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Abstract
Many current trackers utilise an appearance model to localise the target object in each frame. However, such approaches often
fail when there are similar-looking distractor objects in the surrounding background, meaning that target appearance alone
is insufficient for robust tracking. In contrast, humans consider the distractor objects as additional visual cues, in order to
infer the position of the target. Inspired by this observation, this paper proposes a novel tracking architecture in which not
only is the appearance of the tracked object, but also the appearance of the distractors detected in previous frames, taken into
consideration using a form of probabilistic inference known as explaining away. This mechanism increases the robustness
of tracking by making it more likely that the target appearance model is matched to the true target, rather than similar-
looking regions of the current frame. The proposed method can be combined with many existing trackers. Combining it with
SiamFC, DaSiamRPN, Super_DiMP, and ARSuper_DiMP all resulted in an increase in the tracking accuracy compared to
that achieved by the underlying tracker alone. When combined with Super_DiMP and ARSuper_DiMP, the resulting trackers
produce performance that is competitive with the state of the art on seven popular benchmarks.

Keywords Object tracking · Tracking-by-Detection trackers · Distractor submission · Explaining away

1 Introduction

Tracking is a fundamental task in computer vision with
numerous applications in surveillance [41,47], self-driving
vehicles [8,48], and UAV-based monitoring [43,59]. It is the
task of locating the same moving object in each frame of
a video sequence, given only the initial appearance of tar-
get object. Most modern trackers treat this as a classification
problem. By learning an appearance model of the target from
the initial frame, the trackers distinguish the target fromback-
ground by cross-correlation operation and predict its location
in the following frames. Although achieving impressive per-
formance, these Tracking-by-Detection approaches can fail
when the appearance model misidentifies a similar-looking
object (a “distractor”) as the target. Even a current state-of-
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the-art tracker,Super_DiMP,1 which fully exploits (through
end-to-end offline training and online meta-learning) both
target and background appearance information, is still fooled
by distractors as shown in Fig. 1b. In contract, humans are
able to take into account the appearance of other objects, in
order to distinguish these potential distractors from the target
object and successfully infer the position of a tracked object
[19].

A leading theory of how such perceptual inference is per-
formed in the brain is provided by predictive coding (PC)
[9,49,53,55]. Specifically, PC suggests that the brain learns,
from prior experience, an internal model of the world. This
internal model encodes possible causes of sensory inputs,
and new sensory inputs are then represented in terms of these
known causes. Determining which combination of the many
possible causes best fits the current sensory data is achieved
through an iterative process of minimising the error between
the sensory data and the expected sensory inputs predicted
by the causes [54]. This inference process performs explain-
ing away [30,36,37]: possible causes (i.e. objects) compete
to explain the sensory evidence (i.e. the current image), and

1 Super_DiMP combines the bounding-box regressor of PrDiMP [15]
with the standard DiMP classifier [3]. Code for this tracker is available
at https://github.com/visionml/pytracking/.
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Fig. 1 A comparison of our approach with a state-of-the-art tracker on
two hard scenarios. a shows the search region of the current frame and
the green rectangle is the ground-truth location of the tracked target
object. b and c are the score maps produced by Super_DiMP and by

Super_DiMP when combined with the proposed method. Super_DiMP
identified the wrong location as the most likely location for the target
in both scenarios. Our approach correctly identifies the target location
in both scenarios

if one cause explains part of the evidence (i.e. a part of the
image), then support from this evidence for alternative expla-
nations (i.e. other objects) is reduced, or explained away.

This paper proposes that explaining away, implemented
using a version of PC called DIM [54,56], can be used to
enable a tracker (like a human) to take into account the
appearance of distractors when identifying the target in each
frame of a video. Specifically, both the target and the distrac-
tors (identified inprevious frames) are used as possible causes
underlying the appearance for the next frame of the video.
These causes compete to explain each part of the current
frame, and when a distractor provides a better explanation
for the appearance of some part of the image, this part of
the image is explained away and will not be matched to the
target. In this way, the target is less likely to be matched to
incorrect, but similar-looking, regions of the image and is
more likely to be matched to the correct location, increasing
the robustness of tracking.

Our main contributions are summarised as follows:

• We propose a novel tracking architecture that detects
distractors in every frame. These are represented as addi-
tional appearance models with the same size as the target
appearance model. The predicted location of the target
in the next frame takes into consideration not only the
tracked object, but also the distractors. As a consequence,
matches between the target appearance model and the
surrounding background are suppressed, and the iden-
tification of the target is more reliable (as illustrated in
Fig. 1).

• The proposed method does not require any retraining of
the underlying tracker and could easily integrate with
most current trackers that use the Tracking-by-Detection
architecture. We demonstrate this by integrating the
proposed method with four existing trackers: SiamFC
[2], DaSiamRPN [82], Super_DiMP [12], and ARSu-
per_DiMP [75]. In all cases, the performance of the
underlying tracker is improved by the addition of the pro-
posed method. This indicates that the proposed method
has good transferability and is potentially a general
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approach that could be used to improve the performance
of most visual trackers.

• Wedemonstrate the effectiveness of our general approach
by integrating it with the recent state-of-the-art trackers
Super_DiMP [12] and ARSuper_DiMP [75]. The result-
ing trackers achieve results that are competitive with the
state of the art on seven benchmark datasets: OTB-100
[67], UAV123 [44], NFS [31], LaSOT [18], Trackingnet
[45], GOT-10K [28], and VOT2020 [32].

2 Related work

Contemporary approaches solve the tracking problem by
learning the appearance of the target in the first frame.
These approaches can be roughly divided into generative
trackers [2,5,17,25,26,35,40,40,60,65,73,76–79,82] and dis-
criminative trackers [3,4,7,11–16,23,27,38–40,42,46,63,64,
68–72,75,79–81]. The former formulate object tracking as
a cross-correlation problem in deep feature space and take
advantage of end-to-end learning by training a Y-shaped
network containing two branches, one for the object tem-
plate and the other for the search region. This approach is
exemplified by Siamese network-based trackers which have
gained significant attention due to their promising perfor-
mance and efficiency. However, they typically employ a fixed
target template and do not model background information,
which consequently results in incorrect tracking when there
is a similar-looking object in the background or a significant
change of the target appearance. Despite appearance updat-
ing strategies [25,60] that have been recently introduced into
Siamese network-based trackers, their performance is still
below that of discriminative trackers.

The discriminative trackers are exemplified by discrimi-
native correlation filter (DCF)-based methods, which learn
to distinguish the target from the background. Traditionally,
these methods [14,27,39] have a fast training process in the
Fourier domain using the diagonalising transformation of cir-
cular convolutions to generate training samples. However,
the online learning procedures are complicated and can-
not be integrated with end-to-end learning architectures. To
solve this problem, DiMP-based trackers [3,4,11,15,64,75]
employ ameta-learning formulation to predict the weights of
the classification layer. This enables DiMP-based trackers to
achieve state-of-the-art results onmany benchmarks. Despite
discriminative trackers learning an appearance model using
background information, the appearancemodel is still unable
to deal with cases that contain highly similar-looking distrac-
tors (as illustrated in Fig. 1).

Tracking failures caused by a similar-looking location
being misidentified as the target indicates that only using
the appearance model to identify the tracked object is
insufficient to achieve robust results for the popular Tracking-

by-Detection-based trackers. Some existingmethods attempt
to address this issue by takingmore visual cues into consider-
ation. For example, Gladh et al [23] use deep motion features
extracted from optical flow images together with appearance
features to generate the target model. Wang et al [63] predict
the approximate location of the target by decoupling camera
motion and object motion to create an adaptive search region.

Some existing methods attempt to address this issue
by introducing attention mechanisms. For example, RAR
[22] employed a hierarchical attention module to leverage
both inter- and intra-frame attention at each convolutional
layer which effectively highlighted informative representa-
tions and suppressed distractors. SiamGAT [24] employed
a graph attention module to replace the cross-correlation
operation, that is common in Siamese trackers, for part-to-
part matching which effectively passed target information
from the template to the search region. [64] proposed an
appearance model generator using a transformer [61], and
the transformer-encoder promotes the previous appearance
models via attention-based feature reinforcement to acquire
more compact target representations, while the transformer-
decoder generates the appearance model for the current
frame. TransT [6] developed a Transformer-like fusion mod-
ule to combine the template and search region features solely
using attention instead of correlation. STMTrack [20] created
a space-time memory network inspired by non-local self-
attention [66] to fully use of historical information about the
target to better adapt to appearance variations during track-
ing.

More closely related to our work are methods that explic-
itly take into account information about possible distractors.
For example, DaSiamRPN [82] proposed a distractor-aware
feature learning scheme to boost the discriminative power
of the networks during offline training, and also a novel
distractor-awaremodule to suppress distractors during online
tracking. Bhat et al [4] presented an end-to-end learning
architecture, KYS, where the encoding of image regions is
learned and propagated by appearance-based dense track-
ing between frames. The final prediction is then obtained
by combining the explicit background representation with
the appearance model output. Nocal-Siam [58] proposed
a target-aware non-local attention module to jointly refine
visual features of the target and search branches which sup-
pressed distractors effectively.

Other distractor-suppression techniques have been pro-
posed for specific tracking architectures, but would be
difficult to incorporate in modern Tracking-by-Detection
approaches. For example, [10] developed an online fea-
ture ranking mechanism to select the top-ranked appearance
features for the trackers based on colour histogram. TLD
[29] proposed the Tracking–Learning–Detection architec-
turewhich implemented a P-N learningmechanism to exploit
spatio-temporal relationships in the video. SiamR-CNN [62]

123



2084 B. Gao, M. W. Spratling

proposed a Siamese re-detection architecture with a novel
Tracklet Dynamic Programming Algorithm to simultane-
ously track all potential objects and select the best object
in the current timestep based on the complete history of all
target and distractor object tracklets. [74] proposed a novel
hard negativeminingmethod to suppress distractors for long-
time tracking which enhanced the target identification ability
of a verification network.

In contrast, we present a common distractor-suppression
solution applicable to modern Tracking-by-Detection track-
ers. We design a novel architecture that constructs a joint
appearance model for both the tracked and distractor objects.
Each object in the appearance model then competes to
explain each part of the next video frame. This leads to the
score map for the target being suppressed at locations where
the appearance of a distractor is a better match to the image
and consequently results inmore robust predictions about the
true location of the target.

3 Proposedmethod

Figure 2 shows the architecture of the proposed method. A
visual tracker is used to generate an initial prediction which
is then used by the proposed detector module (see Sect. 3.1
for details) to locate distractor objects. Once the positions
of distractors are determined, the corresponding distractor
appearancemodels are obtained by cropping regions from the
current image features. Lastly, the proposed predictor mod-
ule (see Sect. 3.2 for details) takes the distractor appearance
models (detected in previous frames) and the target appear-

ance model into consideration at same time. These models
compete to explain every pixel of the image, which results in
the suppression of distractors in the final score map, which
describes the similarity between the target and each location
in the image.

3.1 Distractor detection

During tracking, both generative and discriminative trackers
(see Sect. 2) predict a scalar confidence score map S(X) ∈ R

given an input image X, such that:

S(X) = A�φ(X) (1)

Here, φ(X) are the features extracted from the search region
of the image, commonly by a CNN. A is the target appear-
ance model, for Siamese trackers it represents the features
of the template Z, i.e. φ(Z). For DCF trackers, it is the
convolution kernel which is trained online. � represents the
cross-correlation operation.

The scoremapmeasures the similarity between an appear-
ance model and the deep features extracted from the current
video frame. The tracker estimates the target object’s loca-
tion by finding the location of themaximum in the scoremap.
If the appearance of the target is distinctive, there will only
be one peak in the score map. However, if there are similar-
looking distractors in the search region, the score map will
have multiple peaks. Hence, distractors can be identified by
finding the locations of peaks excluding the one that repre-
sents the target. To be specific, a peak is defined as a local
maximum (within a 3-by-3 neighbourhood) that has a value

Classifier

Target appearance model 

Current features Current search region 

Original score map 

Predictor 

Detector  

Final score map

Distractor list 

…
…
…

… …

Fig. 2 An overview of the proposed tracking architecture. Distractor
objects are located in every frame by identifying non-target peaks in the
score map generated by the tracker. Distractor appearance models are
obtained by cropping areas from the current image features φ(X) that
are the same size as the target appearance model but centred at the dis-

tractor positions. The distractor list contains the distractor appearance
models detected in the previous n frames. These models together with
the target model are united as a joint appearance model for our predictor
to compute for the best matching location
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over a global threshold which is set to 0.7 times the max
value of the score map. The peak corresponding to the target
is determined by finding the location of the maximum value
in the final score map produced by the proposed predictor.

Finally, distractor appearance models are obtained by
cropping areas from φ(X) that are the same size as the target
appearance model and are centred at the distractor positions.
A list of distractors is updated every frame and contains the
distractor appearance models detected in the last n (default
value is 5) frames. If there is no distractor in a frame, no
additional distractor appearance models are stored in the list.

3.2 Appearancemodel competition

The predictor takes the target appearance model and the
distractor appearance models extracted from the preceding
n frames. These appearance models compete to match to
the features extracted from the search region by the tracker.
The competition is achieved by the DIM algorithm which
implements explaining away and which is the current state-
of-the-art method for image patch matching in both colour
[56] and deep feature [21] space. A detailed description of
the DIM algorithm can be found in [56], but an introduction
is provided below for the convenience of the reader.

The DIM can be thought of as a function, with two input
arguments and one output. In the current application, this
function operates as follows:

S j (X) = DIM(Pre(A j ), Pre(φ(X))ε2,ι (2)

where A j is a joint appearance model consisting of a stack
of the target appearance model and the distractor appearance
models detected in last n frames, and φ(X) are the features
extracted from the search region of the image, X. The output
of this function, S j (X), is a stack of score maps, and each
channel, j , is the individual score map for the corresponding
appearance model in A j . Pre stands for pre-processing and
will be described below.

To simplify the notation, we will represent the two inputs
to DIM as w and I (i.e. w j = Pre(A j ) and I = Pre(φ(X)).
Internally, the DIM function performs ι iterations for the fol-
lowing three equations:

Ri =
p∑

j=1

(
v j i�S j

)
(3)

Ei = Ii � [Ri ]ε2 (4)

S j ← [
S j

]
ε1

�
k∑

i=1

(
w j i ∗ Ei

)
(5)

where i is an indexover the number of channels in the input
I; j is an index over the number of different appearancemod-

els;Ri is a 2-dimensional array representing a reconstruction
of Ii ; Ei is a 2-dimensional array representing the discrep-
ancy (or residual error) between Ii andRi ;S j is the individual
score map for the corresponding appearance model in A j ;
w j i is a 2-dimensional array representing channel i of the
corresponding appearance model after pre-processing (i.e.
Pre(A j )i ) the values in each w j were normalised to sum to
one; v j i is a 2-dimensional array also representing appear-
ance model values (the values of v j were made equal to the
corresponding values of w j except they were normalised
to have a maximum value of one); [·]ε = max(·, ε); �
and � indicate element-wise division and multiplication,
respectively; and � and ∗ represent cross-correlation and con-
volution operations, respectively.

DIM attempts to find a sparse set of elementary compo-
nents, v, that when combined together reconstruct I with
minimum error [52]. For the current application, the ele-
mentary components are the target appearance model and
the distractor appearance models in the distractor list. These
appearance models can be thought of as a “dictionary” or
“codebook” that can be used to reconstruct many different
images. The activation dynamics, described by Eqs. 3, 4 and
5, perform gradient descent on the residual error in order
to find values of S that accurately reconstruct I [1,51,57].
Specifically, the equations operate to find values for S that
minimise the Kullback–Leibler (KL) divergence between I
and its reconstruction R [50,57]. The activation dynamics
thus result in the DIM algorithm selecting a subset of dictio-
nary elements that best explain I. The strength of an element
inS reflects the strengthwithwhich the corresponding dictio-
nary entry (i.e. appearancemodel) is required to be present in
order to accurately reconstruct I at that location [56]. Hence,
when a distractor appearance model provides a high simi-
larity to the appearance of some part of the image, this part
of the image is explained away and will not be matched to
the target. In this way, the target appearance model is more
likely to be matched to the correct location, increasing the
robustness of tracking.

Because DIM minimises the KL divergence between I
and its reconstruction R created by the additive combination
of elementary image components v, both inputs to the DIM
function must be nonnegative [56]. However, A j and φ(X)

are activation values extracted fromaCNNwhich can contain
negative values. Thus, the pre-processing takes the positive
and rectified negative values of A j and φ(X) and separates
them into two parts which are used as separate channels by
the DIM algorithm.

ε1 is a parameterswhichwas given to the values ε2

max(
p∑
j

v j i )

.

ε2 is a scalar parameter used by the DIM algorithm. It deter-
mines the magnitude required elements of I to have a strong
effect on the competition.Hence, if a value of I is smaller than
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ε2, it is effectively ignored. When DIM is applied to colour
images, those images have pixel intensities that typically
range from 0 to 1, so the maximum value of I is approxi-
mately 1 for every image, and it is possible to use a fixed
value of ε2. However, the maximum value of Pre(φ(X)),
which is used as I, can vary as it is produced by applying
a CNN to different videos. To deal with this variation, the
appropriate value for ε2 for any one video is chosen from a
set of ten possible values: values ranging from 1 × 10−3 to
9× 10−3 in steps of 8× 10−4. When DIM is applied for the
first time to a video, it is run ten times with each candidate
ε2 value. The magnitude of the highest peaks in the result-
ing ten score maps for the target object is compared, and the
value of ε2 corresponding to the highest peak is used for all
subsequent frames of this video. The number of iterations, ι,
performed by the DIM algorithm was set to 15.

3.3 Implementation details

DIM requires the appearance model to have dimensions that
are odd numbers; otherwise, the reconstruction of I does not
align with the actual I. Therefore, if the size of the target
appearance model employed by a visual tracker is even, the
target appearance model is padded by one row on the right
and one column on the bottom with zeros and the new size of
target appearancemodel is used to generate distractor appear-
ance models, as described in Sect. 3.1.

If no distractor appearance model has been detected in
the preceding five frames, i.e. if A j only contains the target
appearance model, then DIM will output a similar result to
that produced by Eq. 1. In such circumstances, when the
distractor list is empty, DIM is not employed and the score
map generated by the original tracker is used as the final score
map. This helps to improve the computational efficiency of
the proposed method. The frequency of DIM used in the
trackers reported in this paper can be found in Sect. 4.5.

Tracking sometimes fails, for example, when the target
is occluded or is out of frame. In this case, the tracker may
confuse a distractor for the target. Subsequently, when the
tracked object reappears, the proposed detection module will
incorrectly regard the reappeared target object as a distrac-
tor due to the incorrect matching in the former frame. If this
happens, the appearance of the target object will be included
in the list of distractor appearance models and DIMwill sup-
press the score map at the location of the true target. To avoid
this phenomenon, we rely on the assumption that the posi-
tion of target object between two adjacent frames doesn’t
change significantly, while there will be a jump in the pre-
dicted position of the target when a distractor is confused for
the target. Specifically, the Euclidean distance between the
locations of the highest peaks of the final score map in this
frame and the one in the former frame is calculated. If this
distance exceeds a threshold d (a value of 3 was used and the

Algorithm 1 Proposed Tracker.
Input: The first frame and the ground-truth bounding box of the target

in first frame, the current frame imt ;
Output: The predicted target bounding box in every frame;
1: Initialize underlying tracker;
2: for t = 2 to k (the total number of frames) do
3: Generate the score map S(X)2 using the classifier in the under-

lying tracker;
4: Find the number,m, of peaks above threshold g in S(X) and their

locations, locst ;
5: if m > 1 and distractor list is not empty then:
6: Update S(X) using DIM with ι iterations;
7: end if
8: Find location of the highest peak, hloct , in S(X);
9: if ‖hloct , hloct−1‖2 > d then
10: Clear the distractor list and do not update it for next r frames;
11: else
12: Determine the locations of distractors by excluding hloct in

locst ;
13: Crop distractor appearance models from φ(X);
14: Update the distractor list using the distractor appearancemod-

els;
15: end if
16: Estimate the predicted bounding box using S(X) using the esti-

mator in the underlying tracker;
17: end for

distance was calculated before upsampling the score map),
the distractor list is cleared and the proposed predictor does
not run for r frames. (A value of 5 was used.) Hence, for
those r frames the final score map will be the one generated
by the underlying tracker.

The complete proposed architecture is summarised by
Algorithm 1. 2

4 Experiments

4.1 State-of-the-art comparison

We evaluate our proposed tracking architecture using Super
_DiMP [12] and ARSuper_DiMP [75] on seven tracking
benchmarks:OTB-100 [67],UAV123 [44],NFS [31], LaSOT
[18], Trackingnet [45], GOT-10k [28], and VOT2020 [32].
Due to the stochastic nature of DCF trackers, the results
reported for DiMP-based trackers [3,4,15,64,75] are an aver-
age over multiple runs. For OTB-100, NFS, UAV123, and
LaSOT, the results were averaged over five runs. As the
results of Trackingnet are obtained using an online evalu-
ation server with limited submissions for an account, only
a single run was used. GOT-10k results are also evaluated
with an online server and the official documentation suggests
using three runs for all trackers, hence three runs were used.

2 X is the current search region obtained by cropping a square area in
imt to search for the target around the location at which it appeared in
imt−1.
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Fig. 3 Success and precision measured using the OTB-100 and UAV123 datasets

The official VOT evaluation toolkit runs a tracker twenty
times as default to produce statistically significant results,
and hence, twenty runs were used for VOT2020. For a fair
comparison, we follow the same approach to test our track-
ers, termed Super_DIM_DiMP and ARSuper_DIM_DiMP,
and the original trackers. As ARSuper_DiMP uses an Alpha-
Refinemodule to improve the accuracyof the boundingboxes
predicted by Super_DiMP, the hyper-parameters used by our
methodwere tuned using Super_DiMP and reused forARSu-
per_DiMP. Super_DIM_DiMP runs at around 23 FPS on a
single Nvidia Tesla V100GPU. In comparison, Super_DiMP
runs at approximately 27 FPS. ARSuper_DIM_DiMP and
ARSuper_DiMP run at around 20 and 16 FPS, respec-
tively. Our code is available at https://github.com/iminfine/
DIMtracking.

OTB-100 [67]: This dataset has been used extensively
to evaluate visual trackers. Our methods are compared with

numerous state-of-the-art trackers in Fig. 3a and 3 b, includ-
ing STMTrack [20], PRT [40], DROL-RPN [79], ARSu-
per_DiMP [75], TrDiMP3 [64], Super_DiMP [12], SiamR-
CNN [62], SiamRPN++ [35], PrDiMP50 [15], SiamBAN
[7], KYS [4], FCOT [11], TransT [6], and DiMP50 [3].
Despite performance becoming saturated over recent years,
the proposed tracker Super_DIM _DiMP still outperforms
the baseline, Super_DiMP, by 1% in terms of AUC (suc-
cess score) and 1.3% in terms of precision. Similarly,
ARSuper_DIM_DiMP outperformsARSuper_DiMP in both
scores and achieves the best AUC score with 72.3%.

3 Using the raw results provided by the authors, we were unable to
reproduce the scores reported for TrDiMP in [64] for the OTB-100,
UAV123, and NFS datasets. Our different results are shown in Fig. 3
and Table 1.
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Table 1 Comparison with state-of-the-art trackers on the NFS dataset

Arch. Tracker Succ. Prec.

Tracking-By-Detection ATOM [13] 58.0 70.0

FCOT [11] 63.2 76.1

DiMP50 [3] 61.5 74.1

PrDiMP50 [15] 63.5 75.9

KYS [4] 63.3 76.1

SiamBAN [7] 59.5 70.0

TrDiMP [64] 65.8 79.1

Super_DiMP [12] 64.7 78.1

ARSuper_DiMP [75] 66.3 80.5

Super_DIM_DiMP (ours) 65.5 79.5

ARSuper_DIM_DiMP (ours) 67.5 82.3

Others STMTrack [20] – –

TransT [6] 65.7 –

Siam R-CNN [62] 63.9 –

The best two results are highlighted by italic and bold

Table 2 Comparison with state-of-the-art trackers on the LaSOT
dataset

Arch. Tracker Succ. Pnorm

Tracking-By-Detection SiamFC++ [73] 55.7 58.9

ATOM [13] 51.5 57.6

Nocal-Siam [58] 53.3 –

FCOT [11] 56.9 67.8

DiMP50 [3] 56.9 65.0

PrDiMP50 [15] 59.8 68.8

SiamBAN [7] 51.4 59.8

TrDiMP [64] 63.9 –

Super_DiMP [12] 63.0 71.9

ARSuper_DiMP [75] 65.3 73.6

Super_DIM_DiMP (ours) 63.4 72.5

ARSuper_DIM_DiMP (ours) 65.5 73.4

Others STMTrack [20] 60.6 69.3

TransT [6] 64.9 73.8

Siam R-CNN [62] 64.8 72.2

The best two results are highlighted by italic and bold

UAV123 [44]: This is a large dataset captured from low-
altitude UAVs. It contains over 110K frames and 123 videos.
It is quite changing due to small tracked objects and fast
motion. PrDiMP50 [15], TransT [6], Super_DiMP [12],
ARSuper_DiMP [75], TrDiMP [64], FCOT [11], DiMP50
[3], PrDiMP18 [15], SiamRPN++ [35], DROL-RPN [79],
SiamR-CNN [62], STMTrack [20], DiMP18 [3] are com-
pared. It can be seen from the results shown in Fig. 3c and
3 d that Super_DIM_DiMP outperforms the previous best
approaches with an AUC of 68.1% and precision of 90.6%.

NFS [31]: This dataset contains 100 videos captured using
a high frame rate (240 FPS) camera. We evaluate our tracker
on the 30 FPS version of this dataset in which videos have an
average length of 479 frames. As shown in Table 1, ARSu-
per_DIM_DiMP outperforms the previous best approaches
with an AUC of 67.5% and precision of 82.3%.

LaSOT [18]: The large-scale LaSOT dataset contains
280 videos in its test set. The video sequences, which
have an average length of 2500 frames, are longer than
those in other datasets, testing not only the accuracy of the
tracker but also its robustness. As shown in Table 2, ARSu-
per_DIM_DiMP achieves the best AUC score with 65.5%
and Super_DIM_DiMP outperforms Super_DiMP with rel-
ative gains of 0.4% in success score and 0.6% in normalised
precision.

Trackingnet [45]: This dataset provides over 30K videos
sampled from YouTube. We report results on its test set,
consisting of 511 videos with an average of 441 frames
per sequence. As shown in Table 3, our approaches achieve
similar results to the baseline tackers Super_DiMP and
ARSuper_DiMP.

GOT-10K [28]: This is a recent large-scale dataset
consisting of 10k video sequences. With this dataset, track-
ers are evaluated on 180 videos with 84 object classes
and 32 motions that cover a wide range of common mov-
ing objects in the wild. The results in terms of average
overlap (AO) and success rates (SR0.50 and SR0.75

4) are
shown in Table 4. Among Tracking-By-Detection methods,
ARSuper_DIM_DiMP achieves the performance. Mean-
while, Super_DIM_DiMP significantly outperforms Super
_DiMP with a relative improvement of 2.5% in AO.

VOT2020 [32]: The VOT challenge [32–34], held yearly,
provides a precisely defined and repeatable way of compar-
ing short-term trackers. VOT2020 contains 60 videos with
binary segmentation masks as the ground truth and uses a
new evaluation protocol which separates the sequences into
short pieces to keep the computational complexity of the eval-
uation at a moderate level. The results in terms of expected
average overlap (EAO), accuracy (A), and robustness (R) are
shown in Table 4. ARSuper_DIM_DiMP outperforms the
baseline ARSuper_DiMP by 1.2% in terms of robustness.

Of all the Tracking-By-Detection trackers tested, ARSu-
per_DIM_DiMP was the best performing on five datasets
(OTB-100, NFS, LaSOT, Trackingnet, and GOT-10k). No
other Tracking-By-Detection method was best performing
on more than one dataset, and for one of those (UAV123),
the best performing tracker was our other method, Super
_DIM_DiMP. The results also show DIM to be more effec-
tive than other recent distractor-suppression methods such as
KYS [4] and Nocal-Siam [58].

4 The percentage of successfully tracked frames where overlap rates
are above the given threshold.
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Table 3 Comparison with
state-of-the-art trackers on the
Trackingnet dataset

Arch. Tracker Prec. Pnorm Succ.

Tracking-By-Detection SiamFC++ [73] 70.5 80.0 75.4

ATOM [13] 64.8 77.1 70.3

SiamRPN++ [35] 69.4 80.0 73.3

FCOT [11] 72.3 82.8 75.1

DiMP50 [3] 68.7 80.1 74.0

PrDiMP50 [15] 70.4 81.6 75.8

KYS [4] 68.8 80.0 74.0

TrDiMP [64] 73.1 83.3 78.4

Super_DiMP [12] 73.3 83.4 78.1

ARSuper_DiMP [75] 78.3 85.6 80.5

Super_DIM_DiMP (ours) 73.5 83.7 78.2

ARSuper_DIM_DiMP (ours) 78.5 85.8 80.6

Others STMTrack [20] 76.7 85.1 80.3

TransT [6] 80.3 86.7 81.4

Siam R-CNN [62] 80.0 85.4 81.2

The best two results are highlighted by italic and bold

Table 4 Comparison with
state-of-the-art trackers on the
GOT-10K dataset

Arch. Tracker AO SR0.5 SR0.75

Tracking-By-Detection Nocal-Siam [58] 60.1 68.8 –

FCOT [11] 64.0 76.3 51.7

DiMP50 [3] 61.1 71.7 49.2

PrDiMP50 [15] 63.4 73.8 54.3

KYS [4] 63.6 75.1 51.5

TrDiMP [64] 68.8 80.5 59.7

Super_DiMP [12] 67.5 78.8 59.5

ARSuper_DiMP [75] 70.1 80.0 64.2

Super_DIM_DiMP (ours) 69.2 80.8 60.6

ARSuper_DIM_DiMP (ours) 70.9 80.9 64.7

Others STMTrack [20] 64.2 73.7 57.5

TransT [6] 72.3 82.4 68.2

Siam R-CNN [62] 64.9 72.8 59.7

The best two results are highlighted by italic and bold

4.2 Qualitative evaluations

The effects of explaining away are illustrated on the first row
of Fig. 4. In this example, Super_DiMP incorrectly starts to
track a similar-looking distractor in frame 30. In contrast, this
distractor was detected in previous frames and the proposed
tracker is able to use this information to infer the true location
of the target. However, the proposed tracker can fail when the
tracking object is fully covered for a long time. In the example
on the second and third rows, the target is fully occluded by
a pavilion from frames 98 to 141. (Four frames are selected
in Fig. 4.) Super_DiMP checks the maximum of S(X) every
frame, if the value is below a threshold that is interpreted as
a tracking failure, the tracker does not update the location of
the target and outputs the same predicted bounding box as

the last frame. Hence, the predicted bounding box of the two
trackers on frames 98, 104, and 113 are highly overlapped.
From frame 116, the proposed tracker regards a distractor
as the target even when the target reappears. This is because
the proposed detection module incorrectly regards the reap-
peared target object as a distractor, and the appearance of the
target object is included in the list of distractor appearance
models. Hence, DIM suppresses the scoremap at the location
of the true target. We have developed a reset mechanism to
avoid this phenomenon (see Sect. 3.3 for details); however,
this mechanism is not activated in this particular scenario as
the proposed tracker regards the distractor as the target for a
long time. However, this type of failure case (which requires
the tracking target to be fully occluded for a long time, and
the surrounding background to contain a highly similar dis-
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Table 5 Comparison with
state-of-the-art trackers on the
VOT2020 dataset

Arch. Tracker EAO A R

Tracking-By-Detection ATOM [13] 27.1 46.2 73.4

DiMP50 [3] 27.4 45.7 74.0

OceanPlus [76] 49.1 70.0 74.2

PRT [40] 53.0 70.0 86.9

Ocean [78] 43.0 69.3 75.4

Siammask [65] 32.1 62.4 64.8

D3S [38] 43.9 69.9 76.9

Super_DiMP [12] 30.5 47.7 78.6

ARSuper_DiMP [75] 48.2 75.4 77.7

Super_DIM_DiMP (ours) 30.6 47.8 78.8

ARSuper_DIM_DiMP (ours) 48.5 72.7 78.9

Others TransT [6] 48.5 – –

Siam R-CNN [62] 35.5 69.9 58.6

The best two results are highlighted by italic and bold

tractor) is rare and, hence, has little detrimental effect on
performance overall.

4.3 Parameter sensitivity

The proposed method employs a number of hyper-
parameters:

• The global threshold, g, applied to the scoremap to locate
peaks caused by distractors, see Sect. 3.1;

• The number of previous frames, n, used to detect distrac-
tors, see Sect. 3.1;

• The number of iterations, ι, performed by the DIM algo-
rithm, see Sect. 3.2;

• The distance threshold, d, used to identify situations
where the target has been lost, see Sect. 3.3;

• The reset period, r , duringwhichDIM is not used follow-
ing the distance threshold being exceeded, see Sect. 3.3;

The influence of these hyper-parameters on the perfor-
mance of Super_DIM_DiMP was evaluated by varying the
value of one parameter while keeping the other parameters
fixed at their default values. This experiment was conducted
using the OTB-100 dataset, and the results are shown in
Tables 5 and 6.

It can be seen that when the value of g was increased by a
factor of 1.15 from its default value, the algorithm still pro-
duced state-of-the art performance. However, increasing this
parameter further had a detrimental effect on performance,
which is not surprising as very few distractors will be identi-
fied if g is too large. Decreasing g also reduced performance,
and an extreme reduction in g could lead to worse perfor-
mance than the underlying tracker alone. This is likely to be
due to the DIM algorithm needing more iterations to perform

explaining away when there are many distractor appearance
models. In addition, small amplitude peaks in the score map
close to the target will result in parts of the target being
included in the distractor appearance models.

The algorithm was tolerant to large changes in n, ι, and r .
However, only detecting distractors in one preceding frame
(n÷5) meant that there were few distractor appearance mod-
els, and hence, only a minor performance gain compared to
the underlying tracker alone. Performance deteriorated when
a large number of iterations was performed, and this can be
explained by the similarity values becoming sparser as the
number of iterations increases [56]. Using a very small r
resulted in an AUC only marginally above that of the base
tracker which indicates that one frame has insufficient time
for the tracker to relocate the target.

The results were particularly sensitive to the value of d.
When d was decreased by a factor of 5 from its default value,
the proposed method produced similar results to the underly-
ing tracker alone. This is because the small distance threshold
excludedDIM from being usedmost of the time, due to small
displacements of the target fromone frame to the next. In con-
trast, increasing the value of d meant the situations where
the target was lost were not identified, and as explained in
Sect. 3.3, this can result in target object being included among
the distractor appearance models, and the score map being
suppressed at the true location of the target in subsequent
frames.

4.4 Transferability

The experiments above are based on the discriminative track-
ers, Super_DiMP [12] and ARSuper_DiMP [75]. To test the
transferability of our method, we also combined it with two
generative trackers: SiamFC [2] and DaSiamRPN [82]. The
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Fig. 4 Qualitative comparison of Super_DiMP and Super_DIM_DiMP
on hard scenarios. First row shows frames from video Crowds from
OTB-100, and second and third rows are frames from video group2_1
from UAV123. Note that the annotations provided with the UAV123
data define the bounding-box coordinates as NaNs when the target is

out of frame or fully occluded, and thus, the ground-truth bounding box
is not shown in frames 98, 104, 113, and 116 of the video group2_1.
Note that cropped regions of each video are shown to improve the vis-
ibility of the bounding boxes

global threshold g was set to 0.5 for these two trackers,
and other hyper-parameters were kept at the standard val-
ues. Optimising the parameters carefully for each tracker
may result in better performance. The resulting methods
were evaluated on the OTB-100 and UAV123 dataset, and
the results are shown in Table 7. We evaluated them on a
single Nvidia Tesla V100 GPU. The speed of SiamFC and
DaSiamRPN is around 210 FPS and 103 FPS, respectively.
When integrating DIM, their speeds are 175 FPS and 82 FPS,
respectively. The results show our method can also improve
the tracking performance of both these trackers, which indi-
cates our method has the potential to be a general approach
that could improve the performance for most visual trackers.

Table 6 Evaluation of the sensitivity of the proposed architecture to its
parameter values on OTB-100

Parameter Standard AUC when value changed by:
value ÷5 ÷2 ×2(1.15) ×5(1.3)

g 0.7 68.6 70.3 71.2 70.3

n 5 70.3 70.6 70.9 70.8

ι 15 70.5 70.7 70.2 70.4

d 3 70.2 70.9 69.8 68.0

r 5 70.2 70.7 70.8 70.5

The value of g is no more than 1, and thus, the factors in brackets are
used instead. n, ι, d, and r need to be integers, so are rounded up to the
nearest integer value. Using Super_DiMP alone, the AUC is equal to
70.1. Using the proposed method with the standard parameter values,
the AUC is equal to 71.1
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Table 7 Evaluation of proposed architecture with generative trackers.
Note that the authors of DaSiamRPN [82] report an online update mod-
ule for the target template but they did not release this as part of the
official implementation. Thus, the results reported here are lower than
those in [82]

Tracker OTB-100 UAV123
Succ. Prec. Succ. Prec.

SiamFC Original 58.1 79.1 50.2 70.4

Proposed 58.3 79.4 50.5 70.8

Increment 0.2 0.3 0.3 0.4

DaSiamRPN Original 63.7 84.5 60.6 77.4

Proposed 64.5 85.6 61.0 78.3

Increment 0.8 1.1 0.4 0.9

4.5 The frequency of DIM used in these trackers

We tested this using OTB-100. This dataset contains 59040
frames. DIM was used on 1817, 1723, 15757, and 13244
frames when integrated with Super_DiMP, ARSuper_DiMP,
SiamFC, and DaSiamRPN, respectively. DIM is used less
frequently in Super_DiMP and ARSuper_DiMP as these
trackers are much more robust than the other two trackers
and also because of the use of a higher global threshold g
(0.7 of these trackers and 0.5 of other two trackers). Because
Super_DiMP and ARSuper_DiMP fully exploit both tar-
get and background appearance information during tracking,
they are only fooled on rare occasions when a distractor is
highly similar to the tracked object. DIMworks on these rare
occurrences to provide a useful boost in performance.

5 Conclusions

We propose a novel tracking architecture that can detect
distractors in each frame of a video. The distractor appear-
ance models compete with the target appearance model to
explain each part of a subsequent frame of the video. Parts
of the image that look similar to the target, and might have
been misidentified as the target, are explained away by the
distractor appearance models. This leads to suppression of
the distractors in the score map, and hence, to more robust
tracking of the target. It is general-purpose and has the poten-
tial to improve the performance of many exiting tracking
algorithms, and when combined with state-of-the-art dis-
criminative trackers are shown to improve tracking results
even further.
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59. Tarhan,M., Altuğ, E.: A catadioptric and pan-tilt-zoom camera pair
object tracking system for UAVs. J. Intell. Robot. Syst. 61(1–4),
119–134 (2011)

60. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.S.:
End-to-end representation learning for correlation filter based
tracking. In: The IEEEConference onComputerVision and Pattern
Recognition (CVPR) (2017)

61. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need.
arXiv:1706.03762 (2017)

62. Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam R-CNN:
Visual tracking by re-detection. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp.
6578–6588 (2020)

63. Wang, J., He, Y.: Motion prediction in visual object tracking.
arXiv:2007.01120 (2020)

64. Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets
tracker: Exploiting temporal context for robust visual tracking.
arXiv:2103.11681 (2021)

65. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online
object tracking and segmentation: A unifying approach. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1328–1338 (2019)

66. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural net-
works. In: Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), pp. 7794–7803 (2018)

67. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pp. 2411–2418 (2013)

68. Xu, T., Feng, Z.,Wu,X.J., Kittler, J.: Adaptive channel selection for
robust visual object tracking with discriminative correlation filters.
Int. J. Comput. Vision 129(5), 1359–1375 (2021)

69. Xu,T., Feng,Z.H.,Wu,X.J.,Kittler, J.: Joint group feature selection
and discriminative filter learning for robust visual object track-
ing. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7950–7960 (2019)

70. Xu, T., Feng, Z.H., Wu, X.J., Kittler, J.: Learning adaptive dis-
criminative correlation filters via temporal consistency preserving
spatial feature selection for robust visual object tracking. IEEE
Trans. Image Process. 28(11), 5596–5609 (2019)

71. Xu, T., Feng, Z.H., Wu, X.J., Kittler, J.: Learning low-rank and
sparse discriminative correlation filters for coarse-to-fine visual
object tracking. IEEE Trans. Circuits Syst. Video Technol. 30(10),
3727–3739 (2019)

72. Xu, T., Feng, Z.H., Wu, X.J., Kittler, J.: AFAT: adaptive failure-
aware tracker for robust visual object tracking. arXiv:2005.13708
(2020)

73. Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: SiamFC++: Towards
robust and accurate visual tracking with target estimation guide-
lines. In: The Association for the Advancement of Artificial
Intelligence (AAAI), pp. 12549–12556 (2020)

74. Xuan, S., Li, S., Zhao, Z., Kou, L., Zhou, Z., Xia,G.S.: Siamese net-
works with distractor-reductionmethod for long-term visual object
tracking. Pattern Recognition p. 107698 (2020)

75. Yan, B., Zhang, X., Wang, D., Lu, H., Yang, X.: Alpha-refine:
Boosting tracking performance by precise bounding box estima-
tion. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5289–5298 (2021)

76. Zhang, Z., Li, B., Hu, W., Peng, H.: Towards accurate pixel-wise
object tracking by attention retrieval. arXiv:2008.02745 (2020)

77. Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-
time visual tracking. In: The IEEEConference on Computer Vision
and Pattern Recognition (CVPR) (2019)

78. Zhipeng, Z., Houwen, P., Jianlong, F., Bing, L., Weiming, H.:
Ocean: Object-aware anchor-free tracking. In: European Confer-
ence on Computer Vision (2020)

79. Zhou, J.,Wang, P., Sun, H.: Discriminative and robust online learn-
ing for siamese visual tracking. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), vol. 34(07), pp.
13017–13024 (2020)

80. Zhu, X.F., Wu, X.J., Xu, T., Feng, Z., Kittler, J.: Robust visual
object tracking via adaptive attribute-aware discriminative correla-
tion filters. IEEE Transactions on Multimedia (2021)

81. Zhu, X.F., Wu, X.J., Xu, T., Feng, Z.H., Kittler, J.: Complementary
discriminative correlation filters based on collaborative represen-
tation for visual object tracking. IEEE Trans. Circuits Syst. Video
Technol. 31(2), 557–568 (2020)

82. Zhu, Z.,Wang, Q., Li, B.,Wu,W., Yan, J., Hu,W.: Distractor-aware
siamese networks for visual object tracking. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 101–117
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Bo Gao received a MSc degree in
Electrical engineering from Cen-
tral South University, Changsha,
China, in 2018. He is currently
pursuing the PhD degree in Com-
puter Science in the Department
of Informatics, King’s College Lon-
don, London, UK. His research
interests include object tracking,
computer vision and deep learn-
ing.

123

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2007.01120
http://arxiv.org/abs/2103.11681
http://arxiv.org/abs/2005.13708
http://arxiv.org/abs/2008.02745


Explaining away results in more robust visual 2095

Michael Spratling received a B.Eng.
degree in Engineering Science from
Loughborough University and MSc
and PhD degrees in Artificial Intel-
ligence and Neural Computation
from the University of Edinburgh.
He is currently Reader in Compu-
tational Neuroscience and Visual
Cognition at the Department of
Informatics, King’s College Lon-
don. His research is concerned
with understanding the computa-
tional and neural mechanisms under-
lying visual perception.

123


	Explaining away results in more robust visual tracking
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Distractor detection
	3.2 Appearance model competition
	3.3 Implementation details

	4 Experiments
	4.1 State-of-the-art comparison
	4.2 Qualitative evaluations
	4.3 Parameter sensitivity
	4.4 Transferability
	4.5 The frequency of DIM used in these trackers

	5 Conclusions
	Acknowledgements
	References




