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Abstract
With the latest advances in deep learning-based generative models, it has not taken long to take advantage of their

remarkable performance in the area of time series. Deep neural networks used to work with time series heavily depend on

the size and consistency of the datasets used in training. These features are not usually abundant in the real world, where

they are usually limited and often have constraints that must be guaranteed. Therefore, an effective way to increase the

amount of data is by using data augmentation techniques, either by adding noise or permutations and by generating new

synthetic data. This work systematically reviews the current state of the art in the area to provide an overview of all

available algorithms and proposes a taxonomy of the most relevant research. The efficiency of the different variants will be

evaluated as a central part of the process, as well as the different metrics to evaluate the performance and the main

problems concerning each model will be analysed. The ultimate aim of this study is to provide a summary of the evolution

and performance of areas that produce better results to guide future researchers in this field.
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1 Introduction

From the advent of deep learning (DL), a large part of

research and the efforts of the scientific community have

focused on solving and improving supervised training

tasks. Supervised learning requires larger datasets, with a

large number of different features, and these samples also

need to be labelled in order to be feasible. With the latest

models, it is becoming more difficult to obtain a suit-

able dataset, as the models require larger amounts of data

to carry out the training. Usually, there exists a large

number of public repositories from which to obtain suit-

able datasets for training in most application areas.

However, in the time series domain, datasets are not that

easy to access, where there are usually a number of privacy

issues, and it is typically difficult to obtain large enough or

balanced datasets. This often leads to a major problem

when attempting to train one of these models on an

incomplete, unbalanced or privacy-challenged dataset.

Typically, these problems are addressed by pre-processing

dataset techniques, such as subsampling, or in datasets that

are not large enough, by data augmentation (DA) tech-

niques [1, 2].

Nevertheless, as soon as problems arise, technology

evolves to address these boundaries. In recent years, arti-

ficial neural network (ANN) and their application to the

field of DL have experienced a period of great advances.

Although a multitude of models has contributed to this

expansion, one of the most revolutionary that has been
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proposed appeared in 2014 by Ian Goodfellow [3], with

his generative adversarial network (GAN).

GAN is certainly not the earliest generative architecture

ever introduced; already in 1987 Yann Lecun [4] suggested

in his thesis the autoencoder (AE) architectures, which

were capable of generating data modifications received as

input. But it is not until the incorporation of directed

probabilistic models into AE architectures, also known as

variational autoencoder (VAE) [5], that the models begin to

be presented as capable of generating synthesised data.

Although these networks show impressive results, the

capabilities of GAN have been shown to be far ahead, with

impressive results applied to the field of imaging. Fur-

thermore, this is not the unique area of application. Syn-

thetic data generation is a powerful boost for synthesis of

sensitive data, such as in the world of telecommunications.

There are many time series applications where these

algorithms have shown good results when improving the

capabilities of the models by enlarging the datasets [6, 7].

In this area, time series data are especially sensitive due to

aspects such as the low availability of high-quality datasets

or privacy of the data [8–11].

All these advances in the DL area allow us to synthet-

ically increase the size of the datasets used in machine

learning (ML) tasks. As mentioned above, the size of the

dataset is a sensible characteristic that can affect the per-

formance of the developed models.

Regarding time series data, the availability of these huge

datasets is even more complicated. There are other fields

such as image processing or natural language processing

(NLP) where data is much more available. But in the time

series domain, it is more difficult to obtain these samples

[9–11]. In this sense, DA arises as a technique to counter

the scarcity of data.

Another important factor is that time series data have

particularities when it comes to processing them. Each

dataset of time series is very different and needs special

attention on how it is being augmented. Therefore, the

proposed techniques for time series data must be analysed

and discussed to better understand which technique can be

used in which data.

Thus, this paper aims to review all the existing tech-

nologies for DA, and to review the positive and negative

aspects of each of them. This review can help researchers

better understand how DA techniques can be applied to

time series data to obtain better results when training

machine learning (ML) models. We also expect that it will

be useful to highlight the main differences between time

series data and other domains.

1.1 Paper structure

The rest of the paper is structured as follows: Sect. 2:

‘‘Problem Statement’’ presents the review in its context,

providing a view of the importance of this work in the

current context; Sect. 3: ‘‘Related Works’’ reviews previ-

ous similar works in this area, highlighting the differences

between the previous ones and the present manuscript;

Sect. 4: ‘‘Background’’ introduces a technical background

of the performance of the techniques used to augment time

series data; Sect. 5: ‘‘Evaluationmetrics’’ explains the

problematic associated with how to evaluate the results of

the new synthetic data; Sect. 6: ‘‘Data Augmentation

algorithms review’’ presents the most important and cur-

rent work in this area, reviewing the technical aspects of

each approximation; Sect. 7: ‘‘Discussion’’ discusses the

results and behaviour of each algorithm presented in the

previous section and finally Sect. 8: ‘‘Conclusion’’ sum-

marises the main conclusions of the research.

2 Problem statement

This study addresses the current context of generating new

data samples in temporal series datasets. The purpose of

this paper is to focus on the most relevant and cutting-edge

research in this area to provide an accurate and complete

view of this field. This research tries to cover all the pos-

sible techniques used to enhance this type of data.

In contrast to previous works, the aim of this survey is to

provide a complete view of how different approaches to

this problem have been developed. One of the main

problems of reviewing a portion of the total techniques

used in this area is that it does not fully explain how the

current paradigm is structured. This is particularly critic

when comparing different techniques, where it is desirable

to have all the approximations in the area to fully under-

stand the particularities of each one.

In this sense, it is important to provide an updated and

comprehensive study of the state of the art in this area. This

manuscript is focused on the three most important pillars of

current data augmentation in time series: traditional algo-

rithms VAE and GAN.

3 Related works

In the latest times, several high-quality data augmentation

review papers have been published [12–14]. However,

most of them are focused on more popular areas such as

imaging, video or natural language processing (NLP).

Although these techniques focus on correcting the

10124 Neural Computing and Applications (2023) 35:10123–10145

123



imbalance or incompleteness of the dataset, there are other

areas of application where these problems are more com-

mon. The scarcity of valid datasets is not as clear in all

areas of DL applications as in time series.

In a first approach to the literature review, in [15] an

approximation of DA algorithms is made for use in neural

network algorithms for time series classification. In the

survey, they evaluated 12 methods to enhance time series

data in 128 time series classification datasets with six dif-

ferent types of neural networks. Other recent studies focus

more specifically on the use of GANs for data augmenta-

tion, as in [16], where they analyse the taxonomy of dis-

crete-variant GANs and continuous-variant GANs, in

which GANs deal with discrete time series and continuous

time series data. These surveys analyse DA in time series

using neural networks, but lack a comparison of these

algorithms with more traditional approaches.

However, improving data sources to feed artificial

intelligence (AI) algorithms is not limited to DA exclu-

sively. Therefore, some studies have decided to take the

path of building synthetic traffic generators to build their

datasets almost from scratch; some examples focusing on

this aspect are [17–19]. In this way, they are able to

abstract from the dataset itself, which is only necessary to

understand the distribution of the data. Furthermore, in [20]

they set out a further study of the repercussions of these

technologies, highlighting one of the major advantages of

generating synthesised data, the abstraction of privacy

issues and the ease of obtaining datasets.

Despite the possibilities presented by new technologies

to improve the quality of time series datasets, there are no

studies that compile all technologies, with a comprehensive

comparison of them. Furthermore, to the authors’ knowl-

edge, a survey that compiles all the different techniques is

missing in the literature. This work’s goal is precisely to

address this problem. It is crucial to develop a review that

studies and compares all novel techniques proposed in time

series domain. Previous works were centred on a specific

model or approximation, with works such as [16, 21, 22].

The objective of this survey is to have a wider view of the

field, and to be able to further compare each technology

and different approximations. With respect to previous

work, a complete review is presented, extending the

explanation of each algorithm’s performance, results,

advantages and disadvantages.

In addition, this field is in constant evolution, so it is

common for reviews to become outdated due to the pub-

lication of new articles. It is considered very important to

provide an updated study of the state of the art that follows

the latest trends in this area.

Therefore, the goal of this review is to contribute to

reducing the existing gap in the area by trying to bring

together all the time series DA algorithms that currently

exist, contrasting their possible virtues, approaches and

differences to help future researchers position themselves

in the area.

4 Background

4.1 Traditional algorithms

DA has been a crucial task when the available data are

unbalanced or insufficient. Traditionally, in fields such as

image recognition, different transformations have been

applied to data such as cropping [23–26], scaling [24, 25],

mirroring [23, 26, 27], colour augmentation [23, 25, 28] or

translation [27].

These algorithms cannot be applied directly to time

series given the particularity of the time series data dis-

tribution [29]. For example, if one wants to apply rotation

to augment an image dataset, it is possible to rotate each

image to generate new ones. This cannot be directly done

in the time series domain, e.g., if a time series sample is

divided into several portions and these portions are reor-

ganised using linear interpolation between them, the result

would not be valid because the tendency of the data would

be destroyed. Due to the diversity of the time series data,

not all techniques can be applied to every dataset. Some of

the previous algorithms used in computer vision must

adapted to a time series domain, but, in other cases, new

specific algorithms must be designed to treat with time

series data.

Another important factor when applying DA to the time

series domain, especially in signal processing, is that

manipulation of the data could distort the signal too much,

leading to negative training.

Traditional algorithms are defined as all the techniques

based on taking data input samples and synthesising new

samples by modifying these data and applying different

transformations. The main difference between this tech-

nique and those that are reviewed in Sects. 4.2 and 4.3 is

that, in the former algorithms, the transformations are

applied directly to the data, while in the latter the objective

is to learn the probability distribution of the data in order to

generate completely new samples trying to imitate the data

distribution.

4.2 Variational Autoencoder (VAE)

VAEs are neural generative models first introduced by

Diederik P. Kingma and Max Welling [5]. This algorithm

is based on the AE architecture [4] proposed in 1987. AEs

allow changing typical artificial intelligence problems,

such as linear regression or classification, to domain-

shifting problems. In order to perform this, AEs take an
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input, usually an image, and infer as the output modifica-

tions of that same input. This is known as self-supervised

training, where the objective is to obtain the input with

slight modifications as an output. One of the most popular

applications of this model is image denoising [30]. In this

case, the input is an image that contains noise and the

output should be the input image without the undesired

noise.

AE Network is composed of two components, an

encoder and a decoder. The encoder is in charge of

reducing the input dimensionality of the data to a latent

space, while the decoder reconstructs the input information

from this latent representation. This latent space is a lower-

dimensional manifold of the input data. Then, synthetic

data are generated, interpolating the values of the latent

space and decoding them. However, this interpolation of

the latent space does not generate completely new values;

it just mixes the features of the learned probability

distribution.

In order to avoid the overfitting produced in AE, VAE

regularises its training, generating more diverse samples.

The main difference between both architectures is that

VAE encodes the input information in a probability dis-

tribution rather than in a point. Then, from this distribution,

it samples a point that is then decoded to synthesise new

samples.

This intermediate step allows the network to map the

input distribution to a lower-dimensional distribution from

which new latent points can be generated. To do so, the

latent distribution is normally defined by a normal distri-

bution with a mean l!¼ l1; . . .; lnð Þ and a standard

deviation r!¼ r1; . . .; rnð Þ. These mean and standard

deviation vectors define the latent distribution of the

model.

Leaving the network to learn a distribution, instead of a

set of points learned in AE, the decoder network associates

the features of the input data with the probability areas with

their respective mean and deviation. With this representa-

tion, the mean of the distribution defines the centre point

from which the synthetic samples will be generated and the

standard deviation defines the variability in the output, that

is, the diversity of the generated samples.

Figure 1 shows the architecture of a VAE network.

Regarding the training of a VAE network, there are two

different loss functions. The reconstruction term is in

charge of the reconstruction of the input data. It measures

the error of the network when it builds. This metric acts the

same as the error of a standard AE.

On the other hand, VAE include a regularisation term

that tries to organise how the latent distribution generates

new latent spaces. The function of this term is to measure

the distance of the sampled data points and a Gaussian

distribution. The distance used to measure this error is the

Kullback–Leibler divergence (KL divergence) [31]. So in

order to calculate the loss of the VAE both errors are

added, measuring at the same time the reconstruction error

of the output and the error of sampling points following a

normal distribution.

4.3 Generative Adversarial Network (GAN)

GAN is a generative neural model based on a competition

between two neural network (NN). They were first intro-

duced by Ian Goodfellow [3] in 2014. The objective of the

architecture is to replicate a given data distribution in order

to synthesise new samples of the distribution. To achieve

this goal, the GAN architecture is composed of a generator

(G) model and a discriminator (D) model. The former is in

charge of generating the synthetic samples of the data

distribution, while the latter tries to distinguish the real

samples from the synthesised samples.

To accomplish such generation of completely new data

that are indistinguishable from the input data distribution,

both models interact with each other. The model generator

(G) generates samples trying to replicate, without copying,

the distribution, while the model discriminator (D) dis-

criminates the real samples from the fake samples. In this

way, when discriminator (D) differentiates both distribu-

tions, it feedbacks generator (G) negatively; on the other

hand, when discriminator (D) is not capable of differenti-

ating each distribution, its positively feedbacks generator

(G). In doing so, generator (G) evolves to fool discrimi-

nator (D). At the same time, discriminator (D) is positively

rewarded when discrimination is done correctly.

This competition encourages both networks to evolve

together. If discriminator (D) fails in its task, generator

(G) will not evolve because it will always succeed, despite

the quality of the synthesised samples. Even if discrimi-

nator (D) always perfectly distinguishes both distributions,

generator (G) will not be able to fool discriminator (D),

making it impossible to evolve. The standard GAN archi-

tecture is depicted in Fig. 2.

From a mathematical perspective, this competitive

behaviour is based on Game Theory, where two players

compete in a zero-sum game. The discriminator
Fig. 1 VAE architecture with the both latent space representations (p
and r)
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(D) estimates the a posteriori probability p(y|x) , where y is

the label (true or fake) of the given sample x. And gener-

ator (G) generates synthetic samples from a latent vector z,

which can be denoted as G(z).

From a formal point of view, this competition is defined

as a minimax game where discriminator (D) tries to max-

imise its accuracy when discriminating between both dis-

tributions and generator (G) tries to minimise this accuracy.

The formulation of this process is denoted as follows:

min
G

max
D

LðD;GÞ ¼ min
G

max
D

Ex� pr log½DðxÞ�

þEz� pz log½1 � DðGðxÞÞ�;
ð1Þ

where z is the latent vector, which is generated randomly

by a uniform or Gaussian distribution pz and x� pr is the

real distribution.

In the publication in which GAN was presented [3], it

was proved that the architecture can converge to a unique

solution. This point, known as Nash equilibrium, is char-

acterised by the fact that none of the networks can reduce

their respective losses. This optimal result is very difficult

to achieve in reality due to the instability behaviour of

GAN. The Nash equilibrium is, in fact, most of the time not

achieved because of the constant competition between both

networks.

Respecting DA, GANs synthesise completely new

samples, using the dataset distribution as their base on

learning the underlying data distribution. Therefore, GANs

are able to produce more diverse samples respect with

respect to previous approximations. This is known as data

generation, where the main difference between data gen-

eration and DA is that the former generates new samples of

synthetic data while the latter use the original samples to

produce new ones using their information.

5 Evaluation metrics

Due to the particularities of the time series field, there is no

unique metric to evaluate the reliability of algorithms in all

of their applications. Finding a measurement capable of

evaluating the quality and diversity of the synthesised data

is still an open issue.

For example, in GAN networks, there exists no con-

sensus between the different studies about the evaluation

metrics to use. In addition, most of the evaluation metrics

designed are centred on computer vision, since it is the

most popular field for this kind of network.

Therefore, it will be described the most commonly used

metrics that have been used to evaluate the algorithms that

will be discussed in this article. However, it should be

noted that to choose a proper evaluation metric, one should

adapt the metric to the specific data augmentation algo-

rithm and the application field.

5.1 External performance evaluation

When applying DA to a dataset, the most common objec-

tive is to generate new data samples to improve the per-

formance of certain models, reducing the imbalance of the

data or the lack of data. One of the most popular ways to

measure how the addition of new data changes the beha-

viour of the models is simply to compare these models

before and after DA. Then, it is possible to compare

whether each model has improved its performance after

applying DA to the input data.

This approximation is purely practical and relies on the

correlation between the performance of a defined model

and not the quality of the synthetic samples themselves.

Most traditional algorithms base their performance on this

method because it is a straightforward method to evaluate

an algorithm.

In [32], the performance of the DA algorithms they

propose is achieved using symmetric Mean Absolute Per-

centage Error and Mean Absolute Scaled Error, which are

the two most common evaluation metrics used in fore-

casting. This research compares the values of these metrics

before and after applying DA to the dataset, then evaluates

how the models improve their performance due to the

addition of more data to the training set.

In [15], they used six different neural networks to

evaluate how each DA algorithm affects the classification

Fig. 2 GAN architecture
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of the data. In particular, they evaluated VGG [24],

residual network [25], multilayer perceptron [33], long

short-term memory [34], bidirectional long short-term

memory [35] and long short-term memory fully convolu-

tional network [36]. Then, the changes in the accuracy of

the models are compared, observing how certain DA

algorithms benefit the performance of the models, while in

other cases it gets worse. The main drawback stated in the

article is that each architecture has its particularities, given

the different results for each algorithm and making it a

difficult task to differentiate the best algorithm. Further-

more, because all of them are neural models, it is difficult

to interpret some of the results.

The approach followed in [29] is to compare different

DA techniques by the increase in accuracy produced in

each case of study. It is worth mentioning how this

approximation adapts to each application without having to

change anything. The authors of the article are able to

compare very different techniques such as noise addition,

GAN, sliding window, Fourier transform and recombina-

tion of segmentation under the same criteria for a specific

domain purpose. This example shows how this approach

easily adapts to different DA techniques, making it possible

to compare the results for a certain task.

A similar strategy to measure the quality of the gener-

ated data is to compare different models using a defined

loss function. This approach was followed in GAN archi-

tectures in works like [3, 37–40], where a comparison

between networks is possible using the same loss function

to evaluate their training. Then, they correlate the quality

of the synthetic data with this value. This strategy can be

applied naturally to the time series domain, allowing

comparison between different networks. However, the

main drawback of this method is that it compares the

performance of different neural models and cannot be

applied to other models. It should be noted that, as in

previous metrics, it correlates the quality of the generated

data not with the data itself but rather with the performance

of the model.

In [41], they compare the performance of different DA

techniques with mean per-class error (MPCE). This metric,

proposed in [42], measures the error per class in J datasets

taking into account the number of classes in each dataset.

The main particularity of mean per-class error (MPCE) is

that it allows us to quantify the performance of an algo-

rithm for different datasets. The mean per-class error

(MPCE) is calculated as follows:

MPCE ¼
X

j2½J�
PCEj ¼

ej
cj ð2Þ

where ej is the error rate and cj is the number of classes in

each dataset. This metric is capable of taking into account

the number of classes of each dataset, in order to normalise

the comparison between different sources of data.

5.2 GAN related metrics

Since the introduction of GAN, it has always been an open

issue to measure the quality of the synthesised samples

produced by the architecture [43]. One of the most

important difficulties when designing a metric for GAN is

the ability to capture both the quality and diversity of the

generated data.

In addition to being still an open issue, there is con-

sensus on some metrics and many papers measure their

results with the same metrics [44–49]. The main problem

in the time series domain is that it is not always possible to

adapt the metrics to the particularities of this field because

most of the metrics are designed to be useful in computer

vision-related tasks.

Over the past few years, some works have suggested

applying DA to time series data and treating it as if it were

an image [50, 51]. These papers use GAN networks to

synthesise new time series data, but to convert the signal

data into an image. In these cases, traditional GAN metrics,

such as the Inception Score [52], Mode Score [53] or

Fréchet Inception Distance [54] are used to evaluate the

results. These metrics are based on how the Inception v3

neural classifier distinguishes the different samples. The

idea is to measure the entropy of the synthetic dataset using

an external classifier.

In addition to the field of computer vision, studies have

been developed that apply GAN directly to time series.

That is, in TimeGAN [55] two new metrics are proposed to

assess the quality of the generated samples. The Discrim-

inative Score is based on the use of an external pre-trained

model, as was done with the Inception Score, consisting of

a 2-layer LSTM. The Discriminative Score measures how

this model distinguishes between real and fake samples and

the classification error corresponds to the Discriminative

Score. The Predictive Score measurement was introduced

in [56] with the name Train Synthetic, Test Real (TSTR)

which also uses a 2-layer LSTM, but in this case, this

model is trained with synthetic samples. The model is then

evaluated using the original dataset. The Predictive Score

corresponds to mean absolute error (MEA) of the model

trained with the synthetic samples evaluated with the real

samples. This metric is, at the moment, one of the most

effective and used evaluation metrics.

5.3 Similarity measurements

This set of metrics focuses on the comparison of two

probability distributions. The idea is to measure how far

from the original distribution the synthetic samples
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generated with DA. The main advantage of these metrics is

that they focus on directly studying the quality of the data,

in contrast the previously reviewed methods that measured

the quality indirectly. Another advantage of these types of

metrics is that they can be applied to synthetic data despite

the algorithm used to generate them.

An empirical and qualitative approach to measuring the

differences between two distributions is to reduce the

dimensionality of the data and perform a visual compari-

son. The objective is to reduce the dimensionality of the

data to plot the samples in a bidimensional space; an

empirical comparison is then made by visualising the data.

This approach was followed in [57] where they applied t-

distributed stochastic neighbour embedding (t-SNE) and

principal component analysis (PCA). Then, they compared

the distribution of the data in the two-dimensional space for

TimeGAN [55], recurrent conditional GAN (RCGAN)

[56], continuous recurrent GAN (C-RNN-GAN) [58],

T-Forcing [59], WaveNet [60] and WaveGAN [61]. This

approach was also followed in [15] where they used prin-

cipal component analysis (PCA) to compare different tra-

ditional algorithms for the GunPoint dataset from the 2018

UCR Time Series Archive [62].

Kullback–Leibler divergence (KL divergence) has been

used in work such as [63, 64] to measure similarities

between synthetic and real datasets. Recall that Kullback–

Leibler divergence (KL divergence) [31] is defined as

DKLðP jjQÞ ¼
X

i

PðxiÞ log
PðxiÞ
QðxiÞ

� �
; ð3Þ

where P and Q are the probability distributions whose

distance is calculated and i runs over the samples xi of the

distribution. This Kullback–Leibler divergence (KL

divergence) [31] is not a symmetric distance, so it can be

symmetrized to give rise to the so-called Jensen–Shannon

divergence (JSD), defined as

JSDðP jjQÞ ¼ DKLðP jj ðPþ QÞ=2Þ þ DKLðQ jj ðPþ QÞ=2Þ:

In [65], a novel measurement is proposed to quantify the

distance between the time series distribution. It is based on

calculating the Wasserstein distance between time series

data. The metric is defined by measuring the Wasserstein

distance of the energy between frequencies. The Wasser-

stein–Fourier distance between the probability distributions

is computed as follows:

WFð½x�; ½y�Þ ¼ W2 sx; sy
� �

ð4Þ

where sx and sy are the normalised power spectral densities

of the distributions.

6 Data Augmentation algorithms review

During this section, different state-of-the-art algorithms

will be reviewed. This section will explain the particular-

ities, strengths and weaknesses of each algorithm. In

addition, the different approximations to apply DA will be

grouped and related between them. A taxonomy of the

different trends and lines of research will be proposed,

showing the different existing links between the works of

the last years.

It should be noted that not all the algorithms can be

applied to all types of time series data; in some cases, the

algorithms proposed will be heavily focused on a certain

application, while in others more general techniques will

be studied.

6.1 Basic DA Methods

The basic DA algorithms that will be reviewed in this

section are all techniques that use data manipulation to

generate new synthetic data samples using existing samples

and transform the original samples. All these techniques

have as their base the deformation, shortening, enlargement

or modification of the data samples of the dataset. This

group of techniques has been traditionally used in fields

such as computer vision and, in some cases, the same

algorithms can be adapted to process time series data, but

in others, new algorithms must be designed specifically to

use time series data as input.

Therefore, the most important traditional algorithms that

have been applied to time series data will be reviewed and

discussed, outlining their particularities, advantages and

disadvantages. Figure 3 shows the taxonomy proposed for

the different algorithms reviewed.

6.1.1 Time slicing window

Slicing, in time series, consists of cutting a portion of each

data sample, to generate a different new sample. Normally,

slicing is applied to the last steps of the sample, but the

snippet of the original sample can be obtained from any

step. When the original data is cropped, a different sample

is produced, but unlike image processing, it is difficult to

maintain all the features of the original data. The process of

slicing time series data provides new data given as:

x0ðWÞ ¼ xu; . . .; xt; . . .; xuþW

� �
; ð5Þ

where W is the slice window that defines the crop size and

u is the initial point from where the slicing is performed,

such as 1�u� T �W . One of the most important draw-

backs of slicing the signal is that it can lead to invalid

Neural Computing and Applications (2023) 35:10123–10145 10129

123



synthetic samples because it can cut off important features

of the data.

A variation of the slicing method is proposed in [66],

where the concatenating and resampling method is pre-

sented. This algorithm first detects features in the data,

called characteristic points. This is made by using the Pan-

Tompkins QRS detector [67]. This algorithm detects the

characteristic points in a heartbeat signal, so in order to

apply the concatenating and resampling algorithm it must

be defined and algorithm to detect these points. Then, after

detecting the characteristic points, it is defined a subse-

quence that starts and ends in a characteristic point. This

sequence is replicated several times and sliced in a window

to perform DA.

This variation was applied to electrocardiogram (ECG)

data of variable length between 9 and 61 s sampled at 300

Hz.

The concatenating and resampling algorithm tries to

ensure the validity of the data, taking into account that the

signal maintains its features. But the main disadvantage of

this method is that it needs a detector of characteristic

points that ensure the data validity.

6.1.2 Jittering

Jittering consists of adding noise to time series to perform

DA. This technique, in addition to being one of the sim-

plest forms of DA, is one of the most popular in time series

[68, 69]. Jittering assumes that the data are noisy which, in

many cases, i.e., when dealing with sensor data, is true.

Jittering tries to take advantage of the noise of the data

and simulate it to generate new samples. Typically,

Gaussian noise is added to each time step; the mean and

standard deviation of this noise define the magnitude and

shape of the deformation, so it is different in each appli-

cation. The jittering process can be defined as follows:

x0ð�Þ ¼ x1 þ �1; . . .; xt þ �t; . . .; xT þ �Tf g; ð6Þ

where � stands for the noise addition at each step of the

signal.

As mentioned above, the jittering process must be

adapted to each case, because there are cases such as [70]

where the effects of jittering lead to negative learning. In

this research, it was used as time series data the informa-

tion received by a wearable sensor, capturing 58 s at 62.5

Hz that were later resampled to 120 Hz per sample.

Traditional
algorithms

Slicing

Jittering

Scaling

Rotation

Permutation

Channel permutation

Concatenating and
resampling

Time slicing window

Homogeneous scaling

Magnitude warping

Frequency warping

Time warping

Window warping

Fig. 3 Traditional DA

algorithms taxonomy
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6.1.3 Scaling

Scaling consists of changing the magnitude of a certain

step in the time series domain. The idea is to maintain the

overall shape of the signal while changing its values. With

scaling, the new generated data change the range of values,

but keep the shape of the changes. Homogeneous scaling is

given as:

x0ðaÞ ¼ ax1; . . .; axt; . . .; axTf g; ð7Þ

where a[ 0 defines the scale of the change. This value can

be defined by a Gaussian distribution with mean 1 and with

r as a hyperparameter [70], or it can be previously defined

from a list of values [69].

Within scaling techniques, there are several different

approximations for a specific time series domain. They take

advantage of the specific properties of the signal data and

adapt to perform DA.

Magnitude warping is a technique used in [70] that

consists of an application of a variable scaling to different

points of the data curve. To define where to apply the

transformation, a set of knots u ¼ u1; . . .; ui is defined;

these represent the step in which the scaling is performed

and their values are generated by using a normal distribu-

tion. Then, the magnitude of the scaling is defined by a

cubic spline interpolation of the knots SðxÞ. Then, the

magnitude warping can be defined as follows:

x0ðaÞ ¼ a1x1; . . .; atxt; . . .; aTxTf g; ð8Þ

where a ¼ a1; . . .; ai ¼ SðxÞ. With magnitude warping, the

main particularity is that it applies a smoothened scaling to

each point of the curve, multiplying the possibilities of the

transformation while preserving the overall shape of the

data. However, it still assumes that the synthetic data

maintain validity after transformation.

This technique was used in [70] where the data was

captured from a wearable device to detect if a patient

suffers from Parkinson’s disease.

Frequency warping is a variation of magnitude warping,

mostly applied in speech processing [71–73]. The most

popular version in speech recognition is vocal tract length

perturbation, which can be applied in a deterministic way

[72] or stochastically within a range [74]. In particular, this

technique was used in [72] where a dataset of human

conversation sampled at 8 KHz was used.

Another scaling technique is time warping, the idea is

very similar to magnitude warping, but the main difference

between both algorithms is that time warping modifies the

curve in the temporal dimension. That is, instead of fluc-

tuating the magnitude of the signal in each step, it stretches

and shortens the time slices of the signal. To define how to

warp the signal, a smooth curve, as was done in magnitude

warping, is defined by using a cubic spline for a set of

knots. The time-warping algorithm can be denoted as:

x0ðsÞ ¼ xsð1Þ; . . .; xsðtÞ; . . .; xsðTÞ
� �

; ð9Þ

where s defines the magnitude of the warp, this function is

generated by using a cubic spline S(u) between different

knots generated using a normal distribution. This algorithm

has been used in several works, such as [75, 76]. There is

yet another variation of this algorithm, known as window

warping, followed in [77] that defines a slice in the time

series data and speeds up or down the data by a factor of

1/2 or 2. In this case, the warping is applied to a defined

slice of the whole sequence; the rest of the signal is not

changed.

6.1.4 Rotation

Rotation can be applied to multivariate time series data by

applying a rotation matrix with a defined angle. In uni-

variate time series, rotation can be applied by flipping the

data. Rotation is defined as follows:

x0ðRÞ ¼ Rx1; . . .;Rxt; . . .;RxTf g; ð10Þ

where R is the rotation matrix used to twist the data. This

algorithm is not very usual in time series due to the fact

that rotating a time series sample could make it lose the

class information, as it happened in [78], where it was used

the UCR archive [62] with various dataset from different

real-world applications were the composition of the sam-

ples of each dataset varies. On the other hand, there have

been articles [70] that demonstrate the benefits of applying

rotation, especially combined with other data transforma-

tions, in this case, using wearable data samples at 120 Hz.

6.1.5 Permutation

Shuffling different time slices of data in order to perform

DA is a method that generates new data patterns. It was

proposed in [70], where a fixed slice window was defined

from which the data is rearranged, but it has also been

applied with variable windows, as it was done in [79] using

electrocardiogram (ECG) data at 300 Hz. The main prob-

lem of applying permutation is that it does not preserve

time dependencies; thus, it can lead to invalid samples. The

permutation algorithm can be denoted as follows:

x0ðwÞ ¼ xi; . . .; xiþw; . . .; xj; . . .; xjþw; . . .; xk; . . .; xkþw

� �

ð11Þ

where i, j, k represents the first index slice of each window,

so that each is selected exactly once, and w denotes the

window size if the slices are uniform w ¼ T=n where n is

the number of total slices.
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6.1.6 Channel permutation

Changing the position of different channels in multidi-

mensional data is a common practice. In computer vision, it

is quite popular to swap the RGB channels to perform DA

[80]. With respect to time series, channel permutation can

be applied as long as each channel of the data is still valid.

The channel permutation algorithm, for multidimensional

data such as x ¼ x11; � � � ; x1Tf g; � � � ; xc1; � � � ; xcTf gf g
where c is the number of channels, is given by

x ¼ xrð1Þ1; . . .; xrð1ÞT
� �

; � � � ; xrðcÞ1; . . .; xrðcÞT
� �� �

; ð12Þ

where r : f1; . . .; cg ! f1; . . .; cg is the used permutation

of the channels.

In the time series domain, this algorithm is not appli-

cable to the application of the data, because permutation

assumes that the channel information is independent of the

channel itself. In other words, the information about the

channels is not linked to the particular channel.

That is, in [63], they applied this algorithm by flipping

the position of the sensors that recorded the data signals,

recording the data at 20 Hz using a window of 6 s. In the

article, the researchers used an exercise mat with eight

proximity sensors that they flipped to generate new data.

That is, in practice, changing the position of the signal

channels.

6.1.7 Summary of the traditional algorithms

Figure 4 shows an example of each algorithm reviewed:

6.2 Data augmentation through VAE

The use of AE architectures is nothing more than the

evolution of data generation algorithms to produce more

and better data, which means that, better, they are varied

and therefore the standard deviation with respect to the

original data is perfect. To precisely control the deviation

of the data, VAE arises as the evolution of AE to generate

better synthetic data, as shown in [81] where VAE is used

to generate data for anomaly detection problems with

LSTM. Or this other work [82], in which they use a dataset

augmented with VAE to improve the recognition of human

activity with LSTM. Even more exhaustive studies [83, 84]

show the efficiency of these algorithms in increasing the

size of datasets.

But the use of VAEs for DA is not only intended for

neural network models, but can also improve results when

traditional machine learning algorithms are applied [85].

However, they can also be used in applications with

unsupervised training, that is, in [86], which applies them

to unsupervised domain adaptation for robust speech

recognition.

In [87], they point out that most data augmentation

methods for time series use feature space transformations

to artificially enlarge the training set; they propose a

composition of autoencoders ( AEs), variational autoen-

coders ( VAEs) and Wasserstein generative adversarial

networks with gradient penalty (WGAN-GPs) for time

series augmentation.

In the end, each VAE model and its hyperparameter

configuration make them specialise in the area or format of

the dataset they want to work on; but above all to the type

of problem for which it will be used afterwards. That is to

say, what makes the difference between the models is what

the generated data will be used for, regarding problems

(a) Ground truth
(b) Homogeneous
scaling (c) Rotation

(d) Jittering
(e) Magnitude warp-
ing (f) Time warping

(g) Permutation (h) Window warping
(i) Time Slicing Win-
dow

(j) Concatenating resampling (k) Channel permutation

Fig. 4 Summary of traditional algorithms
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such as: classification, forecasting, value imputation or

prediction.

6.2.1 Taxonomy for the VAE algorithms reviewed

Figure 5 shows a scheme to group the different investiga-

tions reviewed in Sect. 6.2, this way all the VAE algo-

rithms for DA can be viewed schematically.

6.2.2 VAE for anomaly detection

As mentioned before, VAE are a DA architecture that has

been widely used in the field of anomaly detection. The

main objective of using these models in anomaly detection

tasks is to be able to generate data in order to avoid the lack

of invalid data of the datasets. The most common scenario

is that there are not enough available anomalous samples in

order to train machine learning models with the dataset, so

the use of VAE is focused on generating new data.

The work presented in [81] is centred on the classifi-

cation of electrocardiogram (ECG) signals, distinguishing

between the ones with cardiac dysfunction. The data used

consists of windows of 3600 samples downsampled to 905

sample points during a period of time of 10 s. In order to

augment the data available it is used a conditional VAE

(CVAE) [91] that is able to learn which samples are normal

and which are anomalous. This conditional VAE (CVAE)

architecture is composed of LSTM layers [92] which pro-

cess the temporal data of the electrocardiogram (ECG)

signals.

Another architecture based on the anomaly detection

problem is the smoothness-inducing sequential VAE

(SISVAE) [88] which uses a VAE with recurrent layers to

maintain temporal dependencies. This work focuses on the

problem of abrupt changes between time steps, which led

to non-smooth reconstructions of the input data of the

model, and therefore temporal abrupt changes in the syn-

thesised samples. The mechanism to avoid this is to

introduce a corrective bias for each time step of the signal,

calculated using the Kullback–Leibler divergence (KL

divergence) [31] between one point and the next one in the

series. The results of the work are tested using two different

time series synthetic datasets.

6.2.3 VAE for data imputation

One field where the VAE architecture has been widely used

is in data imputation tasks. This process consists of gen-

erating new data in a sample where there is missing

information. In the temporal series domain, this process is

VAE for classification

Enhancing human activity regonition
using time series augmented data [82]

Intelligent random noise modeling by
improved VAE [83]

Improving classification accuracy using
data DA on small datasets [84]

Using VAE to augment sparse time
series datasets [85]

Unsupervised domain adaptation for
robust speech regonition via VAE [86]

CVAE ECG anomaly detection [81]

SISVAE [88]

GlowImp [89]

VAE based on the shift correction for
imputation [90]

VAE for anomaly detection

VAE for data imputation

Fig. 5 Taxonomy of the

presented variational

autoencoder (VAE)

architectures
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usually used to fill gaps in temporal spaces where there are

no available data. In this sense, VAE generates synthetic

information on demand to fill these gaps, generating new

information following the distribution of the original data.

The GlowImp architecture [89] was proposed as a

combination of the Wasserstein GAN (WGAN) [93]

architecture together with a VAE to impute missing data.

The architecture is composed of the so-called Glow VAE,

which incorporates a function that takes the latent distri-

bution of the traditional VAE encoder and interpolates the

missing values via the Glow Model. The other main part of

the architecture is the GAN model where the generator

corresponds with the decoder of the VAE and the dis-

criminator forces the system to produce realistic samples.

The results of the model are tested using two different

datasets, the KDD Cup Challenge 2018 dataset containing

air quality weather data and the PhysioNet Challenge 2012

which is a collection of multivariate clinical time series

data. The architecture of the GlowImp can be seen in

Fig. 6.

The work of Li et al. [90] presents a VAE architecture to

impute temporal values using meteorological datasets. In

order to fill in the missing values of the data samples, shift

correction is used. This correction tries to counteract the

deviation caused by the missing values. This correction is

used in the Gaussian latent distribution, where a shift

hyperparameter k is applied which is manually set to centre

the latent distribution, thus correcting the possible bias

produced by missing values. The VAE architecture used in

this work to impute the missing values is b- VAE [94].

6.3 Data Augmentation through GAN

GANs are one of the most popular generative models of the

last decade, since its introduction in 2014 by Ian Good-

fellow [3] this generative architecture has positioned itself

as one of the main algorithms for DA. The main strength of

the GAN architecture is that it learns the distribution of the

data by extracting the main features of the samples, without

copying the distribution directly. This is known as data

generation and its main strength with respect to data aug-

mentation is that it synthesises completely new samples, in

contrast with other techniques where the original samples

where transformed to generate new instances. This fosters

the generalisation and creativity of the synthetic data

generated by the model. It is also an important factor that

the training of the networks is unsupervised, not neces-

sarily to have labelled data to learn the distribution.

6.3.1 Taxonomy for the GAN algorithms reviewed

Fig. 7 shows a scheme to group the different research

reviews in Sect. 4.3, this way all the GAN algorithms for

DA can be viewed schematically.

6.3.2 Long Short-Term Memory (LSTM) based GAN

One of the approaches to adapt the GAN architecture to

time series is to use recurrent networks as the base of

artificial neural network (ANN). These GANs substitute

the regular fully connected or convolutional layers with

recurrent layers, able to have memory that links temporal

features of the data. The main strength of this set of

architectures is that they are able to process this temporal

information that the input data have, similar to the spatial

information processing of a convolutional neural network.

Continuous recurrent GAN (C-RNN-GAN) [58] is one

of the first GAN architectures proposed specifically for

time series data. In particular, using them to learn and

synthesise music tracks was proposed in this work. This

GAN uses LSTM blocks [92] as its main learning structure.

The learning algorithm is the same as standard training

GAN, where the network generator concatenates each input

with the output of the previous cells and the discriminator

is made up of a bidirectional recurrent network [35]. The

internal composition of the discriminator is based on the

work of Horchreiter [100] and Bengio et al. [101] that

avoids the gradient vanishing and strengths the temporal

dependencies. The results of the work are discussed using a

dataset of 3697 musical midi files from 160 different

composers of classical music with a tick resolution of 384

per quarter note.

The work presented by Haradal et al. [95] also proposes

a GAN architecture based on the implementation of LSTM

Fig. 6 GlowImp architecture.

Based on the figure of [89]
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cells in both the generator and discriminator networks to

adapt to time series data. The discriminator output is

generated by applying an average pooling to the outputs

generated by each layer, averaging the whole data sample

into a unique scalar output which corresponds to the

probability of the sample being generated by the generator

network. This architecture was used to generate electro-

cardiogram (ECG) [102] and electroencephalogram (EEG)

[103] data to improve the classification accuracy of an

artificial neural network (ANN) classifier.

The LSTM and GAN combination has also been used

for anomaly detection in the work of Zhu et al. [96] where

the LSTM layers are used in the discriminator to extract

temporal information from the data, while the GAN

architecture provides the system with the ability to extract

the most important features of the data. Training for

detecting anomalies in the data has two phases. The first

phase, known as the training phase, is a standard GAN

training in which the discriminator learns how to distin-

guish between real and synthetic data. In the second phase,

the so-called testing phase, the training consists of a feature

extraction that generates and embedding of the dataset

samples, these features are then reconstructed by the gen-

erator and compared with the original data, the task of the

discriminator is to distinguish the real and the recon-

structed data, which is anomalous. This research tested its

results using two different datasets, electrocardiogram

(ECG) data with a window of 96 data values that is training

to detect anomalous cases and a dataset with the statistics

of taxi traffic in New York City, with 48 points each data

sample.

GAN LSTM based

C-RNN-GAN [58]

Biosignal DA based on GAN [95]

LSTM-GAN Algorithm for Time Series
Anomaly Detection [96]

Intermittent Fault Data Generation
Method Based on LSTM and GAN [97]

GAN convolutional based
GANomaly for Imbalanced Industrial
Time Series [98]

SpecGAN [61]

TSDIGAN [99]

T-CGAN [99]

EmotionalGAN [99]

WaveGAN [99]

1D DCGAN for Fault Diagnosis of
Electrical Machines [98]

LSTMGAN [99]

TimeGAN [99]

GAN 1D convolution based

Conditional Sig-Wasserstein
GAN [99]

Fig. 7 Taxonomy of the

presented GAN architectures
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The work presented by Shi et al. [97] uses the GAN

architecture to generate sequences of faulty data from two

different types. Different models are trained for each type.

The generator and discriminator of each GAN are made of

a many-to-many LSTM model that processes the voltage

signal data and the sampling length of each step of the

sequence. In this way, the generator output is composed of

two vectors, one for the voltage and the other for the

length, while the discriminator processes these data and its

output is generated by averaging the classification of each

step and generating a unique binary output.

6.3.3 Convolutional GAN applied to the time series domain

In order to apply GAN to replicate time series, one of the

most popular techniques used is to treat the time data as an

image. Different approximations have been used in this

field, where the focus is on how to transform the data into

an image format, rather than adapting the GAN architec-

ture to process time series information. One of the main

advantages of this technique is that it does not have to deal

with the design of GAN, which is a complex process due to

the particularities of the architecture. The adaptation of the

original data to an image is different in each case. Different

works published during the last years will be reviewed in

order to study different approximations to this

transformation.

An example of this use is the one proposed with Spec-

GAN [61] which tries to operate with sound spectrograms

that represent audio samples. This approach uses deep

convolutional GAN (DCGAN) [44] as the main algorithm

for DA, but prior to that, it processes the audio signal to

generate images for each audio track. The process of

transforming audio into image ‘‘can be approximately

inverted’’ in the author’s own words. First, the Fourier

transformation is applied to each audio to generate a matrix

of the frequencies of the data. Then, the scale of the data is

adapted logarithmically and normalised to a normal dis-

tribution for a better understanding. Finally, the images are

clipped to 3 standard deviations and rescaled within the

½�1; 1� range. In particular, the 16384 points of each

sample are converted into a 128x128 pixel image. As

mentioned above, this process is reversible, so once the

new data are generated using deep convolutional GAN

(DCGAN) they can be transformed to audio data using the

reverse process. One advantage of using this process is that

it opens up the possibility of comparing different audio

generation algorithms treating the results as images; in the

original paper, the results of the SpecGAN are compared

with the WaveGAN, which is proposed in the same article.

The work presented by Jiang et al. [98] uses the

GANomaly architecture [104] to process different time

series data. The GANomaly is used for anomaly detection

in industrial tasks; it introduces a feature extraction into the

network, which pre-processes the input data of both the

generator and the generator. The generator is composed of

an encoder–decoder–encoder network, which makes it

possible to learn the latent representations generated by the

feature extraction part. Regarding the data used for train-

ing, rolling bearing data was used to detect anomalies,

collected at 12–48 kHz in two different datasets. The col-

lected data is converted from the time series domain into

images by generating a spectrogram, thus converting the

time series data into the image domain. In particular, they

used Bearing Data from Case Western Reserve

University.1

The Traffic Sensor Data Imputation GAN (TSDIGAN)

[99] is an architecture proposed for missing data recon-

struction. In particular, traffic data is used consisting on

104,544 traffic records. In this work, GAN is in charge of

generating synthetic data that fill in the missing data gaps

with realistic information. The approach used in the paper

to treat time series traffic data is to transform them into an

image format using the proposed method called Gramian

Angular Summation Field (GASF). The Gramian Angular

Summation Field (GASF) algorithm is focused on main-

taining the time dependency of the traffic data; this algo-

rithm is capable of transforming the data into a matrix by

representing each time data point to a polar coordinate

system within the range ½�1; 1�. Then, each point is

encoded by its angular cosine and radius. This generates a

matrix with the temporal correlation between each point,

which is then fed to the networks. Finally, the data are

processed using a convolutional-based GAN that uses its

generator to generate new data and reconstruct the missing

values.

6.3.4 1D convolutional GAN

Temporal cnn are cnn [105] where the convolutional

operation is calculated in 1D instead of traditional 2D

convolution. These networks adapt the geometric infor-

mation captured by the 2D cnn to a temporal domain,

lowering the dimensions of the learnt filters to 1D. These

networks have been used in works such as [15] to classify

data from temporal series.

In the recent years, different GAN architectures have

been proposed that use these 1D convolutional layers as a

base, replacing the traditional 2D convolutions of GAN

applied to computer vision tasks. In this approximation, it

is very straightforward to adapt traditional GAN architec-

tures to the time series domain, making it very plausible for

use in time series-related tasks.

1 https://engineering.case.edu/bearingdatacenter.
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The temporal-conditional GAN (T-CGAN) [106] is a

GAN architecture based on the idea of transforming the

Conditional GAN (CGAN) [107] architecture to time series

domain by replacing the 2D convolutional layers with the

1D convolutional layers. The performance of the model

was validated using one synthetic and three real-world

datasets. The synthetic data was constructed using sine

waves and sawtooth waves. The other datasets consisted of:

astronomical light curves of 1024 points per sample, a

power demand dataset of samples of 24 points, and an

electrocardiogram (ECG) dataset with 96 points for each

sample.

Emotional GAN [108] also applies these 1D convolu-

tional layers to create a GAN architecture to augment an

electrocardiogram (ECG) dataset improving the classifica-

tion of support vector machine (SVM) and random forest

models when classifying the emotions of each subject. This

work used different datasets varying their frequency rate

between 256 and 2048 Hz.

The work published by Donahue et al. [61] presents the

WaveGAN architecture, which is based on the application

of 1D convolutional layers to sound data. This GAN uses

the deep convolutional GAN (DCGAN) architecture, but

changes the convolutions to 1D. As suggested, these 1D

convolutions should have a wider receptive field respecting

the 2D convolutions of image processing; this is based on

the particularities of the audio data, in which each cycle of

a musical note sampled at 16 kHz may take 36 samples to

complete. Therefore, it is necessary to use wider filters to

capture the distanced temporal dependencies of the data.

This feature of the sound data was previously taken into

account with solutions such as the dilated convolutions

proposed in WaveNet [60]. This enlargement of the

receptive field is compensated for by reducing one

dimension, changing from 5x5 convolutions to 25 1-di-

mensional convolutions and maintaining the number of

parameters of the network. The rest of the architecture

maintains the standard GAN architecture, allowing the

synthesis of audio tracks with unsupervised training GAN.

This approximation has also been followed by Sabir

et al. [109] for augmenting DC current signals, using

samples of current signal with a frequency of 100 Hz

during 16 s. The proposed work used the deep convolu-

tional GAN (DCGAN) architecture as a base and changes

the original convolutions to 1D convolutions. In particular,

this work has two different GANs, one that generates

healthy signals and the other is in charge of generating

faulty data.

There are also hybrid implementations that combine 1D

convolutions with other techniques, such as in [96] where

LSTM-GAN is proposed. This architecture combines the

LSTM cell in the discriminator network with the 1D con-

volutional layers used in the generator network.

6.3.5 Time series Generative Adversarial Networks
(TimeGAN)

The TimeGAN architecture [55] tries to implement a GAN

model to perform DA on time series data, but differentiates

itself from other previous alternatives by adding a new loss

function that tries to capture the stepwise dependencies of

the data. Previous implementations of GAN in data

sequences were based on the use of recurrent networks for

the generator and discriminator networks of GAN [56, 58],

but this approximation may not be sufficient to accurately

replicate the temporal transitions of the original data.

This work divides the data features into two different

classes: static features and temporal features. Static fea-

tures S do not vary over time, e.g., gender, while temporal

features X change. In other words, the static features are

characteristics of the data that are not directly related to the

time series sample but capture important properties of it.

The TimeGAN is tested in four different datasets. First,

a synthetic dataset is generated using sinusoidal sequences

with an average length of 24 points. A stock prices time

series dataset from 2004 to 2019 is used with an average

length of 24 days. Third, a dataset of energy prediction

with samples of 24 h of length on average is used. Finally,

a medical lung cancer events dataset is used with an

average of 58 events per sample.

The proposed architecture adds, in addition to the gen-

erator and discriminator networks, two new networks: the

encoder and recovery networks. These networks are

responsible for embedding the input data in the latent

space, as an autoencoder [110] would traditionally do. This

system learns the so-called embedding and recovery

functions to take the static and temporal features into two

separate latent codes hs and ht and recover the input

information S and X.

The generator and discriminator parts of the network do

the same work as they would do in a traditional GAN,

using the discriminator to differentiate between real and

synthetic samples. But in this case, the generator generates

the data for the embedding space, while the discriminator

also takes this embedding as input for its classification.

The main innovation of TimeGAN is implemented in

the generator, which, in addition to the normal generation

of synthetic samples, is also forced to learn the stepwise

dependencies of the data. To do so, the generator receives

as input the synthetic embedding hs; ht�1 and computes the

next vector hs; ht. This new function is learned by a new

supervised loss function that compares the generator fore-

cast with the real data.

Therefore, the training objectives of the presented

architecture can be divided into 3 different loss functions.
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• Reconstruction loss (LR) This loss is used in the

reversible mapping part of the network, composed of

the encoder and recovery networks. The length T of

each sequence is also a random variable, the distribu-

tion of which, for notational convenience, it will be

absorbed into distribution p. It is given by:

LR ¼ Es;x1:T � p ks� ~sk2 þ
X

t

xt � ~xtk k2

" #
; ð13Þ

where the tilde denotes the reconstructed samples and

jj � jj stands for the standard (Euclidean) norm.

• Unsupervised loss (LU) In TimeGAN, the generator has

two different types of input during training. First, the

generator receives synthetic embeddings ĥS ; ĥ1:t�1,

which are autoregressive, to generate the next synthetic

vector ĥt. In this process, the gradients are computed

under unsupervised loss. This is as expected, that is, to

allow maximising D or minimising G the probability of

providing the correct classifications ŷS , ŷ1:T for both

training data hs; h1:T and synthetic output ĥS ; ĥ1:T from

the generator. The unsupervised loss function is the

equivalent loss function of a normal GAN that attempts

to distinguish real and fake samples. It is given by:

LU ¼ Es;x1:T � p½log yS þ
X

t

log yt�

þ Es;x1:T � p̂½log 1 � ŷSð Þ þ
X

t

log 1 � ŷtð Þ�
ð14Þ

where ys and yt are the classification of the discrimi-

nator for static and temporal features and the accent

denotes synthetic samples.

• Supervised loss (LS) To encourage the generator to

learn the conditional transitions of the data, this

function is designed that measures the similarity

between the real and the synthetic samples created by

the generator when applying the forecasting. The loss

function is denoted as follows:

LS ¼ Es;x1:T � p

X

t

ht � gX hS ; ht�1; ztð Þk k2

" #
ð15Þ

where gX denotes the sample synthesised by the gen-

erator, taking as input the embedded anterior sample

hS ; ht�1; zt. An overview of the learning scheme of

TimeGAN can be seen in Fig. 8.

6.3.6 Conditional Sig-Wasserstein GAN

The Conditional Signature Wasserstein GAN [111] was

proposed as a method of maintaining long temporal

dependencies in time series data. Regarding the previous

models, this architecture is able to outperform previous

models such as TimeGAN providing better synthetic data

for DA.

In this paper, it is proposed a new metric for evaluating

the properties of a data stream, providing a description of

the sample. This metric is used in the discriminator

(D) network to differentiate real and synthetic samples. The

Sig-Wasserstein metric measures the path space of the data

using the Wasserstein distance. In this case, the main

strength of this method is that it simplifies the training by

replacing a neural network discriminator (D) for a linear

regression using the Sig-Wasserstein distance. This process

eliminates the cost of approximating a discriminator (D).

The results of the model are tested using different stock

market datasets to predict the close prices and the volatility

of different actives.

As a Generator (G) network, it is used an AR-FNN

generator, which is able of capturing temporal dependen-

cies of time series data.

Figure 9 shows a scheme of the training process of the

Conditional Sig-Wasserstein GAN. As it can be seen, the

real and fake samples can be distinguished by using the

Sig-Wasserstein metric.

6.4 Data Augmentation (DA) based on Dynamic
Time Warping (DTW)

6.4.1 Dynamic Time Warping (DTW) Barycenter Averaging

Dynamic time warping (DTW) [112] is a classical algo-

rithm that measures the similarity between two data

Fig. 8 TimeGAN architecture. Extracted from [55]
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sequences. This method was used as a base in [113], where

the effectiveness of the new generated synthetic time series

data was evaluated using augmented training sets for time

series classification through the 1-NN classifier in con-

junction with dynamic time warping (DTW). In particular,

85 datasets of the UCR archive [62] were used in the

experiments. The idea is to manipulate the distribution

manifold to generate infinite new samples of data. They

achieve this by changing the weights of a set of time series,

such as the set D ¼ T1;w1ð Þ; . . .; TN ;wnð Þf g is embedded

in a space E and the average of dynamic time warping

(DTW) is denoted as follows:

arg min �T 2 E
XN

i¼1

wi � DTW2 �T; Tið Þ ð16Þ

where w is the weight of each sample.

To calculate �T , they use the expectation–maximisation

algorithm and to decide the weight values, three different

methods are proposed:

• Average all This method generates the weight vector

values using a flat Dirichlet distribution. The main

problem with this method is that it tends to fill in data

spaces where it should not.

• Average selected This method focusses on selecting a

subset of close samples. Thus, it prevents empty spaces

from being filled with information because the subsets

of samples are close together in the manifold.

• Average selected with distance The difference between

this method and the previous one is that this method

calculates the relative distance between the near

samples of data.

6.4.2 Suboptimal element alignment averaging

SuboPtimAl Warped time series geNEratoR (SPAWNER)

[114] is a DA method based on the dynamic time warping

(DTW) algorithm [112]. The dynamic time warping

(DTW) algorithm is used in this DA method to align dif-

ferent multidimensional signals X1;X2, giving the so-called

warping path W which is a sequence of points that min-

imises the distance between these input signals. The results

of the model were tested using two different electrocar-

diogram (ECG) datasets.

SPAWNER algorithm takes the warping path calculated

with the dynamic time warping (DTW) algorithm and

introduces a new random element to the sequence, known

as wp. This new point is generated using a uniformly dis-

tributed random number within the range (0, 1). Then, the

new optimal path is forced to contain the new generated

element, obtaining the new warping paths W�
1 ;W

�
2 . Both

sequences are aligned using a parameter called n, which

reduces the flexibility of the path. Finally, both warp paths

are concatenated, generating the path W�
1;2 from which the

new time series signals x�1; x
�
2 are obtained.

It is observed that for some multivariate signals, this

variation of DA is not enough. Therefore, a random vari-

ance is also applied to each point of the signal using a

normal distribution such as

x� �Nðl; r2Þ; l ¼ 0:5ðx�1 þ x�2Þ;r ¼ 0:05jx�1 � x�2j.
The use of different alignment methods for text or image

data is also proposed, instead of using dynamic time

warping (DTW) which is proposed when signals are used.

Therefore, the overall algorithm can be easily translated to

other domains, with the need for an alignment method

between two samples.

7 Discussion

Data augmentation algorithms in the time series domain are

really important for improving the available datasets,

whose creation is not always easy. In general terms, all the

methods presented in this work are algorithms specifically

designed for data augmentation (DA) in time series but, in

other cases, they are usually adaptations of architectures

that were originally designed for other domains, such as

image processing. However, the GAN-based algorithms

themselves have their beginnings in the field of imaging

and have gradually been integrated into other areas.

Regarding the length of the data that each algorithm can

process, it should be noted the variety of sizes and dataset

types of the different reviewed researches. One of the main

strengths that artificial intelligence algorithms have is that,

due to the fact that their learning is based on the particular

Fig. 9 Conditional Sig-

Wasserstein GAN training.

Extracted from [111]
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data of each application, they can operate with almost any

source of data. This leads to a great variation in the size of

the time series windows that most of the algorithms use. In

some cases, the data are even processed to treat it as an

image, which is symptomatic of the flexibility of DL

algorithms. In the case of traditional algorithms, they can

also process any length of data if it is properly adapted.

In this section, it will be analysed the main advantages

and disadvantages of each type of algorithm.

7.1 Advantages

Traditional algorithms are widely developed and studied so

that their results can be fairly compared. In DA, they allow

you to work by modifying the examples already present,

which allows you to control variations. In addition, the

simplicity of the algorithms themselves by greatly reducing

the number of hyperparameters to be configured results in

less time to set them up and the need for less data to train

them.

Second, the VAE generative algorithms allow one to

control to a greater extent the variability of the generated

data by directly influencing the standard deviation of the

latent distribution of the original dataset. This feature

allows, among all algorithms, the greatest control of the

variability of the generated data. VAE is commonly used

for anomaly detection cases due to its better performance.

Finally, the most current generative models are a

breakthrough in the area due to their great results. GANs,

like VAEs, allow synthetic data to be generated and, at the

cost of losing some control over data generation, they are

algorithms capable of much better generalisation. All this

is due to the training scheme itself, which allows GANs

models to learn the distribution that follows the original

dataset and, through it, generate synthetic data according to

the distribution of the dataset.

Furthermore, since GANs are relatively recent algo-

rithms, they benefit from greater attention from the scien-

tific community, which means that there is more recent

research focused on improving their results than other

algorithms.

7.2 Disadvantages

In terms of limitations, the use of traditional algorithms is

quite limited because they are based on making modifica-

tions to elements of the real dataset. Therefore, they can

often produce invalid examples. In general, they are limited

to generate examples of lower quality and never to gen-

erating new elements. Normally, the reviewed algorithms

require a pre-processing phase to normalise the input data,

which can lead to more complex algorithms involving

previous steps. Otherwise, the learning of the artificial

neural network (ANN) would be inefficient [115, 116]

Although VAEs are algorithms capable of generating

synthetic data, as opposed to traditional algorithms that

only modify the original data, new neural network (NN)

models such as GANs have mitigated their use in the field

because by nature they are capable of generating fewer data

than the most current generative networks. Despite this,

because they can very precisely control the variability of

the generated data, there are fields of application that still

continue to use them.

Regarding GAN, it can be said that despite their great

results, there are certain difficulties that slow down their

progress. GANs are by far the most complex models cur-

rently available and, due to the particularities of the way

they are trained, they are extremely difficult to train and

obtain results.

GAN are one of the most difficult models to train. The

main problems that these networks suffer are mode col-

lapse [117, 118], instability [119], convergence evaluation

[120] and evaluation metrics.

Due to the GAN instability problems [119, 121, 122],

most of the time a great portion of the samples synthesised

by the Generator (G) network lack of quality in certain

aspects as the emergence of image artefacts [123]. In

addition, the lack of convergence evaluation of the net-

works makes it hard to detect when the generated data is of

high quality. Therefore, one of the main problems of GAN

is that their results are not fully reliable.

7.3 Open issues and challenges

Some authors [124] tend to differentiate between DA and

data generation due to the great advances made in neural

network (NN) models. Traditional algorithms are always

framed in the area of DA since the data they produce are

always based on existing data; as an open problem, they

generate less varied data but more control over what is

generated. Furthermore, data generation algorithms pro-

duce new data so aggressively that much of the generated

data is not possible, degenerating the quality of the aug-

mented dataset [125].

Unlike the limitation of the scarcity of data augmented

with traditional models, AEs and VAEs are born to cover

the deficiency of the generated data. In [126], they

demonstrate the capability of generative neural network

(NN) models to add more diversity to the dataset. In

addition, traditional algorithms tend not to be flexible in

taking a trained model and applying it to another problem,

forcing a rethink of the algorithm. Neural networks, in this

aspect, tend to be more flexible, and able to use the same

trained model in different problems. In [106], T-CGAN

(Sect. 6.3.4) where different datasets are exposed with the
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same architecture, or in [96], LSTM-GAN that uses as

inputs datasets as disparate as one made of electrocardio-

grams and another comprising taxi statistics.

However, although generative models offer great

advantages, GANs have significant additional problems,

especially in training. Typical problems such as modal

collapse, Nash equilibria, gradient vanishing or instability

are suffered in every training of these models, making their

optimisation a very complex process [127, 128].

In general, all generative models share the same open

problem that often complicates their validation process. As

shown in Sect. 5, despite the existence of some evaluation

metrics, there is no consensus in the community on which

should be used. For example, in [55] authors use empirical

evaluation for data generation, but for visualisation they

use PCA and a discriminative and a predictive model to see

how they have improved after adding the synthetic images.

In [61], authors propose the Inception Score, a measure of

Nearest Neighbour and empirical measurement by humans,

and in [99], traditional measures of deep learning (MAE,

RMSE and MRE) to compare the generation of future

values are used. If the focus is also put on GAN models, it

must be taken into account that, to this problem, there is no

method for these architectures to define what the stop

condition is in a training.

8 Conclusion

Due to the significant evolution that DA has undergone in

recent years, more and more fields are emerging in which

to apply and improve the results. This article is focused on

giving a comprehensive overview of the main algorithms

used for data augmentation (DA) in the field of time series.

The review is organised in a taxonomy, consisting of basic

and advanced approaches, where it is summarised repre-

sentative methods of each algorithm (traditional, VAEs and

GANs) comparing them empirically, disaggregate by

application areas and highlight advantages/disadvantages

for future research.
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