
Vol.:(0123456789)

Applicable Algebra in Engineering, Communication and Computing (2023) 34:521–537
https://doi.org/10.1007/s00200-021-00510-x

1 3

ORIGINAL PAPER

On the group of unit‑valued polynomial functions

Amr Ali Al‑Maktry1

Received: 9 July 2020 / Revised: 16 January 2021 / Accepted: 10 April 2021 /  
Published online: 29 May 2021 
© The Author(s) 2021

Abstract
Let R be a finite commutative ring. The set F(R) of polynomial functions on R is a 
finite commutative ring with pointwise operations. Its group of units F(R)× is just 
the set of all unit-valued polynomial functions. We investigate polynomial permuta-
tions on R[x]∕(x2) = R[�] , the ring of dual numbers over R, and show that the group 
PR(R[�]) , consisting of those polynomial permutations of R[�] represented by poly-
nomials in R[x], is embedded in a semidirect product of F(R)× by the group P(R) of 
polynomial permutations on R. In particular, when R = �q , we prove that 
P
�q
(�q[�]) ≅ P(�q)⋉�

F(�q)
× . Furthermore, we count unit-valued polynomial func-

tions on the ring of integers modulo pn and obtain canonical representations for 
these functions.

Keywords  Finite commutative rings · Polynomial functions · Polynomial mappings · 
Unit-valued polynomial functions · Permutation polynomials · Polynomial 
permutations · Dual numbers · Semidirect product

1  Introduction

Throughout this paper R is a finite commutative ring with unity 1 ≠ 0 . We denote by 
R× the group of units of R. A function F ∶ R ⟶ R is called a polynomial function 
on R if there exists a polynomial f ∈ R[x] such that F(r) = f (r) for each r ∈ R . In 
this case, we say that f induces (represents) F or F is induced (represented) by f. If F 
is a bijection, we say that F is a polynomial permutation on R and f is a permutation 
polynomial on R (or f permutes R). When F is the constant zero, f is called a null 
polynomial on R or shortly, null on R. The set of all null polynomials is an ideal of 
R[x], which we denote by NR.
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It is evident that the set F(R) of all polynomial functions on R is a monoid with 
respect to composition of functions. Its group of invertible elements P(R) consists of 
polynomial permutations on R, and is called the group of polynomial permutations 
on R. Also, F(R) is a ring with addition and multiplication defined pointwise.

We are interested in the group of units of the pointwise ring structure on F(R) , 
which we denote by F(R)× . We show a relation between the group F(R)× and the 
group of those polynomial permutations on R[x]∕(x2) that are represented by poly-
nomials with coefficients in R. Moreover, when R = ℤpn the ring of integers modulo 
pn we find the order of F(ℤpn )

× and give canonical representations for its elements.

2 � Preliminaries

In this section, we introduce the concepts and notations used frequently in the paper.

Definition 1  Let A be a ring and f ∈ A[x] . Then: 

1.	 [f ]A denotes the polynomial function induced by f on A;
2.	 if [f ]A maps A into A× , then f is called a unit-valued polynomial on A, and [f ]A is 

called a unit-valued polynomial function on A;
3.	 when [f ]A is a bijection on A, we call [f ]A a polynomial permutation and f a per-

mutation polynomial on A.

Throughout this paper for every f ∈ R[x] , let f ′ denote its formal derivative.
Unit-valued polynomials and unit-valued polynomial functions have been 

employed in the literature to examine other mathematical objects. Loper [6] uses 
unit-valued polynomials for distinguishing two classes of commutative rings: 
D-rings and non-D-rings, where D-rings are characterized by the fact that every 
unit-valued polynomial is a constant. For instance, all semi-local rings (and, in par-
ticular, all finite rings) are non-D rings. Unit-valued polynomials also figure in the 
characterization of permutation polynomials on finite local rings. We illustrate this 
by a well-known fact:

Fact 1  [7, Theorem 3] Let R be a local ring with maximal ideal M, and let f ∈ R[x] . 
Then f is a permutation polynomial on R if and only if the following conditions hold: 

1.	 f̄   is a permutation polynomial on the residue field R/M, where f̄  denotes the 
reduction of f  modulo M;

2.	 f �(a) ≠ 0 mod M for every a ∈ M.

Indeed, the second condition of the previous fact requires f ′ to be a unit-valued 
polynomial on R or, equivalently, [f �]R to be a unit-valued polynomial function.
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Remark 1  Recall that, in a finite commutative ring R with unity, every element is 
either a unit or a zero divisor, according to whether multiplication by the element is 
a bijection of R or not (see for example [5]).

From now on, let “ ⋅ ” denote the pointwise multiplication of functions.

Fact 2  Let R be a finite commutative ring, and F(R)  the set of polynomial functions 
on R. Then F(R)  is a finite commutative ring with nonzero unity, where addition and 
multiplication are defined pointwise. In particular, F(R)  is a subring of RR . Moreo-
ver, F(R)× is an Abelian group and; 

Proof  It is clear that F(R) forms a finite commutative ring under pointwise opera-
tions with the constant function 1 as its unity 1F(R).

Moreover, since F(R) is a commutative ring, F(R)× is an Abelian group. Now, 
it is easy to see that every unit-valued polynomial function is regular, and hence 
invertible by Remark 1. Thus F(R)× contains every unit-valued polynomial function.

For the other inclusion, let F ∈ F(R)× . Then there exists F−1 ∈ F(R)× such that 
F ⋅ F−1 = 1F(R) , that is F(r)F−1(r) = 1 for each r ∈ R . Hence F(r) ∈ R× for each 
r ∈ R . Therefore F is a unit-valued polynomial function by Definition 1. 	�  ◻

Remark 2  When R is an infinite commutative ring, it is still true that F(R) is a com-
mutative ring (infinite) and every element of F(R)× is a unit-valued polynomial 
function, but F(R)× may be properly contained in the set of all unit-valued polyno-
mial functions.

The following example illustrates the previous remark.

Example 1  Let R = {
a

b
∶ a, b ∈ ℤ and 2 ∤ b} , that is, R is the localization of ℤ at 2ℤ . 

Then the polynomial f = 1 + 2x is a unit-valued polynomial on R, and F = [f ]R is a 
unit-valued polynomial function. We claim that F has no inverse in F(R) . Assume, on 
the contrary, that F is invertible. So there exists F1 ∈ F(R) such that F ⋅ F1 = 1F(R) , 
i.e., F(r)F1(r) = 1 for every r ∈ R . Now, since F1 ∈ F(R) , there exists f1 ∈ R[x] such 
that F1 = [f1]R . Then the polynomial h(x) = (1 + 2x)f1(x) − 1 is of positive degree. 
Further, h has infinitely many roots in R since h(r) = F(r)F1(r) − 1 = 0 for every 
r ∈ R , which contradicts the fundamental theorem of algebra.

Definition 2  For a commutative R, the ring R[x]∕(x2) is called the ring of dual num-
bers over R. This ring can be viewed as the ring R[�] = {a + b� ∶ a, b ∈ R, �2 = 0} , 
where � denotes the element x + (x2).

Remark 3  In the previous definition, R is a subring of R[�] . Therefore every polyno-
mial g ∈ R[x] induces two functions: one on R[�] and one on R, namely [g]R[�] and 
its restriction (to R) [g]R.

F(R)× = {F ∈ F(R) ∶ F is a unit-valued polynomial function}.
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The following fact about the polynomials of R[�] can be proved easily.

Fact 3  Let R be a commutative ring, and a, b ∈ R . 

1.	 Let g ∈ R[x] . Then g(a + b�) = g(a) + bg�(a)�.
2.	 Let g ∈ R[�][x] , and g1, g2 ∈ R[x]  the unique polynomials in R[x] such that 

g = g1 + g2� . Then 

Fact 4  Let g ∈ R[x] . Then g is a null polynomial on R if and only if g�  is a null poly-
nomial on R[�].

Proof  (⇐) Immediate since R is a subring of R[�] and, for r ∈ R , r� = 0 if and only 
if r = 0.

(⇒) Let a, b ∈ R . Then, by Fact 3 (1),

	�  ◻

Recall from the introduction that P(R[�]) denotes the group of polynomial per-
mutations on R[�] . It is apparent that P(R[�]) , as a subset of F(R[�]) , is finite.

We now consider those polynomial permutations on R[�] that are induced by 
polynomials with coefficients in R (as opposed to R[�]).

Definition 3  Let PR(R[�]) = {F ∈ P(R[�]) ∶ F = [f ]R[�] for some f ∈ R[x]}.

From now on, let “ ◦ ” denote the composition of functions (or polynomials) 
and idR the identity function on R.

Remark 4  Let f , g ∈ R[x] . Then their composition g◦f  induces a function on R, 
which is the composition of the functions induced by f and g on R. Similarly, f + g 
and fg induce two functions on R, namely the pointwise addition and multiplication, 
respectively, of the functions induced by f and g. In terms of our notation this is 
equivalent to the following: 

1.	 [f◦g]R = [f ]R◦[g]R;
2.	 [f + g]R = [f ]R + [g]R;
3.	 [fg]R = [f ]R ⋅ [g]R.

We will use the above equalities frequently in our arguments in the next sections.

g(a + b�) = g1(a) + (bg�
1
(a) + g2(a))�.

g(a + b�)� = (g(a) + g�(a)b�)� = g(a)� + 0 = 0� = 0.
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Fact 5  The set PR(R[�])  is a subgroup of P(R[�]).

Proof  Evidently, idR[�] = [x]R[�] ∈ PR(R[�]) . Since PR(R[�]) is finite, it suffices to 
show that PR(R[�]) is closed under composition. So if F1,F2 ∈ PR(R[�]) , then F1,F2 
are induced by f1, f2 ∈ R[x] , respectively. Further, F1,F2 ∈ P(R[�]) , and hence 
[f1◦f2]R[�] = F1◦F2 ∈ P(R[�]) . Therefore, by Definition 3, F1◦F2 ∈ PR(R[�]) . 	�  ◻

3 � The embedding of the group PR(R[˛]) in the group P(R) ⋉θ F (R)×

We will show that the group (PR(R[�]), ◦) , which consists of permutations repre-
sented by polynomials from R[x], is embedded in a semidirect product of the group 
(F(R)×, ⋅) of unit-valued polynomial functions on R with respect to pointwise mul-
tiplication by the group (P(R), ◦) of polynomial permutations on R with respect to 
composition via a homomorphism � defined in Lemma 2 below.

From now on, for a polynomial function L, the notation L−1 sometimes means 
the inverse with respect to pointwise multiplication (namely, when L ∈ F(R)× ) and 
sometimes the inverse with respect to composition (namely, when L ∈ P(R) ). No 
confusion should follow from this convention since F(R)× ∩ P(R) is empty.

The following lemma is easy and straightforward.

Lemma 1  Let F,F1 ∈ F(R)× , and G ∈ F(R) . Then the following hold: 

1.	 F◦G ∈ F(R)×;
2.	 (F ⋅ F1)◦G = (F◦G) ⋅ (F1◦G);
3.	 if F−1 is the inverse of F, then F−1

◦G is the inverse of F◦G.

An expert reader will notice that Lemma  1 defines a group action of P(R) on 
F(R)× in which every element of P(R) induces a homomorphism on F(R)× , and what 
is coming now is a consequence of that. However, we do not refer to this action 
explicitly to avoid recalling additional materials. In fact, our arguments are elemen-
tary and depend on direct calculations.

Lemma 2  Let R be a finite commutative ring, and G ∈ P(R) . Then 

1.	 the map �G ∶ F(R)× ⟶ F(R)× defined by (F)�G = F◦G , for all F ∈ F(R)× , is an 
automorphism of (F(R)×, ⋅);

2.	 the map � ∶ P(R) ⟶ Aut(F(R)×) defined by (G)� = �G is a homomorphism with 
respect to composition.

Proof  Ad(1) in view of Lemma 1 (2) we need only show that �G is a bijection. Let 
F ∈ F(R)× . Then F◦G−1 ∈ F(R)× by Lemma 1 (1), and we have that
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This shows that � is a surjection, and hence a bijection, since F(R)× is finite.
Ad(2) if � ∶ P(R) ⟶ Aut(F(R)×) is given by (G)� = �G , then for every 

G1,G2 ∈ P(R) and any F ∈ F(R)× , we have

Hence �G1◦G2
= �G1

◦�G2
 and � is a homomorphism.	�  ◻

Notation and Remark 1  Recall that, for two groups H, K and a homomorphism � 
from K into Aut(H) , the semidirect product of H by K with respect to � is the group 
of all pairs (k, h) such that k ∈ K and h ∈ H , with the following operation

where �k2
 is the image of k2 in Aut(H) via the homomorphism � . This group is 

denoted by K ⋉
�
H.

Proposition 1  Let R be a finite commutative ring, P(R) the group of polyno-
mial permutations and F(R)× the group of unit-valued polynomial functions. Let 
� ∶ P(R) ⟶ Aut(F(R)×) be the homomorphism of Lemma 2. Then the operation on 
the group P(R)⋉

�
F(R)× is defined by

where G1,G2,∈ P(R) and F1,F2 ∈ F(R)× . In particular,

for every G ∈ P(R) and F ∈ F(R)× . (Here G−1 is the inverse with respect to compo-
sition and F−1 is the inverse with respect to pointwise multiplication.)

The proof of Proposition 1 depends essentially on Lemma 2, and is just the justi-
fications of the semidirect product properties (see for example [4]).

Remark 5  Consider the following subsets of P(R)⋉
�
F(R)×:

It is a routine verification to show that P(R) and F(R)× are subgroups of 
P(R)⋉

�
F(R)× that are isomorphic to P(R) and F(R)× , respectively, satisfying the 

following conditions: 

1.	 P(R)⋉
�
F(R)× = P(R)F(R)×;

2.	 F(R)× ⊲ P(R)⋉
�
F(R)×;

3.	 P(R) ∩ F(R)× = {(idR, 1F(R))}.

This justifies calling P(R)⋉
�
F(R)× the (internal) semidirect product of F(R)× by 

P(R).

(F◦G−1)�G = (F◦G−1)◦G = F◦(G−1
◦G) = F◦idR = F.

(F)�G1◦G2
= F◦(G1◦G2) = (F◦G1)◦G2 = (F◦G1)�G2

= ((F)�G1
)�G2

= (F)�G1
◦�G2

.

(k1, h1)(k2, h2) = (k1k2, (h1)�k2
h2),

(G1,F1)(G2,F2) =
(
G1◦G2, (F1)�G2

⋅ F2

)
=
(
G1◦G2, (F1◦G2) ⋅ F2

)
,

(G,F)−1 = (G−1,F−1
◦G−1)

P(R) = {(G, 1F(R)) ∶ G ∈ P(R)}, and F(R)× = {(idR,F) ∶ F ∈ F(R)×}.
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Our next aim is to show that P(R)⋉
�
F(R)× contains an isomorphic copy of 

the group PR(R[�]) defined in Definition 3. For completeness’ sake, we prove the 
following lemma, which is a special case of [1, Theorem 4.1].

Lemma 3  Let g ∈ R[x] . Then g permutes R[�] if and only if g permutes R and g′ is a 
unit-valued polynomial.

Proof  (⇒) Let c ∈ R . Then c ∈ R[�] . Since g permutes R[�] , there exist a, b ∈ R 
such that g(a + b�) = c . Thus g(a) + bg�(a)� = c by Fact  3  (1). So g(a) = c , and 
therefore g is onto on the ring R, and hence a permutation polynomial on R.

Suppose that g′ is not a unit-valued polynomial. Then there exists a ∈ R such 
that g�(a) is a zero divisor of R. Now, if 0 ≠ b ∈ R such that bg�(a) = 0 , then by 
Fact 3 (1),

So g does not permute R[�] , which is a contradiction.
(⇐ ) It is enough to show that g is injective. Now, if a, b, c, d ∈ R such that 

g(a + b�) = g(c + d�) , then by Fact 3 (1),

Then we have g(a) = g(c) and bg�(a) = dg�(c) . Hence a = c since g permutes R. 
Then, since g�(a) is a unit of R, b = d follows. 	�  ◻

Recall from Definition  1 that, for a ring A and a polynomial f ∈ A[x] , [f ]A 
stands for the polynomial function induced by f on A.

Remark 6  Let F ∈ PR(R[�]) . Then there exists f ∈ R[x] such that F = [f ]R[�] by Def-
inition 3. Further, by Lemma 3, ([f ]R, [f �]R) ∈ P(R)⋉

�
F(R)× . Now define a map

To show that � is well-defined, we consider another polynomial g ∈ R[x] such that 
F = [g]R[�] . Then for every a, b ∈ R we have, by Fact 3 (1),

So substituting b = 1 yields

Therefore ([f ]R, [f �]R) = ([g]R, [g
�]R) , and hence � is well-defined. Also, this shows that 

the pair ([f ]R, [f �]R) determines F = [f ]R[�] completely, and, therefore, � is injective.

Recall from Definition 3 and Fact 2 the definitions of the groups (PR(R[�]), ◦) 
and (F(R)×, ⋅) , namely

g(a + b�) = g(a) + bg�(a)� = g(a).

g(a) + bg�(a)� = g(c) + dg�(c)�.

� ∶ PR(R[�]) ⟶ P(R)⋉
�
F(R)× by �(F) = ([f ]R, [f

�]R).

[g]R(a) + b[g�]R(a)� = g(a) + bg�(a)� = F(a + b�) = f (a) + bf �(a)� = [f ]R(a) + b[f �]R(a)�.

[g]R(a) + [g�]R(a)� = [f ]R(a) + [f �]R(a)� for every a ∈ R.



528	 A. A. Al‑Maktry 

1 3

and

Proposition 2  Let R be a finite commutative ring, and � the homomorphism defined 
in Lemma 2. Then the map

where f ∈ R[x] such that F = [f ]R[�] , is an embedding of PR(R[�]) in P(R)⋉
�
F(R)×

.

Proof  By Remark  6, � is well-defined and injective. So we need only show that 
� is a homomorphism. Let F1 ∈ PR(R[�]) be induced by f1 ∈ R[x] . Then F◦F1 is 
induced by f◦f1 . Since (f◦f1)� = (f �◦f1).f

�
1
 , � maps F◦F1 to ([f◦f1]R, [(f �◦f1) ⋅ f �1]R) . 

Therefore, using Remark 4 and Proposition 1,

	�  ◻

4 � The pointwise stabilizer group of R and the group P(R)⋉� F(R)×

In this section, we show that the group P(R)⋉
�
F(R)× contains a normal subgroup 

that is isomorphic to the pointwise stabilizer group of R (see Definition 4). Moreo-
ver, this stabilizer group can be viewed as a subgroup of the group of unit-valued 
polynomial functions F(R)× . In particular, when R = �q is the finite field of q ele-
ments, we prove that F(�q)× is isomorphic to this subgroup. We employ this result in 
the end of this section to prove that P

�q
(�q[�]) ≅ P(�q)⋉�

F(�q)
×.

Now we recall the definition of the pointwise stabilizer group of R from [1].

Definition 4  Let St
�
(R) = {F ∈ P(R[�]) ∶ F(r) = r for every r ∈ R}.

It is evident that St
�
(R) is closed under composition, and hence a subgroup of 

P(R[�]) , since it is a non-empty finite set. We call this group the pointwise stabilizer 
of R.

Recall from the introduction that the ideal NR consists of all null polynomials on 
R. Thus, for any g, h ∈ R[x] , [g]R = [h]R if and only if g − h ∈ NR.

We need the following proposition from [1]. We include a proof for the readers’ 
convenience.

Proposition 3  [1, Proposition 4.6] Let R be a finite commutative ring. Then

PR(R[�]) = {F ∈ P(R[�]) ∶ F = [f ]R[�] for some f ∈ R[x]}

F(R)× = {F ∈ F(R) ∶ F is a unit-valued polynomial function}.

� ∶ PR(R[�]) ⟶ P(R)⋉
�
F(R)× defined by �(F) = ([f ]R, [f

�]R),

�[F◦F1] = ([f◦f1]R, [f
�
◦f1]R ⋅ [f

�
1
]R) =

(
[f ]R◦[f1]R, ([f

�]R◦[f1]R) ⋅ [f
�
1
]R
)

= ([f ]R, [f
�]R)([f1]R, [f

�
1
]R) = �(F)�(F1).
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In particular, St
�
(R) is subgroup of PR(R[�]).

Proof  Obviously,

Now if F ∈ St
�
(R) , then by Definition 4, F ∈ P(R[�]) such that F(r) = r for each 

r ∈ R . Further, F is induced by a polynomial h0 + h1� , where h0, h1 ∈ R[x] ; and 
so by Fact  3  (2), r = F(r) = h0(r) + h1(r)� for every r ∈ R . But then h1(r) = 0 
for every r ∈ R , i.e., h1 is null on R. Hence h1� is null on R[�] by Fact  4. Thus 
[h0]R[�] = [h0 + h1�]R[�] = F , that is, F is induced by h0 . Also, h0 ≡ x mod NR , that 
is, [h0]R = idR , and therefore h0(x) = x + f (x) for some f ∈ NR . This shows the other 
inclusion.

The last statement follows from x + NR ⊆ R[x] and the fact that St
�
(R) and 

PR(R[�]) are subgroups of P(R[�]) . 	�  ◻

Remark 7  Let �q = {a0,… , aq−1} be the finite field of q elements. If F ∶ �q ⟶ �q , 
then the polynomial f (x) =

∑q−1

i=0
F(ai)

∏q−1

j = 0

j ≠ i

x−aj

ai−aj
∈ �q[x] represents F. Such a 

polynomial is called Lagrange polynomial and this method of construction is called 
Lagrange interpolation. Therefore every function on a finite field is a polynomial 
function, and hence |F(�q)| = qq . In particular, every permutation (bijection) on �q is 
a polynomial permutation, and so |P(�q)| = q! . Further, every unit-valued function 
is a unit-valued polynomial function, and thus |F(�q)×| = (q − 1)q since 
�
×
q
= �q ⧵ {0} . Moreover, it is obvious that Lagrange interpolation assigns to every 

function on �q a unique polynomial of degree at most q − 1 . Hence every polynomial 
of degree at most q − 1 is Lagrange polynomial of a function on �q since the number 
of these polynomials is qq , which is the number of functions on �q.

Next, we show that St
�
(R) is embedded in F(R)× . For this we need the following 

well-known fact.

Lemma 4  For each pair of functions (G, F) with

there exists a polynomial g ∈ �q[x] such that ([g]
�q
, [g�]

�q
) = (G,F).

Proof  Let f0, f1 ∈ �q[x] such that [f0]�q = G and [f1]�q = F , which we know to exist 
by Remark 7. Then set

Thus

St
�
(R) = {F ∈ P(R[�]) ∶ F is induced by x + g(x), for some g ∈ NR}.

St
𝛼
(R) ⊇ {F ∈ P(R[𝛼]) ∶ F is induced by x + g(x), for some g ∈ NR}.

G ∶ �q ⟶ �q bijective and F ∶ �q ⟶ �q ⧵ {0}

g(x) = f0(x) + (f �
0
(x) − f1(x))(x

q − x).
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whence [g]
�q
= [f0]�q = G and [g�]

�q
= [f1]�q = F since (xq − x) is a null polynomial 

on �q . 	�  ◻

Theorem 1  Let R be a finite commutative ring. Then the map

 where f ∈ R[x] such that F = [f ]R[�] , is an embedding of the pointwise stabilizer of 
R, St

�
(R) , in the group of unit-valued polynomial functions F(R)×.

If R = �q , then St
�
(�q) ≅ F(�q)

×.

Proof  Let F ∈ St
�
(R) . Then there exists f ∈ R[x] such that F = [f ]R[�] by Proposi-

tion 3. Further, [f ]R = idR = [x]R by Definition 4. To show that � is well-defined, 
let f1 ∈ R[x] such that F = [f1]R[�] . Then [f �]R = [f �

1
]R by Remark 6. By Lemma 3, 

[f �]R ∈ F(R)× . Thus � is well-defined. Now, let F1 ∈ St
�
(R) . Then there exists 

g ∈ R[x] such that F1 = [g]R[�] by Proposition 3. Hence

By Definition 4, [g]R = idR , and therefore [f �]R◦[g]R = [f �]R . This implies that

whence � is a homomorphism. Now, if F1 ≠ F , then [g�]R ≠ [f �]R by Remark 6 and 
hence �(F1) ≠ �(F) . � is, therefore, injective and St

�
(R) is embedded in F(R)×.

For the case R = �q , we need only prove that � is surjective. Let F ∈ F(�q)
× . 

Then, by Lemma 4, there exists f ∈ �q[x] such that [f ]
�q
= id

�q
 and [f �]

�q
= F . Hence 

Lemma  3 yields [f ]
�q[�]

∈ P
�q
(�q[�]) . Thus [f ]

�q[�]
∈ St

�
(�q) by Definition  4, and 

hence �([f ]
�q[�]

) = [f �]
�q
= F . Therefore � is surjective.	�  ◻

Notation 1  Let S
�
(R) denote the subgroup �(St

�
(R)) of F(R)× , where � is the 

embedding of Theorem 1. Note that the group operation of St
�
(R) is composition 

of functions, while the group operation on S
�
(R) is pointwise multiplication of 

functions.

Remark 8  From Remark 5, we know that

and, so, by the embedding � of Theorem 1, we have, with respect to Notation 1, the 
isomorphisms

This shows that St
�
(R) is embedded in P(R)⋉

�
F(R)×.

g�(x) = (f ��
0
(x) − f �

1
(x))(xq − x) + f1(x),

� ∶ St
�
(R) ⟶ F(R)× defined by �(F) = [f �]R,

�(F◦F1) = [(f◦g)�]R = [(f �◦g) ⋅ g�]R = [f �◦g]R ⋅ [g
�]R

= ([f �]R◦[g]R) ⋅ [g
�]R.

�(F◦F1) = [f �]R ⋅ [g
�]R = �(F) ⋅ �(F1),

F(R)× ≅ F(R)× = {(idR,F) ∶ F ∈ F(R)×} ⊲ P(R)⋉
�
F(R)×,

St
�
(R) ≅ S

�
(R) ≅ {(idR,F) ∶ F ∈ S

�
(R)}.



531

1 3

On the group of unit‑valued polynomial functions﻿	

On the other hand, if we restrict the homomorphism � of Proposition 2 to St
�
(R) , 

we have, by the definitions of � and S
�
(R),

This shows that the embedding of St
�
(R) in P(R)⋉

�
F(R)× via Proposition 2 is iden-

tical to the embedding using Theorem 1 and Remark 5. In other words the following 
diagram commutes: 

where in each case f ∈ R[x] such that F = [f ]R[�].

Notation 2  We write S
�
(R) for the image of St

�
(R) in P(R)⋉

�
F(R)× 

under the homomorphism of the commuting diagram of Remark  8. That is, 
S
�
(R) = {(idR,F) ∶ F ∈ S

�
(R)}.

Lemma 5  Let R be a finite commutative ring and F ∈ P(R) . Then there exists a poly-
nomial f ∈ R[x] such that [f ]R = F and [f �]R is a unit-valued polynomial functions 
on R.

Proof  Without loss of generality, we may assume that R is local. When R is a finite 
field, the statement follows from Lemma 4. On the other hand, when R is a finite 
local ring that is not a field, the result follows from Fact 1. 	�  ◻

Remark 9 

1.	 Define a map 

 Then, by Remark 6 and Lemma 5, � is a well-defined group epimorphism with 
ker� = St

�
(R) , and therefore St

�
(R) ⊲ PR(R[�]) (see also [1]).

2.	 Let �(PR(R[�])) be the isomorphic copy of PR(R[�]) contained in P(R)⋉
�
F(R)× 

via the homomorphism � of Proposition  2. Then, by (1) and Remark  8, 
S
�
(R) ⊲ �(PR(R[�])).

�(St
�
(R)) = {�([f ]R[�]) ∶ [f ]R[�] ∈ St

�
(R) for some f ∈ R[x]}

= {(idR, [f
�]R) ∶ [f ]R[�] ∈ St

�
(R) for some f ∈ R[x]}

= {(idR,F) ∶ F ∈ S
�
(R)}.

� ∶ PR(R[�]) ⟶ P(R) by �(F) = [f ]R, where f ∈ R[x] such that F = [f ]R[�].
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Lemma 6  Let S
�
(R) be as in Notation 1, and let F ∈ S

�
(R) . Then F◦G ∈ S

�
(R) for 

every G ∈ P(R).

Proof  Let G ∈ P(R) . Using Lemma  5, choose a polynomial f ∈ R[x] such that 
[f ]R = G and [f �]R = F1 ∈ F(R)× . Then [f ]R[�] ∈ PR(R[�]) by Lemma  3. Thus, 
by Proposition  2, ([f ]R, [f �]R) = (G,F1) ∈ �(PR(R[�])) , where � is the homo-
morphism of Proposition  2 (see also, Remark  9  (2)). We now use the fact that 
S
�
(R) = {(idR,F) ∶ F ∈ S

�
(R)} is a normal subgroup of �(PR(R[�])) , by Proposi-

tion 1 and the fact that F(R)× is Abelian, we have

Thus (idR,F◦G) ∈ S
�
(R) , and hence F◦G ∈ S

�
(R).	�  ◻

Theorem  2  Let R be a finite commutative ring, P(R)⋉
�
F(R)×  the semidirect 

product constructed in Proposition 1 and St
�
(R)  the stabilizer group defined in Defi-

nition 4. Then the map

where f ∈ R[x] such that F = [f ]R[�] , is a normal embedding of St
�
(R) in 

P(R)⋉
�
F(R)×.

Proof  It is evident that 𝜙̃ is the restriction of the embedding � of Proposition 2 to 
St

�
(R) , and hence 𝜙̃ is an embedding of St

�
(R) in P(R)⋉

�
F(R)× . Then, by Remark 8 

and Notation 2,

So we need only show that S
�
(R) ⊲ P(R)⋉

�
F(R)× . Let (idR,F) ∈ S

�
(R) and 

(G,F1) ∈ P(R)⋉
�
F(R)× . Then by Proposition  1, we have, just as in the proof of 

Lemma 6, that

Thus (G,F1)
−1(idR,F)(G,F1) ∈ S

�
(R) by Lemma 6. 	�  ◻

Recall from Notation 1 that S
�
(R) denotes a subgroup of F(R)× , which is isomor-

phic to St
�
(R).

Remark 10  Let G ∈ P(R) , and let �G be the automorphism of F(R)× defined by 
(F)�G = F◦G as in Lemma 2. We prove that the restriction of �G to S

�
(R) is an auto-

morphism of S
�
(R) by showing that S

�
(R) is invariant under �G.

Now, by Lemma  6, F◦G ∈ S
�
(R) for every F ∈ S

�
(R) . Thus the restriction of 

�G to S
�
(R) is an automorphism, that is, the map 𝜃G ∶ S

𝛼
(R) ⟶ S

𝛼
(R) defined by 

(F)𝜃G = F◦G , for all F ∈ S
�
(R) , is an automorphism of S

�
(R).

Then, similar to the homomorphism � ∶ P(R) ⟶ Aut(F(R)×) of Lemma 2, we 
have the map 𝜃 ∶ P(R) ⟶ Aut(S

𝛼
(R)) defined by (G)𝜃 = 𝜃G is a homomorphism. 

(G,F
1
)−1(idR,F)(G,F1

) = (G−1
,F−1

1
◦G−1)

(
G, (F◦G) ⋅ F

1

)
= (idR,F

−1
1

⋅ (F◦G) ⋅ F
1
) = (idR,F◦G).

𝜙̃ ∶ St
𝛼
(R) ⟶ P(R)⋉

𝜃
F(R)× defined by 𝜙̃(F) = (idR, [f

�]R),

𝜙̃(St
𝛼
(R)) = 𝜙(St

𝛼
(R)) = S

𝛼
(R).

(G,F1)
−1(idR,F)(G,F1) = (idR,F◦G).
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This allows us to define the semidirect product P(R)⋉
𝜃
S
𝛼
(R) . Further, a routine 

verification shows that the operation on P(R)⋉
𝜃
S
𝛼
(R) is just the operation on 

P(R)⋉
�
F(R)× restricted to P(R)⋉

𝜃
S
𝛼
(R) . Therefore P(R)⋉

𝜃
S
𝛼
(R) is a subgroup 

of P(R)⋉
�
F(R)×.

From now on, for any set A, let |A| denote the number of elements in A.

Proposition 4  Let R be a finite commutative ring. Let � and 𝜃 be the homomorphisms 
of Remark 10. Then St

�
(R) ≅ F(R)× if and only if P(R)⋉

𝜃
S
𝛼
(R) ≅ P(R)⋉

𝜃
F(R)×.

Proof  (⇒) Obvious.
(⇐) Assume that P(R)⋉

𝜃
S
𝛼
(R) ≅ P(R)⋉

𝜃
F(R)× . Then |S

�
(R)| = |F(R)×| , and 

thus S
�
(R) = F(R)× since S

�
(R) is a subgroup of F(R)× by Theorem  1. Again, by 

Theorem 1, St
�
(R) ≅ S

�
(R) = F(R)×.	�  ◻

In Proposition 2 we have proved for any finite ring R that the group PR(R[�]) is 
embedded in P(R)⋉

�
F(R)× . In the following theorem we show that, for a finite 

field �q,

Theorem 3  Let �q be the finite field of q elements. Let �  and 𝜃  be the homomor-
phisms of Remark 10, respectively. Then

Proof  In view of Proposition 2, Proposition 4 and Theorem 1 we need only show 
that

Hence, by Remark 7, it is sufficient to show that |P
�q
(�q[�])| ≥ q!(q − 1)q.

Now consider the pair of functions (G, F) with

It is obvious that the total number of different pairs of this form is q!(q − 1)q . More-
over, by Lemma  4, there exists g ∈ �q[x] such that (G,F) = ([g]

�q
, [g�]

�q
) , and so 

[g]
�q[�]

∈ P
�q
(�q[�]) by Lemma 3. Then, by Remark 6, every two different pairs of 

functions satisfying the conditions of Lemma 4 determine two different elements of 
P
�q
(�q[�]) . Therefore |P

�q
(�q[�])| ≥ q!(q − 1)q.	�  ◻

Remark 11  When q = p (where p is a prime number), Frisch and Krenn [2] showed 
that P(�p)⋉�

F(�p)
× is a homomorphic image of P(ℤp2) with non-trivial kernel, 

and determined the number of Sylow p-subgroups of P(ℤpn) by means of those of 
P(�p)⋉�

F(�p)
× for every n ≥ 2.

P
�q
(�q[�]) ≅ P(�q)⋉�

F(�q)
×.

P
�q
(�q[𝛼]) ≅ P(�q)⋉𝜃

F(�q)
× ≅ P(�q)⋉𝜃

S
𝛼
(�q).

|P
�q
(�q[�])| ≥ |F(�q)×||P(�q)|.

G ∶ �q ⟶ �q bijective and F ∶ �q ⟶ �q ⧵ {0}.
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5 � The number of unit‑valued polynomial functions on the ring ℤpn

Throughout this section let p be a prime number and n be a positive integer. Sev-
eral authors considered the number of polynomial functions and polynomial per-
mutations on the ring of integers modulo pn . However, they neglected to count 
unit-valued polynomial functions modulo pn (see for example, [3, 8]). In this sec-
tion we apply the results of [3] to derive an explicit formula for the order of the 
group F(ℤpn )

× , i.e., the number of unit-valued polynomial functions modulo pn . 
In addition to that, we find canonical representations of these functions.

Since ℤpn is a homomorphic image of ℤ , we can represent the polynomial func-
tions on ℤpn by polynomials from ℤ[x] . To simplify our notation we use the sym-
bol [f ]pn instead of [f ]

ℤpn
 to indicate the function induced by f ∈ ℤ[x] on ℤpn.

Remark 12 

1.	 Evidently, an integer represents a unit modulo p if and only if it represents a unit 
modulo pn for all n ≥ 1 . More generally, for a polynomial f ∈ R[x] , [f ]p is a unit-
valued polynomial function on ℤp if and only if [f ]pn is a unit-valued polynomial 
function on ℤpn for every n ≥ 1.

2.	 Let n > 1 . Define a map 

 Evidently, �n is a well-defined epimorphism of additive groups with 
|F(ℤpn )| = |F(ℤpn−1)|| ker�n|.

Notation 3  In the remainder of the paper let �(n) denote the smallest positive integer 
k such that pn ∣ k! , while vp(n) denotes the largest integer s such that ps ∣ n.

Let (x)0 = 1 , and let (x)j = x(x − 1)(x − 2)⋯ (x − j + 1) for any positive integer j.

The following lemma from [3] gives the cardinality of ker�n of the epimor-
phism �n mentioned in Remark 12.

Lemma 7  [3, Theorem 2] Let n > 1 and let �n be the epimorphism of Remark 12.

Then | ker�n| = p�(n).

Lemma 8  Let n > 1 . Then |F(ℤpn )
×| = p�(n)|F(ℤpn−1)

×|.

Proof  Let �n be the epimorphism defined in Remark  12  (2). Then 
�
−1
n
(F(ℤpn−1)

×) = F(ℤpn)
× by Remark 12  (1). Hence |F(ℤpn )

×| = |�−1
n
(F(ℤpn−1)

×)| . 
Now if F ∈ F(ℤpn−1)

× , then by Remark 12, |�−1
n
(F)| = | ker�n| . Therefore

The result now follows from Lemma 7.	�  ◻

�n ∶ F(ℤpn) ⟶ F(ℤpn−1) by �n(F) = [f ]pn−1 , where f ∈ ℤ[x] such that F = [f ]pn .

|F(ℤpn)
×| = |�−1

n
(F(ℤpn−1)

×)| = | ker�n||F(ℤpn−1)
×|.
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Keep the notations of Notation  3. We now state our counting formula for the 
order of F(ℤpn−1 )

×.

Theorem 4  Let n > 1 and let F(ℤpn )
× be the group of unit-valued polynomial 

functions modulo pn . Then

Proof  By applying Lemma  8 exactly n − 1 times, we see that |F(ℤpn )
×| =

�F(ℤp)
×�p

∑n

k=2
�(k).

But |F(ℤp)
×| = (p − 1)p by Remark 7.	�  ◻

We need the following fact from [3].

Lemma 9  [3, Theorem  1 and Corollary 2.2] If F ∈ F(ℤpn ) , there exists one and 
only one polynomial f ∈ ℤ[x] of the form f =

∑�(n)−1

i=0
ai(x)i with [f ]pn = F , where 

0 ≤ ai < pn−vp(i!) for i = 0,… , �(n) − 1.

It follows that, �F(ℤpn )� = p
∑n

i=1
�(i).

Keep the notations of Notation 3. The following theorem gives canonical repre-
sentations for the elements of F(ℤpn )

× as linear combinations of the falling factorials 
(x)j and those of the unique representations of the elements of F(ℤp)

× obtained by 
Lagrange interpolation (see Remark 7).

Theorem 5  Let l1,… , l(p−1)p  denote the unique representations of the elements of 
F(ℤp)

×  by polynomials of degree less than p obtained by Lagrange interpolation. 
Let n ≥ 2 . Then every element in F(ℤpn )

×  can be represented uniquely by a polyno-
mial of the form

where 0 ≤ ai < pn−vp(i!) for 0 ≤ i < 𝛽(n) with p ∣ ai for i < p; and s = 1,… , (p − 1)p.

Proof  Let A denote the set of all polynomials in ℤ[x] that satisfy the conditions of 
equation (1). By Remark 12 (1), every element of A induces a unit-valued polyno-
mial function on ℤpn . Now, let B denote the set of all polynomials of the form

Clearly,

In the light of Equation (2) and Lemma 9,

�F(ℤpn)
×� = (p − 1)pp

∑n

k=2
�(k).

(1)ls(x) +

�(n)−1∑

i=0

ai(x)i,

(2)
𝛽(n)−1∑

i=0

ai(x)i, where 0 ≤ ai < pn−vp(i!) for 0 ≤ i < 𝛽(n) with p ∣ ai for i < p.

|A| = (p − 1)p|B|.
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Therefore, by Theorem 4,

To complete the proof, we need only show that [f ]pn ≠ [g]pn whenever f, g are dis-
tinct elements of A. For simplicity, write f = ls1 + f1 and g = ls2 + g1 , where 
f1, g1 ∈ B and s1, s2 ∈ {1,… , (p − 1)p} . First, we notice that if s1 ≠ s2 , then 
[f ]p = [ls1]p ≠ [ls2]p = [g]p . Thus [f ]pn ≠ [g]pn if s1 ≠ s2 .  Now assume that s1 = s2 , 
and f1 ≠ g1 . Then [f1]pn ≠ [g1]pn by Lemma 9, and hence

	�  ◻

Counterexample 1  Let R = ℤ4 = {0, 1, 2, 3} . In this case, 
ℤ

4
[�] = {a + b� ∶ a, b ∈ ℤ

4
} . Consider now the polynomial f (x) = (x2 − x)2 . By Fer-

mat’s little theorem, f is a null polynomial on ℤ4 ; hence every unit-valued polynomial 
function is induced by a polynomial of degree less than 4. Next we show that f is null on 
ℤ4[�] . So, if a, b ∈ ℤ4 , then

Thus f is null on ℤ4[�] ; whence every polynomial function on ℤ4[�] is represented 
by a polynomial of degree less than 4. The null polynomials on ℤ4 of degree less 
than 4 are

Then simple calculations shows that 1 + f �
1
,… , 1 + f �

4
 induce four different unit-val-

ued functions on ℤ4 . Thus |St
�
(ℤ4)| = 4 , but |F(ℤ4)

×| = 2�(2) = 16 by Theorem 4. 
Furthermore, by Remark 9 (1), there is an epimorphism from P

ℤ4
(ℤ4[�]) onto P(ℤ4) 

which admits St
�
(ℤ4) as a kernel. Thus |P

ℤ4
(ℤ4[�])| = |P(ℤ4)||St�(ℤ4)| , and hence

This shows that in general the homomorphisms of Proposition  2 and Theorem  1 
need not be isomorphisms.
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�B� =
�F(ℤpn)�

pp
=

p
∑n

i=1
�(i)

pp
= p

∑n

i=2
�(i).

�A� = (p − 1)pp
∑n

i=2
�(i) = �F(ℤpn)

×�.

[f ]pn = [ls1 + f1]pn = [ls1]pn + [f1]pn ≠ [ls1]pn + [g1]pn = [ls1 + g1]pn = [g]pn .

f (a + b�) =
(
(a + b�)2 − (a + b�)

)2
=
(
(a2 + 2ab�) − (a + b�)

)2

=
(
(a2 − a) + (2ab − b)�

)2
= (a2 − a)2 + 2(a2 − a)(2ab − b)� = 0.

f1 = 0, f2 = 2(x2 − x), f3 = 2(x3 − x) and f4 = 2(x3 − x2).

|P(ℤ4)⋉𝜃
F(ℤ4)

×| = |P(ℤ4)||F(ℤ4)
×| > |P(ℤ4)||St𝛼(ℤ4)| = |P

ℤ4
(ℤ4[𝛼])|.
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