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Abstract
Vibration measurement and monitoring are essential in a wide variety of applications. 
Vibration measurements are critical for diagnosing industrial machinery malfunctions 
because they provide information about the condition of the rotating equipment. Vibra-
tion analysis is considered the most effective method for predictive maintenance because 
it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numer-
ous studies conducted in this vein have been published in a variety of outlets. This review 
documents data-driven and recently published deep learning techniques for vibration-based 
condition monitoring. Numerous studies were obtained from two reputable indexing data-
bases, Web of Science and Scopus. Following a thorough review, 59 studies were selected 
for synthesis. The selected studies are then systematically discussed to provide researchers 
with an in-depth view of deep learning-based fault diagnosis methods based on vibration 
signals. Additionally, a few remarks regarding future research directions are made, includ-
ing graph-based neural networks, physics-informed ML, and a transformer convolutional 
network-based fault diagnosis method.
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1  Introduction

Condition monitoring has become an essential aspect of successful industrial and manu-
facturing systems. Various condition monitoring methods, such as acoustic and acoustic 
emission-based techniques  (Govekar et  al. 2000; Potočnik et  al. 2007) have been preva-
lent. However, among others, vibration analysis (Randall 2011; Ruiz-Cárcel et al. 2016) is 
deemed the most effective method for predictive maintenance since it can be used for trou-
bleshooting instantaneous faults as well as periodic maintenance. As a rule of thumb, an 
early fault diagnosis is very crucial in modern industry since it is strongly correlated with 
the reduction of maintenance costs, the increase of the machine’s operating time, and the 
prevention of huge economic losses and devastating accidents (Lei 2016; Mohanty 2014). 
For machines that work under different speed conditions, the non-stationary vibration sig-
nals can be preprocessed by using the speed signals so that the preprocessed signals can be 
readily employed for diagnosis. Therefore, it implies that the variation in the speed signals 
is very critical for effective fault diagnosis (Rao and Zuo 2018).

Obtaining rotating speed signals of rotating machines is a challenging task. To date, 
there exist two main approaches to obtaining the rotating speed: (i) placing extra speed 
sensors to estimate speed immediately (Sarma et al. 2008), and (ii) collecting speed from 
vibration signals using vibration level sensors (e.g., accelerometers) (Peeters et al. 2019). 
Most state-of-the-art fault diagnosis techniques have been focused on the latter, as no addi-
tional speed sensors are needed, and generally satisfactory results can be obtained. Dif-
ferent kinds of mechanical components, such as gears and bearings, can be examined and 
analyzed by measuring vibration levels from sensors. In contrast, engineers often find the 
former challenging since placing extra speed sensors is almost impractical due to the lim-
ited operating conditions. Moreover, it would not be uneconomical concerning the cost of 
machine condition monitoring and maintenance, if even possible. Analyzing vibration sig-
nals involves a process of acquiring raw signals data from the device and specifying crucial 
properties or features that are heavily dependent on defects. Over the last few years, a vari-
ety of techniques for obtaining the speed signal from vibration measurements have been 
studied, with the vast majority relying on the time-frequency (TF) representation tech-
nique (Dziedziech et al. 2018; Iatsenko et al. 2016; Khan et al. 2017; Schmidt et al. 2018). 
The typical examples of TF representations are short-time Fourier transform (STFT) and 
wavelet transform. TF-based techniques have been widely used and are deemed effec-
tive for speed extraction. Other methods include band-pass filtering and phase demodula-
tion (Urbanek et al. 2011, 2013), Teager Kaiser energy operator (Randall and Smith 2016), 
and Kalman filter (Cardona-Morales et al. 2014).

There have been a number of speed estimators; however, some improvements are still 
required to be addressed. The key challenges for speed estimators are operating changes 
that affect the harmonic structure and sudden speed fluctuations  (Peeters et  al. 2019). 
Moreover, there exists a need to manually select the proper model parameters to analyze 
the vibration signals. This circumstance will make the process labor-intensive since a huge 
amount of data with high dimensional features is increasing progressively. In condition 
monitoring, the most common way is to inspect each speed sensor measurement and set 
a minimum and maximum threshold value. The machine is healthy if the value is within 
the range, otherwise it is unhealthy. This static limit measurement might lead to a complex 
piece of equipment that cannot be reliably judged.

Machine learning (ML) techniques have been utilized for the health status diagnosis 
of rotating machinery. Fault diagnosis technologies are a mechanical extension of pattern 
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recognition theory that aims to solve the problem of state classification in engineering sys-
tems and operating equipment (Xu et al. 2020a; Zhang et al. 2021b). According to Xu et al. 
(2020a), fault detection, problem isolation, and fault identification are the three tasks that 
fault diagnosis systems must perform. Fault diagnosis systems can be used to assess the 
state of a machine while it is in use and detect any faults in real-time. Informative feature 
representations are typically extracted using advanced signal processing techniques, allow-
ing the accurate discrimination of faults with respect to their location (Kateris et al. 2014). 
This feature extraction is combined with classification methods to construct mathematical 
representations of the relationships between all machine parameters. Classification algo-
rithms take into consideration empirical data that has been measured. The algorithms learn 
such relationships from this data and classify new measured data to support an early diag-
nosis system for rotating machinery. Classification techniques are comprised of various sta-
tistical methods, neural networks (Kateris et al. 2014), and fuzzy logics (Subbaraj and Kan-
napiran 2014), and, in the past few years, deep learning (DL) (Jia et al. 2016).

1.1 � Research aims and contributions

In the past few years, DL (LeCun et al. 2015), as a sub-field of ML, has become a leading 
intelligent technique applied in wide-array applications. DL-based techniques such as deep 
neural network (DNN) have been developed that can, automatically and without human 
intervention, extract deep patterns from huge raw data (Jia et al. 2016). This paper focuses 
on documenting an overview of DL techniques for condition monitoring using vibration 
data. Some recently published studies are discussed in this paper, providing research-
ers and practitioners an insight into the current status of DL-based condition monitoring 
approaches. This review article is an extension of a previously published paper in (Tama 
et al. 2020) and has two main contributions: 

	 (i)	 To provide documentation on how DL techniques have been employed and are pres-
ently addressed for vibration signal-based machine fault diagnosis;

	 (ii)	 To present a benchmark on which DL models from the selected studies have per-
formed better.

1.2 � Research questions

Following the recommendation of (Kitchenham et al. 2015), we determine research ques-
tions (RQs) based on the problems being addressed and the goals of this study as follows. 

(a)	 RQ1 : What are the distribution per year and publication venues of prior works related 
to the applications of DL for vibration-based fault diagnosis techniques?

(b)	 RQ2 : What types of DL techniques have been developed the most?
(c)	 RQ3 : What are the future research directions concerning the challenges and limitations 

of the current studies that remain?

RQ1 is addressed in Sects. 4.1 and 4.2, while Sect. 4.3 addresses RQ2 . Section 5 is devoted 
to answer RQ3.
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1.3 � Structure

The rest of the paper is broken down as follows. Section 2 conveys the basic concept of 
vibration signal analysis and DL, followed by Sect. 3 that presents the methodology of con-
ducting the review. The results of this review are systematically classified and discussed in 
Sect. 4, while several directions for future research are provided in Sect. 5. Finally, Sect. 6 
anticipates the threat to validity, while Sect. 7 concludes this study.

2 � Fundamental concepts

This section discusses the fundamental of fault diagnosis approach by using vibration sig-
nal analysis and an overview of DL-based techniques (e.g., DNNs).

2.1 � Vibration signal analysis for rotating machinery

Besides lubricant analysis, vibration analysis and monitoring of rotating equipment are the 
key activities in modern industries (Randall 2011). Vibration measurement is typically per-
formed online, providing a real-time source of diagnostic information on the machine’s 
current condition. This information is combined with other parameters to help the diag-
nostic interpretation of vibration data. A common vibration-based condition monitoring 
system is composed of several accelerometers attached to each bearing of the machine. 
An extra sensor is also needed to allow the correlated analysis of signals from different 
sensors. Figure 1 shows some sensors installed on a laboratory-scale water pump while a 
nut under the looseness is typically used for developing mechanical signatures that can be 
related to the fault. Note that examples of faults resulting in high vibration levels in rotating 
machinery include misalignment of bearings, damaged bearings and gears, bent shafts, and 
resonance.

Other components that are necessarily important in the system include on-site sig-
nal conditioning modules, data acquisition, and a processing sub-system. This sys-
tem enables maintenance staff or site engineers to perform real-time frequency anal-
ysis of machine vibration, leading to a reasonably effective diagnostic assessment of 
the machine’s dynamic circumstances. Approaches that can considerably enhance 
the diagnostic performance of vibration monitoring are (i) an in-depth analysis of the 

Fig. 1   Several speed sensors are 
attached on a laboratory-scale 
water pump (a) and a nut under 
the looseness for developing 
mechanical signature (b) (Sun 
et al. 2020)
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huge amount of historical information of vibration signals from each sensor; and (ii) a 
time-correlated analysis of the signals from different sensors. Both are capable of early 
detection of possible damage, and improved diagnostic assurance and accuracy can be 
achieved.

Most machine components bring about particular vibration signals, allowing them to 
be discriminated against by others, including distinguishing between faulty and healthy 
conditions. A fundamental understanding of vibration signals will diagnose faults and 
control machinery vibration. In order to acquire relevant information from signals, they 
need to be analyzed. Signals substantially carry features (e.g., information), which can 
be constant or vary for a specified period. Furthermore, they can be broken down into 
two fundamental types: (i) stationary, which means that variances in their statistical fea-
tures do not exist, and (ii) non-stationary, where the time domain statistical features 
change with time (Mohanty 2014; Randall 2011).

Stationary signals can be analyzed in either the time domain or the frequency 
domain. Raw signals obtained from rotating machinery are typically in the time domain, 
representing a collection of time-indexed data points (e.g., acceleration, velocity, and 
background noise) obtained over a period of time. Time-domain fault diagnosis might 
be divided into two main categories (Ahmed and Nandi 2020): 

(a)	 Visual inspection
	 It is performed by comparing a measured vibration signal to a formerly measured 

vibration signal of a machine in a normal condition. However, this type of inspection 
is deemed to be unreliable for the condition monitoring of rotating machines for several 
reasons: (i) the difference between the waveform signals is not always clearly visible, 
(ii) a large collection of vibration signals along with some background noises is dealt 
with, and (iii) early detection of faults is much desired, thus making such a manual 
inspection unfeasible to perform.

(b)	 Feature-based inspection
	 It is done by calculating particular features of the raw vibration signals. Various tech-

niques include statistical functions (e.g., root mean square amplitude, peak amplitude, 
mean amplitude, variance, and standard deviation) and advanced techniques (e.g., 
time-synchronous averaging, autoregressive moving average, and filter-based method).

Machinery condition monitoring commonly uses frequency (e.g., spectral) domain 
analysis since it provides a mechanical signature of the machine as well as the ability 
to discover information based on frequency characteristics. A possible change in the 
dynamics due to a fault or a defect in the machine can be considered as a corresponding 
change in the amplitude of the signals. As mentioned earlier, a rotating machine gener-
ates various vibration signals in the time domain. Hence, to get the vibration signals in 
the frequency domain, those signals are often performed using Fourier analysis, which 
can be categorized into three types: Fourier series, continuous Fourier transform, and 
discrete Fourier transform.

It is generally known that transforming a signal into the frequency domain relies 
upon the assumption that a frequency component does not change over time (e.g., the 
signal is stationary). Hence, more specifically, the Fourier transform in the frequency 
domain cannot serve time distribution information. Rotating machinery typically gen-
erates stationary signals, but it would be possible to have non-stationary signals due 
to a speed swing (e.g., speed fluctuates over time)  (Brandt 2011). The time-frequency 
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domain has been utilized thus far for non-stationary signals, which are prevalent when 
machine faults happen. Several time-frequency signal analysis methods have been estab-
lished, such as wavelet transform, Hilbert-Huang transform, and short-time Fourier 
transform.

2.2 � Deep learning

The birth of DNN, hereafter referred to as DL, in 2010 marked a significant breakthrough 
in the learning paradigm after being previously dominated by ML techniques since the 
1990s. More importantly, DNN and ML form artificial intelligence (AI), which is a term 
that refers to the ability of machines to mimic human intelligence without explicit pro-
gramming  (Simon 1969). Figure 2 shows the relationship and a time frame between AI, 
ML, and DL.

DL uses feature learning rather than handcrafted feature engineering to perform the 
task (LeCun et al. 2015). It possesses unique properties over shallow ML algorithms with 
respect to feature learning, model construction, and model training (see Fig. 3). In addi-
tion, DL comprises tens or even hundreds of layer representations that are mainly learned 
through models, called neural networks. A neural network is a learning algorithm in which 
a number of neurons and activation functions are utilized to produce a nonlinear transfor-
mation of the input samples.

Fig. 2   The relationship and a time frame between AI, ML, and DL

Fig. 3   Difference between ML and DL
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A ML algorithm learns the features of input data X with the help of a feature extractor. 
The extracted features � are used to train a classifier F�(.) that outputs predictions Y. In 
contrast, a DL algorithm requires no handcrafted feature representation. The input data X is 
transformed using T� , where � is made up of several learnable parameters of the transfor-
mation. The transformation provides a new representation of T�(X) that is further used for 
classification F�(.) to produce final output Y.

DL techniques have been predominantly used in the fault diagnosis of rotating machin-
ery. They can be trained either in a supervised or unsupervised manner or in other learn-
ing paradigms, e.g., reinforcement learning (Salimans and Kingma 2016). The readers are 
encouraged to see a good overview of DL available in the current literature  (Pouyanfar 
et  al. 2018; Schmidhuber 2015). Several well-known DL architectures are convolutional 
neural networks (CNNs), deep belief networks (DBNs), recurrent neural networks (RNNs), 
generative neural networks, and graph neural network (GNN). We briefly discuss these 
numerous architectures in the following section.

2.2.1 � Convolutional neural network (CNN)

CNN, a type of neural network that specializes in processing data with a grid-like topol-
ogy, was first introduced in the LeNet-5 architecture (LeCun et al. 1995) and is referred to 
as convolutional 2D. CNN is typically utilized on image data. Because the kernel moves 
along two dimensions on the data, CNN is known as a two-dimensional CNN. Conse-
quently, this neural network is distinct from the one-dimensional convolutional neural net-
works (1D CNN). In 1D CNN, the kernel slides along a single dimension that is typically 
used for time series data (Kiranyaz et al. 2021). The primary distinction between 1D and 
2D CNNs is that both the kernels and the feature maps are represented by 1D arrays rather 
than 2D matrices (see Fig. 4 for typical CNN architecture).

In addition, the computational difficulty of 1D and 2D convolutions differs significantly. 
For example, an image with M ×M dimensions convolved with a T × T  kernel will incur 

Fig. 4   A typical architecture of CNN (LeCun et al. 1995)
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a computational cost of O(M2T2) , whereas a comparable 1D convolution with the same 
dimensions (M and T) will incur a computational cost of O(MT) . This indicates that the 
computational complexity of a 1D CNN is considerably lower than a 2D CNN under com-
parable circumstances (i.e., same design, network, and hyperparameters).

Furthermore, in contrast to typical neural networks, a CNN is made up of convolutional 
layers followed by pooling (e.g., subsampling) layers and fully connected layers (e.g., the 
final stage layers)  (LeCun et al. 1995) (see Fig. 4). Each layer has its own customizable 
parameter set and does something different to the input data. These differences are shown 
in Table 1. A CNN’s main building block is the convolution layer, which is responsible for 
the majority of the network’s computational load. This layer does a dot product between 
two matrices, one of which is a set of learnable parameters known as a kernel, and the 
other is the restricted section of the receptive field. The kernel is a fraction of the size of 
an input image. Suppose we have an input image of size m × n and let q × r be the size of t 
kernels of the convolutional layer. The kernel slides over the image’s height and width dur-
ing the forward pass, providing an image representation of that receptive region. These cre-
ate an activation map or feature map, a two-dimensional image representation that shows 
the kernel’s response at each spatial point in the image. A stride S denotes the kernel’s 
sliding size with the amount of padding P. Note that the size of the feature map is less than 
the size of the input image (see Fig. 5). Formally, the output of the convolutional layer is 
defined as a set of t feature maps of size ((m − q + 2P)∕S) + 1 × (n − r + 2P)∕S) + 1.

Pixels in the convolutional layer are obtained by registering a weight wij to each pixel 
of the input image, calculating the weighted sums, and extracting related features of the 
image. Next, a bias � is added to the weighted sums, and they are forwarded to a non-linear 
activation function � , which can be either tanh() or sigm(). The output of the activation 
function ys

r
 of a given feature map r in convolutional layer s is defined as:

where � is non-linear activation function and �s
r
 is the bias for the s-th layer. Ms

r
 and ⊗ 

denote the selected feature map i in the (s − 1)-th layer and a convolutional operator, 
respectively.

The procedure is continue with the pooling layer. Pooling layers are similar to convo-
lutional layers, but they execute a specific function, such as max pooling, which takes the 
largest value in a certain filter region, or average pooling, which takes the average value 
in a particular filter region. These are commonly employed to lower the network’s dimen-
sionality. Activation map as the output f r

h
 after reduction-sampling the feature map r into a 

feature map h in a layer s is calculated as:

where � is the reduction-sampling function by a factor of Ns , while gs
r
 is the convoluted fea-

ture map to be reduced. At the final layer, the network is characterized by the classification 
layer. The output of the classification layer o is calculated as:

where bo is the bias of the output layer, W is weight matrix between the second-to-final 
layer and the output layer, and z is the concatenated feature maps of the second-to-final 
layer.

(1)ys
r
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[
𝜖s
r
+

∑
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The limitations of the traditional CNN have led to the emergence of a new type of 
CNN known as Capsule Network (CapsNet). The CapsNet architecture is comprised of 
an encoder and a decoder (Sabour et al. 2017), each with three layers. A convolutional 
layer, a PrimaryCaps layer, and a DigitCaps layer make up an encoder. A decoder has 
three fully connected layers (see Fig. 6). The Capsule Network and CNN operate simi-
larly. Convolutional neural networks (CNNs) use max-pooling and scalar-output feature 
detectors. However, in the capsule network, routing by agreement replaces max-pool-
ing and CNNs’ scalar-output feature detectors are replaced with vector-output cap-
sules. Therefore, capsules networks outputs are vectors that have a direction. Sabour 
et al. (2017) emphasize the preservation of specific information concerning an object’s 
location and posture across the network. This process, known as equivariance, is a cru-
cial characteristic of CapsNet. Sabour et  al. (2017) develop the process by employing 
CNN-like higher-level capsules that cover larger areas of the image. However, unlike 
max-pooling, CapsNet does not discard information regarding the precise location of an 
entity within the region. CapsNet has four main steps: 

Fig. 5   Convolutional process in a CNN’s convolution layer
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	 (i)	 Matrix multiplication of input vectors with weight matrices: This operation, per-
formed on the input layer, converts the input image to vector values. These vectors 
are initially multiplied by the weight matrices. As mentioned previously, the weight 
matrix represents spatial relationships.

	 (ii)	 Weighting the input vectors: The input weights determine the direction that the cur-
rent capsules should move in the next layer. It complements the component of the 
dynamic routing algorithm described below.

	 (iii)	 Dynamic routing algorithm: The dynamic routing technique, which follows the aims 
of CapsNet, facilitates communication between the PrimaryCaps and DigitCaps lay-
ers. The PrimaryCaps layer (i.e., lower capsule) sends its input to the DigitCaps layer 
(i.e., higher-level capsules) that “agrees” with its input during this routing process. 
This means that lower-level attributes will only be transferred to higher-level layers 
whose contents match.

	 (iv)	 Applying a non-linear function to condense the information: CapsNet utilizes the 
squashing (i.e., nonlinear) function to compress information to a length between 0 
and 1 as opposed to the ReLU function used by conventional CNNs. Long vectors 
are compressed to a length just under one, while short vectors are compressed to 
nearly zero. Therefore, the length of a capsule’s output vector reflects the likelihood 
that a particular object is present in the current input.

It is worth mentioning that CapsNet appears promising as a superior alternative to CNN, 
but it is still in its infancy. Therefore, researchers must continue to investigate and develop 
this network in order to enhance its performance and application-use potential.

2.2.2 � Deep belief network (DBN)

DBN is a hybrid probabilistic generative model. It can be viewed as a composi-
tion of several Restricted Boltzmann Machines (RBMs)  (Hinton 2009; Hinton et  al. 
2006). Figure  7 shows a feedforward architecture of DBN with three hidden layers. Let 
{(x1, y1), (x2, y2), ..., (xn, yn)} be a training dataset with N instances. An input vector x⃗ comes 
across the nodes in the network, where DBN provides initial weights w⃗ . The objective is to 
minimize a cost function C:

Fig. 6   A typical architecture of a Capsule Network (CapsNet) (Sabour et al. 2017)
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where hw(x⃗) is a hypothesis function, providing an predicted output. The overall cost is 
calculated as:

where K denotes the depth of network, Lm is the number of nodes in the m-th layer, while 
wk
ij
∈ w⃗ is the weight of edges between a node i in the layer k − 1 and a node j in the layer k. 

The parameter set w⃗⋆ is calculated to minimize the overall cost function as follows.

A backpropagation algorithm is commonly used to get the weight vectors w⃗ , which are 
updated from the top layer to the bottom layer by solving this equation:

where � specifies the adaptation parameter.

2.2.3 � Recurrent neural network (RNN)

RNN is a well-known algorithm in DL that is prevalently used in natural language process-
ing and speech processing (Cho et al. 2014). It employs the sequential information in the 
network, thus allowing an extraction of useful knowledge from the embedded structure in 
a data sequence. A long short-term memory (LSTM) network is an improved version of 
RNN. A typical LSTM network is shown in Fig. 8. The LSTM module is denoted by blue 
circles in the figure.

(4)C(w⃗, x⃗, y) =
1

2
||hw(x⃗) − y||2

(5)C(w⃗) =
1

N

∑

n

C(w⃗, x⃗
n
, yn) +

𝜆

2

K∑

k

Lm∑

i

Lm+1∑

j

(wk
ij
)2

(6)w⃗
⋆
= argmin

w

C(w⃗)

(7)wk
ij
= wk−1

ij
+ 𝜉

𝜕

𝜕wk
ij

C(w⃗)

Fig. 7   A typical architecture of a DBN (Hinton 2009; Hinton et al. 2006)
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The fundamental concept of LSTM is forward propagation. Considering Fig.  8 as an 
example, a conventional LSTM consists of the input vector, hidden state, and output vector 
at time t is x⃗t , h⃗t , y⃗t , respectively. Next, the hidden state at time t is given by a function f of 
the input vector at time t and the hidden vector at time (t − 1) is:

A separate function g is used to learn the output probabilities from the hidden states. 
Therefore, the output probabilities can be defined as follows.

More concretely, let Wxh be the p × d input-hidden matrix, Whh be the p × p hidden-hidden 
matrix, and Why be the d × p hidden-output matrix, then the outputs of Eq. 9 can be rewrit-
ten as:

2.2.4 � Generative neural network

Other DL algorithms that are prevalently used as generative neural networks are variational 
autoencoders (VAEs)  (Kingma and Welling 2013) and generative adversarial networks 
(GANs) (Goodfellow et al. 2014). Generative neural networks work with two neural net-
work models simultaneously. The objective of a generative neural network is to generate 
synthetic objects that are too realistic for the trained classifier to distinguish whether a par-
ticular object belongs to the original dataset or not.

VAE is an autoencoder whose training is regularized in order to avoid overfitting and 
ensure that the latent space has good properties that enable a generative process. VAE con-
sists of both an encoder and a decoder and is trained to minimize the reconstruction error 
between the encoded-decoded data and the original data. First, the input is encoded as the 
distribution over the latent space and a point from the latent space is sampled from that 
distribution. Then, the sampled point is decoded and the reconstruction error is backpropa-
gated. VAE uses KL-divergence as its loss function to measure the difference between the 

(8)h⃗t = f (h⃗t−1, x⃗t)

(9)y⃗t = g(h⃗t)

(10)
h⃗t = tanh(Wxhx⃗t +Whhh⃗t−1

y⃗t = Whyh⃗t

Fig. 8   A typical architecture of a long short-term memory network (Cho et al. 2014)
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generated distribution and the original distribution of the data. Suppose that a distribution 
z is known and generating the observation x from this distribution, which means calcu-
lating the probability using Bayes’ theorem as Eq.  11, is necessary. However, due to the 
probability p(x), which is calculated as Eq.  12 with the integral form, calculating p(z|x) is 
difficult.

Instead of directly calculating p(z|x), p(z|x) can be estimated as q(z|x) through minimizing 
the KL-divergence loss as Eq.  13. Equation 13 can be converted to the maximization prob-
lem as Eq.  14, where Eq(z|x) log p(x|z) is the reconstruction likelihood and KL(q(z|x)||p(z)) 
indicates how the estimated distribution q is similar to the prior distribution p. Finally, 
the total loss for VAE can be expressed as Eq.   15 and is backpropagated to the net-
work (Kingma and Welling 2013).

GAN is another kind of generative neural networks, which learns deep representations 
without extensively annotated training data and can be used for both supervised and unsu-
pervised learning. GAN can be described as a two-player game between the ”generator” 
and the ”discriminator”. On the one hand, the generator artificially generates samples that 
are intended to come from the same distribution of the real data and is trained to deceive 
the discriminator. On the other hand, the discriminator classifies samples into two classes 
(i.e., real and fake) and is trained using the traditional classifiers not to be deceived by the 
generator (Figs. 9 and 10).

GAN is typically implemented by multi-layer neural networks with convolutional and/
or fully connected layers. A prior on input noise variables is represented as pz(z) to learn 
the generator’s distribution pg over the generated data x. Mapping to a data space is illus-
trated as G(z;�g) and D(x;�d) , where G is a differentiable function, which is represented 
by a multi-layer perceptron with �g , and D(x) indicates the probability that x came from 
the real data rather than the generator’s distribution (i.e., pg ). D is trained to maximize 
the probability of assigning the correct labels to both the samples from the real data and 
the samples from G, while G is simultaneously trained to minimize log(1 − D(G(z))) . The 
process above can be illustrated as follows, which is a minimax game with value function 
V(G, D) (Goodfellow 2016; Goodfellow et al. 2014).

(11)p(z|x) = p(x|z)p(z)
p(x)

(12)p(x) = ∫ p(x|z)p(z)dz

(13)minKL(q(z|x)||p(z|x))

(14)maxEq(z|x) log p(x|z) − KL(q(z|x)||p(z))

(15)Loss = L(x, x̂) +
∑

i

KL(qi(z|x)||p(z))

(16)
min
G

max
D

V(G,D) = Ex∼pdata(x)
[logD(x)]+

Ex∼pz(z)
[log(1 − D(G(z)))]
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2.2.5 � Graph neural network (GNN)

Scarselli et al. (2009) first proposed GNNs, which aim to use graph theory to develop a neural 
network that could model graph data. In response to the success of CNNs, RNNs, and autoen-
coders in DL, new methodologies and descriptions have been extended to complex graph data, 
resulting in graph convolutional neural networks (GCNs), graph recurrent neural networks 
(GRNNs), and graph auto-encoders (GAEs). These GNNs have been applied successfully in a 
wide number of domains. However, there is a dearth of applications for using GNNs to diag-
nose faults in rotating machinery via vibration data. Figure 11 illustrates a typical GNN archi-
tecture for fault diagnosis.

A simple graph can be represented as:

where V and E are the sets of nodes and edges, respectively. Let vi ∈ V  be a node and 
eij = (vi, vj) ∈ E denote an edge between vi and vj . Then, the neighborhood of a node v can 
be defined as M(v) = {u ∈ V|(v, u) ∈ E} . Usually, a graph can be described by an adja-
cency matrix A ∈ RM×M where M is the number of nodes, that is, M = |V| . In particu-
lar, Aij = 1 if {vi, vj} ∈ E and i ≠ j;Aij = 1 , otherwise. In a directed graph, Aij represents an 

(17)G = G(V ,E)

Fig. 9   A basic architecture of a variational autoencoder (VAE) (Kingma and Welling 2013)

Fig. 10   A typical architecture of GAN (Goodfellow et al. 2014)
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edge pointing from vi to vj while, in an undirected graph, Aij denotes an edge connection 
between nodes vi and vj.

In practical applications, a graph has nodes known as features that represent as 
feature matrix X ∈ RM×c where c is the dimension of a node feature matrix. A degree 
matrix DM ∈ RM×M is a diagonal matrix, which can be obtained as DMii =

∑N

j=1
Aij . 

The graph can be represented as the Laplacian matrix LM. The relationship between the 
degree matrix, the adjacency matrix, and the Laplacian matrix is illustrated in Fig. 12. 
The Laplacian matrix is defined as:

GNN receives two piece of information as the input, the feature matrix � and the 
adjacency matrix � . The output of GNNs is obtained by the general forward propaga-
tion that is defined as :

(18)LM = DM − A

Fig. 11   Typical GNNs architecture for fault diagnosis (Chen et al. 2020)

Fig. 12   Illustration of the relationship between the degree matrix, the adjacency matrix, and the Laplacian 
matrix
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where G denotes an operation of GNN, and k is the number of layers in the architecture.
Like images, industrial networks often represent a structure. For example, a station 

voltage in an electric power system may be independent of a remote load but be highly 
correlated to a nearby generator. Unfortunately, CNNs perform well only for regular 
data structures like images and cannot achieve the same performance for domains with 
an irregular structure like industrial networks. The data’s geometrical structure in the 
graph structure can provide additional information, as they encompass the nodes’ val-
ues and their relationships. As a result, the graph structure can convey more informa-
tion than regular data structures. Recently, GCNs have been introduced to generalize 
CNN to some irregular or, more generally, non-Euclidean domains (Bruna et al. 2013). 
Input, convolution, coarsening, and pooling are the four fundamental phases of a graph 
convolutional network. More precisely, four fundamental phases can be described as 
follows. 

	 (i)	 Graphs may express the geometry and structure of data as input to a neural network 
and therefore provide more information than other general data formats.

	 (ii)	 Fast-localized filters based on graph spectral theory and Chebyshev expansion are 
utilized to conduct a convolution operator on a graph.

	 (iii)	 A graph coarsening process is conducted to group similar vertices together.
	 (iv)	 For graph pooling, the vertices are rearranged by first generating a balanced binary 

tree then applying regular 1D pooling.

The GCN’s output can be derived based on Eq.   19 and following the suggestion by 
Kipf and Welling (2017), therefore it is defined as:

where �̃ = � + �M , �M is the identity matrix of order M, and ̃�� is a diagonal matrix, 
whose diagonal elements are ̃��ii = 

∑M

j=1
�̃ij.𝜎 is an activation function, e.g., the ReLu 

function. � ∈ R
c×c� is the parameter matrix of the network to be learned, c′ represents the 

dimension of the output, and � ∈ RM×c� is the output matrix.
The cross-entropy loss function that is generally used to train the parameters is 

defined as:

here Mtr represents the number of training points, P is the number of categories, � is 
obtained from Eq.  20, and � is the corresponding label of the training set. It should be 
noted that in a classification problem, the dimension of the output equals the number of 
categories, i.e., c� = P  (Kipf and Welling 2017). Figure 13 shows a graph convolutional 
network-based fault diagnosis method using vibration signals. The framework is comprised 
of several steps, including a graph construction of the vibration signals, followed by apply-
ing a certain activation function like the softmax function as the classifier for mechanical 
fault diagnosis.

(19)�G = softmax
(
Gk

(
… , G2

(
�,G1(�,�)

)))

(20)� = 𝜎
((

̃��
−0.5

�̃ ̃��
−0.5

)
�𝛩

)

(21)Loss = −

Mtr∑

i=1

P∑

j=1

�ij log�ij
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3 � Methodology

This section discusses the methodology used for conducting the systematic review. We 
follow the PRISMA guideline for conducting this systematic review  (Liberati et  al. 
2009; Moher et al. 2009).

3.1 � Search procedure

Considering that DL techniques were first introduced in 2010, we investigate primary pub-
lications that appeared over the last 6 years, from January 2016 to January 2022. An auto-
matic search was utilized for hunting relevant publications as completely as possible. More 
precisely, we searched two well-known indexing databases, such as Scopus and Web of Sci-
ence, to incorporate all prior works comprehensively. The two indexing databases normally 
provide indexing services for journals published by IEEE, ACM, Springer, Elsevier, John 
Wiley & Sons, and other publishers. We limited our search to these databases because: (i) 
the databases are supposed to archive high-quality papers; and (ii) to avoid multiple searches, 
which are typically available at each publication outlet. Some search keywords were derived 
from index terms found in some papers. The search keywords were combined using Boolean 
operators, i.e., AND and OR, resulting in the following combination of the keywords.

(Condition monitoring OR vibration signals OR vibration analysis OR rotating machinery OR fault detec-
tion OR fault diagnosis OR rolling bearings OR health monitoring OR planetary gearbox)

AND
(Deep learning OR convolutional neural network OR autoencoder OR recurrent neural network OR deep 

belief network OR feature learning OR graph neural network)

Fig. 13   Graph convolutional network-based approach for fault diagnosis (Liu et al. 2021)
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3.2 � Study inclusion and exclusion procedure

In order to obtain the paper as relevant as possible, the search results were refined using a 
set of inclusion and exclusion criteria as shown in Table 2. All studies considered in this 
review must be papers that were published in journals because journal articles represent 
the highest level of research outcomes and have been thoroughly peer-reviewed (Nord and 
Nord 1995). Furthermore, the papers must be written in English and discuss DL and vibra-
tion signals for rotating machinery. The steps involved in the study inclusion and exclusion, 
including the number of relevant studies at each step, are presented in Fig. 14.

4 � Result and discussion

This section is devoted to answer RQ1 and RQ2 . It is comprised of the discussion about the 
research trend, publication venues, and the categorization of the selected studies w.r.t DL 
techniques.

4.1 � Research trend

According to the trend (see Fig. 15), the number of studies has been varying over time. 
There have been a surge studies between 2017 and 2021, while in contrast, there exist lim-
ited studies in 2016. Moreover, there has been at least five studies have been identified dis-
cussing the application of DL techniques in fault diagnosis using vibration signals.

4.2 � Publication venue

This section presents the dissemination of the selected studies by considering the publica-
tion outlets. Table  3 enumerates all publication outlets, where the selected studies were 
published based on the journal title, number of studies, publisher, and the relative percent-
age to the total number of selected studies. The selected studies appeared in 27 kinds of 
journals, where the Measurement journal (10 articles) takes the predominant publications 
in this field. It is followed by IEEE Transactions on Instrumentation and Measurement 
that shares 7 articles. Next, IEEE Transactions on Industrial Electronics and Mechani-
cal Systems and Signal Processing share 5 articles each, while other well-known journals 
are IEEE Access (3 articles) and IEEE Transactions on Industrial Informatics (3 articles). 
The other outlets that share the same number of publications (2 articles) are Advances in 
Mechanical Engineering, Computers in Industry, International Journal of Advanced Manu-
facturing Technology, ISA Transactions, and Neurocomputing. Lastly, the rest outlets had 
published one article of the total selected studies.

4.3 � Categorization of selected studies w.r.t. deep learning methods

As previously noted, condition monitoring is an integral component of condition-based 
maintenance. Maintenance is determined in accordance with the machine’s health, which 
can be identified through the condition monitoring system. The essential purpose of condi-
tion monitoring is to avert a catastrophic machine failure that might trigger a chain reaction 
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Fig. 14   Procedure in study inclusion and exclusion by following PRISMA framework (Liberati et al. 2009; 
Moher et al. 2009)

Fig. 15   Proportion of the 
selected studies w.r.t. year of 
publication
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Table 3   Dissemination of the selected studies w.r.t. publication outlets (in alphabetically order)

No. Title Publisher # Proportion

1. Advanced Engineering Informatics Elsevier 1 1.69%
2. Advances in Mechanical Engineering SAGE 2 3.39%
3. Applied Acoustics Elsevier 1 1.69%
4. Applied Intelligence Springer 1 1.69%
5. Chinese Journal of Aeronautics Elsevier 1 1.69%
6. Cognitive Systems Research Elsevier 1 1.69%
7. Computers in Industry Elsevier 2 3.39%
8. Frontiers of Mechanical Engineering Springer 1 1.69%
9. IEEE Access IEEE 3 5.08%
10 IEEE Transactions on Cybernetics IEEE 1 1.69%
11. IEEE Transactions on Industrial Electronics IEEE 5 8.47%
12. IEEE Transactions on Industrial Informatics IEEE 3 5.08%
13. IEEE Transactions on Instrumentation and Measurement IEEE 7 11.86%
14. International Journal of Advanced Manufacturing Technology Springer 2 3.39%
15. ISA Transactions Elsevier 2 3.39%
16. Journal of Intelligent Manufacturing Springer 1 1.69%
17. Journal of Manufacturing Systems Springer 1 1.69%
18. Journal of Mechanical Engineering Science SAGE 1 1.69%
19. Journal of Risk and Reliability SAGE 1 1.69%
20. Journal of Sound and Vibration Elsevier 1 1.69%
21. Knowledge-Based Systems Elsevier 1 1.69%
22. Measurement Elsevier 10 16.95
23. Measurement Science and Technology IOP 1 1.69%
24. Mechanical Systems and Signal Processing Elsevier 5 8.47%
25. Neurocomputing Elsevier 2 3.39%
26. Reliability Engineering & System Safety Elsevier 1 1.69%
27. Signal Processing Elsevier 1 1.69%

Fig. 16   Proportion of the 
selected studies w.r.t. DL tech-
niques
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of more damage, breakdown, production failure, and rising maintenance costs. In recent 
years, there has been an increase in the quantity of work applying DL to condition monitor-
ing. This section discusses state-of-the-art approaches for fault diagnosis based on DL and 
vibration analysis. Figure 16 illustrates the contribution of each DL technique to the overall 
number of studies chosen. The vast majority of research uses CNNs, followed by stacked 
autoencoders (SAEs), accounting for 39.0% and 28.8% of the total studies, respectively. 
GNNs account for 20.3% of the total research, while RNNs and DBNs account for 6.8% 
and 5.1%, respectively.

4.3.1 � Convolutional neural network (CNN)

The results of selected studies utilizing CNNs for vibration-based fault diagnosis are sum-
marized (in chronological order) in Table 4. A novel hierarchical adaptive CNN is studied 
in (Guo et al. 2016). By adopting a CNN architecture provided in (Slavkovikj et al. 2015), 
Janssens et  al. (2016) propose a feature learning model for conditional monitoring. A 
novel contribution to the spindle bearing fault diagnosis is proposed (Ding and He 2017). 
The proposed approach is based on energy-fluctuated multiscale feature mining using the 
wavelet packet energy image and CNN. An effective and reliable bearing fault diagnosis 
approach based on CNN is investigated in (Lu et al. 2017a). The CNN model can reduce 
learning computation requirements in the temporal dimension. It is worth mentioning that 
a dislocated layer can be added to the original CNN. The authors in (Liu et al. 2017) pro-
pose a method called dislocated time series CNN to develop a new diagnosis framework 
based on the characteristics of industrial vibration signals. The authors of (Jing et al. 2017) 
develop CNN to learn features directly from the frequency data of vibration signals. The 
effectiveness of the proposed CNN is evaluated on the PHM 2009 gearbox challenge data 
and planetary gearbox test rig. A new approach for fault types and severity of the gearbox 
health monitoring system is presented (Wang et al. 2017). A deep CNN learns the underly-
ing features in the time-frequency domain and performs classification. Experiments show 
the efficiency and effectiveness of the proposed model with a classification accuracy of 
more than 99.5%.

A combination of CNN and support vector machine (SVM) for machinery fault diag-
nosis techniques is proposed  (You et  al. 2017). CNN promotes feature extraction capa-
bility, while SVM is used for multi-class classification. The proposed model is evaluated 
using the real acoustic signals from locomotive bearings and vibration signals measured 
from the automobile transmission gearbox. A new CNN based on LeNet-5 for fault diag-
nosis method is detailed in (Wen et al. 2018). By converting signals into two-dimensional 
images, the proposed method can extract the features and wipe out the ones with manual 
design features. A novel method suitable for mechanical data analysis, called LiftingNet, is 
proposed (Pan et al. 2018). Two different motor-bearing datasets validate the effectiveness 
of LiftingNet. A learning paradigm called transfer learning based on CNN is employed 
in (Cao et al. 2018). In this research, transfer learning is applied to gearbox fault diagnosis, 
while vibration responses are obtained using accelerometers during gearbox operation. A 
study undertaken in (Chen et al. 2019a) employs a data fusion technique to determine the 
health condition of a machine. The classification is then performed using a deep convolu-
tional neural network (DCNN). The findings indicate that DCNNs outperform SVMs and 
backpropagation neural networks.

A multi-sensor data fusion and bottleneck layer optimization of CNN are discussed 
in (Wang et al. 2019a). The proposed approach has been validated on a wind-powered test 
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rig and a centrifugal pump test rig. A rolling-element bearing fault diagnosis technique 
based on CNN’s deep structure is carried out in  (Hoang and Kang 2019). When using 
vibration signals directly as input data, the proposed technique has high accuracy and 
robustness in noisy environments. Another CNN variant named deep capsule network with 
a stochastic delta rule (DCN-SDR) for rolling bearing fault diagnosis is proposed in (Chen 
et  al. 2019b). DCN-SDR uses a raw temporal signal as its input and achieves very high 
accuracy under a noisy environment. The authors in  (Khodja et  al. 2020) use CNN and 
vibration spectrum imaging for classifying bearing faults. The proposed classifier is evalu-
ated in terms of classification accuracy, variable load and speed testing, generalization, and 
robustness by adding noise to the collected data. Wu et al. (2021) consider a semi-super-
vised CNN for the intelligent diagnosis of bearings. A 1-D CNN is applied to learn spatial 
features and generates class probabilities of unlabeled samples. A pre-fully connected deep 
CNN approach is presented in (Zhu et al. 2020) to obtain comprehensive bearing vibration 
characteristics. The front fully connected layer, designed to reduce the signal’s complexity, 
extracts the signal’s global characteristics.

Yu et al. (2020) introduce one-dimensional CNN as a feature extractor, while the fully 
connected layer is adopted as the main element of two-symmetric classifiers. Moreover, 
the cosine similarity is used to guide the adversarial training process of the two classifiers. 
Yang et al. (2020) propose a diagnosis model combined with polynomial kernel induced 
maximum mean discrepancy (PK-MMD) to reuse diagnosis knowledge from one machine 
to the other. The proposed method uses the ResNet model to extract features from the sam-
ples in the source and target domains. Wu et al. (2020b) introduce two transfer situations 
for rotating machinery intelligent diagnosis and construct seven few-shot transfer learning 
methods based on a unified 1-D CNN. A novel deep transfer learning based on modified 
ResNet-50 is proposed by (Wang et al. 2020). The ResNet-50 model extracts low-level fea-
tures, constructs a multiple scale feature learner, and obtains high-level features as the clas-
sifier’s input. Finally, to tackle a small dataset, Liang et al. (2021) utilize parallel CNN for 
bearing fault identification. Two different CNNs are constructed parallel to extract features 
in the time and frequency domains. The two features are then fused in the merged layer as 
the inputs of the final classifier.

4.3.2 � Deep belief network (DBN)

Yu et al. (2020) introduce one-dimensional CNN as a feature extractor, while the fully con-
nected layer is adopted as the main element of two-symmetric classifiers. Moreover, the 
cosine similarity is used to guide the adversarial training process of the two classifiers. 
Yang et al. (2020) propose a diagnosis model combined with polynomial kernel induced 
maximum mean discrepancy (PK-MMD) to reuse diagnosis knowledge from one machine 
to the other. The proposed method uses the ResNet model to extract the features from the 
samples in the source and target domains. Wu et al. (2020b) introduce two transfer situ-
ations for rotating machinery intelligent diagnosis and construct seven few-shot transfer 
learning methods based on a unified 1-D CNN. A novel deep transfer learning based on 
modified ResNet-50 is proposed by (Wang et al. 2020). The ResNet-50 model is used to 
extract low-level features, construct a multiple scale feature learner, and obtain high-level 
features as the classifier’s input. Lastly, to tackle a small dataset, Liang et al. (2021) utilize 
parallel CNN for bearing fault identification. Two different CNNs are constructed paral-
lelly to extract features in the time and frequency domains. The two kinds of features are 
then fused in the merged layer as the inputs of the final classifier.



4694	 B. A. Tama et al.

1 3

4.3.3 � Recurrent neural network (RNN)

A study presented by (Liu et al. 2018) discusses a fault-bearing diagnosis method based 
on RNN in the form of an autoencoder. In this technique, the rolling bearings’ vibration 
data for the next period are predicted based on the previous period using a gated recur-
rent unit (GRU)-based denoising autoencoder. Assessing the performance degradation of 
bearings using LSTM is proposed in (Zhang et al. 2019). The proposed model can effec-
tively identify degradation states and accurately predict the bearings’ remaining useful life. 
A DL model called many-to-many-to-one bidirectional long short-term memory (MMO-
BLSTM) is proposed to automatically extract the rotating speed from vibration signals. 
The proposed model’s performance is validated on an internal combustion engine data-
set, a rotor system dataset, and a fixed-shaft gearbox dataset  (Rao et al. 2020). Xu et al. 
(2020b) propose a deep residual network (DRN) and LSTM to process extracted features 
obtained from multisensory system condition data. The proposed method shows robust and 
superior performance for the two datasets, including cutting tool monitoring and bearing 
fault diagnosis.

4.3.4 � Stacked autoencoders

Jia et  al. (2016) use two main procedures to train DNN such as pre-train DNNs with 
autoencoder and fine-tune DNNs with a backpropagation algoritm for classification. Simi-
larly, Sun et  al. (2016) utilize a sparse autoencoder to improve the robustness of feature 
representation. Features learned from SAE are further used to train a neural network clas-
sifier. An intelligent severity identification of rolling bearing faults can be obtained using 
a stack of multiple sparse autoencoders with a classifier layer  (Chen et al. 2017). A fea-
ture learning ability can be improved by combining denoising and contractive autoencod-
ers  (Shao et  al. 2017a). To further increase the quality of the learnt features, a locality 
preserving projection is used to fuse the deep features. Likewise, a stacked sparse autoen-
coder (SAE) is employed for machine fault diagnosis  (Qi et  al. 2017). Preprocessing is 
performed on the collected non-stationary and transient signals using ensemble empirical 
model decomposition and autoregressive models. The study (Mao et  al. 2017) proposes 
an autoencoder-ELM-based approach for identifying bearing defects. Research published 
in (Lu et al. 2017b) analyzes an effective and reliable approach for identifying the health 
condition of a machine using a stacked denoising autoencoder. The suggested model is 
shown to be a promising method for identifying specific health states from data incorporat-
ing ambient noise and variations in working conditions (Tables 5 and 6).

Furthermore, a novel deep autoencoder feature learning is proposed for diagnosing 
rotating machinery fault (Shao et al. 2017b). The proposed method is built based on maxi-
mum correntropy to design the new loss function for the improvement of feature learning 
from the measured vibration signals. A local connection network (LCN) developed using 
a normalized sparse autoencoder (NSAE), called LCN-NSAE, is suggested for intelligent 
fault diagnosis  (Jia et  al. 2018). The proposed technique incorporates feature extraction 
and fault detection into a general-purpose learning procedure to improve the fault diagno-
sis system. An effective DNN with an unsupervised feature learning algorithm based on a 
sparse autoencoder is presented in (Ahmed et al. 2018). The study explores the effects of a 
sparse autoencoder on the classification performance of highly compressed measurements 
of bearing vibration signals.
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An automatic and accurate identification of rolling bearing faults using an ensemble 
of deep autoencoders (EDAEs) is studied in  (Shao et al. 2018). The proposed method is 
applied to analyze experimental bearing vibration signals. A new bearing fault diagnosis 
method based on a fully-connected winner-take-all autoencoder has been developed  (Li 
et  al. 2018). A soft voting method is applied to combine the prediction results of signal 
segments sliced by the slicing window to improve accuracy and stability. A DNN based on 
stacked sparse autoencoders (SAEs) for bearing fault diagnosis is built (Sun et al. 2018). 
The proposed method is compared with traditional methods such as a single-hidden-layer 
backward propagation neural network (BPNN) and SVM. A work in  (He and He 2019) 
utilizes a discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) 
autoencoder to calculate the spectral average of the vibration signals. The reconstructed 
vibration signals are then fed into the softmax classifier for bearing fault diagnosis. Li et al. 
(2020b) introduce a unique augmented deep sparse autoencoder that diagnoses gear pitting 
faults with few raw vibration data. By validating six types of gear pitting conditions, the 
proposed method is very accurate and robust. Wu et al. (2020a) propose a fault-attention 
probabilistic adversarial autoencoder that obtains a low-dimensional manifold embedded in 
the vibration signal’s high-dimensional space. Lastly, Shao et al. (2020) combine particle 
swarm optimization and a stacked autoencoder for intelligent fault diagnosis techniques on 
various rotating machines.

4.3.5 � Graph neural network (GNN)

Researchers have been paying close attention to GNNs, an emerging specialized graph sig-
nal processing algorithm (Zhou et al. 2020). By aggregating information from the node’s 
neighbors at any depth, GNN can more effectively extract and inference data relationships. 
Using a horizontal visibility graph (HVG) and a GNN, Li et al. (2020a) suggested a new 
model for bearing faults diagnosis. The HVG algorithm turns a time series sample into 
a graph with condition-specific topology. Compared to pure numerical information, the 
proposed method gives additional valuable information for classification. Li et al. (2020a) 
prove that the GNN model outperforms the RNN model for bearing faults diagnosis.

The graph convolutional network (GCN) is a variety of neural networks that establishes 
associations between data using an association graph to speed up training and improve 
model performance (Bruna et al. 2013). Zhou et al. (2022), propose a GCN-based rotating 
machinery fault diagnosis method that uses multi-sensor data. To diagnose problems in 
wind turbine gearboxes, Yu et al. (2021) suggested a fast deep graph convolutional network 
(FDGCN). The proposed FDGCN efficiently and adaptively learns the discriminative fault 
features from the initial graph input and then uses these learnt features to categorize the 
associated fault type. Zhang et al. (2020) applied a deep GCN (DGCN) to diagnose acous-
tic-based faults for roller bearings. Overall, the DGCN method has outperformed existing 
approaches in terms of classification accuracy, and it can be used to detect various types 
and degrees of faults in roller bearings.

To handle the unbalanced dataset problem for fault diagnosis, Liu et al. (2021) use an 
autoencoder-based SuperGraph feature learning method. However, the constructed Super-
Graph by Yang et al. (2022) has redundant edges; all labeled signals with the same fault 
type are interconnected, resulting in excessive computational costs. Li et al. (2021b), on the 
other hand, used a multireceptive field graph convolutional network (MRF-GCN) to solve 
the constraints of GCNs for effective intelligent fault diagnosis. Case studies demonstrate 
that MRF-GCN outperforms other algorithms even when the dataset is unbalanced.
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Furthermore, Chen et al. (2021) pre-diagnose faults by using the structural analysis (SA) 
method and construct it into an association graph. Then, to adjust the influence of meas-
urements and prior knowledge, a weight coefficient is introduced. The suggested method 
produces superior diagnosis findings than existing methods based on common evaluation 
indicators. Zhang et al. (2021b) propose using gated recurrent units (GRUs) in their novel 
FDGRU method for fault diagnosis. FDGRU stabilizes the training process and improves 
the accuracy of fault diagnosis.

Additionally, in the unsupervised fault diagnosis domain, (Li et  al. 2021a) propose 
using a domain adversarial graph convolutional network (DAGCN) to solve the data dis-
crepancy between source and target domain in unsupervised domain adaptation (UDA) for 
machinery fault diagnosis. According to experimental data, the suggested DAGCN extracts 
the transferable domain-invariant and discriminative features for domain adaptation and 
achieves excellent performance among the six comparison approaches. Zhao et al. (2021a) 
propose a multiple-order graphical deep ELM (MGDELM) algorithm to synchronously 
extract local and global structural information from raw data. To handle data limitations, 
Zhao et  al. (2021b) propose a new semisupervised deep convolutional belief network 
(SSD-CDBN) for motor-bearing fault diagnosis. This method used both labeled and unla-
beled data information.

4.4 � Datasets

This section explains various publicly available datasets employed to diagnose faults using 
vibration signals. More specifically, we include datasets well-known in the literature: the 
Case Western Reserve University (CWRU) bearing dataset, the University of Paderborn 
(UPB) bearing dataset, the Southeast University (SEU) gearbox dataset, and several other 
datasets. The following sections provide additional information about the datasets. 

(a)	 Case Western Reserve University (CWRU) Dataset (Loparo 2012)
	 Widely used in fault diagnosis studies, this benchmark dataset can be obtained via 

CWRU’s public-bearing data center. The test rig is comprised of a two-horsepower 
induction motor, a torque transducer or encoder, and a dynamometer. The accelerom-
eter near the motor-driven end acquires the vibration signal at a sampling frequency 
of 12 kHz. Electric discharge machining (EDM) introduces single-point flaws into test 
bearings, resulting in three severity levels of damage with diameters of 0.007, 0.014, 
and 0.021 in, respectively. Bearing faults are classified into three types based on their 
location: inner-race fault, outer-race fault, and ball fault. In addition, a normal condition 
bearing is evaluated. As a result, these datasets represent ten bearing defect patterns 
under four different motor loads of 0, 1, 2, and 3 horsepower.

(b)	 Paderborn University Dataset (Lessmeier et al. 2016)
	 Paderborn University (PU) provides this experimental bearing dataset for condition 

monitoring and diagnostics based on motor current and vibration signals. Because 
of the vast amount of data and variety of bearing testing types, the dataset includes a 
large mining space test rig for bearing condition monitoring as well as an accelerated 
lifetime test rig. The bearing condition monitoring test rig is a modular system that 
includes a load motor, a flywheel, a bearing test module, a torque measurement shaft, 
and a driving motor. To collect the essential data, it is necessary to reproduce relevant 
bearing faults. The vibration signal is one measured variable from the housing vibra-
tions in the form of acceleration at the bearing housing in the bearing test stand.
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(c)	 University of Connecticut Dataset (Cao et al. 2018)
	 A two-stage gearbox with changeable gears was used to capture vibration signals. 

The gear speed is controlled by a motor. The torque is provided by a magnetic brake, 
the input voltage of which can be modified. A 32-tooth pinion and an 80-tooth gear 
are coupled to the first stage input shaft. The second stage is made up of a 48-tooth 
pinion and a 64-tooth gear. The input shaft speed is determined by a tachometer, and 
an accelerometer determines the gear vibration signals. A dSPACE system is used to 
sample the signals at a rate of 20 kHz. There are nine different gear conditions listed on 
the input shaft, including healthy condition, missing tooth, root fracture, spalling, and 
chipped tip. Using a non-preprocessing technique, the vibration signals were converted 
into images in order to reveal the 2D features of the raw data. The final image repre-
sentation of the signal is a grayscale image 227×227 in size. Using the experimental 
gearbox, 104 signals were collected for each gear state, with 3600 angle-even samples 
taken for each signal.

(d)	 XJTU-SY Bearing Dataset (Wang et al. 2018)
	 An alternating current (AC) induction motor, a motor speed controller, a support shaft, 

two support bearings (heavy-duty roller bearings), and a hydraulic loading system are 
all part of the bearing testbed. This testbed was designed to speed up the deterioration 
of rolling element bearings under a variety of operating situations. There are three 
different operating circumstances, and each working state was tested with five bear-
ings. Two accelerometers, one on the horizontal axis and one on the vertical axis, are 
mounted at 90◦  on the housing of the tested bearings to gather vibration signals. The 
sampling frequency is set at 25.6 kHz. Each sample collects 32,768 data points (i.e., 
1.28 s), and the sampling time is 1 min.

(e)	 ABLT-1A Bearing Dataset 6308 (Ding et al. 2022)
	 At zero load conditions, five different health states are simulated: normal, inner ring 

fault, outer ring fault, inner and outer ring compound fault, and inner and outer ring 
compound weak fault. As a result, each health data type was gathered at a rate of 17.5 
Hz, and a sampling frequency of 12,800 Hz was intercepted using sample group inter-
ception. Two thousand sample groups are intercepted by 1024 signal points treated as 
a group of samples, yielding a total of 2000 × 5 =10,000 sample points.

(f)	 ABLT-1A Bearing Dataset 6205 (Ding et al. 2022)
	 At zero load conditions, seven different health states are simulated: normal, outer ring 

fault, inner and outer ring compound fault, inner ring fault, inner and outer ring weak 
compound fault, and inner and outer ring weak fault. As a result, each health data type 
was gathered at a rate of 17.5 Hz, and a sampling frequency of 12,800 Hz was inter-
cepted using sample group interception. Two thousand sample groups are intercepted 
by 1024 signal points treated as a group of samples, yielding a total of 2000 × 7 = 
14,000 sample points.

5 � Future research directions

This current study has reviewed the application of DL algorithms for fault diagnosis meth-
ods using vibration signals. Even though present-day developments in DL have been eye-
opening, several challenges and limitations remain, some of which are mentioned as fol-
lows. Noise signals containing working environment fluctuations might be obtained from 
real-world industrial applications. Hence, it is still challenging to determine whether the 
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current DL algorithms can perform well under such noisy data. Like DL techniques applied 
in other application domains, an imbalanced dataset might be crucial. The vast majority of 
the machine health data obtained would be under normal or healthy circumstances, which 
directly affects the training process of fault diagnosis models.

Additionally, the interpretability of DL algorithms for fault diagnosis utilizing vibra-
tion signals is still underexplored. The internal mechanism of DL algorithms has not been 
divulged due to a lack of interpretability and explainability. To address this issue, some 
solutions have been developed, such as feature visualization  (Matthew and Fergus 2014) 
and coarse localization maps (e.g., class activation maps (CAMs)) (Selvaraju et al. 2017; 
Zhou et al. 2016). The former focuses on visualizing feature maps in which the first layers 
define local patterns such as edges, circles, and so on, while the subsequent layers blend 
them into more meaningful structures. Similarly, the latter generates CAMs that identify 
the important portions of a picture used in prediction. By using CAMs, it will be feasible to 
gain a better grasp of the image’s problematic regions. It is also worth noting that the inter-
pretability of CAMs will aid us in selecting the critical component for detecting the most 
vibrating regime without the need for vibration sensors. An example of CAMs utilized for 
defect detection in a laboratory-scale water pump is shown in Fig. 17.

Other research utilizes SincNet to address interpretability (Abid et al. 2020) from a fre-
quency domain perspective. SincNet uses parameterized Sinc functions to assist the first 
layer in identifying more meaningful filters (Ravanelli and Bengio 2018). Temporal repre-
sentations of the Sinc filter kernels are expressed in both frequency and time domains with 
distinct low and high cut-off frequencies. This approach makes the network focus on high-
level parameters, which must have a clear physical meaning. Based on layerwise relevance 
propagation (LRP)  (Bach et  al. 2015), Grezmak et  al. (2019) introduce an interpretable 
CNN for gearbox fault diagnosis. Utilizing LRP, the network can explain the reasoning 
behind the results by indicating which time-frequency points in the spectra images con-
tribute most to the fault  (Grezmak et  al. 2019). Li et  al. (2022) propose WaveletKernel-
Net (WKN) and introduce an interpretable convolution kernel that extracts significant fault 
information components in vibration signals. A continuous wavelet convolution (CWConv) 
layer is used to replace the standard CNN’s initial convolution layer in order to uncover 
kernels with a specific physical meaning (Li et al. 2022).

Furthermore, while the DL algorithm for fault diagnosis is a solely data-driven 
algorithm that may well suit observations, predictions may be inconsistent or unrea-
sonable due to extrapolation or observational biases, resulting in poor generalization 

Fig. 17   An example of CAM 
used for identifying the most 
vibrating regime of a laboratory-
scaled water pump (Sun et al. 
2020). The red area indicates the 
most vibrating regime
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performance. As a result, there is an urgent need to incorporate fundamental physical 
principles and domain knowledge into the DL algorithm in order to govern physical 
norms, which could provide informative priors or substantial theoretical limitations 
and inductive biases on top of observational biases. Therefore, physics-informed learn-
ing, an act of leveraging prior knowledge derived from the observational, empirical, 
physical, or mathematical understanding of the environment to improve a learning algo-
rithm’s performance, is required  (Karniadakis et al. 2021). This recent development is 
known as physics-informed neural networks (PINNs) (Raissi et al. 2019). DL based on 
physics is still in its early research stages and requires careful configuration for each 
challenge. One key goal is to develop PINNs for uncertainty quantification to create a 
robust and reliable forecast. The basic idea is to employ neural networks as universal 
approximators of the intended solution, then constrain the training process by defining 
the loss function based on domain knowledge (Raissi et al. 2019). By using automatic 
differentiation to integrate partial differential equations (PDEs) into the loss function of 
a neural network, physics-informed neural networks (PINNs) incorporate information 
from both measurements and PDEs.

Finally, another consideration for further direction is the use of the self-attention 
mechanism. Transformer (Vaswani et  al. 2017), the most recent development for this 
solution, has outperformed previous techniques, such as CNNs and RNNs, in various 
tasks, including natural language processing (NLP), point cloud, and picture analy-
sis (Pei et al. 2021). Although the transformer is a revolutionary design for DL model 
architectures, it has been underexplored in the realm of fault diagnosis until Pei et al. 
(2021) introduced the transformer convolution network (TCN) for rotating machinery 
fault diagnosis. The TCN uses a multi-layered attention stacking strategy for remarkable 
parallel and learning abilities. In addition, the TCN demonstrates remarkable stability 
and resilience against noise due to the stability of the automatic feature extraction by 
the transformer with the attention mechanism. However, some modest modifications are 
required to make the TCN completely appropriate for fault diagnosis utilizing vibra-
tion signals. Moreover, there are several limitations that must be addressed in order to 
improve TCN performance. Including scenarios with extremely limited fault samples, 
its effectiveness in real-world industrial applications has not been thoroughly verified. 
The transformer encoder’s computational complexity is another unresolved research gap 
that requires further investigation (Pei et al. 2021).

Most of these studies concentrate on automatic fault diagnosis of the bearing fault, 
the most prevalent issue in industrial and manufacturing systems. However, machine 
failures reveal a reaction chain between cause and defect. The rotating machinery works 
involve rotational motion such as gears, rotors and shafts, rolling element bearings, flex-
ible couplings, and electrical machines (Gu et  al. 2018; Guan 2017; Guo et  al. 2021; 
Gupta and Pradhan 2017; Peng et al. 2022; Wang et al. 2019b; Zhang et al. 2021a; Zhu 
et  al. 2021). Due to the complex structure and interaction of multiple components in 
rotating machinery, there are additional faults that will need to be diagnosed in the 
future in order to improve results: 

(i)	 Coupling faults.
(ii)	 Pitting of race and ball/roller (i.e., rolling element faults).
(iii)	 Ball screw faults.
(iv)	 Rotors and shaft faults (e.g., misalignment, unbalance, and loose components).
(v)	 Electrical machine faults.
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6 � Threat to validity

Some of the factors considered as potential threats to this study are summarily discussed 
here. Some search keywords were drawn from keywords found in some papers to reduce 
the risk of excluding relevant studies. The search was restricted to two primary index-
ing databases to minimize bias and miss relevant papers. Other researchers’ biases can 
be unavoidable, such as inaccurate data extraction and mapping procedure. A consensus 
mechanism was utilized to select all the extracted studies to minimize this issue. The 
final chosen studies and classification were made by consensus among the four authors.

7 � Conclusion

DL techniques have solved complex problems across various applications and research 
concerning the fault diagnosis of rotating machinery. This paper has documented an 
overview of DL algorithms for condition monitoring using vibration signals. Through 
this study, existing studies were reviewed and classified according to the DL architec-
tures. Moreover, some current research challenges were reported, providing researchers 
insights into the latest DL techniques for fault diagnosis. More importantly, a ’white-
box’ model for fault diagnosis will be sought after as it helps the prediction be under-
standable to humans. To conclude, this section sums up the answers to the RQs men-
tioned earlier. 

(a)	 RQ1 : What are the distribution per year and publication venues of prior works related 
to the applications of DL for vibration-based fault diagnosis techniques? This study 
has observed DL for fault diagnosis using vibration signals either in supervised, unsu-
pervised, or semi-supervised learning mechanisms. This study reveals that there has 
been a considerable increase between 2017 and 2021.

(b)	 RQ2 : What types of DL techniques are developed the most? Supervised learning task 
based on CNN was still the major player in this domain, which shared more than one-
third of the total studies. Other significant DL techniques that have been developed 
include stack autoencoder and graph-based neural networks.

(c)	 RQ3 : What are the future research directions concerning the challenges and limitations 
of the current studies that remain? DL models are black-box; therefore, the model’s 
interpretability and explainability would be very promising tools in the future. In addi-
tion, physics-informed ML and the self-attention mechanism remain underexplored in 
the current literature.

Acknowledgements  This work was supported in part by the National Research Foundation of Korea (NRF) 
Grant funded by the Korea Government (MSIT) (No. 2020R1A2C1009744), in part by the Institute of Civil 
Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry 
of Trade, Industry and Energy of the Korean government under Grant No. 19-CM-GU-01, and in part by 
the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korean 
Government [Ministry of Trade, Industry, and Energy (MOTIE)] under Grant 20206610100290. This work 
was partly supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea gov-
ernment (MSIT) (No. 2021R1F1A1046416). This work was supported by the AI Collaboration Project Fund 
(1.220083) of UNIST (Ulsan National Institute of Science and Technology).



4704	 B. A. Tama et al.

1 3

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abid FB, Sallem M, Braham A (2020) Robust interpretable deep learning for intelligent fault diagnosis 
of induction motors. IEEE Trans Instrum Meas 69(6):3506–3515. https://​doi.​org/​10.​1109/​TIM.​2019.​
29321​62

Ahmed H, Nandi AK (2020) Condition monitoring with vibration signals: compressive sampling and learn-
ing algorithms for rotating machines. Wiley, Hoboken

Ahmed HOA, Wong MLD, Nandi AK (2018) Intelligent condition monitoring method for bearing faults 
from highly compressed measurements using sparse over-complete features. Mech Syst Signal Pro-
cess 99:459–477

Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W (2015) On pixel-wise explanations for 
non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7):e0130140

Brandt A (2011) Noise and vibration analysis: signal analysis and experimental procedures. Wiley, Hoboken
Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on 

graphs. arXiv preprint arXiv:​1312.​6203
Cao P, Zhang S, Tang J (2018) Preprocessing-free gear fault diagnosis using small datasets with deep con-

volutional neural network-based transfer learning. IEEE Access 6:26241–26253
Cardona-Morales O, Avendaño L, Castellanos-Dominguez G (2014) Nonlinear model for condition mon-

itoring of non-stationary vibration signals in ship driveline application. Mech Syst Signal Process 
44(1–2):134–148

Chen R, Chen S, He M, He D, Tang B (2017) Rolling bearing fault severity identification using deep sparse 
auto-encoder network with noise added sample expansion. Proc Inst Mech Eng O 231(6):666–679. 
https://​doi.​org/​10.​1177/​17480​06X17​726452

Chen H, Hu N, Cheng Z, Zhang L, Zhang Y (2019a) A deep convolutional neural network based fusion 
method of two-direction vibration signal data for health state identification of planetary gearboxes. 
Measurement 146:268–278. https://​doi.​org/​10.​1016/j.​measu​rement.​2019.​04.​093

Chen T, Wang Z, Yang X, Jiang K (2019b) A deep capsule neural network with stochastic delta rule for 
bearing fault diagnosis on raw vibration signals. Measurement 148:106857. https://​doi.​org/​10.​1016/j.​
measu​rement.​2019.​106857

Chen K, Hu J, Zhang Y, Yu Z, He J (2020) Fault location in power distribution systems via deep graph con-
volutional networks. IEEE J Sel Areas Commun 38(1):119–131

Chen Z, Xu J, Peng T, Yang C (2021) Graph convolutional network-based method for fault diagnosis using 
a hybrid of measurement and prior knowledge. IEEE Trans Cybern. https://​doi.​org/​10.​1109/​TCYB.​
2021.​30590​02

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning 
phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint 
arXiv:​1406.​1078

Ding X, He Q (2017) Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle 
bearing fault diagnosis. IEEE Trans Instrum Meas 66(8):1926–1935

Ding Y, Jia M, Miao Q, Cao Y (2022) A novel time-frequency transformer based on self-attention mecha-
nism and its application in fault diagnosis of rolling bearings. Mech Syst Signal Process 168:108616

Dziedziech K, Jablonski A, Dworakowski Z (2018) A novel method for speed recovery from vibration sig-
nal under highly non-stationary conditions. Measurement 128:13–22

Goodfellow I (2016) Nips 2016 tutorial: generative adversarial networks. arXiv preprint arXiv:​1701.​00160

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TIM.2019.2932162
https://doi.org/10.1109/TIM.2019.2932162
http://arxiv.org/abs/1312.6203
https://doi.org/10.1177/1748006X17726452
https://doi.org/10.1016/j.measurement.2019.04.093
https://doi.org/10.1016/j.measurement.2019.106857
https://doi.org/10.1016/j.measurement.2019.106857
https://doi.org/10.1109/TCYB.2021.3059002
https://doi.org/10.1109/TCYB.2021.3059002
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1701.00160


4705Recent advances in the application of deep learning for fault…

1 3

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) 
Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

Govekar E, Gradišek J, Grabec I (2000) Analysis of acoustic emission signals and monitoring of machining 
processes. Ultrasonics 38(1–8):598–603

Grezmak J, Wang P, Sun C, Gao RX (2019) Explainable convolutional neural network for gearbox fault 
diagnosis. Procedia CIRP. 80:476–481. https://​doi.​org/​10.​1016/j.​procir.​2018.​12.​008. (26thCIRP Con-
ference on Life Cycle Engineering (LCE)Purdue University, West Lafayette, IN, USA May7–9, 201)

Gu FC, Bian JY, Hsu CL, Chen HC, Lu SD (2018) Rotor fault identification of induction motor based on 
discrete fractional fourier transform. In: 2018 international symposium on computer, consumer and 
control (IS3C), pp 205–208. https://​doi.​org/​10.​1109/​IS3C.​2018.​00059

Guan Z (2017) Vibration analysis of shaft misalignment and diagnosis method of structure faults for rotat-
ing machinery. Int J Perform Eng 13:337

Guo X, Chen L, Shen C (2016) Hierarchical adaptive deep convolution neural network and its application 
to bearing fault diagnosis. Measurement 93:490–502. https://​doi.​org/​10.​1016/j.​measu​rement.​2016.​07.​
054

Guo S, Yang T, Hua H, Cao J (2021) Coupling fault diagnosis of wind turbine gearbox based on multitask 
parallel convolutional neural networks with overall information. Renew Energy 178:639–650. https://​
doi.​org/​10.​1016/j.​renene.​2021.​06.​088

Gupta P, Pradhan M (2017) Fault detection analysis in rolling element bearing: a review. Mater Today: Proc 
4(2, Part A):2085–2094. https://​doi.​org/​10.​1016/j.​matpr.​2017.​02.​054

He M, He D (2019) A new hybrid deep signal processing approach for bearing fault diagnosis using vibra-
tion signals. Neurocomputing. https://​doi.​org/​10.​1016/j.​neucom.​2018.​12.​088

Hinton GE (2009) Deep belief networks. Scholarpedia 4(5):5947
Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 

18(7):1527–1554
Hoang DT, Kang HJ (2019) Rolling element bearing fault diagnosis using convolutional neural network and 

vibration image. Cognit Syst Res 53:42–50. https://​doi.​org/​10.​1016/j.​cogsys.​2018.​03.​002
Iatsenko D, McClintock PV, Stefanovska A (2016) Extraction of instantaneous frequencies from ridges in 

time-frequency representations of signals. Signal Process 125:290–303
Janssens O, Slavkovikj V, Vervisch B, Stockman K, Loccufier M, Verstockt S, Van de Walle R, Van Hoe-

cke S (2016) Convolutional neural network based fault detection for rotating machinery. J Sound Vib 
377:331–345. https://​doi.​org/​10.​1016/j.​jsv.​2016.​05.​027

Jia F, Lei Y, Lin J, Zhou X, Lu N (2016) Deep neural networks: a promising tool for fault characteristic 
mining and intelligent diagnosis of rotating machinery with massive data. Mech Syst Signal Process 
72:303–315

Jia F, Lei Y, Guo L, Lin J, Xing S (2018) A neural network constructed by deep learning technique and its 
application to intelligent fault diagnosis of machines. Neurocomputing 272:619–628. https://​doi.​org/​
10.​1016/j.​neucom.​2017.​07.​032

Jing L, Zhao M, Li P, Xu X (2017) A convolutional neural network based feature learning and fault diag-
nosis method for the condition monitoring of gearbox. Measurement 111:1–10. https://​doi.​org/​10.​
1016/j.​measu​rement.​2017.​07.​017

Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine 
learning. Nat Rev Phys 3(6):422–440

Kateris D, Moshou D, Pantazi XE, Gravalos I, Sawalhi N, Loutridis S (2014) A machine learning approach 
for the condition monitoring of rotating machinery. J Mech Sci Technol 28(1):61–71

Khan NA, Jönsson P, Sandsten M (2017) Performance comparison of time-frequency distributions for esti-
mation of instantaneous frequency of heart rate variability signals. Appl Sci 7(3):221

Khodja AY, Guersi N, Saadi MN, Boutasseta N (2020) Rolling element bearing fault diagnosis for rotating 
machinery using vibration spectrum imaging and convolutional neural networks. Int J Adv Manuf 
Technol 106(5–6):1737–1751. https://​doi.​org/​10.​1007/​s00170-​019-​04726-7

Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint arXiv:​1312.​6114
Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: 5th inter-

national conference on learning representations, ICLR 2017, Toulon, France, April 24–26, 2017, 
Conference Track Proceedings, OpenReview.net

Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ (2021) 1d convolutional neural networks 
and applications: a survey. Mech Syst Signal Process 151:107398. https://​doi.​org/​10.​1016/j.​ymssp.​
2020.​107398

Kitchenham BA, Budgen D, Brereton P (2015) Evidence-based software engineering and systematic 
reviews, vol 4. CRC Press, Boca Raton

https://doi.org/10.1016/j.procir.2018.12.008
https://doi.org/10.1109/IS3C.2018.00059
https://doi.org/10.1016/j.measurement.2016.07.054
https://doi.org/10.1016/j.measurement.2016.07.054
https://doi.org/10.1016/j.renene.2021.06.088
https://doi.org/10.1016/j.renene.2021.06.088
https://doi.org/10.1016/j.matpr.2017.02.054
https://doi.org/10.1016/j.neucom.2018.12.088
https://doi.org/10.1016/j.cogsys.2018.03.002
https://doi.org/10.1016/j.jsv.2016.05.027
https://doi.org/10.1016/j.neucom.2017.07.032
https://doi.org/10.1016/j.neucom.2017.07.032
https://doi.org/10.1016/j.measurement.2017.07.017
https://doi.org/10.1016/j.measurement.2017.07.017
https://doi.org/10.1007/s00170-019-04726-7
http://arxiv.org/abs/1312.6114
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1016/j.ymssp.2020.107398


4706	 B. A. Tama et al.

1 3

LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. Handb Brain 
Theory Neural Netw 3361(10):1995

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Lei Y (2016) Intelligent fault diagnosis and remaining useful life prediction of rotating machinery. Butter-

worth-Heinemann, Oxford
Lessmeier C, Kimotho JK, Zimmer D, Sextro W (2016) Condition monitoring of bearing damage in electro-

mechanical drive systems by using motor current signals of electric motors: a benchmark data set for 
data-driven classification. In: PHM Society European conference, vol 3

Li C, Zhang W, Peng G, Liu S (2018) Bearing fault diagnosis using fully-connected winner-take-all autoen-
coder. IEEE Access 6:6103–6115

Li C, Mo L, Yan R (2020a) Rolling bearing fault diagnosis based on horizontal visibility graph and 
graph neural networks. In: International Conference on Sensing, Measurement & Data Analytics 
in the era of Artificial Intelligence (ICSMD), 2020, pp 275–279. https://​doi.​org/​10.​1109/​ICSMD​
50554.​2020.​92616​87

Li X, Li J, Qu Y, He D (2020b) Semi-supervised gear fault diagnosis using raw vibration signal based on 
deep learning. Chin J Aeronaut 33(2):418–426. https://​doi.​org/​10.​1016/j.​cja.​2019.​04.​018

Li T, Zhao Z, Sun C, Yan R, Chen X (2021a) Domain adversarial graph convolutional network for fault 
diagnosis under variable working conditions. IEEE Trans Instrum Meas 70:1–10

Li T, Zhao Z, Sun C, Yan R, Chen X (2021b) Multireceptive field graph convolutional networks for 
machine fault diagnosis. IEEE Trans Ind Electron 68(12):12739–12749

Li T, Zhao Z, Sun C, Cheng L, Chen X, Yan R, Gao RX (2022) Waveletkernelnet: an interpretable 
deep neural network for industrial intelligent diagnosis. IEEE Trans Syst Man Cybern: Syst 
52(4):2302–2312. https://​doi.​org/​10.​1109/​TSMC.​2020.​30489​50

Liang MX, Cao P, Tang J (2021) Rolling bearing fault diagnosis based on feature fusion with parallel 
convolutional neural network. Int J Adv Manuf Technol 112(3):819–831

Liberati A, Altman D, Tetzlaff J, Mulrow C, Gøtzsche P, Ioannidis J et al (2009) The prisma statement 
for reporting systematic and meta-analyses of studies that evaluate interventions: explanation and 
elaboration. PLoS Med 6(7):1–28

Liu R, Meng G, Yang B, Sun C, Chen X (2017) Dislocated time series convolutional neural archi-
tecture: an intelligent fault diagnosis approach for electric machine. IEEE Trans Ind Inform 
13(3):1310–1320

Liu H, Zhou J, Zheng Y, Jiang W, Zhang Y (2018) Fault diagnosis of rolling bearings with recurrent neural 
network-based autoencoders. ISA Trans 77:167–178. https://​doi.​org/​10.​1016/j.​isatra.​2018.​04.​005

Liu J, Zhou K, Yang C, Lu G (2021) Imbalanced fault diagnosis of rotating machinery using autoen-
coder-based SuperGraph feature learning. Front Mech Eng 16:829–839

Loparo K (2012) Case western reserve university bearing data center. Bearings vibration data sets, Case 
Western Reserve University pp 22–28

Lu C, Wang Z, Zhou B (2017a) Intelligent fault diagnosis of rolling bearing using hierarchical convolu-
tional network based health state classification. Adv Eng Inform 32:139–151. https://​doi.​org/​10.​
1016/j.​aei.​2017.​02.​005

Lu C, Wang ZY, Qin WL, Ma J (2017b) Fault diagnosis of rotary machinery components using a stacked 
denoising autoencoder-based health state identification. Signal Process 130:377–388. https://​doi.​
org/​10.​1016/j.​sigpro.​2016.​07.​028

Mao W, He J, Li Y, Yan Y (2017) Bearing fault diagnosis with auto-encoder extreme learning machine: 
a comparative study. Proc Inst Mech Eng C 231(8):1560–1578. https://​doi.​org/​10.​1177/​09544​
06216​675896

Matthew D, Fergus R (2014) Visualizing and understanding convolutional neural networks. In: Proceed-
ings of the 13th European Conference Computer Vision and Pattern Recognition, Zurich, Switzer-
land, pp 6–12

Mohanty AR (2014) Machinery condition monitoring: principles and practices. CRC Press, Boca Raton
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P et al (2009) Preferred reporting items for system-

atic reviews and meta-analyses: the prisma statement. PLoS Med 6(7):e1000097
Nord JH, Nord GD (1995) Mis research: journal status assessment and analysis. Inf Manage 29(1):29–42
Pan J, Zi Y, Chen J, Zhou Z, Wang B (2018) LiftingNet: a novel deep learning network with layer-

wise feature learning from noisy mechanical data for fault classification. IEEE Trans Ind Electron 
65(6):4973–4982

Peeters C, Leclère Q, Antoni J, Lindahl P, Donnal J, Leeb S, Helsen J (2019) Review and comparison 
of tacholess instantaneous speed estimation methods on experimental vibration data. Mech Syst 
Signal Process 129:407–436

https://doi.org/10.1109/ICSMD50554.2020.9261687
https://doi.org/10.1109/ICSMD50554.2020.9261687
https://doi.org/10.1016/j.cja.2019.04.018
https://doi.org/10.1109/TSMC.2020.3048950
https://doi.org/10.1016/j.isatra.2018.04.005
https://doi.org/10.1016/j.aei.2017.02.005
https://doi.org/10.1016/j.aei.2017.02.005
https://doi.org/10.1016/j.sigpro.2016.07.028
https://doi.org/10.1016/j.sigpro.2016.07.028
https://doi.org/10.1177/0954406216675896
https://doi.org/10.1177/0954406216675896


4707Recent advances in the application of deep learning for fault…

1 3

Pei X, Zheng X, Wu J (2021) Rotating machinery fault diagnosis through a transformer convolution net-
work subjected to transfer learning. IEEE Trans Instrum Meas 70:1–11

Peng B, Xia H, Lv X, Annor-Nyarko M, Zhu S, Liu Y, Zhang J (2022) An intelligent fault diagnosis 
method for rotating machinery based on data fusion and deep residual neural network. Appl Intell 
52(3):3051–3065. https://​doi.​org/​10.​1007/​s10489-​021-​02555-4

Potočnik P, Govekar E, Grabec I (2007) Acoustic and acoustic emission based condition monitoring of 
production processes. In: Proceedings of the second world congress on asset management and the 
fourth international conference on condition monitoring, pp 11–14

Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu ML, Chen SC, Iyengar S (2018) A survey 
on deep learning: algorithms, techniques, and applications. ACM Comput Surv (CSUR) 51(5):1–36

Qi Y, Shen C, Wang D, Shi J, Jiang X, Zhu Z (2017) Stacked sparse autoencoder-based deep network for 
fault diagnosis of rotating machinery. IEEE Access 5:15066–15079

Raissi M, Perdikaris P, Karniadakis G (2019) Physics-informed neural networks: a deep learning framework 
for solving forward and inverse problems involving nonlinear partial differential equations. J Comput 
Phys 378:686–707

Randall RB (2011) Vibration-based condition monitoring: industrial, aerospace and automotive applica-
tions. Wiley, Hoboken

Randall R, Smith W (2016) Use of the teager kaiser energy operator to estimate machine speed. In: Paper to 
be presented at PHM Europe conference, Bilbao, Spain, pp 5–8

Rao M, Zuo MJ (2018) A new strategy for rotating machinery fault diagnosis under varying speed condi-
tions based on deep neural networks and order tracking. In: 2018 17th IEEE international conference 
on machine learning and applications (ICMLA), IEEE, pp 1214–1218

Rao M, Li Q, Wei D, Zuo MJ (2020) A deep bi-directional long short-term memory model for automatic 
rotating speed extraction from raw vibration signals. Measurement 158:107719. https://​doi.​org/​10.​
1016/j.​measu​rement.​2020.​107719

Ravanelli M, Bengio Y (2018) Speech and speaker recognition from raw waveform with sincnet. https://​doi.​
org/​10.​48550/​ARXIV.​1812.​05920, URL https://​arxiv.​org/​abs/​1812.​05920

Ruiz-Cárcel C, Jaramillo VH, Mba D, Ottewill JR, Cao Y (2016) Combination of process and vibration data 
for improved condition monitoring of industrial systems working under variable operating conditions. 
Mech Syst Signal Process 66:699–714

Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Guyon I, Luxburg UV, Ben-
gio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) Advances in neural information pro-
cessing systems, vol 30. Curran Associates Inc, Red Hook

Salimans T, Kingma DP (2016) Weight normalization: A simple reparameterization to accelerate training of 
deep neural networks. In: Advances in neural information processing systems, pp 901–909

Sarma S, Agrawal V, Udupa S, Parameswaran K (2008) Instantaneous angular position and speed measure-
ment using a dsp based resolver-to-digital converter. Measurement 41(7):788–796

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. 
IEEE Trans Neural Netw 20(1):61–80

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
Schmidt S, Heyns PS, De Villiers JP (2018) A tacholess order tracking methodology based on a probabilis-

tic approach to incorporate angular acceleration information into the maxima tracking process. Mech 
Syst Signal Process 100:630–646

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations 
from deep networks via gradient-based localization. In: Proceedings of the IEEE international confer-
ence on computer vision, pp 618–626

Shao H, Jiang H, Wang F, Zhao H (2017a) An enhancement deep feature fusion method for rotating machin-
ery fault diagnosis. Knowl-Based Syst 119:200–220. https://​doi.​org/​10.​1016/j.​knosys.​2016.​12.​012

Shao H, Jiang H, Zhao H, Wang F (2017b) A novel deep autoencoder feature learning method for rotating 
machinery fault diagnosis. Mech Syst Signal Process 95:187–204. https://​doi.​org/​10.​1016/j.​ymssp.​
2017.​03.​034

Shao H, Jiang H, Lin Y, Li X (2018) A novel method for intelligent fault diagnosis of rolling bearings using 
ensemble deep auto-encoders. Mech Syst Signal Process 102:278–297. https://​doi.​org/​10.​1016/j.​
ymssp.​2017.​09.​026

Shao HD, Ding ZY, Cheng JS, Jiang HK (2020) Intelligent fault diagnosis among different rotating 
machines using novel stacked transfer auto-encoder optimized by PSO. ISA Trans 105:308–319

Simon HA (1969) The sciences of the artificial. MIT Press, Cambridge
Slavkovikj V, Verstockt S, De Neve W, Van Hoecke S, Van de Walle R (2015) Hyperspectral image classifi-

cation with convolutional neural networks. In: Proceedings of the 23rd ACM international conference 
on Multimedia, pp 1159–1162

https://doi.org/10.1007/s10489-021-02555-4
https://doi.org/10.1016/j.measurement.2020.107719
https://doi.org/10.1016/j.measurement.2020.107719
https://doi.org/10.48550/ARXIV.1812.05920
https://doi.org/10.48550/ARXIV.1812.05920
https://arxiv.org/abs/1812.05920
https://doi.org/10.1016/j.knosys.2016.12.012
https://doi.org/10.1016/j.ymssp.2017.03.034
https://doi.org/10.1016/j.ymssp.2017.03.034
https://doi.org/10.1016/j.ymssp.2017.09.026
https://doi.org/10.1016/j.ymssp.2017.09.026


4708	 B. A. Tama et al.

1 3

Subbaraj P, Kannapiran B (2014) Fault detection and diagnosis of pneumatic valve using adaptive neuro-
fuzzy inference system approach. Appl Soft Comput 19:362–371

Sun W, Shao S, Zhao R, Yan R, Zhang X, Chen X (2016) A sparse auto-encoder-based deep neural net-
work approach for induction motor faults classification. Measurement 89:171–178. https://​doi.​org/​10.​
1016/j.​measu​rement.​2016.​04.​007

Sun J, Yan C, Wen J (2018) Intelligent bearing fault diagnosis method combining compressed data acquisi-
tion and deep learning. IEEE Trans Instrum Meas 67(1):185–195

Sun KH, Huh H, Tama BA, Lee SY, Jung JH, Lee S (2020) Vision-based fault diagnostics using explainable 
deep learning with class activation maps. IEEE Access 8:129169–129179

Tama BA, Lee SY, Lee S (2020) An overview of deep learning techniques for fault detection using vibration 
signal. In: INTER-NOISE and NOISE-CON congress and conference proceedings, institute of noise 
control engineering, pp 5701–5706

Urbanek J, Barszcz T, Sawalhi N, Randall RB (2011) Comparison of amplitude-based and phase-based 
method for speed tracking in application to wind turbines. Metrol Meas Syst 18(2):295–303

Urbanek J, Barszcz T, Antoni J (2013) A two-step procedure for estimation of instantaneous rotational 
speed with large fluctuations. Mech Syst Signal Process 38(1):96–102

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Lu, Polosukhin I (2017) 
Attention is all you need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwana-
than S, Garnett R (eds) Advances in neural information processing systems, vol 30. Curran Asso-
ciates Inc., Red Hook

Wang P, Ananya Yan R, Gao RX (2017) Virtualization and deep recognition for system fault classifica-
tion. J Manuf Syst 44:310–316

Wang B, Lei Y, Li N, Li N (2018) A hybrid prognostics approach for estimating remaining useful life of 
rolling element bearings. IEEE Trans Reliab 69(1):401–412

Wang H, Li S, Song L, Cui L (2019a) A novel convolutional neural network based fault recognition 
method via image fusion of multi-vibration-signals. Comput Ind 105:182–190

Wang J, Sánchez J, Iturrioz J, Ayesta I (2019b) Artificial intelligence for advanced non-conventional 
machining processes. Procedia Manuf 41:453–459. https://​doi.​org/​10.​1016/j.​promfg.​2019.​09.​032. 
(8thManufacturing Engineering Society InternationalConference, MESIC 2019, 19-21 June 2019, 
Madrid,Spain)

Wang X, Shen CQ, Xia M, Wang D, Zhu J, Zhu ZK (2020) Multi-scale deep intra-class transfer learning 
for bearing fault diagnosis. Reliab Eng Syst Saf 202:107050

Wen L, Li X, Gao L, Zhang Y (2018) A new convolutional neural network-based data-driven fault diag-
nosis method. IEEE Trans Ind Electron 65(7):5990–5998

Wu JY, Zhao ZB, Sun C, Yan RQ, Chen XF (2020a) Fault-attention generative probabilistic adversarial 
autoencoder for machine anomaly detection. IEEE Trans Ind Inform 16(12):7479–7488

Wu JY, Zhao ZB, Sun C, Yan RQ, Chen XF (2020b) Few-shot transfer learning for intelligent fault diag-
nosis of machine. Measurement 166:108202

Wu YC, Zhao RZ, Jin WY, He TJ, Ma SC, Shi MK (2021) Intelligent fault diagnosis of rolling bearings 
using a semi-supervised convolutional neural network. Appl Intell 51:2144–2160

Xu X, Cao D, Zhou Y, Gao J (2020a) Application of neural network algorithm in fault diagnosis of 
mechanical intelligence. Mech Syst Signal Process 141:106625

Xu XW, Tao ZR, Ming WW, An QL, Chen M (2020b) Intelligent monitoring and diagnostics using 
a novel integrated model based on deep learning and multi-sensor feature fusion. Measurement 
165:108086

Yang B, Lei YG, Jia F, Li NP, Du ZJ (2020) A polynomial kernel induced distance metric to improve 
deep transfer learning for fault diagnosis of machines. IEEE Trans Ind Electron 67(11):9747–9757

Yang C, Zhou K, Liu J (2022) SuperGraph: spatial-temporal graph-based feature extraction for rotating 
machinery diagnosis. IEEE Trans Ind Electron 69(4):4167–4176

You W, Shen C, Guo X, Jiang X, Shi J, Zhu Z (2017) A hybrid technique based on convolutional neural 
network and support vector regression for intelligent diagnosis of rotating machinery. Adv Mech 
Eng 9(6):1687814017704146

Yu K, Han HZ, Fu Q, Ma H, Zeng J (2020) Symmetric co-training based unsupervised domain adapta-
tion approach for intelligent fault diagnosis of rolling bearing. Meas Sci Technol 31(11):115008

Yu X, Tang B, Zhang K (2021) Fault diagnosis of wind turbine gearbox using a novel method of fast 
deep graph convolutional networks. IEEE Trans Instrum Meas 70:1–14

Zhang B, Zhang S, Li W (2019) Bearing performance degradation assessment using long short-term mem-
ory recurrent network. Comput Ind 106:14–29. https://​doi.​org/​10.​1016/j.​compi​nd.​2018.​12.​016

Zhang D, Stewart E, Entezami M, Roberts C, Yu D (2020) Intelligent acoustic-based fault diagnosis of 
roller bearings using a deep graph convolutional network. Measurement 156:107585

https://doi.org/10.1016/j.measurement.2016.04.007
https://doi.org/10.1016/j.measurement.2016.04.007
https://doi.org/10.1016/j.promfg.2019.09.032
https://doi.org/10.1016/j.compind.2018.12.016


4709Recent advances in the application of deep learning for fault…

1 3

Zhang D, Chen Y, Guo F, Karimi HR, Dong H, Xuan Q (2021a) A new interpretable learning method 
for fault diagnosis of rolling bearings. IEEE Trans Instrum Meas 70:1–10. https://​doi.​org/​10.​1109/​
TIM.​2020.​30438​73

Zhang Y, Zhou T, Huang X, Cao L, Zhou Q (2021b) Fault diagnosis of rotating machinery based on 
recurrent neural networks. Measurement 171:108774

Zhao X, Jia M, Bin J, Wang T, Liu Z (2021) Multiple-order graphical deep extreme learning machine for 
unsupervised fault diagnosis of rolling bearing. IEEE Trans Instrum Meas 70:1–12

Zhao X, Jia M, Liu Z (2021) Semisupervised graph convolution deep belief network for fault diagnosis 
of electormechanical system with limited labeled data. IEEE Trans Ind Inform 17(8):5450–5460

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative 
localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 
pp 2921–2929

Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks: a 
review of methods and applications. AI Open 1:57–81

Zhou K, Yang C, Liu J, Xu Q (2022) Deep graph feature learning-based diagnosis approach for rotating 
machinery using multi-sensor data. J Intell Manuf. https://​doi.​org/​10.​1007/​s10845-​021-​01884-y

Zhu XX, Luo XZ, Zhao JH, Hou DN, Han ZH, Wang Y (2020) Research on deep feature learning and con-
dition recognition method for bearing vibration. Appl Acoust 168:107435

Zhu Z, Wang L, Peng G, Li S (2021) Wda: an improved wasserstein distance-based transfer learning fault 
diagnosis method. Sensors. https://​doi.​org/​10.​3390/​s2113​4394

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1109/TIM.2020.3043873
https://doi.org/10.1109/TIM.2020.3043873
https://doi.org/10.1007/s10845-021-01884-y
https://doi.org/10.3390/s21134394

	Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals
	Abstract
	1 Introduction
	1.1 Research aims and contributions
	1.2 Research questions
	1.3 Structure

	2 Fundamental concepts
	2.1 Vibration signal analysis for rotating machinery
	2.2 Deep learning
	2.2.1 Convolutional neural network (CNN)
	2.2.2 Deep belief network (DBN)
	2.2.3 Recurrent neural network (RNN)
	2.2.4 Generative neural network
	2.2.5 Graph neural network (GNN)


	3 Methodology
	3.1 Search procedure
	3.2 Study inclusion and exclusion procedure

	4 Result and discussion
	4.1 Research trend
	4.2 Publication venue
	4.3 Categorization of selected studies w.r.t. deep learning methods
	4.3.1 Convolutional neural network (CNN)
	4.3.2 Deep belief network (DBN)
	4.3.3 Recurrent neural network (RNN)
	4.3.4 Stacked autoencoders
	4.3.5 Graph neural network (GNN)

	4.4 Datasets

	5 Future research directions
	6 Threat to validity
	7 Conclusion
	Acknowledgements 
	References




