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Abstract
Remote Healthcare Monitoring Systems (RHMs) that employ fetal phonocardiography
(fPCG) signals are highly efficient technologies for monitoring continuous and long-term
fetal heart rate. Wearable devices used in RHMs still face a challenge that decreases their
efficacy in terms of energy consumption because these devices have limited storage and
are powered by batteries. This paper proposes an effective fPCG compression algorithm
to reduce RHM energy consumption. In the proposed algorithm, the Discrete Orthogonal
Charlier Moment (DOCMs) is used to extract features of the signal. The householder
orthonormalization method (HOM) is used with the Charlier Moment to overcome the
propagation of numerical errors that occur when computing high-order Charlier polyno-
mials. The proposed algorithm’s performance is evaluated in terms of CR, PRD, SNR,
PSNR, and QS and provides the average values 18.33, 0.21, 48.85, 68.86, and 90.88,
respectively. The results of the comparison demonstrate the proposed compression
algorithm’s superiority over other algorithms. It also tested in terms of compression
speed and computational efficiency. The results indicate that the proposed algorithm
has a high Compression speed (218.672 bps) and high computational efficiency (21.33).
Additionally, the results reveal that the proposed algorithm decreases the energy con-
sumption of a wearable device due to the transmission time decreasing for data by 3.68 s.
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1 Introduction

Congenital heart defects are reported to be the cause of 26.5% percent of pregnancy-related
deaths [45]. It has also been shown that improving maternal health care can prevent more than
80% of maternal fatalities and fetal distress. Women during pregnancy are periodically
required to monitor fluctuations in fetal heart rate (FHR) and Follow up with doctors regularly
[53]. As a result, in the 1960s, Electronic Fetal Monitoring (EFM) is a strong diagnostic
technique for foetal heart rate (FHR). Nodaway, continuous and long-term fetal heart rate
surveillance seems to be an essential approach for improving diagnostic accuracy [4]. The
methods that can be used to monitor a fetal include a cardiotocography (CTG) [35, 36], fetal
electrocardiography (fECG) [43], fetal magnetocardiography (fMC) [50] or fetal phonocardi-
ography (fPCG) [39, 48]. The fPCG approach appears to be one of the most effective prenatal
methods based on foetal acoustic heart sounds (fHSs). [44]. Fetal phonocardiography (fPCG)
is a non-invasive way to detect fetal heart sounds by recording acoustic cardiac signals (fHSs).
It records vibrational acoustic signals from the maternal abdomen surface [10, 16]. fPCG
signal gives vital information on cardiac murmurs and the fetal heart rate (fHR), which is a
crucial determinant of the fetus’s health and well-being [7]. The fPCG is a very effective
instrument for clinical practice because of its complete non-invasiveness. Besides that, there
are many advantages to using fPCG approaches, including the examination is inexpensive; that
no radiation is emitted to the mother or foetus.

Furthermore, the fPCG device is user-friendly, allowing even non-experts to record signals
during the mother’s long-term day or night recordings and then be analyzed to obtain a more
overall understanding of the fetus’s functionality [8]. Ultrasound and ultra-sonographic
cardiotocography (CTG), two commonly used foetal monitoring techniques, may be detri-
mental to the foetus. The fECG can only be done in an existing emergency, despite the danger
of infection. Consequently, fPCG is the most recommended and risk-free alternative approach
for recording foetal heart activity [14]. For more accurate diagnostic information, it is
necessary to record the fPCG signals for an extended period of time at a high sampling rate
and resolution. It needs a lot of memory space, a long time to send information, and wide
bandwidth. [23]. Clinical care systems and electronic monitoring using Remote Healthcare
Monitoring Systems (RHMs) have been gaining importance in recent years [13]. In RHMs, A
sensor is put on the belly of the mother to record fPCG signal and wirelessly send it to a
smartphone application via Bluetooth. The application receives an fPCG signal and transmits it
to a cloud server, demonstrating the various algorithms in order to detect and diagnose disease.
Remote Monitoring Systems are a highly effective instrument for transmitting data remotely
and making rapid diagnoses. Unfortunately, these systems continue to face problems that
impair their efficiency. Energy consumption is considered one of the important problems faced
by Remote Healthcare Monitoring Systems sensors. Since it runs on batteries, the device’s
memory and processing capabilities are limited. Extending battery life by reducing power
energy usage is a necessary step in assuring continuous signal capture and monitoring [1, 30].
So, conserving these sensors’ energy is a crucial problem facing RHMs. Traditionally, energy
consumption in sensors is caused by data sensing, data processing, and data transmission. Data
transmission is considered the primary reason for the wastage of energy, in which during data
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sending and receiving, the wastage of power occurs [49]. The recorded signal data must be
minimized using efficient compression techniques to reduce energy consumption. This moti-
vated us to provide solutions to the problem of energy consumption in the devices of RHMs.
For this reason, we addressed the fPCG signal data compression algorithm to decrease the size
of the signal being stored or transmitted to overcome this problem.

In general, Various of algorithms are introduced for compressing biomedical signal [26]
such as Electrocardiography (ECG) [37], Electromyography (EMG) [54], Electroencephalo-
graphic (EEG) [9, 47] and Salt sensitive Rat Blood Pressure signal [5]. Concerning PCG
signals, several publications have appeared in recent years documenting. A. Bendifallah et al.
present PCG signal compression methods based on dictionary and bitmask techniques. This
method is applied to the bitstream produced by Set Partitioning [11]. Hong Tang et al.
developed a novel PCG signals compression technique using sound repetition and vector
quantization [51]. In a recent paper, Ying-Ren Chien et al. propose a deep convolutional
autoencoder for PCG compression. In that technique, seven convolutional layers are used to
compress the PCG signals into the feature maps at the encoder stage and at the decoder stage;
the other seven convolutional layers are used to decompress the feature maps and obtain the
reconstructed image signals [15]. Despite the author’s knowledge, very few publications can
be found in the literature dealing with the issue of fPCG signaling pressure, but it has gained
prominence in recent years [44].

The Transform-based techniques widely used in medical applications such as image
watermarking [40–42, 58] and signal compression [26]. Vibha Aggarwal et al. [6] introduced
a compression technique for foetal phonocardiography (PCG) signal based on Discrete Cosine
Transform (DCT) and Discrete Wavelet Transform (DWT). The results show that DWT
performed better than DCT in high spatial resolution for Foetal PCG signals. In a recent paper
by Samit Kumar Ghosh [29], a methodology based on transforms for compressing the foetal
Phonocardiogram (fPCG) signal is proposed. Transform-based techniques such as Discrete
Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Fast Walsh Hadamard
Transform (FWHT) are used to decompose the fPCG signal. The results demonstrate the
efficiency of the transform strategies in compressing fPCG signals. FWHT has a higher CR,
whereas DWT produces good fidelity parameters with a comparable CR.

In recent years, one-dimensional and two-dimensional discrete orthogonal moments have
been gaining importance because of their ability to represent signals and images well in
various fields. The applications of discrete orthogonal moments include signal and image
reconstruction [17, 19, 31], face recognition [46], image classification [2, 12], image
watermarking [57], image encryption [56], images compression [24, 33, 55], signals compres-
sion [3, 21, 32]. Charlier moment (CMs) represents one type of discrete orthogonal moment
[18, 38]. The experimental results obtained Charlier moments’ efficacy as feature descriptors.

In our work, we propose a compression technique based on discrete Charlier moment for
fPCG signals. In order to calculate out CMs, you have to compute kernel discrete orthogonal
polynomials. Two major problems constrain the High-order computation of Charlier polyno-
mials: The first problem is the fluctuation of polynomial values due to power, exponential and
factorial functions. We use a recurrence relation completely independent of Charlier polyno-
mials computation to solve this problem, which is no longer dependent on the factorial and
power functions. The second problem is the propagation of numerical errors that occur when
computing high-order Charlier polynomials (CPs), which destroys the orthogonality property
of these polynomials. To overcome this problem, we propose using the Householder
orthonormalization method (HOM) to maintain the orthogonality property of high-order
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CPs. With the use of HOM, the computation of Charlier coefficients at higher orders becomes
numerically more stable. This paper includes a number of important contributions, which can
be stated as follows:

& Proposing an efficient fPCG signals compression technique to reduce energy consumption
in Remote Healthcare Monitoring Systems.

& Presenting a stable compution version of Charlier Moments,which at high orders CPs
avoid numerical error propagation and preserve the orthogonality property.

The rest of the paper consists of seven sections: In Section 2, DOCMs and CPs will be
discussed. Section 3 is devoted to describing the proposed procedure for maintaining the
orthogonality property of CPs. The proposed algorithm is introduced in Section 4. Section 5
illustrates the compression performance indicators. The experimental results of this work are
summarized in Section 6, while the discussion is reported in Section 7. In Section 8, we present
the conclusion of this paper.

2 Material and methods

2.1 Discrete orthogonal Charlier moment

The set of discrete orthogonal one-dimensional (1D) Charlier Moment (CMs) are defined as
follows [59]:

CMp ¼ ∑N−1
x¼0 C

a1
p xð ÞS xð Þ; p≤N ð1Þ

where s(x) indicates a 1D signal of size 1 × N, Ca1
p xð Þ are Charlier polynomials to order p and

a1 denotes the parameter of Charlier polynomial, which must be a strictly positive real number
(a1 > 0).

The reconstructed signal S(x) is calculated from the inverse transformation of Charlier
Moment as follows:

S xð Þ ¼ ∑N−1
x¼0 CMPC

a1
P xð Þ; x ¼ 0; 1; 2;…;N−1 ð2Þ

Using the following matrix form decreases the time and complexity of 1D Charlier moment
computations significantly:

CMp ¼ Cp
T s ¼

C0 0ð Þ C0 1ð Þ … C0 N−1ð Þ
C1 0ð Þ C1 1ð Þ … C1 N−1ð Þ
⋮ ⋮ ⋮ ⋮

CP 0ð Þ CP 1ð Þ … Cp N−1ð Þ

2
664

3
775�

s 0ð Þ
s 1ð Þ
⋮

s N−1ð Þ

2
664

3
775 ð3Þ

where Cp indicates Charlier polynomials of order p,s denotes 1 × N signal vector.The
following matrix relation determines the inverse transformation of CMs.

S ¼ CMpCp ð4Þ
where CMp and Cp are Charlier moments and Charlier Polynomials, respectively.
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2.2 Computation of Charlier polynomials

The Charlier polynomials of order (p) are formulated using hypergeometric function as
follows [18]:

Ca1
p ¼ 2F0 −n;−x; −

1

a1

� �
ð5Þ

where x, p = 0,1,2,...,∞, p is Charlier polynomial order, a1 is the parameter of Charlier
polynomial (a1>0), and 2F0(.) is defined as:

2F0 a; b; zð Þ ¼ ∑∞
k¼0 að Þk bð Þk

zk

k!
ð6Þ

The symbol (a)kis defined:

að Þk ¼ a aþ 1ð Þ aþ 2ð Þ… aþ k−1ð Þ ¼ Γ aþ kð Þ
Γ að Þ ð7Þ

Where Γ(.) indicates the gamma function.
The Charlier polynomials satisfy an orthogonal relation of the form:

∑N
x¼0C

a1
n xð ÞCa1

m yð Þω xð Þ ¼ ρ nð Þδnm ð8Þ
Where ω(x) is the weight function of the DOCPs defined as:

ω xð Þ ¼ e−a1ax1
x!

ð9Þ

The squared norm of DOCPs is calculated as follows:

ρ pð Þ ¼ p!
ap1

ð10Þ

The orthonormalized CPs are defined by the square norm ρ(p) and the weighted functionω(x)
as follows:

Ca1
p xð Þ ¼ Ca1

p xð Þ
ffiffiffiffiffiffiffiffiffiffi
ω xð Þ
ρ pð Þ

s
ð11Þ

Using Eqs. (6) and (11) computing the Charlier polynomials is time-consuming and leads to
numerical instability. For this reason, researchers are developing recursive calculation methods
to efficiently determine polynomials.

The discrete orthogonal Charlier polynomials CPs of order (p) are presented using recursive
relation as follows [18].

Ca1
p xð Þ ¼ a1−xþ p−1

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ p−1ð Þ
ρ pð Þ

s
Ca1

p−1 xð Þ− p−1
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ p−2ð Þ
ρ pð Þ

s
Ca1

p−2 xð Þ ð12Þ

with ca10 xð Þ ¼
ffiffiffiffiffiffiffi
ω xð Þ
ρ 0ð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffi
e−a1ax1
x!

q
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Ca1
1 xð Þ ¼ a1−x

a1

ffiffiffiffiffiffiffiffiffiffi
ω xð Þ
ρ 1ð Þ

s
¼ a1−x

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−a1axþ1

1

x!

s
ð13Þ

The existence of the power, exponential and factorial functions that lead to the numerical
fluctuations in the Charlier polynomials coefficients eliminates in the next section.

The following recurrence formula can be generated from the function ρ(p) given by Eq. (10).

ρ pþ 1ð Þ ¼ pþ 1ð Þ
a1

ρ pð Þ with ρ 0ð Þ ¼ 1;

ρ p−1ð Þ
ρ pð Þ ¼ a1

p
and

ρ p−2ð Þ
ρ pð Þ ¼ a21

p p−1ð Þ :
ð14Þ

Using Eqs. (14) and (12), we get:

Ca1
p xð Þ ¼ a1−xþ p−1

a1

ffiffiffiffiffi
a1
p

r
Ca1

p−1 xð Þ−
ffiffiffiffiffiffiffiffi
p−1
p

s
Ca1

p−2 xð Þ ð15Þ

with

Ca1
0 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−a1ax1
x!

r

Ca1
1 xð Þ ¼ a1−x

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−a1axþ1

1

x!

s ð16Þ

We observe that Eq. (15) presents a recurrence relation completely independent of the ρ(p)
function, indicating eliminating terms that numerically fluctuate the polynomial coefficients.
The factorial, exponential, and power functions still exist in determining the initial conditions.
To efficiently overcome these obstacles while computing Ca1

0 xð Þ and Ca1
1 xð Þ These initial

conditions will be calculated as follows:

& for p = 0, we have from Eq. (16):

Ca1
0 xþ 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−a1ax1
x!

r ffiffiffiffiffiffiffiffiffiffiffi
a1

xþ 1

r
ð17Þ

Based on Eqs. (16) and (17), we get:

Ca1
0 xþ 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
a1

xþ 1

r
Ca1

0 xð Þ with Ca1
0 0ð Þ ¼ e

−a1
2 ð18Þ
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& for p = 1, we have from Eq. (16):

Ca1
1 xþ 1ð Þ ¼ a1−xþ 1

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω xþ 1ð Þ
ρ 1ð Þ

s
¼ a1−xþ 1

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−a1axþ2

1

xþ 1ð Þ!

s
ð19Þ

Based on Eqs. (16) and (19), we get:

Ca1
1 xþ 1ð Þ ¼ a1−xþ 1

a1−x

ffiffiffiffiffiffiffiffiffiffiffi
a1

xþ 1

r
Ca1

1 xð Þ with Ca1
1 0ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

e−a1a1
p ð20Þ

It is deterring the initial conditions using Eqs. (18) and (20) overcome the numerical fluctu-
ations because of no longer dependent on the factorial and power functions. During the
recursive calculation of CPs, numerical error propagation occurs due to the round-off error
propagation. This error propagation leads to the loss of the orthogonality property of CPs. In
order to find a solution to this problem, we propose in the next section to use the Householder
orthonormalization method (HOM). The purpose of applying this procedure is to preserve the
orthogonality property of CPs at high order during recursive calculations.

3 The proposed procedure for maintaining the orthogonality property
of CPs using the householder method

According to the orthogonality property, CPs matrix (Cn, x) satisfies the following relation [20]:

Cn;x
TCn;x ¼ In ð21Þ

Where In is the identity matrix.
To avoid numerical error propagation and keep the property of orthogonality of CPs, we

present a new method for re-orthonormalizing CPs matrix columns using QR decomposition
methods. In these methods, a matrix A = [ u1, u2,…, un − 1, un] of size n × m factored as A =
QR, where Q is an n × mmatrix with orthogonal columns (QTQ = I) and R is anm × m upper
triangular matrix [28]. In our situation, R matrix contains just recursive computation errors.
The primary purpose of these methods is to generate the orthogonalQ(n × m) matrix from Cn,

x that contains round-off errors.
Many methods are used in QR decomposition, such as the Gram-Schmidt method, the

Householder method, and the Given Rotations method. For QR decomposition of matrices, the
Householder approach is considered numerically more stable and faster execution than the
Gram-Schmidt and Given Rotations methods orthogonalization. As a result, the Householder
approach is preferred for real-time applications [20]. The proposed algorithm for computing
Charlier polynomials (CPs) using the Householder orthonormalization method (HOM) is
illustrated in Algorithm 1:
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Algorithm 1 The Proposed Algorithm for computing CPs using HOM

4 The proposed compression algorithm

The proposed algorithm is described as follows: the original fPCG signal (1 × N) is the input,
and the fPCG signal is subdivided into smaller blocks of size (1 × n). In the proposed
algorithm, we selected the size of blocks (1 × 125). The order (P) of the Charlier moment is
selected according to the required compression factor (CF) as follows:

Order Pð Þ ¼ Round
n

100−CF

h i
; ð22Þ

Where compression factor (CF) shows how much of the signal is compressed. After deter-
mining the order (p), The Charlier polynomials (CPs) are computed on the signal block using
Eq. (15). Then, the Householder method (HOM) is applied to the Charlier polynomials (CPs)
as illustrated in algorithm 1. The forward Charlier moment is applied to the signal block to
extract the discriminate features using Eq. (3). The features of the signal blocks are concatenat-
ed to obtain the compressed fPCG signal. In the decompression process, the compressed signal
is subdivided into blocks, and the inverse transformation of CMs is applied to each block using
Eq. (4). Then, the blocks are concatenated to obtain the reconstructed fPCG signal.

The main steps of the proposed compression algorithm are summarized as:

Step1: Input the fPCG signal to be compressed.
Step2: Input the desired CF, and Set block size (1 × n) = (1 × 125).
Step3: Determine the order (P) of the Charlier polynomials using Eq. (22).
Step4: Set the value of the parameter a1 =140.
Step5: For each block.
Step6: Compute Charlier polynomials of order (p) by Eq. (15).
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Step7: Apply the Householder method (HOM) on the Charlier polynomials (CPs) using
algorithm 1.
Step8: Compute the forward Charlier moment by Eq. (3).
Step9: Concatenate the features of each block.
Step10: Apply the inverse transformation of the Charlier moment to obtain the recon-
structed signal by Eq. (4).
Step11: Calculate the efficiency of the proposed algorithm by computing PRD, SNR, and
PSNR.

Figure 1 show Digram that illustrates the processes of compression and decompression.
Figure 2 show Flow chart for the proposed compression Fpcg signals algorithm. The proposed
algorithm for compression fPCG signals can be summarized in Algorithm 2.

Algorithm 2 The proposed algorithm for compressing fPCG signals

5 Compression performance indicators

The effectiveness and efficiency of the presented compression algorithm are evaluated based
on the following performance criteria. [22, 25]:

– Compression ratio (CR)

CR ¼ number of bits for the original signal

number of bits for the compressed signal
ð23Þ

– Percent Root Mean Square Difference (PRD)

PRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ s xð Þ−S xð Þð Þ2

∑s xð Þ2

s
� 100 ð24Þ

where s(x), S(x) are the original and the reconstructed signal, respectively.
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– Quality Score (QS)
QS is utilized to evaluate the overall performance of a compression technique. A high

QS number indicates higher compression performance, as described below:

QS ¼ CR

PRD
ð25Þ

– Signal to Noise Ratio (SNR)

SNR ¼ 10� log
∑ s xð Þ−s xð Þ
� �2

∑ s xð Þ−S xð Þð Þ2

0
B@

1
CA ð26Þ

where s xð Þ is the mean value of s(x).

– Peak Signal to Noise Ratio (PSNR)

PSNR ¼ 20� log10
max s xð Þj jffiffiffiffiffiffiffiffiffiffi

MSE
p ð27Þ

Where max|s(x)| is the maximum point in s(x), andMSE is the mean square error between
the original s(x) and reconstructed signalS(x).

Compression

Concatenate the 
features of each block

Apply Charlier 
moments to get 

The features
Apply Householder 

methods on Charlier 
polynomials

Compute 
Charlier 

polynomials of 
order (p)

According to CF
determine the 

order (p)

Divide signal 
into blocks

FPCG 
Signal

For each block

Compressed Signal

Reconstructed 
signal

Concatenate 
the blocks

Apply the inverse 
transforma�on of 
Charlier moments

Divide signal into 
blocks

Decompression

Fig. 1 Diagram of the proposed algorithm’s compression and decompression steps
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Fig. 2 Flow chart for the proposed compression Fpcg signals algorithm
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– Compression Speed

Compression Speed ¼ uncompressed bits

sconds to comperss
ð28Þ

Decompression Speed ¼ uncompressed bits

sconds to decomperss
ð29Þ

– Computational efficiency (CE)
Computational efficiency (CE) is presented as CE of algorithm stands for the ratio

between the Compression ratio and Processing Time. A high CE value indicates superior
computational efficiency, which CE value reveals a high CR with a lower compression
Time.

CE ¼ CR

Compression Time
ð30Þ

6 Experimental results

Fetal PCG Database was used to test the effectiveness of the proposed compression algorithm
[34]. It contains 26 fPCG signals from pregnant women in their final months of physiological
singleton pregnancies (weeks 31–40). The recorded samples were 1 minute (60 seconds) in
duration, and the data were digitized at a sampling rate of 333 Hz at an 8-bit ADC. All of the
ladies were healthy and between the ages of 25 and 35.

6.1 Results of the proposed algorithm

The performance compression of the proposed algorithm was evaluated using the Fetal PCG
Database in terms of CR, PRD, SNR, PSNR, and QS. Table 1 summarizes the obtained results of
the proposed algorithm on the Whole (26 signal) Fetal PCG dataset. From Table 1, observably,
the proposed method yields excellent results for all signals in the dataset. It produces large
compression ratios (CR), excellent reconstruction quality (PRD), and high SNR and PSNR. For
particular fetal_PCG_p07_GW_38m signal, the proposed algorithm achieves large compression
ratios (CR = 32) with large reconstruction quality (PRD = 0.17) and excellent PSNR (PSNR =
46 .01 ) . The fe t a l_PCG_p07_GW_38m, f e t a l _PCG_p11_GW_37m, and
fetal_PCG_p23_GW_38m have the best Quality Score (QS) 188.24, 168.42, 145.45, respectively
(A high QS result represents that the CR is high and the distortion rate is low). The proposed
algorithm has an average performance of 18.33, 0.21, 48.85, 68.86, and 90.88 in terms of CR,
PRD, SNR, PSNR, and QS, as depicted in Table 1. Figures 3, 4, 5 and 6 depict compressed and
decompressed fPCG signals using the proposed method. Visual examination reveals that the
reconstructed signals closely resemble the original signals.
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6.2 Results of comparisons between the proposed technique and existent
compression algorithms

To the sake of validating the efficiency of the proposed approach, a comparative investigation
is performed with existing compression algorithms [6, 29] in CR, PRD, and QS. The results
obtained from the comparison of the proposed approach with transform-based techniques such
as Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Fast Walsh
Hadamard Transform (FWHT) are summarized in Table 2. As depicted in Table 2, for the

Table 1 Compression performance indicators of the proposed algorithm for fPCG signals

FPCG signal CR PRD SNR PSNR QS

fetal_PCG_p01_GW_36m 16 0.19 49.01 68.51 84.21
fetal_PCG_p02_GW_31m 8 0.13 49.92 75.38 61.53
fetal_PCG_p03_GW_37m 6.4 0.11 50.31 78.47 58.18
fetal_PCG_p04_GW_38m 32 0.28 48.10 61.63 114.28
fetal_PCG_p05_GW_34m 32 0.25 48.21 63.79 128
fetal_PCG_p06_GW_36m 21.4 0.19 49.01 68.49 112.31
fetal_PCG_p07_GW_38m 32 0.17 49.21 70.73 188.24
fetal_PCG_p08_GW_37m 16 0.31 47.88 59.91 51.62
fetal_PCG_p09_GW_40m 9.2 0.12 50.10 77.22 76.42
fetal_PCG_p10_GW_36m 21.3 0.21 48.90 67.63 101.42
fetal_PCG_p11_GW_37m 32 0.19 49.01 68.02 168.42
fetal_PCG_p12_GW_39m 16 0.19 49.01 68.51 84.21
fetal_PCG_p13_GW_36m 16 0.22 48.32 66.41 72.73
fetal_PCG_p14_GW_36m 10.6 0.52 45.53 51.42 20.5
fetal_PCG_p15_GW_36m 16 0.17 49.21 70.38 94.12
fetal_PCG_p16_GW_39m 21.3 0.24 48.25 64.92 88.75
fetal_PCG_p17_GW_35m 8 0.12 50.10 77.57 66.6
fetal_PCG_p18_GW_40m 8 0.16 49.41 71.33 50
fetal_PCG_p19_GW_38m 16 0.14 49.60 73.82 114.28
fetal_PCG_p20_GW_40m 16 0.23 48.30 65.02 69.56
fetal_PCG_p21_GW_39m 16 0.21 48.90 66.99 76.19
fetal_PCG_p22_GW_38m 10.6 0.14 49.60 73.42 75.72
fetal_PCG_p23_GW_38m 32 0.22 48.32 66.40 145.45
fetal_PCG_p24_GW_36m 21.3 0.33 47.86 59.20 64.54
fetal_PCG_p25_GW_37m 32 0.28 48.10 62.09 114.24
fetal_PCG_p26_GW_36m 10.6 0.13 49.92 75.11 81.54
Average 18.334 0.209 48.849 68.168 90.886

0 500 1000 1500 2000 2500 3000 35000

100

200

300
OrignalSignal fetalPCGp01GW36m

0 500 1000 1500 2000 2500 3000 35000

100

200

300
Reconstructed Signal with CR= 16 and PRD=0.19

Fig. 3 Compression of fetal_PCG_p01_GW_36m signal with CR = 16 and PRD = 0.19
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comparison with DCT and DWT, the proposed method outperforms them in all performance
indicators for fPCG in the dataset. The proposed method has the highest QS because it has
good CR and the lowest PRD. Comparing the proposed method to FWHTmay not achieve the
highest CR, but it achieves excellent PRD and the best QS.

Consequently, the proposed approach produces the greatest quality reconstructed signal
compared to all other known techniques. This ensures that the reconstructed signal will contain
all relevant diagnostic information. Figure 7 show a comparison of the proposed approach with
DCT, DWT, and FWHT in term of SNR, PRD, CR, and QS, each of them independently.
FWHT provides good results in CR, but the proposed algorithm is extremely high QS and
better reconstruction quality (PRD). Graphs in Fig. 7 demonstrate the superiority of the
proposed method compared to all other known techniques in SNR, PRD, and QS.

6.3 Compression speed and computational efficiency of the proposed algorithm

Table 3 summarises the Compression time, Compression speed, and computational efficiency
for various fPCG signals extracted from datasets utilized in this paper and applied to the
proposed approach. The proposed algorithm’s compression time and compression speed are
just as important as their compression performance. The compression speed of the technique is
crucial for wireless biosensors in RHMs. As seen in Table 3, compression speed and
computational efficiency increase as compression time decreases.

0 500 1000 1500 2000 2500 3000 35000

100

200
Original Signal fetalPCGp07GW38m

0 500 1000 1500 2000 2500 3000 35000

100

200
Reconstructed Signal with CR=32 and PRD = 0.17

Fig. 4 Compression of fetal_PCG_p07_GW_38m with CR = 32 and PRD = 0.17
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0 500 1000 1500 2000 2500 3000 35000

200

400
Reconstructed Signal with CR=16 and PRD = 0.21

Fig. 5 Compression of fetal_PCG_p21_GW_39m with CR = 16 and PRD = 0.21
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6.4 Energy consumption evaluation

This section discusses the evaluation energy consumption with the proposed algorithm. The
proposed compression algorithm is implemented on STM32f429 Discovery development board.
The STM32f429 discovery system comprises an ARMCortex-M4base 32-bit microcontroller from
STMicroelectronics. It operates at a maximum frequency of 180 MHz, which this study utilizes for
data compression [27]. The development board offers a direct memory access technique (DMA)
for fPCG measuring devices accessing memory directly. It is connected with a Bluetooth module
with UART as compressed data output. Module-MD08R-C2A Bluetooth module with baudrate
support of 1.2 k to 921.6 k bps is employed. The Bluetooth module is linked to the development
board through the UART interface, and the baudrate is set to 230,400 bps (28,800 bytes).

– Wearable devices are in a “wake-up” state when processing or transmitting data; other-
wise, they are in a “sleep” state.

– While a wearable device is in ‘wake-up’ mode, it drains battery power.
– Decreasing the transmitting data size reduces data transmission time, consequently reduc-

ing a ‘wake-up’ mode.
– Battery consumption is reduced by decreasing a ‘wake-up’ mode for the wearable device.
– According to the fPCG dataset mentioned above, the size of fetal_PCG_p01_GW_36m

(333*8*60) = 159,840 bytes.
– Depending on the Bluetooth capability used, the transmission time of the signal is

(159,840/28,880) 5.55 seconds.
– Table 3 indicates that the signal is compressed by CR = 16, and the compression time is

1.47 seconds, which means that the size of the compressed signal is 9990 bytes. Then the
transmission time of the compressed signal is 0.347 seconds

Conditions Compression Time(s) Transmission Time(s) total time(s)
without compression – 5.55 5.55
with compression 1.47 0.347 1.817

From previous data, we note that the signal will be transmitted in 5.55 seconds; using the
compression, the signal will be compressed and transmitted in 1.47 + 0.347 = 1.817.
Therefore, the proposed compression algorithm decreases the overall work time by about
5.55–1.87 = 3.68 s.

0 500 1000 1500 2000 2500 3000 35000

100
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Original Signal fetalPCGp26GW36m

0 500 1000 1500 2000 2500 3000 35000

100

200
Reconstructed Signal with CR=10.6 and PRD = 0.13

Fig. 6 Compression of fetal_PCG_p26_GW_36m with CR = 10.6 and PRD = 0.13
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7 Discussions

Experiments and the results above demonstrate that the proposed algorithm outperforms
previous recent algorithms. Various metrics of performance were tested in the experiments.
In the first place, we must consider the compression ratio and the quality of the compressed
signals. Second, we considered the Compression time, Compression speed, and computational

Fig. 7 Performance comparison of the proposed algorithm with DCT, DWT, and FWHT in the team of (a) SNR,
(b) PRD, (c) CR (d) QS

Table 3 The Compression time, Compression speed, and computational efficiency of the proposed algorithm

FPCG signal CR Compression Time(s) Compression Speed(bps) CE

fetal_PCG_p01_GW_36m 16 1.47 177,600 10.88
fetal_PCG_p04_GW_38m 32 1.16 224,336 27.58
fetal_PCG_p05_GW_34m 32 1.32 197,328 24.24
fetal_PCG_p07_GW_38m 32 1.35 193,744 23.70
fetal_PCG_p11_GW_37m 32 1.16 244,336 27.58
fetal_PCG_p12_GW_39m 16 1.14 229,160 14.0.4
fetal_PCG_p15_GW_36m 16 1.12 234,192 14.28
fetal_PCG_p19_GW_38m 16 1.04 250,728 15.38
fetal_PCG_p23_GW_38m 32 1.08 244,176 29.63
fetal_PCG_p25_GW_37m
Average

32
25.6

1.23
1.207

213,120
218,672

26.02
21.157
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efficiency. The last path is one of decreasing energy consumption. The tabular and graphical
results demonstrate the efficacy of the suggested method in terms of all paths’ performance
measurements. The good results in compression ratio and compressed signals quality of the
proposed algorithm it goes back to using discrete Charlier moment as a feature descriptor with
the householder orthonormalization method (HOM). HOM preserves the orthogonal property
of Charlier moment at high order; subsequently, the numerical error propagation doesn’t occur
when computing high-order Charlier moments. As a result, the proposed algorithm can
achieve a high compression ratio and high quality of the compressed signals. The superiority
in Compression time, Compression speed, and computational efficiency are thanks to using a
recurrence relation completely independent of Charlier polynomials computation, which is no
longer dependent on the factorial and power functions. In addition, using HOM in the
proposed algorithm leads to speeding the compression, which is considered the best way of
QR decomposition in signal reconstruction quality and execution time [27].

The average value of the performance metrics is CR = 18.33, PRD = 0.21, SNR = 48.85,
PSNR = 68.86, and QS = 90.88. Even though the proposed algorithm didn’t provide the
highest CR, it did provide the best PRD, SNR, PSNR, and QS. This guarantees that the
reconstructed signal has all relevant diagnostic information. This is important when
compressing medical signals since losing diagnostic information could lead to a wrong
diagnosis. Additionally, the superiority of the proposed approach in terms of compression
time, compression speed, and computational efficiency makes it more efficient in decreasing
energy consumption.

The superiority in the performance of the proposed approach in compressing fPCG signals
can be attributed to the following factors:

– A Charlier moment has a basic function that is orthogonal to the moment. Each Charlier
moment coefficient can capture the signal’s distinct and unique components with no
information redundancy.

– According to the order value, Charlier moments’ basis functions can extract a variety of
diverse forms of information from the signal. It is due to using the Householder
orthonormalization method (HOM) to maintain the orthogonality property of Charlier
polynomials.

– Moments generated from discrete orthogonal polynomials are effective at compressing
signals. This is because they have a higher efficiency of energy compression for common
signals. If the discrete orthogonal moment is correctly specified, the signal’s energy is
concentrated on a small fraction of the moment coefficients; these coefficients are then
saved and used to reconstruct the signal.

– The power of Charlier moments to extract both local and global features.
– The higher compression speed and computational efficiency result from using recursive

formulas to compute polynomials by lower polynomial orders instead of directly com-
puting them.

There have been much advancement in compression techniques; however, there are still many
obstacles to overcome. The computational complexity and the availability of memory man-
agement are two important factors in the development of compression techniques. Most
current methods have high computing complexity, making them unsuitable for use in real-
time applications like Remote Monitoring Systems. With the usage of the compression
approach, memory management becomes more complicated. When the amount of memory
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needed to do the compression method is more than what is available on the device, efficient
compression cannot be done. Even if certain compression approaches obtain a higher CR, they
do not manage memory effectively. So another interesting research topic is the study of
memory management in compression algorithms.

8 Conclusion

The present article proposes a new compression technique for fPCG signals to reduce
energy consumption in Remote Healthcare Monitoring systems (RHMS). The proposed
compression algorithm employs Discrete Orthogonal Charlier Moment (DOCMs) as a
features extractor due to the orthogonality of its basis functions. We determined and
deleted the terms responsible for the numerical fluctuations in the values of the Charlier
polynomial using a recurrence relation that is independent of the factorial and power
functions for the construction of CPs. In order to preserve the orthogonality property of
Charlier polynomials, the Householder orthonormalization method (HOM) is used. We
evaluated the efficiency of proposed algorithm across Fetal PCG Database. It contains 26
fPCG signals from pregnant women in their final months of physiological singleton
pregnancies (weeks 31–40). We used several metrics to compare the proposed algorithm
to other well-known compression algorithms. The evaluation performance for the com-
pression algorithm is implemented in three aspects. First, the compression ratio with
reconstruction quality. Second, the compression speed and computational efficiency of
the proposed algorithm. The third and final aspect is the energy consumption. The
comparison between the proposed algorithm and the previous recent algorithms demon-
strates that the proposed algorithm is better than those used in the previous works with
respect to all aspects. In addition, the evaluation of energy consumption indicates that the
proposed compression algorithm decreases the overall work time of devices in RHMS. In
terms of the mentioned three aspects, our proposed algorithm satisfies the following:
significant compression ratio is plausible, the quality of the reconstructed signal is
respected, and energy consumption is decreased. As a result, it is well-suited for use
with wearable devices, long-term data storage, massive databases, and RHMs.

In our future work, we may use new Discrete Orthogonal Moments as a feature
extractor to improve the proposed algorithm for fPCG compression. Moreover, using
various orthonormalization methods to maintain the orthogonality property at the High-
order computation of Charlier polynomials could also increase the effectiveness of the
proposed algorithm.
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