confusion matrices of our proposed meta-transfer learning method applied to facial expression-based emotion recognition

Table 2 Comparison of our

meta-transfer learning method

with other baselines and

methods in facial expression-

based emotion recognition

Method Overall Accuracy

(a) Evaluation results on visual SAVEE

Fine-tuning [46] (trained on visual eNTERFACE) 0.85

VSAV 0.89

VeNTER!SAV 0.94

(b) Evaluation results on visual eNTERFACE

Fine-tuning [46] (trained on visual SAVEE) 0.88

VeNTER 0.88

VSAV!eNTER 0.94

V_eNTER and V_SAV denote the baselines trained from scratch on visual eNTERFACE and on visual

SAVEE, respectively. V_eNTER! SAV and V_SAV! eNTER denote the PathNet models initially

trained on visual eNTERFACE and transferred to visual SAVEE, and initially trained on visual SAVEE

and transferred to visual eNTERFACE, respectively. Best performances are highlighted
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transferring emotional knowledge in speech signals from a

source data set to a target data set.

In this experiment, we chose audio eNTERFACE as the

source data set and audio SAVEE as the target data set.

However, unlike the case study of facial expression-based

emotion recognition, we did not conduct transfer learning

from audio SAVEE to audio eNTERFACE. This is because

audio eNTERFACE is much larger than audio SAVEE and,

as shown in our empirical results, transfer learning of a

model from a smaller-scale data set to a larger-scale one

does not help to improve the model on the larger-scale data

set. In addition, this transfer learning strategy may even

perform worse than directly training the model from

scratch on the larger-scale data set. For instance, we

observed a decrease of 4% and 6% in the overall accuracy

when transfer learning was applied from audio SAVEE to

audio eNTERFACE, compared with direct use of A_SAV

and with A_eNTER (trained from scratch) on audio

eNTERFACE.

We also experimented our meta-transfer learning when

transferring emotion knowledge from multiple audio

emotion domains (audio eNTERFACE and audio SAVEE)

to one audio emotion domain (EMO-DB).

We present the recognition accuracy and confusion

matrices of our meta-transfer learning in speech emotion

recognition in Table 3 and Fig. 8. In general, compared

with facial expression-based emotion recognition on visual

SAVEE, speech emotion recognition on audio SAVEE is

more challenging, especially in recognising ‘‘disgust’’

emotion class. In contrast, for the setting of transfer

learning from audio eNTERFACE and audio SAVEE to

EMO-DB, the emotion recognition system performs best at

‘‘disgust’’ with perfect accuracy (100%), while demon-

strating relatively high performance on the other emotion

classes, e.g. the lowest accuracy is 94%, that is the

recognition accuracy of ‘‘fear’’ and ‘‘happiness’’.

We visualise the transfer learning process from audio

eNTERFACE to audio SAVEE in Fig. 9 (PathNet initially

trained on audio eNTERFACE) and Fig. 10 (PathNet

transferred to audio SAVEE).

Our proposed meta-transfer learning also significantly

outperforms conventional training/testing settings (i.e.

training and testing the emotion recognition system on the

same domain). To prove this, we trained and tested the

emotion recognition system on audio SAVEE. We refer

this baseline to as A_SAV. We made another baseline

called A_eNTER?SAV! EMO by training the emotion

recognition system on both audio eNTERFACE and audio

SAVEE, and then testing it on EMO-DB data set. For each

training/testing setting, we also compared our approach

with the fine-tuning approach in [46]. To the best of our

knowledge, the work in [46] is the current best baseline in

speech emotion recognition on experimented data sets. We

present comparison results in Table 4.

The results in Table 4 indicate several insights. First,

compared with the fine-tuning approach in [46], which is

also the current state of the art in emotion speech recog-

nition, our meta-transfer learning makes a significant

improvement (up to 16% of overall accuracy). This

improvement is consistent over different training/testing

settings. Second, transfer learning from a larger-scale and

possibly richer source data set to a smaller-scale target data

set (e.g. from audio eNTERFACE to audio SAVEE)

enhances the speech emotion recognition system on the

target data set (up to 8%), compared with training the

emotion recognition system from scratch on the target data

set.

The reason that our transfer learning approach signifi-

cantly outperforms the fine-tuning approach in [46] prob-

ably because emotional knowledge presented in the best

pathway achieved on a source data set can be reused to

initialise a new pathway on a target data set. In addition,

this best pathway is always involved in the learning phase

of PathNet on any target data set. However, when PathNet

is initially trained on an emotion data set from scratch,

emotional knowledge is randomly initialised and learnt

with only one set of pathways to fit with that emotion data

set.

5 Discussion and conclusion

Progress in emotion recognition research has been hindered

by lack of large amount of labelled emotion data. To

overcome this issue, existing studies have explored the use

of transfer learning to enhance emotion recognition meth-

ods from various but limited emotion data sources. How-

ever, there are unsolved issues in the current transfer

learning approach such as discarding learnt knowledge,

retaining irrelevant knowledge. In this paper, we propose

an alternative transfer learning technique based on PathNet,

a network architecture that uses pathways to learn knowl-

edge from different tasks/domains. The PathNet

Table 3 Results of meta-transfer learning in speech emotion

recognition

Method Ang Sur Dis Fea Hap Sad Overall

AeNTER!SAV 0.73 0.70 0.56 0.72 0.80 0.77 0.71

AeNTERþSAV!EMO 0.99 0.99 1.0 0.94 0.94 0.96 0.97

A_eNTER! SAV denotes the PathNet model initially trained on

audio eNTERFACE and then transferred to audio SAVEE.

A_eNTER?SAV! EMO denotes the PathNet model initially trained

on both audio eNTERFACE and audio SAVEE, and then transferred

to EMO-DB. Note that EMO-DB contains only speech data
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(a) Confusion matrix of speech emotion
recognition when transferring emotional
knowledge from audio eNTERFACE to audio
SAVEE

(b) Confusion matrix of speech emotion
recognition when transferring emotional
knowledge from audio eNTERFACE and
audio SAVEE to EMODB

Fig. 8 Illustrates confusion matrix of our proposed system evaluated on audio SAVEE and audio EMO-DB

Fig. 9 Visualisation of our

PathNet trained from scratch on

audio eNTERFACE (source

data set)
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architecture can learn to discover which pathways to reuse

for new tasks/domains, leading to successfully addressing

the aforementioned challenges. To validate our proposed

method, we conducted extensive experiments including

transfer learning from one emotion data set to another

emotion data set, in both visual and audio modality, and

transfer learning from multiple emotion data sets to one

emotion data set. Experimental results on benchmark data

Fig. 10 Visualisation of our

PathNet trained on audio

eNTERFACE (source data set)

and transferred to audio SAVEE

(target data set)
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sets verified the effectiveness of our method in transferring

emotional knowledge between different domains, and its

superiority over the current transfer learning technique in

emotion recognition.

In this paper, we investigated transfer learning between

different domains/data sets within the same datatype (i.e.

visual-to-visual or audio-to-audio data sets). It is also

worthwhile to explore transfer learning across different

datatypes. We consider this as our future work.
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