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Abstract
A new ensemble framework for an interpretable model called linear iterative feature embedding (LIFE) has been developed

to achieve high prediction accuracy, easy interpretation, and efficient computation simultaneously. The LIFE algorithm is

able to fit a wide single-hidden-layer neural network (NN) accurately with three steps: defining the subsets of a dataset by

the linear projections of neural nodes, creating the features from multiple narrow single-hidden-layer NNs trained on the

different subsets of the data, combining the features with a linear model. The theoretical rationale behind LIFE is also

provided by the connection to the loss ambiguity decomposition of stack ensemble methods. Both simulation and empirical

experiments confirm that LIFE consistently outperforms directly trained single-hidden-layer NNs and also outperforms

many other benchmark models, including multilayers feed forward neural network (FFNN), Xgboost, and random forest

(RF) in many experiments. As a wide single-hidden-layer NN, LIFE is intrinsically interpretable. Meanwhile, both variable

importance and global main and interaction effects can be easily created and visualized. In addition, the parallel nature of

the base learner building makes LIFE computationally efficient by leveraging parallel computing.

Keywords Linear iterative feature embedding � Ensemble method � Loss decomposition � Variable importance �
Interaction detection

1 Introduction

Ensemble methods have proved successful in the majority

of machine learning competitions, as they integrate multi-

ple machine learning algorithms into one predictive model.

In particular, there are three main types of ensemble

methods, including bootstrap aggregating (bagging),

boosting, and stacking. Bagging and stacking induce base

learners independently and aggregate them following a

deterministic averaging process, while boosting learns

sequentially in a very adaptive way and combines learners

using a pre-specified strategy. The main goal of bagging is

to arrive at an ensemble method with less variance than its

base learners, whereas boosting aims to produce a strong

model that is less biased than their base learners. Stack

ensemble aims at reduce both variance and bias by com-

bining diversified base learners. Compared with a single

model, all of these ensemble methods can significantly

improve predictive performance either by bias or variance

reduction.

However, the final model produced by ensemble method

is still regarded as a black-box model, since the
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combination of base learners leads to a complicated model

structure and makes inner decision-making process not

transparent for human beings. The ability to explain the

rationale behind one’s decisions to others is an important

aspect of human intelligence in either social interaction or

educational context. The interpretability of the results to

enable business owners or regulators to better understand

risk management decision processes and compel compa-

nies to meet regulatory requirements. Some commonly

used interpretable models, such as linear model and general

additive model, cannot compete with ensemble models

including Xgboost [1] and random forest [2] since its

simple structure cannot capture complicated dynamic data

patterns.

In recent decades, some research works focus on

enhancing interpretability by developing tools to ‘open up

the black box.’ There are, broadly speaking, three inter-

related model-based areas of research: (a) global diagnos-

tics (Sobol & Kucherenko (2009) [3], Kucherenko (2010)

[4]); (b) local diagnostics (Sundararajan et al. (2017) [5],

Ancona et al. (2018) [6]); and (c) development of

approximate or surrogate models that may be easier to

understand and explain. However, (Rudin and Cynthia

(2019) [7]) suggests to avoid using explainable black-box

models in high-stakes decisions since they are sometimes

problematic with several reasons such as unreliable pre-

sentation or lack of details of what the original model

delivers. Therefore, other researchers made efforts to build

inherently interpretable models, such as explainable neural

network (xNN) proposed by (Vaughan et al. (2018) [8]),

adaptive explainable neural networks (AxNNs) by (Chen

et al. (2020) [9]), and explainable neural networks with

constraint (Yang et al. (2020) [10]). Following this research

direction, we try to build an inherently interpretable with a

predictive performance as strong as some black-box mod-

els or an even better performance.

In this paper, our LIFE algorithm fulfills three main

goals: competitive predictive performance, boosted com-

putation efficiency, and an interpretable model. We know

that the single-hidden-layer NN has universal approxima-

tion property in theory and is easy to be interpreted due to

simple architecture. However, we need to resort to a wide

single-hidden-layer NN with a large number of neural

nodes to obtain a strong predictive performance, which is

numerically difficult to estimate in practice. Therefore, by

leveraging the ensemble method and a simple structure of a

single-hidden-layer NN, we developed an innovative and

flexible framework called LIFE to train wide single-hid-

den-layer NNs, which can achieve both high accuracy and

easy interpretability in both regression and classification

settings.

In this algorithm, we first use a special hierarchical

structure of multiple single-layer NNs to perform data

sampling based on the linear projection of neurons, and

then train multiple narrow single-hidden-layer NNs with

ReLU activation as base learners on different subsets of the

dataset; finally, we aggregate neural nodes as features from

multiple base learners into a wide single-layer NN and do a

join estimation via a linear model. Compared with the

traditional training strategy, LIFE effectively avoids

directly training a wide single-layer NN by extracting

features from multiple narrow single-hidden-layer NNs

trained on different subsets of dataset instead. In this way,

we can introduce diversity among the base learners, which

tends to decrease the total uncertainty after ensemble and,

thus, yields better results empirically. To achieve good

diversity among base learners, we build a hierarchical

structure of multiple single neural networks, and leverage

the linear projections of the neurons to define the subset of

sampling. In addition, the algorithm combines the features

defined by neurons from the single-layer NN base learner,

for which we called neurons flattening, and this can further

improve results compared with traditional ensemble

methods. This technique also allows LIFE to take advan-

tage of parallel computing to improve computational effi-

ciency through training multiple narrow single-hidden-

layer NNs simultaneously.

Extensive analyses on both simulated data and public

real data verify its effectiveness in both predictive and

computational performance. Furthermore, we provide the-

oretical foundation for LIFE and prove the importance of

the diversity of base learners by exploring the relationship

with two-stage ensemble stacking and the ambiguity loss

decomposition for two-stage ensemble stacking. The final

single-hidden-layer NN architecture obtained from LIFE

allows to visualize the neural network weights and bias and

understand the input and output relationship easily. In

particular, a single-hidden-layer NN with rectified linear

unit (ReLU) activation function [8] is equivalent to an

additive index model with linear splines on linear projec-

tions. Moreover, it can be considered a local linear model,

where all predictors are easily visualized by a parallel

coordinates plot [11]. The main and interaction effects can

also be identified by aggregating local linear model

coefficients.

In general, our main contributions are summarized

below:

1. LIFE is an innovative and flexible framework for

ensemble methods, which allows different kinds of

variants.

2. LIFE can achieve a better predictive performance than

traditional single-hidden-layer NN training methods, as

demonstrated by the theoretical background and

empirical experiments.
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3. LIFE can still keep model interpretable, and a new

interpretation tool is introduced to detect main and

interaction effects.

4. LIFE can improve the computation efficiency via easy

parallelization, rendering wide single-layer NN train-

ing faster.

5. An theoretical foundation for LIFE based on ambiguity

loss decomposition and diversity of base learners is

provided.

The rest of the paper is organized as follows: In Sect. 2, we

introduce LIFE algorithm and theoretical rationale behind

LIFE through loss decomposition. Extensive experiments

on simulated and real data are conducted in Sect. 3 to test

the performance of LIFE under various conditions in

comparison with other benchmark algorithms. In Sect. 4,

we explored interpretation of model such as main or

interaction effect detection. In Sect. 5, we discuss the

model pruning and the extension of LIFE algorithm in

more depth. In Sect. 6, we provide our conclusions.

2 Methodology

In this section, we introduce a new proposed ensemble

method called LIFE. The LIFE algorithm is mainly used to

train a wide single-hidden-layer NNs in an iterative way.

First, the general framework for LIFE including three steps

is introduced in Sect. 2.1. Then, details of LIFE algorithms

are provided in Sect. 2.2. Finally, the theoretical foundation

is discussed in Sect. 2.3.

2.1 General framework for LIFE

As shown in Fig. 1, the LIFE algorithm consists of three

steps: data sampling, base learner training and feature

extraction, model aggregation and pruning. Figure 1 pre-

sents several options in the white box for each step, which

allow for various combinations of those steps to achieve

pre-specified goals.

1. The first step consists in defining subsets of data via

active functions of NN neurons, which are obtained by

training multiple single-hidden-layer NNs in a hierar-

chal structure as illustrated in Fig. 2. The diversified

base learners can be generated by training based on

these subsets for datasets. More theoretical explanation

on ensemble with diversified base learners will be

provided in Sect. 2.3. There are other alternative ways

to generate sampling for base learner training, e.g.,

bootstrapping in the traditional method or data splitting

via random projection. Through leveraging linear

projections from trained NNs, our sampling method

in the supervised setting can more effectively generate

the diversity among base learners, which is demon-

strated by empirical experiments in Sect. 5.1.

2. The second step consists in training base learners on

different subsets of data sampled during the first step.

Various options can be considered, e.g., single-layer

NN, multiple layer NN, regression or decision tree, etc.

In this paper, the single-hidden-layer NN is used as the

base learner given its interpretability. After estimating

multiple NN base learners, all activation functions of

the neurons from NN base learners are extracted as

new features.

3. The third step consists in combining all new extracted

features from different base learners in the second step

to construct the final predictive model. In addition, new

features can be pruned through regularization or other

methods to generate a more parsimonious model. We

use linear model and elastic net in our LIFE algorithm

which is simple and straightforward in this paper, but

some other more complicated model aggregating

methods, e.g., adaptive regression model screen, and

pruning methods, e.g., base learner selection algorithm

3, will be discussed in Sect. 5.2.

2.2 LIFE algorithm

LIFE algorithm is an iterative process with multiple single-

layer NN base learners trained in each iteration. Assume

Fig. 1 It is the general framework of LIFE algorithm and options colored in red in each step are used in the paper ‘‘colour figure online’’
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there are J iterations. The first J � 1 iteration is used to

define the data sampling through a hierarchical structure,

and the last J iteration is used to build the features from

single-layer NN base learners. Moreover, let ½K1; � � � ;KJ �
denote the collection of the number of hidden neurons for

single-hidden-layer NNs in all iterations, where Kj is the

number of hidden neural nodes for single-hidden-layer

NNs which are trained in the jðthÞ iteration. Figure 2 gives

an illustration to LIFE framework, with

½K1;K2;K3� ¼ ½3; 3; 2�, where b̂
ðjÞ
k ’s and ŵ

ðjÞ
k ’s represent

biases and weights from single-hidden-layer NNs respec-

tively, b̂k’s are coefficients used to linearly combine all

new neurons in the final step, and the cp is the cutoff point

to define subsets by controlling subset size.

The LIFE framework illustration in Fig. 2 can be sep-

arated into three steps as displayed in Fig. 1. The two

iterations in the first step are used to perform data sam-

pling, in which we first fit a single-hidden-layer NN with

three hidden neurons, then define subsets by

b
ð1Þ
k þ xTi w

ð1Þ
k [ cp, where k ¼ 1; 2; 3; i ¼ 1; � � � ;N, given

estimated bias and weight in each neuron. Further, the

entire neuron is dropped and no longer be used for next

iteration if the defined subset in this neuron is either too

large or too small based on pre-specified criteria. For

example, the green neuron in the middle is dropped due to

small size of subset. If the subset size is close to the full

data size, the sample is almost identical to original training

data, which is not beneficial for generating diversified

samples. On the other hand, if the subset size is too small,

the sample is not representative of the original data, and the

base learner built on this sample does not have good per-

formance on the entire training data. We will show in Sect.

2.3, the diversity and accuracy of the base learners are the

two key elements for the final ensemble performance. As

the result of the first iteration in the first step, we leverage

NN linear hyperplane in the neurons to perform data par-

tition as shown in Fig. 3, of which the idea is similar to

oblique trees [12]. Plots (a), (b), and (c) in Fig. 3 have

shown how data are partitioned in different ways for these

three neurons based on w
ð1Þ
k ’s and b

ð1Þ
k ’s, k ¼ 1; 2; 3,

obtained from the first iteration. The non-white regions

(yellow, green or red) indicate the subsets, where all

observation satisfy b
ðjÞ
k þ xTi w

ðjÞ
k [ cp, and will be used to

fit single-hidden-layer NNs in the second iteration. Notice

that the non-white region in plot (b) is so small, which

corresponds to the dropped green neuron in Fig. 2. Plot

(d) in Fig. 3 shows the combination of plot (a) and (c). As

we can see, the two subsets are overlapped, which is dif-

ferent from the subsets defined in the traditional regression

or decision tree structure, which uses the exclusive

partition.

Fig. 2 An illustration of LIFE framework with ½K1;K2;K3� ¼ ½3; 3; 2�. Regions with a smiling emoji face indicate that the subsets satisfying the

sampling conditions and are used for NN models training in the next iteration
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In the second iteration of the first step, single-hidden-

layer NNs with three hidden neurons are fitted indepen-

dently using the subsets defined from the first iteration.

After that, the entire training set is evaluated for data

sampling through NN linear projection b
ð2Þ
k þ xTi w

ð2Þ
k ,

where k ¼ 1; � � � ; 6; i ¼ 1; � � � ;N; and new subsets are

defined satisfying b
ð2Þ
k þ xTi w

ð2Þ
k [ cp. Note that, the new

subsets are defined on the entire training data, not the

samples from the previous iteration, which is also very

different from traditional regression or decision tree

structure. Again, neurons with too small or too large subset

are dropped forever, as shown in the first node (in brown)

and the last node (in pink) of the second hidden layer from

Fig. 2, corresponding to (a1) and (c3) in Fig. 4. In addition,

Fig. 4 shows data partition obtained from the second iter-

ation, where plots (a1), (a2), and (a3) represent the

partitions generated from NN trained on the subset of the

first node (yellow) in the first iteration, while plots (c1),

(c2), and (c3) correspond to the third node (red) in the first

iteration. Plot (d2) shows that each training data point as

least belongs to one of the six subsets in (a1–a3) and (c1–

c2). We do expect all or most data points are covered by

different subsets. The reason is that the neurons with dif-

ferent active regions in NN are representing different fea-

tures and patterns from the data, LIFE trains the same type

of base learner model on part of the dataset but evaluates it

on the entire dataset. This leads to small errors appearing in

the region of sampled data and large errors outside region.

Therefore, data sampling with these active regions can

effectively define subsets for generating more diverse

representation of data and producing less correlated pre-

diction errors. The sampling in this supervised manner is

Fig. 3 That is data partition by NN linear projection after the first iteration and observations in the colored area from (a), (b), (c) will be selected
in the each subset. The (d) shows two kept data partitions in one plot

Fig. 4 It is data partition by NN linear projection after the second iteration and observations in the colored area from (a1–a3), (c1–c3) will be
selected in the each subset. The (d1) displays all training data points in blue, and the (d2) shows four kept data partitions in one plot
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better than sampling in a random way and this is further

discussed in Sect. 5. In practice, the first step can be

reduced to one iteration or have more than two iterations,

displayed in Algorithm 1.

In the second step, four single-hidden-layer NNs, each

with two hidden neurons, are trained as base learners

independently on the subsets defined at the end of the first

step, and then the features are generated by the ReLU

activation functions. Please note that the features are

evaluated on the entire training dataset. In the third step,

we combine all these new features together. Since all

features are obtained based on the entire training set, which

technically forms a design matrix with dimension N � mJ ,

where N is the size of training set and mJ is the total

number of extracted features from step 2 with J ¼ 8 shown

in Fig. 2. Then, a linear model is fitted on these features
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and bi; i ¼ 1; � � � ;mJ ; is the coefficient of each feature. In

the default setting, the linear regression or logistic model is

applied to combine neural nodes extracted from different

base learners and make a final prediction. However, there

may be too many features and some of them can even be

highly correlated, leading to overfitting problem. There-

fore, we need to prune some redundant neural nodes

through adding regularization or removing some base

learners. Both methods can not only prevent overfitting, but

also produce a more parsimonious NN model with fewer

nodes that is beneficial for interpretation. As a regularized

regression method that linearly combines the L1 and L2
penalties, the elastic net is one of the options, and it is used

in the paper for the third step of model aggregation and

pruning. LASSO and ridge regression are treated as special

cases of elastic net.

By combining multiple relatively narrow but diversified

single-hidden-layer NNs with KJ hidden neurons for each,

the LIFE algorithm finally constructs a wide single-hidden-

layer NN with mJ hidden neurons, which is 8 in Fig. 2. This

trained process is completely different from the traditional

methods, with which a NN is optimized as a whole by

stochastic gradient based optimizers. In most cases, it is

numerically difficult and computational expensive to train

a single-layer NN and achieve good performance. LIFE can

help overcome this difficulty and achieve decent perfor-

mance. In addition, LIFE can leverage parallel computation

to significantly reduce the training time. In the end, we

provide the detailed pseudo-code of LIFE in J iterations,

described in Algorithm 1, where mj indicates the number of

remaining neural nodes after the jth iteration in the first

step, where j ¼ 1; � � � ; J. Both u and l are maximal and

minimal proportions of training set size, which provides the

upper and lower bound for subset size, respectively. The

neuron will be dropped if the proportion of subset size is

beyond the range.

2.3 Theoretical foundation

The ensemble method, such as stacking [13], bagging [2],

boosting [14] or Bayesian model averaging [15, 16] is

composed of a multiple independently or sequentially

trained regressors or classifiers whose predictions are

combined or sequentially derived to make final predictions.

Empirically, ensembles tend to yield better results than a

single model when there is a significant diversity among

the models [17]. For the past few decades, many studies

have been focusing on accuracy and diversity of ensemble

methods in either regression [18] or classification case

[19–21]. (Krogh and Vedelsby (1994) [22]) proposed

ambiguity decomposition and a computable approach to

minimize the quadratic error of the ensemble estimator,

while (Ueda and Nakano (1996) [23]) derived a general

expression of bias-variance-covariance decomposition.

(Brown et al. (2005) [24]) and (Hansen (2000) [25])

investigated the connections between ambiguity decom-

position and bias-variance-covariance, and have shown

they are identical. Based on ambiguity decomposition, we

establish the theoretical foundation for LIFE and extend

loss decomposition for both regression and classification

setting, which will be discussed in Sects. 2.3.1 and 2.3.2.

2.3.1 Connection to stacking

Stacking is a type of ensemble method, by which a final

model is trained from the combined predictions of another

models. In stacking, the predictions from different machine

learning models are used as new inputs and are combined

to generate a new set of predictions. Those predictions can

be used on additional layers, or the process can stop here

with a final result. One important assumption behind

stacking is that different base learners can produce weakly

correlated prediction errors that are complementary. If we

use weighted averages, we might believe that some of the

base learner are better or more accurate and can be

assigned higher weights. In the framework of stacking, an

even better approach might be to estimate these weights

more intelligently by using another layer of the learning

algorithm, such as the linear model.

Some major differences between stacking method and

LIFE algorithm are shown in Table 1. Without neural

nodes flattening, LIFE is very similar to stacking. Despite

the differences between the two methods, the minimization

of loss function of LIFE is approximately equivalent to the

minimization of loss function for the two-stage stacking

method, which firstly fits multiple base learners (NN

trained on different subsets sampling by LIFE algorithm)

and use predictions from base learners as input to train a

model averaging model. Figures 5 and 6 indicate a strong

linear relationship between LIFE and the stacking method

with different hyper-parameter setup in terms of MSE loss

or cross-entropy loss in both regression and classification

cases. This linear relationship has be verified by both

simulated data (MIM) and real data (California Housing for

regression and Gamma Telescope for classification). Due

to the BLUE (Best linear unbiased prediction) property of

OLS estimator in linear regression, the joint estimation of

the coefficients of all the combined features in the three

step makes LIFE always outperform two-stage stack

ensemble method with the same setting. This can be veri-

fied in Fig. 5 that all the points are below the green diag-

onal line. For classification case, LIFE also performs better

than stacking method with smaller minimum loss as shown

in the white box of Fig. 6.
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2.3.2 Loss function decomposition

(Krogh and Vedelsby (1994) [22]) proposed ambiguity

decomposition for quadratic error of the ensemble esti-

mator which is the sum of the quadratic loss of individual

base learners and the ambiguity measure for diversity. We

extend the ambiguity decomposition to both mean square

error and cross-entropy error via Taylor expansion, where

the two loss functions corresponds to regression and clas-

sification, respectively. Let an ensemble model with M

base learners be expressed as fens ¼
PM

j¼1 bjf
ðjÞ, where

PM
j¼1 bj ¼ 1 and bj � 0.

For any loss function that is twice differentiable, we can

expand the loss function of jth base learner around output of

an ensemble model based on Taylor’s theorem with Peano

form of the remainder as follows:

Table 1 Difference between LIFE and stacking

Aspect Stacking Life

Base learner Different models or same model with different settings Same model with same setting trained on different subsets of

data

Model

averaging

Linear or nonlinear combination of prediction from base

learners

Linear or nonlinear combination of features flatten from base

learners

Fig. 5 Relationship between LIFE and stacking (regression)

Fig. 6 Relationship between LIFE and stacking (classification)
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lðy; f ðjÞÞ ¼ lðy; fensÞ þ l0ðy; fensÞðf ðjÞ � fensÞ

þ 1

2
l00ðy; f ðjÞHÞðf ðjÞ � fensÞ2;

ð1Þ

where the value of f ðjÞH is between fens and f
ðjÞ. Multiplying

both sides of Eq. (1) by wj and taking a sum yield:

XM

j¼1

bjlðy; f ðjÞÞ

¼
XM

j¼1

bjlðy; fensÞ þ
XM

j¼1

bjl
0ðy; fensÞðf ðjÞ � fensÞ

þ 1

2

XM

j¼1

bjl
00ðy; f ðjÞHÞðf ðjÞ � fensÞ2:

ð2Þ

The second term on the right side of (2) is expressed by:

XM

j¼1

bjl
0ðy; fensÞðf ðjÞ � fensÞ

¼ l0ðy; fensÞ
XM

j¼1

bjf
ðjÞ � fens

XM

j¼1

bj

( )

¼ l0ðy; fensÞffens � fensg ¼ 0:

ð3Þ

Since this term is zero, the loss function lðy; fensÞ of the

ensemble can be decomposed into:

lðy; fensÞ ¼
XM

j¼1

bjlðy; f ðjÞÞ �
1

2

XM

j¼1

bjl
00ðy; f ðjÞHÞðfens � f ðjÞÞ2:

ð4Þ

In regression case, let fi ¼
PM

j¼1 bjf
ðjÞ
i be individual pre-

dicted value of an ensemble model for ith observation,

where M is the number of base learners, f
ðjÞ
i represents

individual predicted value of jth base learner for ith obser-

vation and bj denotes regression coefficient for jth base

learner. Basically, the mean squared error (MSE) is com-

monly used loss function lðy; f Þ ¼ 1
N

PN
i ðyi � fiÞ2 for

regression problems, where N is the total number of

observations in the entire dataset. Based on Eq. (5), MSE of

an ensemble model can be written in terms of the ambi-

guity decomposition given xi; i ¼ 1; � � � ;N:

MSE ¼ 1

N

XN

i¼1

ðyi � fiÞ2 ¼
1

N

XN

i¼1

yi �
XM

j¼1

bjf
ðjÞ
i

 !2

¼ 1

N

XN

i¼1

XM

j¼1

bjðyi � f
ðjÞ
i Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
accuracy

� 1

N

XN

i¼1

XM

j¼1

bjðfi � f
ðjÞ
i Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diversity

:

ð5Þ

On the right-hand side of Eq. (5), the first term of this

decomposition is to measure average prediction accuracy

of base learners, while the second term is called ambiguity

(hence the name of the decomposition) and can be easily

interpreted in terms of diversity between individual base

learners. Unlike the bias-variance-covariance decomposi-

tion, the ambiguity decomposition highlights a trade-off

between the average accuracy of base learners, and their

deviation from the ensemble output.

Regarding LIFE, the base learner is a single-hidden-

layer neural network trained on a subset of all observations.

A stronger base learner indicates a better performance of

model, which is reflected by first term of Eq. (5). If the

subset size is small, the base learner is also weak, which

deteriorates performance. Thus, a lower bound is set up.

The power of LIFE framework comes from second term

diversity, which is due to data sampling during iterations.

Creating different subsets through sampling allows the

model to be trained on different aspects of data, which

produces diversity deliberately without resorting to other

machine learning algorithms. In general, the more diverse

the subsets, the better the predictive performance of LIFE.

Hence, the upper bound is necessary to ensure diversity of

subset since subset contains almost all observations and its

size is very large, making subsets loss diversity. Another

parameter cutoff point is set up to balance accuracy and

diversity as well.

For binary classification purposes, let fi ¼
PM

j¼1 bjf
ðjÞ
i be

individual predicted probability of an ensemble model for

ith observation, which is weighted average of predicted

probability or log-odds of base learner f
ðjÞ
i , where

PM
j¼1 bj ¼ 1 and bj � 0. The cross-entropy loss is widely

used for classification and it can be written as follows for

single observation:

lðyi; fiÞ ¼ �yilogðfiÞ � ð1� yiÞlogð1� fiÞ: ð6Þ

By plugging the loss function (14) into Eq. (4), we can

write average cross-entropy loss of an ensemble method on

training set fxi; yigi¼1;���;N in the probability space as

follows:
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XN

i¼1

½�yilogðfiÞ � ð1� yiÞlogð1� fiÞ�

¼
XN

i¼1

XM

j¼1

bj½�yilogðf ðjÞi Þ � ð1� yiÞlogð1� f
ðjÞ
i Þ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
accuracy

� 1

2

XN

i¼1

XM

j¼1

bj
yi � 2f

ðjÞH
i yi þ f

ðjÞH
i

� �2

½f ðjÞHi ð1� f
ðjÞH
i Þ�2

8
><

>:

9
>=

>;
ðfi � f

ðjÞ
i Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diversity

;

ð7Þ

where f
ðjÞH
i takes value between f

ðjÞ
i and fi. The term ðfi �

f
ðjÞ
i Þ2 is a measure of the differences in value between base

learner and the ensemble. The cross-entropy loss and its

decomposition in the log-odds space is provided in the

‘‘Appendix’’. Unlike diversity term in the regression case,

the second term (diversity) in the right-hand side of Eq. (7)

also includes the true class label yi and parameter with

unknown value f
ðjÞH
i . However, the interpretation of

decomposition is also clear. It shows that a lower average

accuracy of individual base learner can be compensated by

a higher disagreement with the ensemble, scaled by 1

ðf ðjÞHi Þ2
if

yi ¼ 1 or 1

ð1�f
ðjÞH
i Þ2

if yi ¼ 0 in the probability space. Since

bj
ðf ðjÞHi Þ2

or
bj

ð1�f
ðjÞH
i Þ2

is positive, the more deviance of predicted

probability between base learner and an ensemble model

implies more diversity.

We implement the loss decomposition on simulated data

(MIM) and real data (California Housing for regression and

Gamma Telescope for classification) to LIFE without

neural nodes flattening. It ensembles the predictions from

single-hidden-layer NN base learner directly which is the

two-stage stacking model averaging method discussed

above. As subset size in the sampling step of LIFE impact

Fig. 7 Loss decomposition for regression

9666 Neural Computing and Applications (2023) 35:9657–9685

123



the strength of diversity, we explore the overall loss, the

weighted sum individual base learner accuracy, and the

ambiguity measure against the average subset size over all

the single-hidden-layer NNs in the first step of LIFE. Here,

we vary the subset size by controlling the cutoff point cp

for linear project. Figures 7 and 8 show the relationship

between average subset size (in terms of the proportion of

original train data size) and loss for accuracy, loss for

diversity, and MSE loss in both regression and classifica-

tion cases. In plot (a) and (b), the blue curves indicate the

ambiguity diversity measure have a decreasing trend when

the subset size increases. This is consistent with the intu-

ition that the larger overlapping the subsets are, the less

diverse the base learners are. On the other hand, the

accuracy of the individual base learners is higher when

subset size is larger, as the sample is more representative of

the whole training set. Similarly, training on smaller sub-

sets has stronger diversity but leads to lower accuracy.

Plots (c) and (d) illustrate the trade-off between average

accuracy and diversity to minimize total loss, where the

dash line shows the optimal subset size achieving the

minimum loss. Combining the results from Sects. 2.3.1 and

2.3.2, we conclude that competitive predictive performance

of LIFE benefits from diversity due to data sampling in the

first step and the feature ‘flattening’ and joint estimation in

the third step.

3 Empirical experiment

In this section, we conduct multiple empirical experiments

via both simulated and real data for regression and classi-

fication cases to confirm the competitive performance of

LIFE. We have generated multiple datasets with Normal

distribution and heavy-tailed predictor distribution

(Laplace distribution), as well as different function forms

to analyze predictive performance and computational effi-

ciency. All datasets are split into 80% training data and

20% testing data. Other benchmark models including sin-

gle-hidden-layer NN trained by different optimizer (local

Fig. 8 Loss decomposition for classification
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linear approximation and Adam algorithm), and other

machine learning algorithms including multilayer FFNN,

Xgboost, and random forest are tested on the same data for

comparison after extensive hyper-parameter tuning. Local

linear approximation (LLA) algorithm is a recently pro-

posed method to estimate the weights and biases of single-

Table 2 Regression on

simulated data (normal

distribution)

Model Metric Oracle LIFE (LLA) LLA LIFE (Adam) Adam FFNN Xgboost RF

GAM RMSE 1.000 1.046 1.062 1.063 1.149 1.104 1.065 1.906

(0.012) (0.040) (0.016) (0.023) (0.025) (0.020) (0.037)

R2 0.965 0.962 0.961 0.961 0.954 0.957 0.960 0.873

(0.001) (0.003) (0.001) (0.002) (0.002) (0.002) (0.005)

T N/A 75s 120s 46s 55s 81s 8s 44s

AIM RMSE 1.000 1.077 1.092 1.153 1.202 1.159 2.606 3.285

(0.018) (0.032) (0.029) (0.040) (0.033) (0.173) (0.161)

R2 0.984 0.981 0.980 0.978 0.975 0.978 0.886 0.828

(0.001) (0.001) (0.001) (0.004) (0.001) (0.010) (0.010)

T N/A 7s 51s 17s 40s 46s 27s 48s

MIM RMSE 1.000 1.028 1.043 1.036 1.047 1.037 1.057 1.139

(0.005) (0.003) (0.006) (0.004) (0.009) (0.004) (0.011)

R2 0.937 0.933 0.931 0.931 0.930 0.931 0.929 0.918

(0.003) (0.003) (0.003) (0.003) (0.007) (0.003) (0.008)

T N/A 29s 313s 81s 45s 51s 14s 44s

Columns 4–7 represent just single-hidden-layer NNs optimized by LIFE (LLA), LLA, LIFE (Adam), and

Adam, while there are three state-of-art machine learning methods including FFNN, Xgboost, and random

forest (RF) on the right side. FFNN is multi-hidden-layer feed forward NN, where range for number of

hidden layers is from two to four. In addition, Xgboost and RF are two tree-based ensemble methods. The

figures inside parenthesis indicate the standard deviation of metrics, and time represents training time of

one replication. The numbers in bold represent the optimal results of this metric

Table 3 Regression on

simulated data (laplace

distribution)

Model Metric Oracle LIFE (LLA) LLA LIFE (Adam) Adam FFNN Xgboost RF

GAM RMSE 1.000 1.166 1.258 1.427 1.629 1.460 1.439 3.242

(0.079) (0.091) (0.192) (0.100) (0.205) (0.256) (0.226)

R2 0.992 0.989 0.987 0.984 0.979 0.983 0.983 0.920

(0.001) (0.001) (0.003) (0.002) (0.004) (0.005) (0.005)

T N/A 48s 84s 19s 96s 75s 5s 20s

AIM RMSE 1.000 1.057 1.084 1.122 1.192 1.166 2.031 2.491

(0.026) (0.040) (0.055) (0.084) (0.077) (0.099) (0.204)

R2 0.968 0.966 0.964 0.962 0.957 0.959 0.876 0.804

(0.004) (0.005) (0.003) (0.004) (0.004) (0.012) (0.035)

T N/A 10s 61s 22s 59s 26s 8s 56s

MIM RMSE 1.000 1.060 1.110 1.060 1.096 1.088 1.099 1.555

(0.017) (0.065) (0.018) (0.026) (0.018) (0.013) (0.081)

R2 0.969 0.965 0.961 0.965 0.962 0.963 0.962 0.925

(0.001) (0.005) (0.001) (0.002) (0.001) (0.001) (0.008)

T N/A 20s 195s 39s 42s 32s 6s 43s

Columns 4–7 represent just single-hidden-layer NNs optimized by LIFE (LLA), LLA, LIFE (Adam), and

Adam, while there are three state-of-art machine learning methods including FFNN, Xgboost, and random

forest (RF) on the right side. FFNN is multi-hidden-layer feed forward NN, where range for number of

hidden layers is from two to four. In addition, Xgboost and RF are two tree-based ensemble methods. The

figures inside parenthesis indicate the standard deviation of metrics, and time represents training time of

one replication. The numbers in bold represent the optimal results of this metric

9668 Neural Computing and Applications (2023) 35:9657–9685

123



hidden-layer NN by iterative linear regression and linear

approximation of the ReLU activation function [26]. The

LLA algorithm is distinguished from existing gradient

descent algorithms in that it utilizes the Hessian matrix in

the same spirit of Fisher scoring algorithm for nonlinear

regression models with normal error. The outline of the

LLA algorithm is included in the ‘‘Appendix’’.

3.1 Simulated data

3.1.1 Regression

For the regression scenario, there are three different func-

tion forms including generalized additive model (GAM),

additive index model (AIM), and multiple index model

(MIM), which are expressed, as follows:

Table 4 Classification on

simulated data (normal

distribution)

Model Metric Oracle LIFE (LLA) LLA LIFE (Adam) Adam FFNN Xgboost RF

GAM AUC 0.984 0.974 0.968 0.973 0.945 0.973 0.975 0.964

(0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002)

logloss 0.113 0.146 0.158 0.148 0.247 0.152 0.141 0.166

(0.005) (0.004) (0.010) (0.005) (0.029) (0.005) (0.006) 0.006

AIM AUC 0.836 0.751 0.535 0.752 0.742 0.752 0.687 0.715

(0.008) (0.010) (0.037) (0.010) (0.010) (0.010) (0.010) (0.011)

logloss 0.359 0.422 0.485 0.428 0.448 0.431 0.457 0.447

(0.005) (0.003) (0.005) (0.006) (0.010) (0.004) (0.001) (0.002)

MIM AUC 0.888 0.839 0.838 0.838 0.830 0.839 0.837 0.834

(0.005) (0.008) (0.007) (0.008) (0.008) (0.008) (0.008) (0.007)

logloss 0.331 0.386 0.388 0.387 0.399 0.387 0.388 0.391

(0.010) (0.010) (0.009) (0.010) (0.011) (0.009) (0.010) (0.009)

Columns 4–7 represent just single-hidden-layer NNs optimized by LIFE (LLA), LLA, LIFE (Adam), and

Adam, while there are three state-of-art machine learning methods including FFNN, Xgboost, and random

forest (RF) on the right side. FFNN is multi-hidden-layer feed forward NN, where range for number of

hidden layers is from two to four. In addition, Xgboost and RF are two tree-based ensemble methods. The

figures inside parenthesis indicate the standard deviation of metrics. The numbers in bold represent the

optimal results of this metric

Table 5 Classification on simulated data (laplace distribution)

Model Metric Oracle LIFE (LLA) LLA LIFE (Adam) Adam FFNN Xgboost RF

GAM AUC 0.996 0.990 0.984 0.990 0.857 0.976 0.991 0.979

(0.000) (0.001) (0.003) (0.001) (0.012) (0.002) (0.001) (0.002)

logloss 0.051 0.081 0.100 0.081 0.252 0.133 0.079 0.120

(0.002) (0.003) (0.006) (0.003) (0.012) (0.004) (0.004) (0.003)

AIM AUC 0.866 0.802 0.797 0.802 0.795 0.802 0.737 0.743

(0.012) (0.018) (0.020) (0.018) (0.021) (0.017) (0.014) (0.015)

logloss 0.230 0.270 0.274 0.271 0.281 0.273 0.298 0.296

(0.006) (0.008) (0.012) (0.008) (0.007) (0.007) (0.004) (0.004)

raisebox1.5exMIM AUC 0.958 0.939 0.938 0.940 0.920 0.937 0.938 0.934

(0.003) (0.004) (0.003) (0.004) (0.003) (0.002) (0.004) (0.004)

logloss 0.225 0.268 0.272 0.268 0.421 0.276 0.271 0.279

(0.011) (0.012) (0.011) (0.012) (0.075) (0.010) (0.011) (0.010)

Columns 4–7 represent just single-hidden-layer NNs optimized by LIFE (LLA), LLA, LIFE (Adam), and Adam, while there are three state-of-art

machine learning methods including FFNN, Xgboost, and random forest (RF) on the right side. FFNN is multi-hidden-layer feed forward NN,

where range for number of hidden layers is from two to four. In addition, Xgboost and RF are two tree-based ensemble methods. The

figures inside parenthesis indicate the standard deviation of metrics. The numbers in bold represent the optimal results of this metric
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GAM : yi ¼ b1x1i þ b2
ffiffiffiffiffiffiffiffi
jx2ij

p
þ b3jx3ij

þ b4expðx4iÞ þ b5logðjx5ijÞ

þ b6maxð1; x6iÞ þ �i;

b ¼ fb1; � � � ; b6g

¼ f1:5;
ffiffiffi
5

p
; 2; 4eð

�1:5
7
Þ; 4logð1:5Þ;�4g;

�i �Nð0; 1Þ; i ¼ 1; . . .;N;

ð8Þ

AIM : yi ¼ 2logðjb1x1i þ � � � þ b4x4ijÞ

þ expðb3x3i þ � � � þ b6x6i
9

Þ

þ maxð0; b5x5i þ b6x6iÞ þ �i;

b ¼ fb1; � � � ; b6g

¼ f3;�2:5; 2;�1:5; 1:5;�1g;

ð9Þ

MIM : yi ¼ expðb1x1i þ b2x2iÞb3x3i

þ b4x4i
1þ b5jx5ij

þ maxð2; b6x6iÞ þ �i;

b ¼ fb1; � � � ; b6g

¼ f0:03;�0:025; 1;�3; 1:5;�2g;

ð10Þ

where N ¼ 20k and all predictors fxjigj¼1;���;6;i¼1;���;N are

drawn from Normal or Laplace distribution. For regression,

the experimental results show mean and standard deviation

of RMSE, R2 and training time T over five replications in

Tables 2 and 3, while logloss and AUC are used as a

performance metric in the classification case as shown in

Tables 4 and 5. Bayesian optimization allows us to jointly

tune more parameters with fewer experiments and find

better values, so we implement it to perform extensive

hyper-parameter tuning on all the algorithm. The important

hyper-parameters for LIFE include the number of itera-

tions, the number of neurons in each iteration, upper and

Table 6 Regression on real data

Data Metric LIFE (LLA) LLA LIFE (Adam) Adam FFNN Xgboost RF

Abalone RMSE 2:112� 0:077 2:162� 0:074 2:137� 0:071 2:179� 0:108 2:195� 0:133 2:169� 0:068 2:170� 0:071

R2 0:570� 0:031 0:549� 0:031 0:560� 0:029 0:543� 0:057 0:534� 0:047 0:546� 0:028 0:546� 0:029

T 2s 289s 1s 35s 17s 1s 1s

Airfoil RMSE 0:225� 0:020 0:288� 0:021 0:276� 0:026 0:293� 0:018 0:270� 0:034 0:238� 0:016 0:343� 0:023

R2 0:949� 0:009 0:917� 0:012 0:923� 0:014 0:913� 0:011 0:925� 0:019 0:943� 0:008 0:881� 0:016

T 1s 14s 1s 8s 1s 1s 1s

Aquatic

Toxicity

RMSE 1:193� 0:066 1:220� 0:045 1:210� 0:068 1:223� 0:096 1:255� 0:125 1:214� 0:101 1:204� 0:082

R2 0:484� 0:058 0:461� 0:039 0:469� 0:060 0:455� 0:088 0:425� 0:117 0:464� 0:089 0:473� 0:071

T 1s 41s 1s 2s 1s 1s 1s

Bike

Sharing

RMSE 41:98� 1:299 47:66� 0:946 45:34� 1:103 50:74� 1:601 45:99� 1:737 41:71� 1:184 66:38� 1:257

R2 0:946� 0:003 0:930� 0:003 0:937� 0:003 0:922� 0:005 0:935� 0:005 0:947� 0:003 0:866� 0:005

T 85s 2194s 81s 266s 114 13s 12s

California

Housing

RMSE 0:500� 0:012 0:527� 0:011 0:521� 0:009 0:535� 0:008 0:519� 0:011 0:479� 0:007 0:486� 0:007

R2 0:812� 0:009 0:791� 0:008 0:796� 0:007 0:784� 0:007 0:797� 0:008 0:825� 0:005 0:822� 0:005

T 13s 108s 8s 74s 40s 12s 40s

CASP RMSE 3:865� 0:034 4:111� 0:049 4:081� 0:047 4:133� 0:071 4:067� 0:037 3:786� 0:022 3:951� 0:016

R2 0:601� 0:007 0:548� 0:011 0:555� 0:010 0:543� 0:016 0:558� 0:008 0:617� 0:004 0:583� 0:004

T 216s 2881s 54s 339s 83s 60s 56s

Electrical

Grid

RMSE 0:007� 0:000 0:011� 0:001 0:008� 0:000 0:009� 0:001 0:009� 0:001 0:011� 0:000 0:013� 0:000

R2 0:959� 0:003 0:908� 0:016 0:949� 0:003 0:944� 0:009 0:945� 0:011 0:908� 0:003 0:877� 0:004Þ
T 25s 27s 4s 27s 17s 16s 18s

Columns 3–6 represent just single-hidden-layer NNs optimized by LIFE (LLA), LLA, LIFE (Adam), and Adam, while there are three state-of-art

machine learning methods including FFNN, Xgboost, and random forest (RF) on the right side. FFNN is multi-hidden-layer feed forward NN,

where range for number of hidden layers is from two to four. In addition, Xgboost and RF are two tree-based ensemble methods. The figures after

‘±’ sign indicate the standard deviation of metrics, and time represents training time of one replication. The numbers in bold represent the

optimal results of this metric.
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lower bound. We marked optimal results that have won the

campaign in bold.

As illustrated in Tables 2 and 3, the result is pre-

dictable regardless of the distribution predictors drawn.

LIFE algorithm with LLA optimizer achieves higher

accuracy among all methods in terms of predictive per-

formance on the test set. The values of two metrics from

LIFE (LLA) are close to oracle values, which implies LIFE

performs well in the data with a smoothing response sur-

face. If we compare results from one-hidden-layer FFNNs

trained by LIFE algorithm with either LLA or Adam base

learners and non-ensemble algorithms of LLA or Adam,

LIFE always outperforms the relevant optimization meth-

ods used to train single-hidden-layer FFNN as a whole due

to the generated diversity of data sampling. In addition, the

performance of LIFE also depends on the strength of

individual NN base learner, which can be easily spotted in

Tables 2 and 3 that LIFE (LLA) outperforms LIFE (Adam).

From the perspective of computational efficiency, LIFE

algorithm also shows some advantages over other single-

hidden-layer NN training algorithms. In general, LIFE

algorithm can not only boost predictive performance of

one-hidden-layer NN, but also speed up training, especially

with respect to wide NN with large hidden-layer

dimension.

3.1.2 Classification

For classification case, the functional forms in simulation

setup are similar to the ones in regression case except that

the coefficients are a little bit different. Detailed informa-

tion on formulas can be found in ‘‘Appendix’’. Similar to

the setup in regression case, we choose N ¼ 20k and all

predictors are drawn from either Normal or Laplace dis-

tribution. The response variable is sampled from Bernoulli

distribution with probability calculated using the logit link

function.

Tables 4 and 5 show the simulation results from binary

scenario, where data are generated from Normal distribu-

tion and Laplace distribution, respectively. Similar to the

results in regression case, LIFE (LLA) has won the cam-

paign in four out of six functional forms. LIFE (Adam) also

performs pretty well especially in Table 5 for Laplace

distribution. For data drawn from Normal distribution

shown in Table 4, LIFE (Adam) is also quite close to the

optimal result. Furthermore, there is a strong evidence to

show LIFE algorithm does improve the performance of

base learners with larger AUC, smaller logloss and smaller

standard errors of both metrics. Even if the base learner is

not strong enough, like Adam for GAM and MIM in

Laplace distribution (Table 5), with which AUC or logloss

or both has large standard error, the ensemble approach in

Table 7 Classification on real data

Data Metric LIFE (LLA) LLA LIFE (Adam) Adam FFNN Xgboost RF

Bank AUC 0:796� 0:006 0:790� 0:007 0:796� 0:006 0:793� 0:006 0:794� 0:006 0:799� 0:008 0:800� 0:005

Market Logloss 0:288� 0:003 0:292� 0:003 0:289� 0:004 0:294� 0:003 0:288� 0:003 0:288� 0:003 0:286� 0:003

Breast AUC 0:997� 0:002 0:991� 0:009 0:996� 0:004 0:994� 0:005 0:996� 0:004 0:992� 0:006 0:993� 0:006

Cancer Logloss 0:096� 0:015 0:143� 0:088 0:084� 0:027 0:340� 0:207 0:099� 0:014 0:114� 0:042 0:090� 0:019

Wisc.

Higgs AUC 0:912� 0:001 0:904� 0:002 0:914� 0:001 0:891� 0:003 0:912� 0:001 0:911� 0:001 0:911� 0:001

Boson Logloss 0:353� 0:001 0:368� 0:004 0:348� 0:001 0:399� 0:005 0:353� 0:001 0:355� 0:001 0:357� 0:001

Home AUC 0:853� 0:005 0:841� 0:003 0:860� 0:003 0:848� 0:006 0:858� 0:003 0:858� 0:003 0:854� 0:003

Lend Logloss 0:046� 0:001 0:047� 0:001 0:046� 0:001 0:047� 0:001 0:046� 0:001 0:046� 0:001 0:046� 0:001

MAGIC AUC 0:943� 0:002 0:928� 0:003 0:938� 0:003 0:909� 0:008 0:938� 0:003 0:936� 0:002 0:937� 0:003

Gamma Logloss 0:275� 0:007 0:311� 0:007 0:288� 0:007 0:371� 0:019 0:287� 0:006 0:291� 0:005 0:296� 0:005

Telescope

Mush AUC 1� 0 1� 0 1� 0 1� 0 1� 0 1� 0 1� 0

Room Logloss 0:001� 0 0:000� 0 0:001� 0:001 0:024� 0:036 0:004� 0:003 0:004� 0:001 0:005� 0:000

Ring AUC 0:998� 0:001 0:997� 0:001 0:998� 0:001 0:995� 0:002 0:997� 0:001 0:998� 0:000 0:995� 0:001

Rorm Logloss 0:049� 0:006 0:086� 0:020 0:051� 0:007 0:147� 0:009 0:075� 0:015 0:057� 0:004 0:162� 0:006

Columns 3–6 represent just single-hidden-layer NNs optimized by LIFE (LLA), LLA, LIFE (Adam), and Adam, while there are three state-of-art

machine learning methods including FFNN, Xgboost, and random forest (RF) on the right side. FFNN is multi-hidden-layer feed forward NN,

where range for number of hidden layers is from two to four. In addition, Xgboost and RF are two tree-based ensemble methods. The figures after

‘±’ sign indicate the standard deviation of metrics. The numbers in bold represent the optimal results of this metric
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LIFE (Adam) can dramatically reduce the variance.

Xgboost ranks at top for GAM in both distributions,

however, the differences between LIFE and Xgboost are

negligible with only 0.1% of difference in AUC and 3% of

difference in logloss.

3.2 Real data

Besides implementing LIFE algorithm on simulated data,

we also tested it on seven public datasets for regression and

eight datasets for classification and compared it with other

benchmark models including single-hidden-layer FFNN

and Xgboost. All datasets are split into 80% training data

and 20% testing data with 10 different random seeds,

which yield results over 10 replications. For all the data-

sets, we transformed categorical variables into dummy

variables and standardized the continuous variables, so that

the mean and the variance of each continuous variable are

equal to 0 and 1, respectively. A detailed description of all

datasets and corresponding data preprocessing steps are

outlined in the ‘‘Appendix’’.

3.2.1 Regression

The experiment results averaged over ten replications are

reported in Table 6, including root mean squared error

(RMSE), R-squared (R2), and training time (T).

As observed in Table 6, LIFE (LLA) is ranked as the

best algorithm in the four datasets. For the remaining three

datasets, LIFE (LLA) is still the second or third best

algorithm among all models with a close or slightly worse

predictive performance than optimal one (Xgboost or ran-

dom forest), which implies that the LIFE algorithm is

competitive with other state-of-art machine learning algo-

rithms. In addition, there is an average 4:6% or 1:8%

improvement in R-square of all real datasets when single-

hidden-layer NN is trained by LIFE (LLA or Adam)

instead of other optimization methods (LLA or Adam),

which is consistent with the conclusion made from exper-

iment in the simulated data. It is also worth mentioning that

computation efficiency of NN training has been signifi-

cantly boosted for almost all dataset via LIFE compared

with traditional NN training methods. In particular, if we

take a look at the largest real dataset CASP, training time

of NN via LIFE reduces to 216 seconds from 2881 seconds

or to 54 seconds from 339 seconds when we use LLA as

optimizer or Adam respectively, which is almost more than

six times faster. Although tree-based ensemble methods

Fig. 9 ResNet18 vs. its potential improvers

Table 8 ResNet18 vs. its

potential improvers
Data Metric ResNet18 ResNet18_LIFE ResNet18_Xgboost ResNet18_Adam

MNIST AUC 0.934 0.947 0.944 0.935

(0.030) (0.026) (0.027) (0.034)

Logloss 0.261 0.202 0.174 0.332

(0.046) (0.046) (0.045) (0.027)
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such as Xgboost and random forest show strong predictive

power in some datasets, they are still black-box models,

and they are hard to interpret. The biggest advantage of our

proposed algorithm LIFE is that it preserves the inter-

pretability of model, which is still single-hidden-layer NN

with very strong predictive performance and boosted

computation efficiency.

3.2.2 Classification

In the classification case, original LLA algorithm is not

stable, since it involves matrix inversion. We added a ridge

parameter into the matrix inversion and treat it as a hyper-

parameter in LLA algorithm. Experiments have shown

adding ridge parameter in LLA can give better and more

stable prediction than not adding ridge parameter. After

testing LLA and LIFE (LLA) with or without ridge

parameter, we further choose the best one for the

performance.

Table 7 presents similar patterns in real data analyses as

in simulation studies with LIFE (LLA) and LIFE (Adam)

taking turns to occupy the dominant position for most of

the datasets. LIFE performs much better than Xgboost and

random forest (RF) in most experiments. For example, with

Breast Cancer Wisconsin data, logloss in LIFE (Adam) is

26.3% lower than that in Xgboost, and with MAGIC

Gamma Telescope data, logloss has dropped by 7% from

random forest to LIFE (LLA). The performance of some

datasets, such as Bank Marketing data, where LIFE cannot

outperform Xgboost or RF, however, the performance is

competitive, with only 0.5% and 0.7% of difference in

AUC and logloss, respectively. Another aspect worth

mentioning is that Higgs Boson data contains quite a few

highly correlated variables. The results show that LIFE

algorithm outperforms all the rest of models, which indi-

cates LIFE really does an excellent job in predicting on

highly correlated structures.

We have also investigated whether LIFE algorithm can

further improve the performance of trained deep neural

network on image data. We here use ResNet18 proposed by

(He et al. 2016 [27]) as an example and apply the algo-

rithms on MNIST data [28]. The detailed information of

data preprocessing can be found in Case 8 from the

description lists of real datasets 6. After training MNIST

data using ResNet18, the output of final convolutional layer

has been extracted, which has size 8000� 512, and it is

also the input of feed forward neural network (FFNN) in

the final step of ResNet18. This 8000� 512 data is then

treated as the input of LIFE (Adam). Further, we also

attach Xgboost, Adam to ResNet18 and compare the

results.

3.2.3 Classification on image data

Figure 9 shows the performance of LIFE (orange line) is

better than ResNet18 (blue line) with consistently larger

AUC and smaller logloss in all of the 10 replications. LIFE

is comparable to Xgboost in terms of logloss in general

with all 10 values below ResNet18. However, in terms of

AUC, Xgboost is worse than ResNet18 with significantly

lower AUC in two replications (seed = 2 and seed = 8). On

the other hand, Adam (red line) is not able to further

improve the performance of ResNet18, which is consistent

with what we have discovered in the previous empirical

Fig. 10 Variable importance detection (LIFE)
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studies. Table 8 also indicates LIFE and Xgboost are both

capable of remarkably enhancing a trained deep NN with

similar performance. One last discovery is since the input

of LIFE contains 512 columns, it also indicates that LIFE

can handle high dimensionality quite well in terms of

prediction.

4 Interpretation

Interpretability is the degree to which one human being can

understand the cause of a decision or predict the result of a

model. The higher the interpretability of a machine learn-

ing or deep learning model, the easier it is for someone to

comprehend why certain decisions or predictions have

been made. A key advantage of LIFE is that it is still an

inherently interpretable model. From the perspective of the

NN structure, the model is a single-hidden-layer NN with

ReLU activation function where all the weights and bias

can be easily extracted and visualized. Moreover, the sin-

gle-layer NN with ReLU activation function can be

rewritten in the form of local linear model representation,

and be interpreted by exploring the patterns of local linear

model coefficients. Finally, the main and interaction effects

can be identified by exploring and aggregating the local

linear coefficients.

We use the bike sharing data result as an example to

illustrate the intrinsic interpretability of LIFE. Bike sharing

data is a public dataset hosted on UCI machine learning

repository, where there are around 17, 000 observations on

hourly (and daily) bike rental counts along with weather

and time information between 2011 and 2012 in the Capital

Bikeshare system. Out of the original 17 predictors, we

removed some non-meaningful and highly correlated ones,

leaving us with 9 predictors to predict hourly rental counts.

At the tiny expense of predictive performance, we applied

both the base learner selection method shown in Algorithm

3 in Sect. 5.2 and elastic net to reduce the number of base

learners and features so that the final single-hidden-layer

NN has a small number of significant neurons and is easier

for interpretation.

4.1 Explore the weights and bias of single-layer
NN

As LIFE finally generates a single-hidden-layer NN in the

third step, we can explore the weights ŵks and bias b̂ks of

the NN directly and identify which variable is important.

For bike sharing data, there are finally 116 new features (or

neurons) after base learner selection and elastic net regu-

larization. We measure the neuron importance by

stdðb̂krðb̂k þ xTŵkÞÞ=stdðf̂ Þ, and f̂ , where std is the stan-

dard deviation, f̂ is the predicted value of response variable

for regression or log-odds for classification, ŵks is the

neuron weight, and b̂k is the coefficient for neuron. This

quantity measures the importance of neurons/feature by

comparing the variation of each feature to the total vari-

ance. The histogram on the neuron importance for the 116

features in Fig. 10 shows that there are only 13 neurons

whose importance values are greater than 2% of the max-

imum importance.

Then, we can detect how each variable contributes to

each neuron by applying the following measurement:

Fig. 11 Variable importance detection (random forest)

Fig. 12 Parallel coordinates plot

for bikesharing data
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ŵkb̂k
stdðrðb̂k þ xTŵkÞÞ

stdðf̂ Þ

where we allocate neuron importance to each variable by

multiplying ŵk. This contribution measurement can be

simply visualized by heatmap between neurons and origi-

nal variables in Fig. 10. It shows that hour (hr) and working

day (workingday) are top significant variables with darker

colors for almost each important neuron compared with

other variables. Another variable temperature (temp) can

also be considered to relatively important except hr and

workingday.

Variable importance detection using random forest in

Fig. 11 shows similar findings, with hour (hr) having the

highest relative importance score, followed by temperature

(temp) and working day (workingday).

4.2 Treat a single-layer NN as a local linear
model

As we may have many features in the final wide single-

layer NN, it is difficult to visualize and explore the weights

and bias of all the neurons. Hence, we also propose to

interpret single-layer NN from local linear model per-

spective. Single-layer NN with ReLU function can be

considered a type of local linear model. Each linear pro-

jection would determine the active or inactive states of the

ReLU neurons at hidden layers, which define the layered

pattern. The activation region is constructed as a combi-

nation of those distinct patterns. Those activation regions

are mutually exclusive and regarded as convex polytopes

with closed-form boundaries [29]. A linear equation can be

used in all data points inside the activation region to rep-

resent the relationships between response and independent

variables. After defining the region each observation

belongs to, we can easily extract a linear equation for each

region based on estimated weights in the hidden and output

layers. The detailed algorithm that performs a linear

equation extraction the following:

We can visualize those linear equations by a parallel

coordinate plot, which allows comparing the estimated

coefficients of all predictors for different local linear

regions. Through the visualization of local linear equations,

we can not only have an overview of the importance of

each predictor in each region by comparing the magnitude

of coefficients, but also check the validity for effect of each

predictor on the response variables. It is worth mentioning

that those coefficients are comparable after standardizing

all the predictors. There are three scenario for a particular

independent variable:

1. Relatively large coefficients of the variable, compared

with others in terms of absolute values and have the

same signs, imply that this variable has a significant

positive or negative effect on the response variable if

all coefficients are positive or negative.

2. Relatively large coefficients of the variable with both

positive and negative signs strongly imply that this

variable has inconsistent slopes across local activation

regions, which might be due to either its own nonlinear
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main effect or the interaction effects with other

variables.

3. Small and close-to-zero coefficients indicate that this

feature is not important to explain the variation of the

response variable and can be removed from the model.

Furthermore, we were able to verify if the sign of estimated

coefficients of predictor in all regions is consistent with

domain knowledge or business sense. Figure 12 displays

the estimated coefficients of all predictors in the local

activation regions for bike sharing dataset. There are 116

neurons extracted from NN base learners and 47 local

regions created by Algorithm 2 and each local region has at

least three data points.

It clearly indicates that hour (hr), working day (work-

ingday) and temperature (temp) are the three most impor-

tant predictors with relatively higher absolute values of

their corresponding coefficients in several local regions,

which is pretty consistent with result from Fig. 11. Their

estimated coefficients present different directions across

local activation regions, which is consistent with our sec-

ond scenario.

This gives us a hint of interactions between those vari-

ables. Other variables such as humidity (hum) and wind

speed (windspeed) are insignificant based on their absolute

values of estimation coefficients from the plot. Sometimes

there are too many local regions and (Sudjianto

et al.(2020)) [29] provides two approaches to simplify and

Fig. 13 Plot matrix between am and xm
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reduce the number of local linear equations-merging and

flattening in their paper, where a variety of other diagnostic

tools and plots for local linear model have also been

provided.

4.3 Main and interaction effect detection

Even though the parallel coordinates plot provides a

guideline about the variable importance in each local

region, we still need a solid technique to detect nonlinear

main effects and interaction effects. To achieve this pur-

pose, we can treat single-hidden-layer NN as a varying

coefficient model through linear equation extraction shown

in Algorithm 2. As all the local linear equation coefficients

are varying over local regions, and region definition

depends on predictors, so the coefficients can be treated as

a function of predictors in Eq. 11.

f̂ i ¼ a0i þ a1ix1i þ � � � þ amixmi þ � � � þ apixpi;

i ¼ 1; � � � ; n;

where ami ¼ gðx1i; � � � ; xpiÞ;

ð11Þ

where p is the number of predictors and n is number of

observations. f̂ i is predicted value for regression and pre-

dicted log-odds for classification. ami is the coefficient for

mth variable at ith observation, and could also be a function

of all predictors, varying by different observations. Our

goal is to investigate what the functional forms of the

estimated coefficients are. Therefore, we separate ami into
two components representing main and interaction effects

in Eq. 12:

ami ¼ gðx1i; � � � ; xpiÞ ¼ gmainðxmiÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
main effect

þ gintðx1i; � � � ; xpiÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
interaction effect

:

ð12Þ

The first term in Eq. 12 is a function of xmi , including the

intercept of ami, and this term captures the main effect of

xmi. If ami has a significant intercept, then linear main effect

can be identified; while a strong relationship with xmi
indicates a nonlinear main effect. The remaining second

term is the function of other predictors and it may or may

not contain xmi. This term can be used to detect interactions

between xmi and other predictors. For an illustration, let us

look at a simple example with all estimated coefficients

constant except a1i ¼ h0 þ h1x1i þ h2x2i, then the varying

coefficient model can be expressed as follows:

yi ¼ a0i þ h0x1i þ h1x
2
1i þ h2ðx2iÞx1i þ a2x2iþ

� � � þ apxpi þ �i:
ð13Þ

Fig. 14 Heatmap for interaction

measures
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where gmainðx1iÞ ¼ h0 þ h1x1i and gintðx2iÞ ¼ h2x2i. We can

easily identify the interaction term between x1i and x2i, and

x1i shows a nonlinear main effect via its quadratic term. To

detect main effects and interaction effects from ami, we
propose the two-stage process below:

1. Check nonlinearity: Calculate conditional expectation

EðâmijxmiÞ by smoothing estimated coefficients of

predictors against itself1.

âmi � gmainðxmiÞ m ¼ 1; � � � ; p.
2. Check interactions: Remove main effect from ami, and

calculate conditional expectation Eðâmi �
ĝmainðxmiÞjxkiÞ by smoothing estimated coefficients of

predictors against each other variable.

âmi � ĝmainðxmiÞ� gmk ðxkiÞ k 6¼ m

We choose to use a two-stage process instead of a one-

stage process, as we can estimate its main and interaction

effect more accurately in the correlated predictor case and

split two effects effectively. Note that some special inter-

action effects may not be identified by one-stage process

such as y ¼ a0 þ a1x1 as an example, where a1 ¼ x1x2. In

this case, g12ðx2iÞ is zero curve. Fortunately, most common

interaction patterns can be identified by our two-stage

process. As long as gmk ðxkiÞ has a significant pattern on xki,

an interaction effect can be identified.

For the case of bike sharing data, we visualized all pairs

of varying coefficients and variables ðami vs xkiÞ with

scatter plots in Fig. 13. Due to
of̂ ðxÞ
oxm

¼ am , this is also

scattered partial derivative plot for f̂ ðxÞ. On top of the

scatter plot, we also draw gmainðxmiÞ against xmi in the

diagonal plots show and gmk ðxkiÞ agaist xki in the (m, k) off-

diagonal plots. To further quantify the magnitude of the

Fig. 15 ALE plots for predictors based on LIFE

1 The smoothing spline is used for illustration and other estimation

methods can also be applied.
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interaction effects, we calculated weighted standard devi-

ation of gmainðxmiÞ and gmk ðxkiÞ with population density as

weight. The heatmap of the interaction measures for bike

sharing data is provided in Fig. 14 where diagonals are

masked by zero.

The nonlinear patterns of variables can be clearly

spotted in the diagonal plots in Fig. 13. The most important

variable hour (hr) displays the drastic fluctuation compared

with others, indicating its nonlinear effect on response. As

evidenced in both Figs. 13 and 14, the top three interaction

pairs including hr vs workingday, hr vs weekday, and hr vs

temp can be easily identified.

In addition to interaction detection, we can obtain and

visualize the main effect of each predictor directly by

aggregating the local linear coefficients. Due to
of̂ ðxÞ
oxm

¼ am
in the varying coefficient setting, we compute the exact

main effect of xm by constructing a relationship between

f ðxjÞ and xj based on formula
R x
0
Eðof̂ ðxÞ

oxm
jxmÞdxm from

Accumulated Local Effects (ALE) plot, where the variable

is transformed back to original scale as seen in Fig. 15.

This ALE formulation can be simplified as
R x
0
EðamjxmÞdxm ¼

R x
0
gmainðxmÞdxm and its numerical

implementation of ALE is achieved by the Midpoint Rule.

The main effect for hr has two peaks and one trough,

which is similar to partial dependence plot from other

machine learning algorithms, while the main effect of temp

and hum shows a quadratic relationship. More specifically,

the peak of bike rentals happen around 7 am and 5–6 pm,

while very few people will rent bikes around 3–4 am.

People usually prefer to rent bikes in a nice day with

moderate temperature and humidity. Both of them are

pretty consistent with common sense.

5 Discussion

5.1 Different sampling schemes

The LIFE algorithm can be considered a general frame-

work with three steps, as discussed in the methodology

section. LIFE is very flexible and allows users to try dif-

ferent combinations of three steps. The first step presents

several data sampling options. In the paper, we use linear

projection inside NN neurons to split data and select data

points from active region for base learner training, as

shown in Fig. 2. Those linear projections are obtained with

trained NNs in a supervised setting. Given a fixed hyper-

parameter setup for LIFE, we have implemented our

method with different sampling choices including NN

projection, Random projection, Bootstrapping. In Table 9,

we can easily see that all the ensemble methods outperform

a single single-hidden-layer NN model optimized by LLA

Table 9 Sampling Method

Comparison
Data Metric NN projection Random projection Bootstrapping LLA or Adam

MIM (Regression) RMSE 1.060 1.095 1.138 1.110

(0.017) (0.023) (0.034) (0.065)

R2 0.965 0.962 0.960 0.961

(0.001) (0.002) (0.003) (0.005)

California Housing RMSE 0.500 0.525 0.519 0.527

(0.012) (0.020) (0.018) (0.011)

R2 0.812 0.792 0.797 0.791

(0.009) (0.016) (0.014) (0.008)

MIM (Classification) AUC 0.940 0.935 0.936 0.920

(0.004) (0.004) (0.003) (0.003)

Logloss 0.268 0.277 0.275 0.421

(0.012) (0.009) (0.007) (0.075)

Gamma telescope AUC 0.938 0.929 0.927 0.909

(0.002) (0.003) (0.003) (0.008)

lLgloss 0.288 0.307 0.314 0.371

(0.007) (0.007) (0.007) (0.019)

The different sampling methods in the first step of the general framework of LIFE are tested on two

simulated data and two real data. NN projection performs data partition by linear projection inside neurons

of NNs and then samples data from the selected region, which is the main part of LIFE algorithm used in

the paper. Random projection performs data partition by random linear projection, where weights and

biases are randomly drawn from standard normal. The bootstrapping selects observations randomly from

training set. The number in bold represents optimal result for this metric. LLA is used to optimize single-

hidden-layer NN base learner in the regression case, which Adam is used for classification case
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or Adam. Most importantly, sampling by NN linear pro-

jection is better than other sampling methods that create

subsets in a random way.

5.2 Base learner selection

For model aggregation and pruning, we can prune neurons

to have a single-layer NN with fewer neurons. We used

elastic net for pruning due to its simplicity, but pruning

methods besides elastic net can also be considered. Based

on properties of LIFE, we also developed an alternative

pruning method called base learner selection to reduce the

number of nodes in the final step. It is assumed that LIFE

works well because the correlations of prediction errors are

not strong among different base learners. Therefore, we can

remove base learner one by one, according to the correla-

tion between its prediction errors and prediction errors

from other base learners. In this way, we can still maintain

diversity and solve overfitting issue by keeping fewer

necessary base learners without sacrificing predictive per-

formance a lot. This method is thoroughly described by

Algorithm 3.

In Algorithm 3, the threshold s is the percentage of base
learners you want to retrieved from a pool of candidates.

When there is a large number of neurons in LIFE setting,

Fig. 16 Relationship between R2 and number of neurons. The red point indicates one using linear regression as a final step without base learner

selection, while blue points indicates model aggregation by base learner selection with different threshold ‘‘colour figure online’’

9680 Neural Computing and Applications (2023) 35:9657–9685

123



the elastic net is usually computational expensive and the

base learner selection is a good alternative by parallel

computation. Moreover, we can combine these two pruning

methods to achieve a simpler NN model from wide NN

faster. We also illustrate it using two simulated model

(GAM and MIM). The plots (a) and (b) in Fig. 16 show the

relationship between R2 and number of hidden neurons for

the feature extraction. Setting different thresholds in the

base learner selection Algorithm 3, we can construct sin-

gle-hidden-layer NN with different number of neurons. In

general, base learner selection algorithms can effectively

reduce number of neurons to produce a simpler model

without sacrificing predictive performance or obtain even

better results.

6 Conclusion

In this paper, we have proposed a novel algorithm that fits

single-hidden-layer NN to achieve three goals: ensuring

competitive predictive performance, boosting computa-

tional efficiency, and preserving the interpretability of the

model. Unlike traditional NN training methods, we train it

in an iterative way through multiple NNs layer-by-layer

training and then effectively combine them via neural

nodes flattening. We have evaluated the performance of our

approach using simulated and empirical data in terms of

predictive accuracy and computational efficiency and

found that it consistently outperforms single-hidden-layer

NN trained directly by LLA or Adam optimizer and

achieves competitive results as those of Xgboost.

This superior performance lies in three reasons: First, as

an ensemble method, the LIFE algorithm performs data

sampling through linear projection inside neural nodes,

which creates diversity among the models and contributes

to bias and variance reduction of prediction from combined

models. Second, the LIFE algorithm takes advantage of

single-hidden-layer NN structure to combine multiple

narrow single-hidden-layer NNs into a wide one via neural

nodes flattening Third, LIFE algorithm benefits from

leveraging parallel computing to train multiple NNs on

subsets of data simultaneously. Moreover, the base learner

selection method is introduced in the paper to help us prune

redundant neural nodes and produce a more parsimonious

model after several iterations of the LIFE algorithm. We

have also proposed a new method for main and interaction

detection from the perspective of interpretation.

Appendix

Loss decomposition in the log-odds space

The cross-entropy loss for one observation in the log-odds

space can be written as:

lðyi; fiÞ ¼ yilogð1þ e�fiÞ þ ð1� yiÞlogð1þ efiÞ ð14Þ

Therefore, the average cross-entropy loss is expressed as:

XN

i¼1

½yilogð1þ e�fiÞ þ ð1� yiÞlogð1þ efiÞ�

¼
XN

i¼1

XM

j¼1

bj½yilogð1þ e�f
ðjÞ
i Þ þ ð1� yiÞlogð1þ ef

ðjÞ
i Þ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
accuracy

�
XN

i¼1

XM

j¼1

bjf
ef

ðjÞH
i þ e�f

ðjÞH
i þ 2

½ð1þ e�f
ðjÞH
i Þð1þ ef

ðjÞH
i Þ�2

gðfi � f
ðjÞ
i Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diversity

ð15Þ

Local linear approximation (LLA) algorithm

The algorithm is extracted from Zeng, et al (2020) [26].

Note that hð0Þ ¼ x. Then, one-hidden-layer FNN with J1
nodes can be expressed as follows

hð1Þ ¼ mrðWhð0Þ þ bÞ ¼ ðrðwT
1 xþ b1Þ; � � � ; rðwT

J1
xþ bJ1ÞÞ

T ;

where we drop the subscripts of W and b for ease of

presentation. We set rðzÞ ¼ maxfz; 0g, the ReLU activa-

tion function. To estimate the weights and biases, we

minimize a nonlinear LS function

l1ðhÞ ¼
Xn

i¼1

yi � b0 �
XJ1

j¼1

bjrðwT
j xi þ bjÞ

( )2

Given w
ðcÞ
j and b

ðcÞ
j in the current step, we propose to

approximate rðxTwj þ bjÞ by a linear function based on the

first-order Taylor expansion of rðzÞ:

rðxTwj þ bjÞ 	 rðxTwðcÞ
j þ b

ðcÞ
j Þ

þ fðxTwj þ bjÞ � ðxTwðcÞ
j þ b

ðcÞ
j ÞgIðxTwðcÞ

j þ b
ðcÞ
j [ 0Þ

for j ¼ 1; � � � ; J1. Thus,
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bjrðxTwj þ bjÞ 	 bjrðxTw
ðcÞ
j

þ b
ðcÞ
j Þ þ cjIðxTw

ðcÞ
j þ b

ðcÞ
j [ 0Þ

þ mgTj xIðxTw
ðcÞ
j þ b

ðcÞ
j [ 0Þ

where cj ¼ bjðbj � b
ðcÞ
j Þ and mgj ¼ bjðwj � w

ðcÞ
j Þ. Define

z1ij ¼ rðxTi w
ðcÞ
j þ b

ðcÞ
j Þ, z2ij ¼ IðxTi w

ðcÞ
j þ b

ðcÞ
j [ 0Þ; and

z3ij ¼ xiIðxTi w
ðcÞ
j þ b

ðcÞ
j [ 0Þg; j ¼ 1 � � � ; J1. Further define

z1i ¼ ½z1i1; � � � ; z1iJ1 �, z2i ¼ ½z2i1; � � � ; z2iJ1 �; z3i ¼
½zT3i1; � � � ; zT3iJ1 �; and zi ¼ ½z1i; z2i; z3i�T , which is a J1ðpþ 2Þ-
dimensional vector. the objective function is approximated

by

Xn

i¼1

fyi � b0 �
XJ1

j¼1

fbjz1ij þ cjz2ij þ mgTj z3ijgg
2;

which is the LS function of linear regression with the

response yi and predictors zi. Denote the resulting LS

estimate of bj, cj and mgj by b̂j, ĉj and m̂gj, respectively. By
the definition of cj and mgj, we can update bj and wj as

shown in the step 2 of algorithm If jb̂jj is very close to zero,
one may simply set b

ðcþ1Þ
j ¼ b

ðcÞ
j and w

ðcþ1Þ
j ¼ w

ðcÞ
j . Thus,

we may estimate W and b by iteratively and regressing yi
on the updated zi. The procedure can be summarized as the

following algorithm.

1. Set initial value for W ð0Þ ¼ ½wð0Þ
1 ; � � � ;wð0Þ

J1
�T and b

ð0Þ
j ,

and let c ¼ 0.

2. Calculate zi defined in the text based on w
ðcÞ
j and b

ðcÞ
j ,

obtain the least squares estimate (LSE) b̂js, ĉjs and ĝjs
by running a linear regression yi on covariate zi, and

update the biases and weights by

b
ðcþ1Þ
j ¼ b

ðcÞ
j þ ĉj=b̂j; and w

ðcþ1Þ
j ¼ w

ðcÞ
j þ ĝj=b̂j:

if jb̂jj � e, where e is a constant for numerical stability

and is set to be 10�3 in our numerical experiment, and

keep the corresponding biases and weights unchanged

if jb̂jj\e.
3. Set c ¼ 1; 2; � � � ; and repeat Step 2 until the criterion of

algorithm convergence meets.

Functional forms for classification case
in simulation study

In classification case, we use three function forms includ-

ing generalized additive model (GAM), additive index

model (AIM), and multiple index model (MIM) expressed

as follows, where �i �Nð0; 1Þ; i ¼ 1; . . .;N.

GAM : f ðxiÞ ¼ 1:5x1i þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j � 2:5x2ij

p
þ 2jx3ij

þ 4 expð� 3

14
x4iÞ þ 4 logð1:5jx5ijÞ

� 4maxð1; x6iÞ þ �i:

ð16Þ

AIM : f ðxiÞ ¼ logðj3x1i � 2:5x2i þ 2x3i � 1:5x4ijÞ

þ expfð�1:5x4i þ 1:5x5i

� x6iÞ=11g þ �i:

ð17Þ

MIM : f ðxiÞ ¼ expð0:03x1i � 0:025x2iÞx3i

� 3x4i
1þ 1:5jx5ij

þ 2maxð1; x6iÞ þ �i:
ð18Þ

Real datasets

Regression

Case 1: Abalone. Original data come from a Marine

Resources Division Marine Research Laboratories in

Australia. The goal is to predict the age of abalone from

physical measurements, which is determined by cutting the

shell through the cone, staining it, and counting the number

of rings through a microscope. From the original data,

examples with missing values were removed, and the

ranges of the continuous values have been scaled for use.

Therefore, there are 4177 observations left and nine vari-

ables including an integer response variable (number of

rings), one categorical predictor (sex), and seven continu-

ous predictors (length, diameter, height, whole weight,

shucked weight, viscera weight, shell weight).

Case 2: Airfoil. It is NASA dataset, obtained from a series

of aerodynamic and acoustic tests of two- and three-di-

mensional airfoil blade sections conducted in an anechoic

wind tunnel. It comprises different size NACA 0012 air-

foils at various wind tunnel speeds and angles of attack.

There are 1503 observations and six variables, where the

response variable is scaled sound pressure level in decibels

and there are five independent variables containing fre-

quency in Hertzs, angle of attack in degrees, chord length

in meters, free-stream velocity, in meters per second,

suction side displacement thickness in meters.

Case 3: Aquatic toxicity. This dataset was used to develop

quantitative regression QSAR models to predict acute

aquatic toxicity toward the fish Pimephales promelas (fat-

head minnow) on a set of 908 chemicals. To predict acute

aquatic toxicity toward Daphnia Magna as a response

variable called LC50. Without missing values, it contains

values for 8 predictors (molecular descriptors) of 546
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chemicals (TPSA, SAacc, H-050, MLOGP, RDCHI,

GATS1p, nN, C-040).

Case 4: Bike sharing. This dataset contains the hourly and

daily count of rental bikes between years 2011 and 2012 in

Capital bike share system with the corresponding weather

and seasonal information. Specifically, the bike sharing

dataset contains 17379 data points of 16 predictors. Out of

the 16 independent variables, we removed two non-

meaningful information as well as two response-related

information. This leaves us with 12 variables including

hour, temperature, feeling temperature, humidity, wind

speed, season, workingday weekday and weather situation,

year and month.

Case 5: California housing. This dataset was derived from

the 1990 US census, using one row per census block group

and the target variable is the median house value for Cal-

ifornia districts. A block group is the smallest geographical

unit for which the US Census Bureau publishes sample

data (a block group typically has a population of 600 to

3000 people). It consists of 20640 observations and the

independent variables include longitude, latitude, housing

median age, medium income, population, total rooms, total

bedrooms and households.

Case 6: CASP. This is a dataset of Physicochemical

Properties of Protein Tertiary Structure, which is taken

from CASP 5-9. The goal is to predict RMSD-size of

residue given other physical attributes. There are 45730

observations and 9 predictors including total surface area,

nonpolar exposed area, fractional area of exposed nonpolar

residue, fractional area of exposed nonpolar part of residue,

molecular mass weighted exposed area, average deviation

from standard exposed area of residue, Euclidian distance,

secondary structure penalty, special Distribution con-

straints (N,K Value).

Case 7: Electrical grid. The local stability analysis of the

4-node star system (electricity producer is in the center)

implementing Decentral Smart Grid Control concept.

There are 10000 observations and 11 predictors including

tau½x�; x ¼ 1; 2; 3; 4 which are reaction time of participant,

p½x�; x ¼ 2; 3; 4 which are nominal power consumed (neg-

ative) divided by produced(positive)(real), and g½x�; x ¼
1; 2; 3; 4 that are coefficient (gamma) proportional to price

elasticity. The continuous response variable is the maximal

real part of the characteristic equation root.

Classification

Case 1: Bank marketing. The data provide information

regarding direct marketing campaigns of a Portuguese

banking institution. The classification goal is to predict if

the clients, who were contacted based on at least two phone

calls in general, would like to subscribe a term deposit or

not. The data contain 45211 examples and 16 variables

including 6 numerical variables (age, balance, day, cam-

paign, pdays, previous) and nine categorical variables (job,

marital, education, default, housing, loan, contact, month,

poutcome). Notice that input variable ‘duration’ is not

included in the analyses based on the suggestions from the

provider of this dataset since it highly affects the output

target and thus the variable should be discarded due to the

intention of building a realistic predictive model.

Case 2: Breast cancer wisconsin. Data come from origi-

nal Wisconsin Breast Cancer Database, with purpose of

detecting if the tissue is benign or malignant. The original

dataset contains 699 instances and 9 attributes. After

deleting rows with missing values, finally 683 instances are

used in our analyses. All predictive variables are numerical

with a scale of 1 to 10, including clump thickness, uni-

formity of cell size, uniformity of cell shape, marginal

adhesion, single epithelial cell size, bare nuclei, bland

chromatin, normal nucleoli, and mitoses.

Case 3: Higgs boson. This dataset was built from official

ATLAS full-detector simulation in 2014 that mixes ‘Higgs

to tautau’ events with different backgrounds, where the

events in which Higgs bosons were produced are com-

prised in the signal sample, while other known processes

mimicking the signal are considered as background noise.

The dataset contains 818238 events and 63 variables,

among which a few are highly correlated. The objective is

to detect signal from background based on characteristics

of events such as mass (estimated, transverse or invariant),

transverse momentum, centrality of the pseudo rapidity of

the lepton, azimuth angle, etc.

Case 4: Home lending. This is an internal First Lien

modeling data from Wells Fargo, which was constructed

from the entire panel dataset of loans provided from the

Consumer Lending Group’s (CLG) data modeling team.

The goal is to predict the probability of troubled loans

based on fico score, unemployment rate, delinquency sta-

tus, loan to value ratio (LTV), total employment, etc. The

toy dataset used in this paper contains 1 million observa-

tions and 43 variables, which was selected from 210 mil-

lion observations obtained by stacking. Training and

testing data are split based on ‘account id’ to prevent

overfitting.

Case 5: MAGIC gamma telescope. The dataset comes

from Major Atmospheric Gamma Imaging Cherenkov

Telescope project (MAGIC), which is Monte-Carlo gen-

erated to simulate registration of high energy gamma par-

ticles in a ground-based atmospheric Cherenkov gamma

telescope using the imaging technique. The objective is to

discriminate the images caused by signals (primary
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gammas) from the images caused by background (hadronic

showers initiated by cosmic rays) based on some charac-

teristics such as the attributes of ellipse (fLength, fWidth,

fM3Long, fM3Trans, fAlpha, fDist) and attributes on pix-

els (fSize, fConc, fConc1, fAsym). The dataset contains

19020 observations and 10 continuous predictive variables.

Case 6: Mushroom. This dataset includes descriptions in

terms of physical characteristics of samples related with 23

species of gilled mushrooms. Each species is identified as

poisonous or edible. The purpose is to predict the proba-

bility of a species being poisonous given the attributes of

the species such as cap (shape, surface, color), odor, gill

(attachment, spacing, size, color), stalk (surface and color

above or below ring), veil (type, color), ring (number,

type), spore print color, population and habitat, all of which

are categorical variables. The dataset contains 8124

instances and 21 variables.

Case 7: Ringnorm. It is a simulated dataset as an imple-

mentation of Leo Breimans ringnorm example with 7400

rows and 21 columns. Two classes contained in the

response variable, within each class explanatory variables,

are drawn from a multivariate Normal distribution.

Case 8: MNIST data. Data are originally obtained from

the MNIST database of handwritten digits collected from

hundreds of Census Bureau employees and high-school

students. The response variable contains signal digit from 0

to 9, which are further centered into 28� 28 gray-scaled

images. Then, the images are translated into regular dataset

with dimension 60,000 by 784, indicating that there are

60,000 images and 28� 28 positions of the field. Digit ‘1’

is considered as signal and all the other nine digits are

considered as noise and are re-encoded as ‘0.’ Training,

validation, and testing data are randomly selected from

these 60,000 observations for 10 times with size 8000,

2000, 2000, respectively. Images in the training dataset are

then further rotated by 20 degrees.
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