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Identification of untrained class data using neuron clusters
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Abstract
Convolutional neural networks (CNNs), a representative type of deep neural networks, are used in various fields. There are

problems that should be solved to operate CNN in the real-world. In real-world operating environments, the CNN’s

performance may be degraded due to data of untrained types, which limits its operability. In this study, we propose a

method for identifying data of a type that the model has not trained on based on the neuron cluster, a set of neurons

activated based on the type of input data. In experiments performed on the ResNet model with the MNIST, CIFAR-10, and

STL-10 datasets, the proposed method identifies data of untrained and trained types with an accuracy of 85% or higher. The

more data used for neuron cluster identification, the higher the accuracy; conversely, the more complex the dataset’s

characteristics, the lower the accuracy. The proposed method uses only the information of activated neurons without any

addition or modification of the model’s structure; hence, the computational cost is low without affecting the classification

performance of the model.
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1 Introduction

Deep learning has been studied since 1940 and has recently

attracted attention with the development of technology and

hardware for artificial neural networks [1]. In addition,

artificial neural networks that can handle large amounts of

data and solve complex problems are required. Deep neural

networks (DNNs), which increase the number of hidden

layers in artificial neural networks, have emerged to meet

this requirement [2].

Convolutional neural networks (CNNs) are a represen-

tative type of DNN and are used in various fields, such as

image classification [3, 4], face recognition [5], and video

processing [6], as well as in safety–critical systems [7–9],

such as those of autonomous vehicles, in which robustness

is very important [10–12].

Some CNN models can classify images with higher

accuracy than humans for specific datasets, but there are

problems that should be solved to operate in the real-world.

The models should be tolerant to untrained data [13, 38].

However, a common assumption in deep learning is that

the training dataset contains all types of data that exist in

real-world operating environments [14, 15]. This assump-

tion can be easily violated in the real-world, and if

untrained data are input into the CNN, they are classified as

trained with high confidence [16].

In real-world operating environments, the performance

of CNNs can be degraded owing to data of untrained types,

which limits its operability [17]. Misclassification, partic-

ularly in safety–critical systems based on artificial intelli-

gence, can lead to catastrophic consequences [18]. For

example, autonomous vehicles can misclassify untrained

elements in environments such as deserts or countryside

where lanes and traffic signals do not exist, countries with

different traffic signal systems, and roads with newly added

signs. This can have a detrimental effect on human life,

property, etc. Thus, studies have been conducted to solve

these problems [19–21].

Previous studies use information from data or models to

identify the data of types that were not used to train DNNs.

Data-based studies analyze the characteristics of data using
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the Euclidean distance [22] or extreme value theory [23].

Although data-based studies can identify data of untrained

types at a lower cost than model-based studies, the accu-

racy is low. Model-based studies identify the data of new

untrained types by adding prototypes [16, 24] or adding or

modifying extra structures or modules to the model

[13, 40]. Model-based studies increase the computational

cost and require more resources owing to the increased

number of parameters in the model, which can affect its

performance.

In the field of neuroscience, studies have been con-

ducted to characterize the representation of brain regions

[25, 26, 39]. Those studies have identified brain regions

that perceive stimuli by providing input signals through

sensory organs and characterizing the information recog-

nized by specific brain regions. The studies conducted

representational similarity analysis between the input sig-

nals and the brain regions and showed that if the input

signals are similar, the brain regions that perceive stimuli

are similar. The structure of the DNN is inspired by the

human brain and works similarly to the human brain sys-

tem [27–29]. Therefore, it is expected that a relation exists

between the type of data input to the DNN and the specific

region of the DNN. This study defines concepts and

methods and conducts experiments to answer the following

research questions.

• RQ1 (Characteristic): Does a set of neurons that play a

major role in each class exist? Can a set of neurons

identify class characteristics?

• RQ2 (Similarity): Can the similarity between neuron

sets be used as a criterion to identify data from trained

and untrained classes?

Inspired by neuroscience research, this study identifies

the class neuron cluster (CNC), a set of neurons that are

activated based on the class of input data, and analyzes the

relation between the class of input data and the CNC.

Based on the analysis results, we confirm whether the

activated neurons are similar if the characteristics of the

classes are similar. Furthermore, we identify data types that

the model has not trained on using the CNCs.

First, we measure the criteria for identifying the data of

classes that the model has not trained using sets of neurons

activated by the training and validation data. Next, based

on these criteria, we identify the data from the untrained

classes.

The method proposed in this study uses only activated

neuron information without adding or modifying the model

structure; this has the advantages of low-computational

cost and no impact on the classification performance of the

model.

The main contributions of this study are as follows:

• We propose a CNC, which is a set of neurons used to

identify a specific class. We show that the CNC

recognizes class characteristics by conducting a simi-

larity analysis between CNCs for the CIFAR-10 and

STL-10 datasets and ResNet models.

• We propose a new model-based method for identifying

untrained class data using the CNC similarity.

• We conduct experiments on public datasets (MNIST,

CIFAR-10, and STL-10) to demonstrate the feasibility

and effectiveness of the untrained class data identifica-

tion method.

Section 2 describes some related work on the identifi-

cation of the data of classes that the model has not trained

on. Section 3 details the definition of the CNC, a set of

neurons that are activated based on the class of input data,

the identification of the CNC, and the analysis of the

similarities between CNCs. Section 4 describes how to

identify untrained class data. Section 5 presents the data-

sets, models, and configurations used in the experiments for

identifying untrained class data. Section 6 presents and

analyzes the experimental results. Section 7 provides the

conclusions and the scope for future work. All variables

and acronyms used in this paper are listed in Appendix 1.

2 Related work

The purpose of this study is to identify untrained class data.

Therefore, the purpose is different from that of studies that

identify modified data or outliers of known classes based

on the generative adversarial network (GAN) and adver-

sarial attack methods. Model training speed, performance

improvement, or pruning for weight reduction are not

addressed in this study.

Studies on the identification of untrained class data can

be classified into two categories: data-based and model-

based studies. In data-based study, Mendes et al. [22]

proposed an open-set nearest neighbor method to identify

untrained class data based on the Euclidean distance,

depending on whether the label of the closest training data

in the input data matched the label of the second closest

training data. The method identifies trained and untrained

class data with high accuracy of approximately 80% or

more in experiments on simple datasets; however, the

accuracy on complex datasets, such as Caltech-256, is

lower than approximately 50%.

Zhang and Patel [23] proposed a sparse representation-

based open-set recognition method to identify untrained

class data by analyzing the difference between the input

data and the training data using the extreme value theory

method. The method identifies trained and untrained class

data with a high accuracy of approximately 90% or more in
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experiments on simple datasets; however, the accuracy on

complex datasets, including Caltech-256, is approximately

68–80%.

Similar to [23], Yu et al. [43] proposed the open set fault

diagnostic method, which identifies untrained class data by

analyzing it with the extreme value theory method. On

industrial datasets, the proposed method increased the

identification accuracy by approximately 10%.

In model-based study, Yang et al. [16] proposed gen-

eralized convolutional prototype learning with prototype

loss for learning CNN models by adding prototype

parameters. This method increases the classification accu-

racy by reducing the distance between the intra-class data

and increasing the distance between the inter-class data

based on the Euclidean distance. In addition, it improves

the robustness of the CNN by training it to classify the

added new class by adding a prototype for a new class. The

method increases the accuracy by approximately 0.2% in

the experiment on the MNIST dataset and by approxi-

mately 0.5% in the experiment on the CIFAR-10 dataset.

Similar to Yang et al. [16], Wang et al. [24] increased

the classification accuracy by reducing the distance

between the intra-class data and increasing the distance

between the inter-class data using the CNN-based proto-

type ensemble technique. They identified untrained class

data by calculating the novelty of each class using the

open-world nearest mean classifier. The method identifies

untrained class data with an accuracy of approximately

80% in the experiment on the simple characteristic Fash-

ion-MNIST dataset and approximately 60% in the experi-

ment on the complex CINIC dataset. Prototype-based

methods, such as those of Yang et al. [16] and Wang et al.

[24], require the addition of prototypes for the untrained

class as parameters to the model, and an increase in the

number of parameters increases the computational cost and

required resources.

Gao et al. [41] proposed Convolutional open-world

multi-task image Stream classifier with Intrinsic Similarity

Metrics (CSIM), which identifies untrained class data

based on similarity metrics. The method identified

untrained class data with approximately 70% and less than

50% accuracy in experiments on MNIST and CIFAR-10

datasets, respectively.

Prototype-based methods, such as those of Yang et al.

[16] and Wang et al. [24], require the addition of proto-

types for the untrained class as parameters to the model,

and an increase in the number of parameters increases the

computational cost and required resources. These methods,

including Gao et al. [41], require regular updating of model

parameters to enhance the model’s untrained class data

identification performance.

Zhou et al. [44] identify untrained class data using the

learning to classify with incremental new class method

based on entropy and probability. When data are input, if

the combined score of entropy and probability is greater

than the threshold, it is classified as an untrained class, and

the accuracy is approximately 2% higher than the com-

parative methods.

Ma et al. [45] proposed a method for identifying

untrained class data in a generative adversarial network

when the discriminator’s score is greater than a threshold.

The proposed method’s accuracy was approximately 5%

higher than the comparative methods.

Yoshihashi et al. [13] proposed classification-recon-

struction learning for open-set recognition, a method of

probabilistic identification of untrained class data using

deep hierarchical reconstruction nets, designed based on an

openmax classifier modified with softmax. The method

improves the F1-score by approximately 0.6 in the exper-

iments on the modified ImageNet and LSUN datasets.

Dudi and Rajesh [40] proposed the shark smell-based

whale optimization algorithm (SS-WOA), which identifies

untrained class data based on the activation function values

and classification costs of the CNN model. The method

derives a threshold using the activation function value

when data are input and identify the input data as untrained

class data when the classification cost is less than the

threshold. The method improves the classification accuracy

by approximately 0.57–4% compared with other classifi-

cation models in the experiment on plant-leaf datasets. The

methods proposed in [13] and [40] increase the computa-

tional cost because separate modules (extra layer and

algorithm) are added to the CNN model.

The untrained class data identification method proposed

in this study differs from data-based methods in that it uses

model information. In addition, it does not modify the

model, such as a loss function or classifier, or add new

modules to identify untrained class data; it uses only the

activation information of the neurons in the trained model.

Thus, because the method is model-independent, it has the

advantages of low computational cost and no influence on

the classification performance of the model, unlike previ-

ous model-based methods.

3 Class neuron cluster

Here, we define the CNC as a set of neurons that are

activated by the input data of a particular type (class).

Then, we identify the CNC for each class of input data and

analyze the relation between the class of input data and the

CNC.
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3.1 Definition

Neurons recognize the characteristics of the input data and

transmit the recognized information to the next layer [30].

The CNC is a set of neurons that recognize the character-

istics of the data of a particular class, and these neurons are

activated when the data of a particular class are input.

Before defining the CNC, we define a function that deter-

mines whether a neuron is activated as in Definition 1.

Definition 1 Neuron activation function.

• A set of neurons: N ¼ n1; n2; . . .; nlf g
• A set of classes: S ¼ c1; c2; . . .; cmf g
• A set of data in classc: Dc ¼ d1; d2; . . .; dnf g

For input data d, if the activation value of the neuron

exceeds 0, neuron n is determined to be activated by data d.

For activation function f , the function used to determine

the activation of the neuron is expressed in Eq. (1).

active n; dð Þ ¼ 1; if f n; dð Þ[ 0

0; else

�
ð1Þ

The CNC is a set of neurons that are activated more than a

certain rate by the data of a particular class. Therefore, the

neuron activation ratio is defined as in Definition 2 based

on the neuron activation function in Definition 1.

Definition 2 Neuron activation ratio.

The activation ratio of neuron n for dataset Dc of a

particular class c is the ratio of data that activates the

neuron among the total data of the dataset, and it is

expressed in Eq. (2).

active ratio n; Dcð Þ ¼ Rd2Dc
active n; dð Þ
Dcj j ð2Þ

When the data of a particular class are input, a CNC, a

set of neurons that are activated more than a certain rate, is

defined as Definition 3 based on Definitions 1 and 2.

Definition 3 Class neuron cluster.

The CNCc of a particular class c is a set of neurons

whose neuron activation ratio is greater than or equal to the

threshold for dataset Dc and is expressed as Eq. (3).

CNCc ¼ fn 2 Njactive ratio n; Dcð Þ� thresholdg ð3Þ

For example, as depicted in ?tic=?>Fig. 1, when the

number of data of class c is 100 and the threshold is set at

0.5, neurons activated more than 50 times are identified as

the CNC of class c.

3.2 Class neuron cluster similarity analysis

To verify that the previously defined CNC recognizes the

characteristics of the input data, we identify CNCs for each

class of input data and analyze the similarities between

CNCs.

3.2.1 Class neuron cluster similarity analysis approach

A CNC is a set of neurons used to recognize the charac-

teristics of data. Therefore, when the CNC is measured for

each class, the CNCs of classes with similar characteristics

are expected to have many activated neurons in common.

Conversely, the CNCs of classes with only slightly similar

characteristics are expected to have fewer commonly

activated neurons. To confirm this, we analyze the simi-

larity between CNCs. Figure 2 shows an overview of the

CNC similarity analysis.

When the model that trains the training data composed

of m classes (S ¼ c1; c2; . . .; cmf g) Dtr
S is MS, we identify

the CNC for each class by inputting Dtr
S into MS. Then, we

measure the similarities between CNCs and analyze the

similarity between CNCs by representing them as a simi-

larity matrix. The method for measuring the similarity

between CNCs is described in Definition 4.

Definition 4 Similarity measurement.

The similarity between two clusters, CNCci and CNCcj ,

is measured as expressed in Eq. (4).

Fig. 1 Example of a CNC

Fig. 2 Overview of the CNC similarity analysis
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CNCci � CNCcj ¼
CNCci \ CNCcj

CNCci [ CNCcj

ð4Þ

When the similarity between two CNCs is the propor-

tion of neurons that are commonly activated as described in

Definition 4, we measure all the similarities between the

identified CNCs and express them as a similarity matrix.

The CNC similarity analysis is conducted for the

CIFAR-10 [31] and STL-10 [32] datasets and the ResNet

model. CIFAR-10 and STL-10 are datasets comprising 10

classes (living-being: 6 and object: 4); CIFAR-10 has 5,000

training data, and STL-10 has 500 training data for each

class.

We analyze the similarity in the CIFAR-10 dataset for

24,576 neurons in the last six layers of the ResNet-20

model, and the STL-10 dataset for 368,640 neurons in the

last 10 layers of the ResNet-32 model. The reason for

targeting the latter layers is explained in Sect. 5.

Analyzing the CNC similarity identifies CNCs by

inputting 500 training data for each class into the model,

measures all similarities between the identified CNCs, and

expresses them as a similarity matrix.

3.2.2 Class neuron cluster similarity analysis results

When the threshold of the neuron activation ratio is set at

0.5, the similarity matrixes representing the results of the

CNC similarity analysis with 10 classes of CIFAR-10 and

STL-10 are presented in Figs. 3 and 4, respectively.

The analysis results on the CIFAR-10 dataset show that

the similarities between living-being–living-being pairs

and between object–object pairs are higher than the simi-

larities between living-being–object pairs. In the living-

being–living-being pairs, the cat–dog pair has the highest

similarity, and in the object–object pairs, the ship–airplane

pair has the highest similarity. The pair with the lowest

similarity is the horse–ship pair, which is a living-being–

object pair.

The analysis results on the STL-10 dataset, similar to

those on the CIFAR-10 dataset, show that the similarities

between living-being–living-being pairs and object–object

pairs are higher than those between living-being–object

pairs. In the living-being–living-being pairs, the dog–

monkey pair has the highest similarity, and in the object–

object pairs, the ship–airplane pair has the highest simi-

larity. The pair with the lowest similarity is the horse–

airplane pair, which is a living-being–object pair.

The similarity analysis results indicate that the charac-

teristics of classes with high similarity between CNCs are

more similar than those with low similarity, and the CNC is

a set of neurons that recognizes the data characteristics of a

particular class.

As described in Definition 3, CNC identification

depends on the threshold. When the threshold is small,

neurons activated by a small amount of data are included in

the CNC, so that the CNC can be identified as coarse-

grained. A coarse-grained CNC can flexibly identify data

of various shapes; however, the data may be mistaken for a

different class. Conversely, when the threshold is large, the

CNC can be identified as fine-grained, which may not

recognize data in various shapes and may result in poor

flexibility. We conducted a similarity analysis based on the

thresholds on the CIFAR-10 dataset and ResNet-20 model,

and the analysis results are described in Appendix 2.

4 Untrained class data identification
approach

The identification of untrained class data consists of a

measure of model identifiability and identification of

untrained class data. Figure 5 shows a flowchart of the

untrained class data identification approach.

The first step measures the model identifiability based

on the training and validation data. The second step mea-

sures the maximum class similarity based on the unknownFig. 3 Similarity matrix between the CNCs of CIFAR-10

Fig. 4 Similarity matrix between the CNCs of STL-10
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class data and training data and identifies the untrained

class data by comparing it with the model identifiability.

Each step is described in detail in the following

subsections.

4.1 Measure of model identifiability

Model identifiability is a criterion for determining whether

arbitrary data inputs to the model are data of classes that

the model is not trained on and is measured based on class

identifiability. Figure 6 shows an overview of model

identifiability measurements.

We denote the training data excluding the data of class

ch as Dtr
ch
, the validation data excluding the data of ch as

Dva
cx
, and the model that is trained on training data Dtr

ch
as

Mch . First, we input training data Dtr
ch

and validation data

Dva
cx

into model Mch and identify the CNC for the training

data and validation data, respectively. The validation data

are selected from the original training data and do not

overlap with the training data used for CNC identification.

Next, we measure the similarity between the CNCs of

the training and validation data for each class. The simi-

larity is used to identify each class. Class identifiability is a

criterion for determining whether arbitrary data inputs to

the model are data of a class that the model is trained on at

the class level. Class identifiability is described in Defini-

tion 5.

Definition 5 Class identifiability.

The identifiability of a particular class ck is the

similarity between the CNCtr
ck

identified by inputting the

training data, and the CNCva
ck

identified by inputting the

validation data, as expressed in Eq. (5).

identifiabilityck ¼ CNCtr
ck
� CNCva

ck
ð5Þ

Model identifiability is a criterion for determining

whether the input data are the data of the trained class at

Fig. 5 Flowchart of the

untrained class data

identification approach

Fig. 6 Overview of the model identifiability measurement
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the model level. As expressed in Definition 6, it is

measured as the minimum value among the class

identifiabilities.

Definition 6 Model identifiability.

The identifiability of model Ms trained on S composed

of m classes is the minimum value among the identifiabil-

ities of m classes, as expressed in Eq. (6).

identifiabilityMS
¼ min identifiabilityci

� �m

i¼1

� �
ð6Þ

4.2 Identification of untrained class data

Untrained class data are identified by measuring the simi-

larity between the CNC identified based on the input data

and the CNC identified based on the training data and

comparing the similarity with the model identifiability.

Figure 7 shows an overview of untrained class data

identification.

Because a small number of data may not be sufficient in

identifying neuron clusters, we augment unknown class

data, Dun
ch

with rotation, zoom, brightness, and shift [42]

techniques. The augmented data are then used for CNCun
ch

identification. The unknown class data are selected from

the test data.

We measure the class maximum similarity to determine

whether the unknown class data are an untrained class. The

class max similarity is measured by comparing the simi-

larity between CNCun
ch

and CNCs based on the training data

and is defined in Definition 7.

Definition 7 Class max similarity.

For the CNCun
ch

based on class ch, the maximum

similarity of ch is the maximum of the similarities

measured among the CNCs based on m training data and

is expressed in Eq. (7).

similaritymax
ch

¼ max CNCtr
ci
� CNCun

ch

n om

i¼1

� �
ð7Þ

The untrained class data are identified by comparing the

model identifiability measured in the previous step to the

unknown class maximum similarity. The method for

identifying the untrained class data is described in Defi-

nition 8.

Definition 8 Untrained class data identification.

If the unknown class max similarity, similaritymax
ch

based

on class ch, is less than the model identifiability,

identifiabilityM , ch is identified as an untrained class, as

expressed in Eq. (8).

ch ¼
untrained class; if similaritymax

ch
\identifiabilityM

trained class; else

�

ð8Þ

If the unknown class max similarity is less than the

model identifiability, the characteristics of the data of the

unknown class are considered to be dissimilar to the

characteristics of the data of all classes that the model is

trained on; therefore, the data of the unknown class are

identified as untrained class data.

To verify the performance of the untrained class data

identification method, we define class identification accu-

racy based on the accuracy used in the existing classifica-

tion test [37]. The class identification accuracy is measured

based on the identification results obtained by comparing

the model identifiability and the class max similarity. It

measures the degree of identification of not only untrained

class data but also trained class data as trained class data.

The class identification accuracy is described in Definition

9.

Definition 9 Class identification accuracy.

The class identification accuracy is the ratio of correctly

classified trained and untrained class data to the total data,

as expressed in Eq. 9.

Fig. 7 Overview of untrained class data identification
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Class Identification Accuracy ¼ TP + TN

TPþ TNþ FPþ FN

ð9Þ

• TP: Identify untrained class data as an untrained class

• TN: Identify trained class data as a trained class

• FP: Identify trained class data as an untrained class

• FN: Identify untrained class data as a trained class

To analyze the performance of the untrained class data

identification method in detail, we measure the sensitivity,

specificity, false-positive rate, and false-negative rate. Each

performance metric is as follows.

Sensitivity ¼ TP

TPþ FN
ð10Þ

Specificity ¼ TN

TNþ FP
ð11Þ

FNR False negative rateð Þ ¼ FN

TPþ FN
ð12Þ

FPR Flase positive rateð Þ ¼ FP

TNþ FP
ð13Þ

5 Experimental design and settings

Here, we describe the experimental environments and

methods used to measure model identifiability and identify

the untrained class data.

5.1 Design to measure of model identifiability

Untrained class data are identified on the MNIST [33],

CIFAR-10 [31], and STL-10 [32] datasets and ResNet [3],

a CNN model. Table 1 presents the experimental datasets,

models, and number of neurons to be measured.

MNIST is a 28 9 28 pixel image dataset comprising

handwritten numbers from 0 to 9, and CIFAR-10 is a

32 9 32 pixel image dataset comprising six living-being

classes (bird, cat, dog, deer, frog, and horse) and four

object classes (airplane, automobile, ship, and truck).

Similar to CIFAR-10, STL-10 is a 96 9 96 pixel image

dataset comprising six living-being classes (bird, cat, dog,

deer, horse, and monkey) and four object classes (airplane,

car, ship, and truck).

The MNIST and CIFAR-10 datasets, which have a small

image size, employ the ResNet-20 model, whereas the

STL-10 dataset, which has a relatively large image size,

employs the ResNet-32 model.

CNNs store more abstracted information as the layers

deepen [34–36]. Neurons in the front layers identify lines

and corners, whereas neurons in the rear layers identify

objects based on the information from neurons in the front

layers. Therefore, identifying the CNC, which is a set of

neurons that recognize the data characteristics of a partic-

ular class, on the rear layers is advantageous. We conduct

experiments on neurons in layers corresponding to the last

31% of the activation layers of the model. We experiment

on 24,576 neurons in six layers with a size of 8 9 8 9 64

for the ResNet-20 model, and 368,640 neurons in 10 layers

with a size of 24 9 24 9 64 for the ResNet-32 model.

The numbers of training and validation data used for

CNC identification for each dataset are listed in Table 2.

We use 500 training data for each class in the MNIST and

CIFAR-10 datasets, and 300 training data for each class in

the STL-10 dataset. The image size of STL-10 is three

times larger than those of MNIST and CIFAR-10. The

STL-10 dataset requires more time for experiments than

the MINST and CIFAR-10 datasets; therefore, a smaller

number of training data are used. On the MNIST and

CIFAR-10 datasets, there are 500 validation data for each

class, and on the STL-10 dataset, there are 200 validation

data for each class.

Based on the CNCs identified using the training and

validation data, we measure model identifiability. To

identify untrained class data, in this study, we create a

trained modelMcx , except for the data corresponding to one

specific class cx, from all classes in the dataset. Because

each class in the dataset is excluded once, if m classes are

present, a total of m models are created (Mc1 ;Mc2 ; . . .;Mcm ).

5.2 Design for identification of untrained class
data

We identify untrained class data from unknown class data,

which consists of nine trained class data and one untrained

class data. The model should correctly identify the trained

class data as trained class data and the untrained class data

as untrained class data. The number of unknown class data

is listed in Table 3.

The control parameters affecting this experiment are the

number of data used for CNC identification and the acti-

vation rate threshold, which is the CNC identification cri-

terion. Therefore, we conduct experiments by changing the

Table 1 Experimental datasets and models

Dataset (# of class) Model # of neuron

MNIST (10) Resnet-20 6 9 (8, 8, 64) = 24,576

CIFAR-10 (10) Resnet-20 6 9 (8, 8, 64) = 24,576

STL-10 (10) Resnet-32 10 9 (24, 24, 64) = 368,640
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values of the parameters. Each parameter is described as

follows.

• The number of data used for CNC identification.

• The identification of a CNC, which is a set of neurons

that recognize the characteristics of data, has a limita-

tion with only one data. Therefore, we compare the

results based on the number of data used for the CNC

identification.

• The models used in the experiment train only nine out

of 10 classes, such as the unknown class data config-

uration. We conducted experiments on 10 models by

excluding each class once and repeated them five times

with different numbers of unknown class data used for

CNC identification, thereby performing 50 experiments

for each dataset.

• Activation rate threshold.

• As described in Sect. 3, if the threshold is changed, the

CNC is identified differently, and the result of untrained

class data identification may be different. Therefore, we

proceed with the experiment by changing the threshold

used for the CNC identification to 0.3, 0.5, and 0.7. The

experimental results mainly describe the results when

the threshold is set at 0.5, and the results when the

threshold is set at 0.3 and 0.7 are described in detail in

Appendices.

5.3 Configurations

All experiments were conducted on a server with a Win-

dows 10 Pro OS, AMD Ryzen 7 2700X CPU, 64.0 GB

RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. The

MNIST and CIFAR-10 datasets are obtained from Keras

v2.6.0, and the STL-10 dataset1 and ResNet model2 are

available online.

6 Experimental results

Here, we describe the results of the measurement of model

identifiability and identification of untrained class data

based on model identifiability.

6.1 Results of measure of model identifiability

To measure the model identifiability, we identified CNCs

by using the training and validation data of the MNIST,

CIFAR-10, and STL-10 datasets. Figure 8 presents a box

plot depicting the CNC size distribution identified by

inputting the training data into 10 models (M
airplane

,

M
automobile

, M
bird

, Mcat, M
deer

, M
dog

, M
frog

, M
horse

, M
ship

,

M
truck

) trained with nine classes, with the exception of one

class from the training data of the CIFAR-10 dataset.

The CNC size distribution for each class is measured by

using the nine models. For example, the CNC size distri-

bution of the airplane is the CNC size of the airplane class

measured from models (M
automobile

, M
bird

, Mcat, Mdeer
, M

dog
,

M
frog

, M
horse

, M
ship

, M
truck

) trained on the airplane data.

The CNCs are identified in sizes of approximately

3,700–4,800, accounting for approximately 15.1–19.5% of

the total number of 24,576 neurons. The smallest CNC has

a size of 3,785: the bird-class CNC (CNCtr
bird) of the model

without the frog-class (M
frog

), and the largest CNC has a

size of 4,727: the truck-class CNC (CNCtr
truck) of the model

without the automobile-class (M
automobile

). Figure 9 dis-

plays a box plot depicting the CNC size distribution

identified by inputting the validation data of the CIFAR-10

dataset.

The CNC size distribution based on the validation data

is similar to that of the training data. The CNCs are iden-

tified in sizes of approximately 3,700–4,800. The smallest

CNC and the largest CNC are the bird-class CNC

(CNCtr
bird) of the model without the frog-class (M

frog
), and

the truck-class CNC (CNCtr
truck) of the model without the

automobile-class (M
automobile

), same as the training data.

The CNC sizes of the living-being classes (bird, cat,

deer, dog, frog, and horse) are found to be smaller than the

CNC sizes of the object classes (airplane, automobile, ship,

and truck). This is because the data from living-being

Table 2 Number of training/validation data used for CNC

identification

Dataset # of training data # of validation data

MNIST 500/class 9 9 class 100/class 9 9 class

CIFAR-10 500/class 9 9 class 100/class 9 9 class

STL-10 300/class 9 9 class 100/class 9 9 class

Table 3 Number of unknown class data

Dataset # of unknown class data

# of trained class data # of untrained class data

MNIST 50/class 9 9 class 50/class 9 1 class

40/class 9 9 class 40/class 9 1 class

CIFAR-10 30/class 9 9 class 30/class 9 1 class

20/class 9 9 class 20/class 9 1 class

STL-10 10/class 9 9 class 10/class 9 1 class

1 https://cs.stanford.edu/*acoates/stl10.
2 https://github.com/keras-team/keras-applications/tree/master/

keras_applications.
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classes with complex characteristics activate various neu-

rons. As a result, the number of neurons with a neuron

activation rate greater than the threshold becomes small.

For example, the CNC size of a bird with many curves and

various shapes is identified to be smaller than that of a

truck with many straight lines and simple shapes. The

minimum, average, and maximum sizes of the CNCs for

the training and validation data for each dataset are listed in

Table 4.

Similar to the CIFAR-10 dataset, the MNIST and STL-

10 datasets have similar size distributions of CNCs for the

training and validation data. The CNC size of MNIST is

approximately 1,600–2,500, which is approximately

6.5–10.2% of the total 24,576 neurons, and the CNC size of

STL-10 is approximately 98,000–135,000, which is

approximately 26.6–36.6% of the total 368,640 neurons.

The more complex the dataset, the more neurons are

identified as clusters. The CNC of the STL-10 dataset with

a large image size (96 9 96 pixel) is the largest, and the

CNC of the MNIST dataset with a small image size

(28 9 28 pixel) is the smallest.

Conversely, in the case of the MNIST dataset, more than

90% of neurons are not used as clusters. In the CIFAR-10

dataset, approximately 80% or more, and in the STL-10

dataset, approximately 64% or more neurons are not used

as clusters.

When the threshold is set at 0.3, the size of the CNC is

larger than when the threshold is set at 0.5. This is because

the threshold is small; therefore, fewer activated neurons

are included in the cluster. When the threshold is set at 0.7,

the size of the CNC is the smallest. This is because only

highly activated neurons are included in the cluster as the

threshold is increased. The min/average/max CNC sizes

per dataset for thresholds of 0.3 and 0.7 are described in

Appendix 3.

The model identifiabilities measured using CNCs for the

training and validation data for each dataset are listed in

Table 5. Ten models are created for each dataset excluding

one class. The average model identifiabilities of MNIST,

CIFAR-10, and STL-10 are 0.656, 0.721, and 0.646,

respectively.

The identifiability measured for each the model is used

as a criterion for identifying the untrained class data. For

example, for the MNIST dataset, the model without zero-

class (Mzero) identifies the unknown class data as the

untrained class data if the maximum similarity between the

training data and the unknown class data is less than 0.670,

which is the model identifiability.

Model identifiability decreases as the threshold increa-

ses. This is because the larger the threshold, the smaller the

size of the CNC; thus, the overlapping neurons between the

CNCs by the training and validation data are small. When

the thresholds are set at 0.3 and 0.7, the model identifia-

bility for each dataset is described in Appendix 4.

6.2 Results of identification of untrained class
data

To identify the untrained class data, we measured the class

identification accuracy by inputting unknown class data

into the model trained on part of the entire training data.

The MNIST, CIFAR-10, and STL-10 datasets all consist of

10 classes, and we divided the unknown class data into nine

trained class datasets and one untrained class dataset.

Figure 10 displays the class identification accuracy of the

dataset based on the number of unknown class data.

The relatively simple MNIST and CIFAR-10 datasets

have higher class identification accuracy than the complex

STL-10 dataset. The class identification accuracy in

experiments with 10 data on the STL-10 dataset is 85%,

and when more than 20 data are used, the accuracy is

Fig. 8 Box plot for CNC size distribution based on the training data

of CIFAR-10

Fig. 9 Box plot for CNC size distribution based on the validation data

of CIFAR-10
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greater than 90% on all datasets. The more data used for

CNC identification, the more accurately the CNC can be

identified by recognizing the class characteristics, so the

class identification accuracy is high. Figure 11 displays the

identification accuracy for each class based on the number

of unknown class data in the MNIST dataset.

In the experiment on the MNIST dataset, the ‘five’ class

has the lowest identification accuracy when the number of

unknown class data is ten, and the ‘one,’ ‘seven,’ and

‘nine’ classes have less than 90% accuracy in the data of 50

or less. We measured the sensitivity, specificity, FNR, and

FPR to analyze the performance of the class data identifi-

cation in detail. Table 6 lists the performance metrics on

the MNIST dataset based on the number of unknown class

data.

The sensitivity, which is the ratio of correctly classified

untrained class data, is 100%; therefore, all untrained class

data are correctly classified. Conversely, the specificity,

which is the proportion of correctly classified trained class

data, is greater than 91%, and some of the trained class data

are incorrectly classified. Consequently, the FPR, which is

the proportion of incorrectly classified trained class data, is

less than 9%.

When the threshold used for CNC identification is set at

0.3, most of untrained class data are incorrectly classified

as trained class data. Conversely, when the threshold is set

at 0.7, trained class data are incorrectly classified as

untrained class data. The results of measuring the perfor-

mance metrics on the MNIST dataset for thresholds of 0.3

and 0.7 are described in Appendix 5. Figure 12 presents the

identification accuracy for each class based on the number

of unknown class data in the CIFAR-10 dataset.

Table 4 CNC min/average/max size of training and validation data

Dataset Min Average Max

Training data

MNIST 1609 2199 2538

CIFAR-10 3791 4138 4725

STL-10 98,969 116,824 132,509

Validation data

MNIST 1588 2190 2538

CIFAR-10 3785 4133 4727

STL-10 99,691 117,893 135,440

Table 5 Model identifiability for each dataset

MNIST CIFAR-10 STL-10

Model Ident Model Ident Model Ident

Mzero 0.670 M
airplane

0.730 M
airplane

0.690

Mone 0.650 M
automobile

0.722 M
bird

0.613

Mtwo 0.641 M
bird

0.725 Mcar 0.646

M
three

0.655 Mcat 0.714 Mcat 0.638

M
four

0.665 M
deer

0.725 M
deer

0.643

M
five

0.660 M
dog

0.720 M
dog

0.634

M
six

0.664 M
frog

0.720 M
horse

0.640

Mseven 0.647 M
horse

0.717 M
monkey

0.646

M
eight

0.649 M
ship

0.720 M
ship

0.659

Mnine 0.660 M
truck

0.721 M
truck

0.646

Avg 0.656 Avg 0.721 Avg 0.646

Fig. 10 Class identification accuracy for the datasets based on the

number of unknown class data

Fig. 11 Class identification accuracy on MNIST based on the number

of unknown class data

Table 6 Performance metrics on MNIST based on the number of

unknown class data

Average (%) Number of unknown class data

10 20 30 40 50

Sensitivity 100 100 100 100 100

Specificity 91.11 94.44 95.56 95.56 94.44

FNR 0 0 0 0 0

FPR 8.89 5.56 4.44 4.44 5.56
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In the experiment on the CIFAR-10 dataset, the ‘auto-

mobile’ class has the lowest identification accuracy when

the number of unknown class data is ten, and in all other

cases, the accuracy has greater than 90%. Table 7 lists the

other performance metrics on the CIFAR-10 dataset based

on the number of unknown class data.

Because some untrained class data are incorrectly clas-

sified, the sensitivity is 60–80%, and the lowest is when the

number of unknown class data is 30. In contrast, the

majority of the trained class data are correctly classified,

with the specificity greater than 92%. Overall, the higher

the amount of data, the better the performance.

Similar to the MNIST dataset, in the experiment on the

CIFAR-10 dataset, when the threshold used for CNC

identification is set at 0.3, most of the untrained class data

are incorrectly classified. In contrast, some trained class

data are misclassified when the threshold is set at 0.7. The

results of measuring the performance metrics on the

CIFAR-10 dataset based on the threshold are described in

Appendix 5. Figure 13 presents the identification accuracy

for each class based on the number of unknown class data

in the STL-10 dataset.

In the experiment on the STL-10 dataset, the identifi-

cation accuracy of the ‘bird’ class is 0 when the number of

unknown class data is ten, and 60% when the number of

unknown class data is twenty. In all other cases, the

accuracy has greater than 90%. Table 8 lists the other

performance metrics on the STL-10 dataset based on the

number of unknown class data.

Approximately half of the untrained class data are

incorrectly classified, with a sensitivity of 50–60%. This is

because untrained class data are identified as class data

with similar characteristics. For example, a model trained

on a dog but not a cat would classify a cat as a dog. The

majority of the trained class data are correctly classified,

with the specificity greater than 87%. The results of mea-

suring the performance metrics on the STL-10 dataset

based on the threshold are described in Appendix 5.

We compare the performance with CSIM [41] and CPE

[24], which are CNN-based state-of-the-art untrained class

data identification methods to examine the feasibility and

effectiveness of CNC. Performance comparisons measure

FNR and FPR on MNIST and CIFAR-10 datasets. Tables 9

and 10 list the performance metrics for each dataset of the

methods.

The FNR of CNC is mostly lower than that of other

methods, but the standard error is greater than that of other

methods. This is because the untrained data identification

performance varies for class to class. CNC identifies all

untrained class data on the MNIST dataset but cat and dog

classes on the CIFAR-10 dataset as different classes.

Fig. 12 Class identification accuracy on CIFAR-10 based on the

number of unknown class data

Table 7 Performance metrics on CIFAR-10 based on the number of

unknown class data

Average (%) Number of unknown class data

10 20 30 40 50

Sensitivity 80 70 60 80 80

Specificity 92.22 98.89 98.89 100 100

FNR 20 30 40 20 20

FPR 7. 78 1. 11 1. 11 0 0

Fig. 13 Class identification accuracy on STL-10 based on the number

of unknown class data

Table 8 Performance metrics on STL-10 based on the number of

unknown class data

Average (%) Number of unknown class data

10 20 30 40 50

Sensitivity 60 50 50 50 50

Specificity 87.78 96.67 100 100 100

FNR 40 50 50 50 50

FPR 12.22 3.33 0 0 0
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On the CIFAR-10 dataset, the FPR of CNC is lower than

other methods when the number of unknown class data is

greater than 20. In other cases, however, it is higher than

other methods.

CSIM and CPE identify the class of data when 300 data

are input and store data predicted to be untrained class data

in the buffer. Then, when the amount of data accumulated

in the buffer reaches 1,000, the model trains on the data in

the buffer. Therefore, the more data that are accumulated in

the model, the better the model’s performance.

CNC identifies untrained data using only the model’s

information without training the model. The performance

of CNC depends on the amount of data used to identify

neuron clusters. While CSIM and CPE require 300 data for

class identification and 1,000 data for model training, CNC

has comparable or better performance in identifying

untrained class data with only 40 or more data.

Factors that greatly affect class identification accuracy

are the number of data, data characteristics, and cluster

identification threshold. If sufficient data are used to

identify the CNC that recognizes the data characteristics,

the class identification accuracy can be increased to 100%.

The class identification accuracy decreases as the data’s

characteristics become more complex. The STL-10 dataset,

which has more complex characteristics than the MNIST

and CIFAR-10 datasets, has lower class identification

accuracy when the same amount of data is used.

A low threshold does not accurately identify untrained

class data, resulting in a low sensitivity. A high threshold

does not accurately identify the trained class data, resulting

in a low specificity. Although the threshold can be set

differently depending on the model or target dataset, based

on the experimental results of this study, we recommend

setting it to 0.5.

Classification of the untrained class data is beyond the

model’s capability; therefore, the model cannot classify

them, and the performance of the model decreases with the

number of untrained class data. For example, if 50 out of

100 data are untrained class data, the performance of the

model cannot exceed 50%. Therefore, it is necessary to

identify them so that they are not input into the model.

7 Conclusion

In this study, we proposed a method for identifying the data

of classes that a DNN has not trained. We identified the

CNC, a set of neurons that are activated based on the class

of input data and confirmed that the CNC is a set of neu-

rons that recognize the characteristics of data by conduct-

ing similarity analysis among the CNCs. In addition, the

experiments on ResNet models and public datasets showed

the feasibility and effectiveness of the untrained class data

identification method based on CNC similarity. In future

research, we plan to study methods that identify the class

data that a model has trained, created by using GANs or

mutated by adversarial attacks based on CNCs.

Appendix 1: All variables and acronyms

Variables

N; n A set of neurons,n 2 N

S; c A set of classes,c 2 S

Dc; d A set of data in class c,d 2 Dc

Dtr
S Training dataset

Dva
S Validation dataset

Dun
S Unknown class dataset

Dc A dataset except class c ¼ DS � Dc

MS A model trained dataset DS

Mc A model trained dataset Dc

CNCtr
c A class neuron cluster for class c of Dtr

S

CNCte
c A class neuron cluster for class c of Dte

S

CNCun
c A class neuron cluster for class c of Dun

S

Table 9 Performance metric of methods on MNIST

Methods MNIST

(# of unknown class data) FNR FPR

CSIM 30.41 � 3.15 0.10 � 0.01

CPE – –

CNC (10) 0.00 8.89 � 3.44

CNC (20) 0.00 5.56 � 2.36

CNC (30) 0.00 4.44 � 2.33

CNC (40) 0.00 4.44 � 2.33

CNC (50) 0.00 5.56 � 2.35

Table 10 Performance metric of methods on CIFAR-10

Methods (# of unknown class data) CIFAR-10

FNR FPR

CSIM 55.03 � 0.53 4.60 � 0.14

CPE 35.29 � 0.22 3.93 � 0.12

CNC (10) 20.00 � 12.65 7.78 � 7.38

CNC (20) 30.00 � 14.49 1.11 � 1.05

CNC (30) 40.00 � 15.49 1.11 � 1.05

CNC (40) 20.00 � 12.65 0.00

CNC (50) 20.00 � 12.65 0.00
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Variables

N; n A set of neurons,n 2 N

identifiabilityc A class identifiability of class c

identifiabilityM A model identifiability of model M

similaritymax
c Class max similarity of class c

Acronyms

CNC Class neuron cluster

Appendix 2: CNC similarity analysis based
on threshold

We analyzed the CNC similarity by changing the threshold

on the CIFAR-10 dataset. Tables 11, 12, and 13 show the

CNC similarity analysis results for thresholds of 0.3, 0.5,

and 0.7

The top 10 similarities are occupied by living-being–

living-being or object–object pairs with similar character-

istics at all thresholds. However, in the bottom 10 simi-

larities, only the living-being–object pairs exist when the

threshold is set at 0.5, but the object–object pair (Airplane–

Automobile) exists when thresholds are set at 0.3 and 0.7.

Table 11 Top 10 and bottom 10 similarities (threshold = 0.3)

Top-10 Bottom-10

1 Cat–Dog Automobile–Bird

2 Bird–Deer Bird–Truck

3 Cat–Frog Horse–Ship

4 Airplane–Ship Automobile–Deer

5 Automobile–Truck Deer–Truck

6 Deer–Horse Dog–Ship

7 Bird–Dog Automobile–Dog

8 Bird–Cat Automobile–Horse

9 Dog–Horse Airplane–Automobile

10 Cat–Deer Deer–Ship

Table 12 Top 10 and bottom 10 similarities (threshold = 0.5)

Top-10 Bottom-10

1 Cat–Dog Horse–Ship

2 Airplane–Ship Automobile–Bird

3 Cat–Frog Bird–Truck

4 Bird–Deer Dog–Ship

5 Automobile–Truck Automobile–Deer

6 Deer–Horse Deer–Ship

7 Cat–Deer Deer–Truck

8 Bird–Cat Automobile–Dog

9 Dog–Frog Frog–Truck

10 Deer–Horse Airplane–Horse

Table 13 Top 10 and bottom 10 similarities (threshold = 0.7)

Top-10 Bottom-10

1 Cat–Dog Bird–Truck

2 Airplane–Ship Deer–Truck

3 Bird–Deer Automobile–Bird

4 Automobile–Truck Dog–Truck

5 Deer–Frog Cat–Truck

6 Cat–Frog Dog–Ship

7 Bird–Cat Automobile–Deer

8 Deer–Horse Cat–Ship

9 Bird–Dog Airplane–Automobile

10 Dog–Frog Automobile–Dog

Table 14 CNC min/average/max size of training and validation data

(threshold = 0.3)

Dataset Min Average Max

Training data

MNIST 2,057 2,988 3,523

CIFAR-10 7,881 8,733 9,448

STL-10 196,343 255,934 286,411

Validation data

MNIST 2,122 3,000 3,541

CIFAR-10 7,802 8,726 9,388

STL-10 200,789 257,569 287,261
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Appendix 3: CNC min/average/max size
based on threshold

We measured the min/average/max size of CNC for each

dataset based on the threshold. Tables 14, 15, and 16 show

the CNC sizes for thresholds of 0.3, 0.5, and 0.7.

When the threshold is set at 0.3, the CNC sizes are the

largest. The CNC sizes of the CIFAR-10 and STL-10

datasets are more than twice as large as other thresholds.

When the threshold is set at 0.7, the CNC sizes are the

smallest. In particular, the CNC size of the STL-10 dataset

decreases the most.

Appendix 4: Model identifiability based
on threshold

We measured the model identifiability for each dataset

based on the threshold. Tables 17, 18, and 19 show the

results of model identifiability measurement for thresholds

of 0.3, 0.5, and 0.7. As the threshold increases, the size of

the average model identifiability decreases.

Table 15 CNC min/average/max size of training and validation data

(threshold = 0.5)

Dataset Min Average Max

Training data

MNIST 1,609 2,199 2,538

CIFAR-10 3,791 4,138 4,725

STL-10 98,969 116,824 132,509

Validation data

MNIST 1,588 2,190 2,538

CIFAR-10 3,785 4,133 4,727

STL-10 99,691 117,893 135,440

Table 16 CNC min/average/max size of training and validation data

(threshold = 0.7)

Dataset Min Average Max

Training data

MNIST 1173 1529 1897

CIFAR-10 1615 1935 2207

STL-10 20,105 34,757 61,878

Validation data

MNIST 1175 1518 1908

CIFAR-10 1608 1934 2176

STL-10 18,675 33,487 60,460

Table 17 Model identifiability for each dataset (threshold = 0.3)

MNIST CIFAR-10 STL-10

Model Ident Model Ident Model Ident

Mzero 0.679 M
airplane

0.732 M
airplane

0.731

Mone 0.662 M
automobile

0.731 M
bird

0.736

Mtwo 0.661 M
bird

0.731 Mcar 0.740

M
three

0.666 Mcat 0.717 Mcat 0.747

M
four

0.679 M
deer

0.722 M
deer

0.747

M
five

0.672 M
dog

0.722 M
dog

0.741

M
six

0.677 M
frog

0.726 M
horse

0.744

Mseven 0.656 M
horse

0.720 M
monkey

0.742

M
eight

0.662 M
ship

0.737 M
ship

0.743

M
nine

0.671 M
truck

0.729 M
truck

0.737

Avg 0.668 Avg 0.727 Avg 0.741

Table 18 Model identifiability for each dataset (threshold = 0.5)

MNIST CIFAR-10 STL-10

Model Ident Model Ident Model Ident

Mzero 0.670 M
airplane

0.730 M
airplane

0.690

Mone 0.650 M
automobile

0.722 M
bird

0.613

Mtwo 0.641 M
bird

0.725 Mcar 0.646

M
three

0.655 Mcat 0.714 Mcat 0.638

M
four

0.665 M
deer

0.725 M
deer

0.643

M
five

0.660 M
dog

0.720 M
dog

0.634

M
six

0.664 M
frog

0.720 M
horse

0.640

Mseven 0.647 M
horse

0.717 M
monkey

0.646

M
eight

0.649 M
ship

0.720 M
ship

0.659

M
nine

0.660 M
truck

0.721 M
truck

0.646

Avg 0.656 Avg 0.721 Avg 0.646
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Appendix 5: Performance metric
measurement results

MNIST

We measured various performance metrics based on the

threshold on the MNIST dataset. Tables 20, 21, and 22

show the performance for thresholds of 0.3, 0.5, and 0.7.

When the threshold is set to 0.3, all trained class data are

classified correctly, but some untrained class data are

incorrectly classified. When the threshold is set to 0.7,

untrained class data are correctly classified, while trained

class data are incorrectly classified.

CIFAR-10

We measured various performance metrics based on the

threshold on the CIFAR-10 dataset. Tables 23, 24, and 25

show the performance for thresholds of 0.3, 0.5, and 0.7.

Similar to the MNIST dataset, trained class data are

correctly classified when the threshold is set to 0.3, while

untrained class data are correctly classified when the

Table 19 Model identifiability for each dataset (threshold = 0.7)

MNIST CIFAR-10 STL-10

Model Ident Model Ident Model Ident

Mzero 0.666 M
airplane

0.716 M
airplane

0.679

Mone 0.657 M
automobile

0.735 M
bird

0.632

Mtwo 0.628 M
bird

0.721 Mcar 0.625

M
three

0.652 Mcat 0.711 Mcat 0.598

M
four

0.661 M
deer

0.718 M
deer

0.596

M
five

0.659 M
dog

0.715 M
dog

0.608

M
six

0.666 M
frog

0.708 M
horse

0.598

Mseven 0.640 M
horse

0.716 M
monkey

0.603

M
eight

0.645 M
ship

0.711 M
ship

0.657

M
nine

0.656 M
truck

0.724 M
truck

0.618

Avg 0.653 Avg 0.718 Avg 0.621

Table 20 Performance metrics on MNIST based on the number of

unknown class data (threshold = 0.3)

Average (%) Number of unknown class data

10 20 30 40 50

Accuracy 98 99 98 98 98

Sensitivity 80 90 80 80 80

Specificity 100 100 100 100 100

FNR 20 10 20 20 20

FPR 0 0 0 0 0

Table 21 Performance metrics on MNIST based on the number of

unknown class data (threshold = 0.5)

Average (%) Number of unknown class data

10 20 30 40 50

Accuracy 92 95 96 96 95

Sensitivity 100 100 100 100 100

Specificity 91.11 94.44 95.56 95.56 94.44

FNR 0 0 0 0 0

FPR 8.89 5.56 4.44 4.44 5.56

Table 22 Performance metrics on MNIST based on the number of

unknown class data (threshold = 0.7)

Average (%) Number of unknown class data

10 20 30 40 50

Accuracy 12 12 12 12 12

Sensitivity 100 100 100 100 100

Specificity 2.22 2.22 2.22 2.22 2.22

FNR 0 0 0 0 0

FPR 97.78 97.78 97.78 97.78 97.78

Table 23 Performance metrics on CIFAR-10 based on the number of

unknown class data (threshold = 0.3)

Average (%) Number of unknown class data

10 20 30 40 50

Accuracy 90 90 90 91 91

Sensitivity 0 0 0 10 10

Specificity 100 100 100 100 100

FNR 100 100 100 90 90

FPR 0 0 0 0 0

Table 24 Performance metrics on CIFAR-10 based on the number of

unknown class data (threshold = 0.5)

Average (%) Number of unknown class data

10 20 30 40 50

Accuracy 91 96 95 98 98

Sensitivity 80 70 60 80 80

Specificity 92.22 98.89 98.89 100 100

FNR 20 30 40 20 20

FPR 7.78 1.11 1.11 0 0
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threshold is set to 0.7. Overall, the more data used to

identify clusters, the better the model’s performance.

STL-10

We measured various performance metrics based on the

threshold on the STL-10 dataset. Tables 26, 27, and 28

show the performance for thresholds of 0.3, 0.5, and 0.7.

In STL-10, trained class data are classified correctly

when the threshold is set to 0.3, and untrained class data are

correctly classified when the threshold is set to 0.7, simi-

larly to other datasets. Based on the experimental results,

we recommend setting the threshold to 0.5.
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