
Numerical Algorithms (2023) 93:27–66
https://doi.org/10.1007/s11075-022-01401-z

ORIGINAL PAPER

An analysis of approximation algorithms for iterated
stochastic integrals and a Julia and MATLAB

simulation toolbox

Felix Kastner1 ·Andreas Rößler1

© The Author(s) 2022

Abstract
For the approximation and simulation of twofold iterated stochastic integrals and
the corresponding Lévy areas w.r.t. a multi-dimensional Wiener process, we review
four algorithms based on a Fourier series approach. Especially, the very efficient
algorithm due to Wiktorsson and a newly proposed algorithm due to Mrongowius
and Rößler are considered. To put recent advances into context, we analyse the four
Fourier-based algorithms in a unified framework to highlight differences and simi-
larities in their derivation. A comparison of theoretical properties is complemented
by a numerical simulation that reveals the order of convergence for each algorithm.
Further, concrete instructions for the choice of the optimal algorithm and parameters
for the simulation of solutions for stochastic (partial) differential equations are given.
Additionally, we provide advice for an efficient implementation of the considered
algorithms and incorporated these insights into an open source toolbox that is freely
available for both Julia and MATLAB programming languages. The performance of
this toolbox is analysed by comparing it to some existing implementations, where we
observe a significant speed-up.

Keywords Iterated stochastic integral · Lévy area · Stochastic simulation · Julia ·
MATLAB · Software toolbox · Stochastic differential equation ·
Stochastic partial differential equation

� Andreas Rößler
roessler@math.uni-luebeck.de

Felix Kastner
kastner@math.uni-luebeck.de

1 Institute of Mathematics, Universität zu Lübeck, Ratzeburger Allee 160, 23562,
Lübeck, Germany

Received: 26 January 2022 / Accepted: 18 August 2022/ Published online: 12 December 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01401-z&domain=pdf
http://orcid.org/0000-0003-0504-6211
http://orcid.org/0000-0002-2740-2697
mailto: roessler@math.uni-luebeck.de
mailto: kastner@math.uni-luebeck.de

Numerical Algorithms (2023) 93:27–66

1 Introduction

In the future, we foresee that the use of area integrals when simulating strong
solutions to SDEs will become as automatic as the use of random numbers
from a normal distribution is today. After all, once a good routine has been
developed and implemented in numerical libraries, the ordinary user will only
need to call this routine from each program and will not need to be concerned
with the details of how the routine works.

— J. G. Gaines and T. J. Lyons (1994) [14]

Even though Wiktorsson published an efficient algorithm for the simulation of
iterated integrals in 2001, this prediction by Gaines and Lyons has still, almost thirty
years later, not come true yet. Among the twenty SDE simulation packages we looked
at, only four have implemented Wiktorsson’s algorithm. This suggests that either
Wiktorsson’s paper is not as well known as it should be or most authors of SDE
solvers are not willing to dive into the intricacies of Lévy area simulation. This paper
is an attempt to fix this.

In many applications where stochastic (ordinary) differential equations (SDEs) or
stochastic partial differential equations (SPDEs) are used as a mathematical model
the exact solution of these equations can not be calculated explicitly. Therefore,
numerical approximations have to be computed in these cases. Often numerical
integrators solely based on increments of the driving Wiener process or Q-Wiener
process like Euler-type schemes are applied because they can be easily implemented.
In general, these schemes attain only low orders of strong convergence, see, e.g., [29,
40]. This is because the best strong convergence rate we can expect to get is in gen-
eral at most 1/2 if only finitely many observations of the driving Wiener process are
used by a numerical scheme, see, e.g., Clark and Cameron [7] and Dickinson [11].
One exception to this is the case when the diffusion satisfies a so-called commuta-
tivity condition [29, 33, 40, 46]. However, in many applications this commutativity
condition is not satisfied.

In order to obtain higher order numerical methods for SDEs and SPDEs in gen-
eral, one needs to incorporate iterated stochastic integrals as they naturally appear in
stochastic Taylor expansions of the solution process. Since the distribution of these
iterated stochastic integrals is not known explicitly in case of a multi-dimensional
driving Wiener process, efficient algorithms for their approximation are needed to
achieve some higher order of strong convergence compared to Euler-type schemes.
Thus, in general, to approximate or to simulate solutions for SDEs or SPDEs
efficiently the use of iterated stochastic integrals is essential.

Up to now, there exist only a few approaches for the approximation of iterated
stochastic integrals and the corresponding Lévy areas in L2-norm or in the strong
sense. After Lévy defined the eponymous stochastic area integral in [35], the first
approximation algorithms appeared in the 1980s [37, 40]. These are based on a
Fourier series expansion of the Wiener process and have an error of order O(c−1/2)

with c denoting the computational cost, considered as the number of random vari-
ables used. The first higher order algorithm was presented by Rydén and Wiktorsson
in [47]. Here, the method B’ from that paper has an error of order O(c−1) but is

28

Numerical Algorithms (2023) 93:27–66

only applicable to two-dimensional Wiener processes. In the same year, Wiktors-
son published his groundbreaking algorithm of order O(c−1) which also works for
higher-dimensional Wiener processes [53] but has a worse error constant. Twenty
years later, Mrongowius and Rößler [41] recently proposed a variation of Wiktors-
son’s algorithm that has an improved error constant and is easier to implement. It
turns out that in the two-dimensional setting it even beats the method B’, that is,
the error constant is by a factor 1/

√
2 smaller compared to method B’ for the same

amount of work.
These higher order algorithms allow to effectively use strong order 1 schemes for

SDEs and SPDEs with non-commutative noise. Taking into account the computa-
tional effort of SDE and SPDE integrators, one obtains the so-called effective order
of convergence by considering errors versus computational cost, see also [33, 46].
For example, combining a strong order 1 SDE integrator, like the Milstein scheme
or a stochastic Runge–Kutta scheme proposed in [46], with a Lévy area algorithm of
order O(c−1/2) achieves an effective order of convergence that is only 1/2. This is the
same as the effective order of convergence for the classical Euler–Maruyama scheme.
But, using instead a higher order Lévy area algorithm of order O(c−1) results in a
significantly higher effective order of convergence that is 2/3. Similar improvements
can be achieved for SPDEs, see also [19, 20, 46, 53] for a detailed discussion.

The algorithms that we focus on in the present paper are based on a trigonomet-
ric Fourier series expansion of the corresponding Brownian bridge process. To be
precise, we restrict our considerations to the naive truncated Fourier series approxi-
mation, the improved truncated Fourier series algorithm proposed by Milstein [40],
see also [29, 30], and the higher order variants by Wiktorsson [53] and Mron-
gowius and Rößler [41]. As we will see, the latter two incorporate an additional
approximation of the truncated terms to achieve an error of order O(c−1).

Note that there also exist further variants of Fourier series based algorithms using
different bases [13, 31, 32, 37]. These generally achieve the same convergence order
as the Milstein algorithm but with a slightly worse constant. This matches Dick-
inson’s result, that the Milstein algorithm is asymptotically optimal in the class of
algorithms that only use linear information about the underlying Wiener process
[11]. There is also work extending some of the mentioned algorithms to the infinite
dimensional Hilbert space setting important for SPDEs [34].

Next to these Fourier series based algorithms, there exist also different approaches.
See, e.g., [14, 39, 47, 51] for simulation algorithms or [10, 12] for approximation in
a Wasserstein metric. However, to the best of our knowledge, these algorithms either
lack a L2-error estimate or come with additional assumptions on the target SDE and
are thus not suitable for the general strong approximation of SDEs. Moreover, for the
approximation of Lévy areas driven by fractional Brownian motion, we refer to [42,
43].

The aims of this paper are twofold. On the one hand, we give an introduction
to the different Fourier series based algorithms under consideration and emphasize
their similarities and differences. A special focus lies on the analysis of the computa-
tional complexity for these algorithms that is important in order to finally justify their
application for SDE or SPDE approximation and simulation problems. On the other
hand, we provide an efficient implementation of these algorithms. This is essential

29

Numerical Algorithms (2023) 93:27–66

for a reasonable application in the first place. The result is a new Julia and MAT-
LAB software toolbox for the simulation of twofold iterated stochastic integrals and
their Lévy areas, see [27, 28]. These two packages make it feasible to use higher
order approximation schemes, like Milstein or stochastic Runge–Kutta schemes, for
non-commutative SDEs and SPDEs.

The paper is organized as follows: In Section 2 we give a brief introduction to the
theoretical background of iterated stochastic integrals with the corresponding Lévy
areas and the Fourier series expansion which builds the basis for the approxima-
tion algorithms under consideration. Based on this preliminary section, we detail the
derivation of the four algorithms under consideration in Section 3. Besides the theo-
retical foundations, we focus on the efficient implementation of the four algorithms.
In Section 4, error estimates for each algorithm are gathered for direct compari-
son. Here, it is worth noting that some slightly improved result has been found for
Wiktorsson’s algorithm. Furthermore, we review the application of these algorithms
to the numerical simulation of SDEs. Continuing in Section 5, we give a detailed
analysis of the computational complexity and determine the optimal algorithm for
a range of parameters. In addition, a numerical simulation confirms the theoretical
orders of convergence from the previous section. The paper closes in Section 6 with
the description of the newly developed software toolbox and a runtime benchmark
against currently available implementations.

2 Theoretical foundations for the simulation of iterated stochastic
integrals

Here, we give a brief introduction to twice iterated stochastic integrals in terms
of Wiener processes (also called Brownian motions) and their relationship to Lévy
areas. In addition, the infinite dimensional case of a Q-Wiener process is briefly men-
tioned as well. Based on these fundamentals, the well known Fourier series expansion
of the Brownian bridge process is presented, which builds the basis for all algorithms
in this paper.

2.1 Iterated stochastic integrals and the Lévy area

Let (�,F, P) be a complete probability space and let (Wt)t∈[0,T] be an m-
dimensional Wiener process for some 0 < T < ∞ with (Wt)t∈[0,T] =
((W 1

t , . . . , Wm
t)�)t∈[0,T], i.e., the components (Wi

t)t∈[0,T], i = 1, . . . , m, are inde-
pendent scalar Wiener processes. Further, let ‖ · ‖ denote the Euclidean norm if not
stated otherwise and let ‖X‖L2(�) = E

[‖X‖2
]1/2 for any X ∈ L2(�) in the follow-

ing. We are interested in simulating the increments �Wi
t0,t0+h = Wi

t0+h − Wi
t0

and

�W
j
t0,t0+h = W

j
t0+h − W

j
t0

of the Wiener process together with the twice iterated
stochastic integrals

I(i,j)(t0, t0 + h) =
∫ t0+h

t0

∫ s

t0

dWi
r dW

j
s (1)

30

Numerical Algorithms (2023) 93:27–66

for some 0 ≤ t0 < t0 + h ≤ T and 1 ≤ i, j ≤ m. Note that for the Wiener process
(Ŵt)t∈[0,h] with Ŵt = Wt0+t − Wt0 , see [26, Ch. 2, Lem. 9.4], it holds that

∫ h

0

∫ s

0
dŴ i

r dŴ
j
s =

∫ t0+h

t0

∫ s

t0

dWi
r dW

j
s (2)

for 1 ≤ i, j ≤ m. Moreover, due to the time-change formula for stochastic integrals
[26, Ch. 3, Prop. 4.8] one can show that for the scaled Wiener process (W̃t)t∈[0,1]
with W̃t = 1√

h
Ŵht , see [26, Ch. 2, Lem. 9.4], it holds

h

∫ 1

0

∫ s

0
dW̃ i

r dW̃
j
s =

∫ h

0

∫ s

0
dŴ i

r dŴ
j
s . (3)

As a result of this, without loss of generality we restrict our considerations to the case
t0 = 0 in the following and denote

I(i,j)(h) =
∫ h

0

∫ s

0
dWi

r dW
j
s . (4)

Further, let I(h) = (I(i,j)(h))1≤i,j≤m be the m × m-matrix containing all iterated
stochastic integrals.

In some special cases, one may circumvent the simulation of the iterated stochastic
integrals by making use of the relationship

1

2

(
I(i,j)(h) + I(j,i)(h)

) = 1

2
Wi

h W
j
h (5)

for 1 ≤ i < j ≤ m, see, e.g., [29], where the left-hand side represents the symmetric
part of the iterated stochastic integrals that can be expressed by the corresponding
increments of the Wiener process. The right-hand side of (5) can be easily simulated
since the random variables Wi

h ∼ N (0, h) are i.i.d. distributed for 1 ≤ i ≤ m. In
case i = j we can calculate explicitly that

I(i,i)(h) = 1

2

(
(Wi

h)
2 − h

)
(6)

which follows from the Itô formula, see, e.g., [26].
The problem to simulate realizations of iterated stochastic integrals is directly

related to the simulation of the corresponding so-called Lévy area [35] A(i,j)(h)

defined as the skew-symmetric part of the iterated integrals

A(i,j)(h) = 1

2

(
I(i,j)(h) − I(j,i)(h)

)
(7)

for 1 ≤ i, j ≤ m. We denote by A(h) = (A(i,j)(h))1≤i,j≤m the m × m matrix of all
Lévy areas. Thus it holds that A(h) = −A(h)� and A(i,i) = 0 for all 1 ≤ i ≤ m. Due

to (5), it follows that I(i,j)(h) = 1
2 Wi

h W
j
h + A(i,j)(h) for i 	= j . Now, the difficult

part is to simulate I(i,j)(h) for i 	= j because the distribution of the corresponding
Lévy area A(i,j)(h) is not known.

For the infinite dimensional setting as it is the case for SPDEs of evolutionary
type, we follow the approach in [34]. Therefore, we consider a U -valued and in
general infinite dimensional Q-Wiener process (W

Q
t)t∈[0,T] taking values in some

separable real Hilbert space U . Let (ηi)i∈N denote the eigenvalues of the trace class,

31

Numerical Algorithms (2023) 93:27–66

non-negative and symmetric covariance operator Q ∈ L(U) w.r.t. an orthonormal
basis (ONB) of eigenfunctions (ei)i∈N such that Qei = ηiei for all i ∈ N. We
assume that ηi > 0 for i = 1, . . . , m. Then, the orthogonal projection of W

Q
t to the

m-dimensional subspace Um = span{ei : 1 ≤ i ≤ m} of U is given by

W
Q,m
t =

m∑

i=1

√
ηi ei W i

t , t ∈ [0, T],

where (Wi
t)t∈[0,T], 1 ≤ i ≤ m, are independent scalar Wiener processes, see, e.g., [8,

45]. The corresponding finite-dimensional covariance operator Qm is then defined as
Qm = diag(η1, . . . , ηm) ∈ R

m×m and the vector (〈WQ,m
h , ei〉)1≤i≤m is multivariate

N (0, hQm) distributed for 0 < h ≤ T . We want to simulate the Hilbert space valued
iterated stochastic integral

∫ h

0
�

∫ s

0
� dWQ,m

u dWQ,m
s =

m∑

i,j=1

IQ
(i,j)(h)�(�ei, ej) (8)

where IQ
(i,j)(h) = ∫ h

0

∫ s

0 〈dW
Q
u , ei〉U 〈dW

Q
s , ej 〉U and where � and � are some suit-

able linear operators, see [34] for details. Let IQm(h) = (IQ
(i,j)(h))1≤i,j≤m denote the

corresponding m × m-matrix. Since IQm(h) = Q
1/2
m I(h)Q

1/2
m , this random matrix

can be expressed by a transformation of the m×m-matrix I(h). Therefore, we mainly
concentrate on the approximation of I(i,j)(h) for 1 ≤ i, j ≤ m in the following and
refer to [34] for more details and error estimates in the infinite dimensional setting.

2.2 The Fourier series approach

We start by focusing on the Fourier series expansion of the Brownian bridge process,
see [29, 30, 40]. The integrated Fourier series expansion is the basis for all algorithms
considered in Section 3. Given an m-dimensional Wiener process (Wt)t∈[0,h], we
consider the corresponding tied down Wiener process

(
Wt − t

h
Wh

)
t∈[0,h], which is

also called a Brownian bridge process, whose components can be expanded into a
Fourier series which results in

Wi
t = t

h
Wi

h + 1

2
ai

0 +
∞∑

r=1

(
ai
r cos

(
2πr

h
t

)
+ bi

r sin

(
2πr

h
t

))
P -a.s. (9)

with random coefficients

ai
r = 2

h

∫ h

0

(
Wi

s − s

h
Wi

h

)
cos

(
2πr

h
s

)
ds

and

bi
r = 2

h

∫ h

0

(
Wi

s − s

h
Wi

h

)
sin

(
2πr

h
s

)
ds

32

Numerical Algorithms (2023) 93:27–66

for 1 ≤ i ≤ m and t ∈ [0, h]. Using the distributional properties of the Wiener
integral it easily follows that the coefficients are Gaussian random variables with

ai
0 ∼ N

(
0,

1

3
h

)
, ai

r ∼ N
(

0,
1

2π2r2
h

)
and bi

r ∼ N
(

0,
1

2π2r2
h

)
.

(10)
From the boundary conditions it follows that ai

0 = −2
∑∞

r=1 ai
r . One can easily prove

that the random variables W
q
h , ai

k and b
j
l for i, j, q ∈ {1, . . . , m} and k, l ∈ N are

all independent, while each ai
0 depends on ai

r for all r ∈ N. Using this representation
Lévy was the first to derive the following series representation of what is now called
Lévy area [35] denoted as A(i,j)(h) = 1

2 (I(i,j)(h) − I(j,i)(h)). By integrating (9)

with respect to the Wiener process (W
j
t)t∈[0,h] and following the representation in

[29, 30], we get the representation

I(i,j)(h) = 1

2
Wi

hW
j
h − 1

2
h δi,j + A(i,j)(h) (11)

with the Lévy area

A(i,j)(h) = π

∞∑

r=1

r
(
ai
r

(
b

j
r − 1

πr
W

j
h

)
−

(
bi
r − 1

πr
Wi

h

)
a

j
r

)
(12)

for i, j ∈ {1, . . . , m}. This series converges in L2(�), see, e.g., [29, 30, 40]. In the
following, we consider the whole matrix of all iterated stochastic integrals

I(h) = 1

2

(
WhW

�
h − h Im

) + A(h) (13)

with identity matrix Im and with the Lévy area matrix A(h) which can be written as

A(h) =
∞∑

r=1

(
Wha

�
r − arW

�
h

) + π

∞∑

r=1

r
(
arb

�
r − bra

�
r

)
(14)

where ar = (ai
r)1≤i≤m and br = (bi

r)1≤i≤m. The basic approach to the approximation
of the Lévy area consists in truncating the series (14). Then, one may additionally
approximate some or even all of the arising rest terms in order to improve the approx-
imation. If both sums in (14) are truncated at a point p ∈ N, we denote the truncated
Lévy area matrix as A(p)(h) and the rest terms as R

(p)

1 (h) and R
(p)

2 (h) where

A(p)(h) := π

p∑

r=1

r

(

ar

(
br − 1

πr
Wh

)�
−

(
br − 1

πr
Wh

)
a�
r

)

, (15)

R
(p)

1 (h) :=
∞∑

r=p+1

Wha
�
r − arW

�
h , (16)

R
(p)

2 (h) := π

∞∑

r=p+1

r
(
arb

�
r − bra

�
r

)
, (17)

33

Numerical Algorithms (2023) 93:27–66

such that A(h) = A(p)(h) + R
(p)

1 (h) + R
(p)

2 (h). These terms build the basis for the
simulation algorithms of the iterated stochastic integrals that will be discussed in the
following sections.

2.3 Approximation vs. simulation

In this article, we restrict our considerations to the simulation problem of iterated
stochastic integrals, which has to be distinguished from the corresponding approxi-
mation problem. Although all algorithms under consideration can also be applied for
the approximation of iterated stochastic integrals, we don’t go into details here and
refer to, e.g., [41, 47, 53]. It is worth noting that for the approximation problem where
one is interested to approximate some fixed realization of the iterated stochastic inte-
grals together with the realization of the increments of the Wiener process, one needs
some information about the realization of the path of the involved Wiener process.
What kind of information is needed depends on the approximation algorithm to be
applied. E.g., for a truncated Fourier series algorithm one may assume to have access
to the realizations of the first n Fourier coefficients ai

0, ai
r and bi

r for i ∈ {1, . . . , m}
and 1 ≤ r ≤ n together with the realizations of the increments of the Wiener process.
Then, using this information the goal is to calculate an approximation for the iterated
stochastic integrals such that, e.g., the strong or L2-error is as small as possible. How-
ever, for many problems one does not have this information about realizations but
rather tries to model uncertainty by, e.g., random processes. In such situations, one
is often interested in the simulation of possible scenarios that may occur. Therefore,
no prescribed information is given a priori and one has to generate realizations of all
involved random variables. This can be done easily whenever one can sample from
some well known distribution. However, if the distribution of some random variable
such as an iterated stochastic integral is not known, one has to sample from an approx-
imate distribution. In contrast to weak or distributional approximation, one still has to
care about, e.g., the strong or L2-error between the simulated approximate realization
and a corresponding hypothetical exact realization. This means that for each simu-
lated realization one can find at least one corresponding posteriori realization such
that a strong or L2-error estimate with some prescribed precision is always fulfilled.
Since in many or even nearly all practical situations information about uncertainty
is not explicitly available, stochastic simulation algorithms are frequently used and
therefore of course most relevant.

2.4 Simulating with a prescribed precision

In the following, we consider the problem of simulating realizations of the iterated
stochastic integrals I(h) = (I(i,j)(h))1≤i,j≤m provided that the increments W(h) =
(Wi

h)1≤i≤m are given. The simulation of realizations of the stochastically independent
increments Wi

h is straightforward since their distribution Wi
h ∼ N (0, h) is known and

sampling from a Gaussian distribution can be done easily in principle. However, for
the simulation of the iterated stochastic integrals the situation is different because the
random variables I(i,j)(h) are not independent and as yet we don’t know their joint

34

Numerical Algorithms (2023) 93:27–66

(conditional) distribution explicitly. Therefore, we need some approximate sampling
method.

There exist different approaches to do this, and we restrict our attention to sam-
pling algorithms where the L2-error can be controlled. This is important, especially
if such a simulation algorithm is combined with a numerical SDE or SPDE solver for
the simulation of root mean square approximations with some prescribed precision.

To be precise, given some precision ε > 0 assume that our simulation algorithm
gives us by sampling a realization of the increments Ŵh(ω) and a realization of our
approximation Îε(h)(ω) for the iterated stochastic integrals for some ω ∈ �. Then,
for all algorithms under consideration we can assume that there exist copies W̃h and
Ĩ(h) of the random variables Wh and I(h) on the probability space (�,F, P) such
that W̃h together with Ĩ(h) have the same joint distribution as Wh together with I(h)

and such that Ŵh(ω), Îε(h)(ω) are an approximation of W̃h(ω), Ĩ(h)(ω) for P-almost
all ω ∈ � in the sense that Ŵh = W̃h P-a.s. and

∥∥Ĩ(i,j)(h) − Îε
(i,j)(h)

∥∥
L2(�)

≤ ε

for 1 ≤ i, j ≤ m. This is also known as a kind of coupling, see, e.g., [47] for details.
For simplicity of notation, we do not distinguish between the random variables Wh,
I(h) and their copies W̃h, Ĩ(h) in the following.

2.5 Relationship between different error criteria

Usually, we are interested in simulating the whole matrix I(h) with some prescribed
precision. Therefore, it is often appropriate to consider the L2-error with respect to
some suitable matrix norm depending on the problem to be simulated. Here, we focus
our attention to the error with respect to the norms

‖M‖max,L2 = max
i,j

‖Mi,j‖L2(�) ‖M‖L2,max = E
[

max
i,j

|Mi,j |2
]1/2

‖M‖F,L2 = (∑

i,j

E
[|Mi,j |2

])1/2 ‖M‖L2,F = E
[‖M‖2

F

]1/2

for some random matrix M = (Mi,j) ∈ L2(�,Rm×n) where ‖ · ‖F denotes the
Frobenius norm. Clearly, the F, L2-norm and the L2, F-norm coincide in the L2-
setting. In general, these norms are equivalent with

‖M‖max,L2 ≤ ‖M‖L2,max ≤ ‖M‖L2,F ≤ √
mn‖M‖max,L2 .

In practice we mostly need the max, L2-norm and the L2, F-norm as these are the
natural expressions that show up if numerical schemes for the approximation of SDEs
and SPDEs are applied, respectively, see [29, Cor. 10.6.5] and [34].

Since the symmetric part of the iterated stochastic integrals can be calculated
exactly, we concentrate on the skew-symmetric Lévy area part. Let Skewm ⊂ R

m×m

denote the vector space of real, skew-symmetric matrices. Then, I(h) − Îε(h) =
A(h) − Âε(h) where Âε(h) is the corresponding approximation of the Lévy area
matrix A(h). Note that the elements of the Lévy area matrix are identically distributed
and that A(h), Âε(h) ∈ Skewm. Therefore, the following more precise relationship
between the matrix norms under consideration is used in the following.

35

Numerical Algorithms (2023) 93:27–66

Lemma 1 Let A ∈ L2(�, Skewm), i.e., A(ω) = −A(ω)� for P-a.a. ω ∈ � and
Ai,j ∈ L2(�) for all 1 ≤ i, j ≤ m. Then, it holds

‖A‖L2,F ≤
√

m2 − m ‖A‖max,L2 , (18)√
2 ‖A‖L2,max ≤ ‖A‖L2,F . (19)

Additionally, equality holds in (18) if the elements Ai,j for 1 ≤ i, j ≤ m with i 	= j

have identical second absolute moments.

Proof Since A ∈ L2(�, Skewm) it holds Ai,i = 0 P-a.s. for all 1 ≤ i ≤ m. Then, it
follows

‖A‖2
L2,F =

∑

i,j

E
[|Ai,j |2

] ≤
∑

i,j

i 	=j

max
k,l

E
[|Ak,l |2

] = (m2 − m) ‖A‖2
max,L2 .

If E
[|Ai,j |2

]
is constant for all i 	= j , then we have E

[|Ai,j |2
] = maxk,l E

[|Ak,l |2
]

for i 	= j and equality holds.
Finally, the second inequality follows easily due to

‖A‖2
L2,max =E

[
max
i,j

|Ai,j |2
]=E

[
max
i,j
i<j

|Ai,j |2
]≤E

[∑

i,j
i<j

|Ai,j |2
]
= 1

2
E
[∑

i,j

|Ai,j |2
]

.

Taking into account the relationship between the described matrix norms, we
concentrate on the max, L2− error of the simulated Lévy area

‖A(h) − Âε(h)‖max,L2 ≤ ε

for ε > 0 because we can directly convert between the different norms according to
Lemma 1.

3 The algorithms for the simulation of Lévy areas

For the approximation of the iterated stochastic integrals I(h) in (13), one has to
approximate the corresponding Lévy areas A(h) in (14). A first approach might be to
truncate the expansion of the Lévy areas at some appropriate index p as in (15) such
that the truncation error is sufficiently small. This is the main idea for the first algo-
rithm called Fourier algorithm which is presented in Section 3.1. In order to get some
better approximation, one may take into account either some parts or even the whole
tail sum as well. Adding the exact simulation of R

(p)

1 (h) in (16), which belongs to
the Fourier coefficient ai

0, results in the second algorithm presented in Section 3.2
which is due to Milstein [40]. In contrast to Milstein, in the seminal paper by Wik-
torsson [53] the whole tail sum R

(p)

1 (h) + R
(p)

2 (h) is approximated. The algorithm
proposed by Wiktorsson is described in Section 3.3 and has some improved order
of convergence compared to the first two algorithms. Finally, the recently proposed
algorithm by Mrongowius and Rößler [41] combines the ideas of the algorithms due

36

Numerical Algorithms (2023) 93:27–66

to Milstein and Wiktorsson by simulating R
(p)

1 (h) exactly and by approximating the

tail sum R
(p)

2 (h) in a similar way as in the algorithm by Wiktorsson. The algorithm
by Mrongowius and Rößler is described in Section 3.4. In order to efficiently imple-
ment the two algorithms proposed by Wiktorsson and by Mrongowius and Rößler, the
central idea is to replace the involved matrices by the actions they encode. This also
helps avoiding computationally intensive Kronecker products. In the following we
discuss in detail mathematically equivalent reformulations of these algorithms that
finally lead to efficient implementations with significantly reduced computational
complexity.

Since the symmetric part of the iterated integrals is known explicitly, all algorithms
under consideration can be interpreted as algorithms for the simulation of the skew-
symmetric part which is exactly the Lévy area A(h). Moreover, due to the scaling
relationship (3) it is sufficient to focus our attention on the simulation of the Lévy
area with step size h = 1 because the general case can be obtained by rescaling, i.e.,
by multiplying the simulated Lévy area with the desired step size. In the following
discussions of the different algorithms, we always assume that the increments Wi

h

for 1 ≤ i ≤ m, which are independent and N (0, h) distributed Gaussian random
variables, are given.

3.1 The Fourier algorithm

What we call here the Fourier algorithm can be considered the ‘easy’ approach —
not taking into account any approximation of the rest terms. This variant has not
been getting much attention in the literature, since with very little additional effort
the error can be reduced by a factor of 1/

√
3, see, e.g., [13] and Section 4. However,

since this is the foundation for all considered algorithms every implementation detail
automatically benefits all algorithms. Thus we discuss it as its own algorithm.

3.1.1 Derivation of the Fourier algorithm

Let p ∈ N be given. Then, the approximation using the Fourier algorithm is defined
as

ÂFS,(p)(h) := A(p)(h), (20)

i.e., just the truncated Lévy area without any further rest approximations. Defining

αi
r =

√
2π2r2

h
ai
r and βi

r =
√

2π2r2

h
bi
r (21)

for 1 ≤ i ≤ m and 1 ≤ r ≤ p it follows that these random variables are indepen-
dent and standard Gaussian distributed. The approximation in terms of these standard
Gaussian random variables results in

ÂFS,(p)(h) = h

2π

p∑

r=1

1

r

(
αr

(
βr −

√
2

h
Wh

)�
−

(
βr −

√
2

h
Wh

)
α�

r

)
, (22)

where αr = (αi
r)1≤i≤m and βr = (βi

r)1≤i≤m are the corresponding random vectors.

37

Numerical Algorithms (2023) 93:27–66

3.1.2 Implementation of the Fourier algorithm

Looking at (22), it is easy to see that the dyadic products in the series are needed twice

due to the relationship
(
βr −

√
2
h
Wh

)
α�

r = (
αr

(
βr −

√
2
h
Wh

)�)�. This means that
any efficient implementation of the above approximation should only compute them
once. Next, notice that this can be applied to the whole sum: instead of evaluating
each term in the series and then adding them together it is more efficient to split the
sum and evaluate it only once. Introducing

SFS,(p) =
p∑

r=1

1

r

(
αr

(
βr −

√
2
h
Wh

)�)
(23)

we can rewrite the Fourier approximation as

ÂFS,(p)(h) = h

2π

(
SFS,(p) − SFS,(p)�)

. (24)

By first calculating and storing SFS,(p) and then computing ÂFS,(p)(h) one can save
(p−1)m2 basic arithmetic operations if (24) is applied instead of naively implement-
ing (22). The algorithm based on (24) is given as pseudocode by Algorithm 1.

Next, we have a closer look at the calculation of SFS,(p). For an implementa-
tion that results in a fast computation of the iterated stochastic integrals, we want to
exploit fast matrix multiplication routines as provided by, e.g., specialized “BLAS”1

(Basic Linear Algebra Subprograms) implementations like OpenBLAS2 or the Intel®

Math Kernel Library3. In fact, if we gather the coefficient column vectors αr and βr

for 1 ≤ r ≤ p into the two m × p-matrices

α = (α1 | . . . | αp) and β̃ =
⎛

⎜
⎝

β1 −
√

2
h
Wh

1

∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣

βp −
√

2
h
Wh

p

⎞

⎟
⎠

we can compute SFS,(p) as a matrix product SFS,(p) = αβ̃� utilizing the aforemen-
tioned fast multiplication algorithms. Of course, the drawback is that we have to store
all coefficients in memory at the same time whereas before we only needed to store
αr and βr of the current iteration for the summation.

There is also a middle ground between these two extremes – for some n ∈
{1, . . . , p} generate the m × n-matrices α(k) and β(k) for 1 ≤ k ≤
p

n
� by partition-

ing the columns of the matrices α and β̃ in the same way into
p
n
� groups α(k) and

β̃(k) for 1 ≤ k ≤
p
n
�, each of maximal n vectors, and adding together sequentially

to get SFS,(p) = ∑
p/n�
k=1 α(k)β̃(k)�. Here, the firstly discussed extremes correspond

to n = 1 and n = p, respectively.

1http://www.netlib.org/blas/
2https://www.openblas.net/
3https://software.intel.com/en-us/mkl

38

http://www.netlib.org/blas/
https://www.openblas.net/
https://software.intel.com/en-us/mkl

Numerical Algorithms (2023) 93:27–66

Algorithm 1 Lévy area — Fourier method.

3.2 TheMilstein algorithm

Now we proceed with the algorithm that Milstein first investigated in his influential
work [40]. He called it the Fourier method, but he already incorporated a simple
rest approximation compared to what we call the Fourier algorithm in Section 3.1.
This algorithm has been generalized to multiple iterated integrals by Kloeden, Platen
and Wright [30], see also [29]. Note that Dickinson [11] showed that this method is
asymptotically optimal in the setting where only a finite number of linear functionals
of the Wiener process are allowed to be used.

3.2.1 Derivation of the Milstein algorithm

For some prescribed p ∈ N, the rest term approximation employed by Milstein [40]
is concerned with the exact simulation of the term R

(p)

1 (h) given by (16). Utilizing
the independence of the coefficients ai

r and their distributional properties (10), the
random vector

∑∞
r=p+1ar possesses a multivariate Gaussian distribution with zero

mean and covariance matrix h

2π2

∑∞
r=p+1

1
r2 Im = h

2π2 ψ1(p+1)Im. Here, ψ1 denotes

the trigamma function defined by ψ1(z) = d2

dz2 ln(�(z)) with respect to the gamma

function � which can also be represented as the series ψ1(z) = ∑∞
n=0

1
(z+n)2 . Thus,

the vector γ1 defined by

γ1 =
√

2π2

h ψ1(p + 1)

∞∑

r=p+1

ar (25)

is N (0m, Im) distributed. Note that γ1 is independent from Wh, from all βk as well
as from αr for r = 1, . . . , p. Now, one can rewrite the rest term as

R
(p)

1 (h) =
√

h ψ1(p + 1)

2π2

(
Whγ

�
1 − γ1W

�
h

)
(26)

39

Numerical Algorithms (2023) 93:27–66

and the approximation of the Lévy area A(h) ≈ ÂMil,(p)(h) with the Milstein
algorithm is defined by

ÂMil,(p)(h) = ÂFS,(p)(h) + R
(p)

1 (h) (27)

with R
(p)

1 (h) given by (26). We emphasize that the exact simulation of R
(p)

1 (h) is
possible because the distribution of γ1 is explicitly known to be multivariate standard
Gaussian. Provided Wh is given, we have to simulate (24) and we additionally have
to add the term R

(p)

1 (h) given in (26) for the Milstein algorithm in order to reduce the

error. Note that the exact simulation of R
(p)

1 (h) by (26) does not improve the order
of convergence. However, it provides a by a factor of 1/

√
3 smaller error constant

and thus, in most cases, less random variables are needed compared to the Fourier
algorithm in order to guarantee some prescribed error bound.

3.2.2 Implementation of the Milstein algorithm

For the implementation of the Milstein algorithm we again separate the Lévy area
approximation into two appropriate parts SMil,(p) and −SMil,(p)�. Then, the Milstein
approximation is computed as

ÂMil,(p)(h) = h

2π

(
SMil,(p) − SMil,(p)�)

(28)

where looking at (26) and taking into account (23), we see that SMil,(p) can be
expressed as

SMil,(p) = SFS,(p) + √
2ψ1(p + 1)

Wh√
h

γ �
1 (29)

and thus can be easily simulated. Finally, the Milstein algorithm is presented as
pseudocode in Algorithm 2.

Algorithm 2 Lévy area — Milstein method.

40

Numerical Algorithms (2023) 93:27–66

3.3 TheWiktorsson algorithm

In the Milstein algorithm, the tail sum R(p)(h) is only partially taken into account
which reduces the error constant but has no influence on the order of convergence
w.r.t. the number of necessary realizations of independent Gaussian random vari-
ables. An improvement of the order of convergence has been first achieved by
Wiktorsson [53]. He did not incorporate R

(p)

1 (h) on its own but instead tried to find
an approximation of the whole tail sum R(p)(h) by analysing its conditional distribu-
tion in a new way. In this section, we briefly explain the main idea Wiktorsson used
to derive his sophisticated approximation of the truncation terms. Therefore, we first
introduce a suitable notation together with some useful identities. Wiktorsson’s idea
is also the basis for the algorithm proposed by Mrongowius and Rößler [41].

3.3.1 Vectorization and the Kronecker product representation

In the following, let vec : Rm×m → R
m2

be the column-wise vectorization operator
for quadratic matrices and let mat : Rm2 → R

m×m be its inverse mapping such that
mat(vec(A)) = A for all matrices A ∈ R

m×m. Then, for the Kronecker product of
two vectors u, v ∈ R

m it holds v ⊗ u = vec(uv�). Further, let Pm ∈ R
m2×m2

be the
permutation matrix that satisfies Pm(u ⊗ v) = v ⊗ u for all u, v ∈ R

m. Note that it
can be explicitly constructed as Pm = ∑m

i,j=1 eie
�
j ⊗ ej e

�
i where ei denotes the ith

canonical basis vector in R
m. Then, it follows that

Pmvec(A) = vec(A�) (30)

and we have the identity

(A ⊗ Im)vec(B) = vec(BA�) (31)

for A, B ∈ R
m×m, see, e.g., [21, 38].

Since we are dealing with skew-symmetric matrices, it often suffices to consider
the M = m(m−1)

2 entries below the diagonal. Therefore, Wiktorsson [53] applies

the matrix Km ∈ R
M×m2

that selects the entries below the diagonal of a vectorized
m × m-matrix. This matrix can be explicitly defined by

Km =
∑

1≤j<i≤m

ẽ
i− j (j+1)

2 +(j−1)m
(e�

j ⊗ e�
i)

where ẽk is the kth canonical basis vector in R
M . Note that the matrix Km is clearly

not invertible when considered as acting from R
m2

to R
M , but it has K�

m as a right
inverse. If we restrict the domain of Km to the M-dimensional subspace {vec(A) :
A strictly lower triangular} ⊂ R

m2
, then K�

m is also a left inverse to Km. That means,
we can reconstruct at least all skew-symmetric matrices in the sense that

(Im2 − Pm)K�
mKmvec(A) = vec(A) (32)

for any skew-symmetric A ∈ R
m×m. As a result of this, it holds that

(Im2 − Pm)K�
mKm(Im2 − Pm) = Im2 − Pm . (33)

41

Numerical Algorithms (2023) 93:27–66

On the other hand, if we are given a vector a ∈ R
M we get the corresponding skew-

symmetric matrix A ∈ R
m×m using the mat-operator as

A = mat
(
(Im2 − Pm)K�

ma
)

. (34)

3.3.2 Derivation of the Wiktorsson algorithm

Due to the skew-symmetry of the Lévy area matrix A(h), we can restrict our consid-
erations to the vectorization of the lower triangle. In this way, following the idea of
Wiktorsson [53] it is possible to analyse the conditional covariance structure of the
resulting vector and to reduce the Lévy area approximation problem to the problem
of finding a good approximation of the covariance matrix. Applying this approach to
the tail sum R(p)(h) of the truncated series (15) and using (21), it holds that

vec(R(p)(h)) = h

2π

∞∑

r=p+1

(Pm − Im2)

(
αr ⊗ 1

r

(
βr −

√
2

h
Wh

))
, (35)

which is an R
m2

-valued random vector. Since R(p)(h) is skew-symmetric as well, it
suffices to consider the M entries below the diagonal. Let r(p)(h) = Kmvec(R(p)(h))

denote the M-dimensional random vector of the elements below the diagonal of

R(p)(h). Now, for each p the random vector
√

2π

h
√

ψ1(p+1)
r(p)(h) is conditionally

Gaussian with conditional expectation 0M and some conditional covariance matrix
�(p) = �(p)(h) which depends on the random vectors βr , r ≥ p+1 and Wh. We use
a slightly different scaling than Wiktorsson, because we think it better highlights the
structure of the covariance matrices. In this setting the covariance matrix is given by

�(p) = 1

2
Km(Im2 −Pm) ·

(1

ψ1(p + 1)

∞∑

r=p+1

1

r2

(
βr −

√
2

h
Wh

)(
βr −

√
2

h
Wh

)�⊗Im

)

·(Im2 − Pm)K�
m . (36)

Therefore, there exists a standard normally distributed M-dimensional random
vector γ such that

√
�(p) γ =

√
2π

h
√

ψ1(p + 1)
r(p)(h) P -a.s. (37)

As p → ∞, these covariance matrices converge in the L2, F-norm to the matrix

�∞ = IM + 1

h
Km(Im2 − Pm)(WhW

�
h ⊗ Im)(Im2 − Pm)K�

m (38)

that is independent of the random vectors βr , see [53, Thm. 4.2]. Now, we can take the
underlying N (0M,IM) distributed random vector γ from (37) in order to approximate
the tail sum as

r(p)(h) ≈ h
√

ψ1(p + 1)√
2π

√
�∞ γ (39)

42

Numerical Algorithms (2023) 93:27–66

where the exact conditional covariance matrix �(p) in (37) is replaced by �∞, which
can be computed explicitly. Finally, we can approximate the corresponding skew-
symmetric matrix R(p)(h) by the reconstructed matrix R̂Wik,(p)(h) defined as

R̂Wik,(p)(h) = mat
(
(Im2 − Pm)K�

m

h√
2π

√
ψ1(p + 1)

√
�∞γ

)
(40)

due to (34). The matrix square root of �∞ in the above formula can be explicitly
calculated as

√
�∞ = �∞ +

√
1 + ‖Wh‖2

h
IM

1 +
√

1 + ‖Wh‖2

h

, (41)

see [53, Thm. 4.1]. Thus, the approximation of the Lévy area A(h) ≈ ÂWik,(p)(h)

using the tail sum approximation as proposed by Wiktorsson is defined as

ÂWik,(p)(h) = ÂFS,(p)(h) + R̂Wik,(p)(h) (42)

with ÂFS,(p)(h) and R̂Wik,(p)(h) given by (20) and (40), respectively.

3.3.3 Implementation of the Wiktorsson algorithm

Having a closer look at the tail approximation (40), it is easy to see that it is not
directly suitable for an efficient implementation. Multiple matrix-vector products
involving matrices of size m2 × m2 result in an algorithmic complexity of roughly
O(m4). Additionally the Kronecker product with an identity matrix as it appears in
the representation of �∞, from an algorithmic point of view, only serves to duplicate
values. Among other things, this leads to unnecessary high memory requirements.
Therefore, we derive a better representation using the properties of the vec-operator
mentioned in Section 3.3.1.

As a first step, let us insert expression (38) for �∞ into the representation (41) of√
�∞. Then, we get

√
�∞ = IM + 1

h
Km(Im2 − Pm)(WhW

�
h ⊗ Im)(Im2 − Pm)K�

m +
√

1 + ‖Wh‖2

h
IM

1 +
√

1 + ‖Wh‖2

h

= Km(Im2 − Pm)(WhW
�
h ⊗ Im)(Im2 − Pm)K�

m

h
(

1 +
√

1 + ‖Wh‖2

h

) + IM . (43)

Using (33) and (40), we obtain that

R̂Wik,(p)(h) = h

2π
mat

(
(Im2 − Pm)

(
(WhW

�
h ⊗ Im)(Im2 − Pm)

√
2ψ1(p + 1)K�

mγ

h
(

1 +
√

1 + ‖Wh‖2

h

)

+√
2ψ1(p + 1)K�

mγ

))
. (44)

Next, observing that γ is always immediately reshaped by K�
m we define the random

m × m-matrix Γ = mat
(
K�

mγ
)

to be the reshaped matrix. As a result of this, it holds

43

Numerical Algorithms (2023) 93:27–66

K�
mγ = vec(Γ) with Γi,j ∼ N (0, 1) for i > j and Γi,j = 0 for i ≤ j . Now, we

apply (31) as well as (30) in order to arrive at the final representation

R̂Wik,(p)(h) = h

2π
mat

(
(Im2 − Pm)vec

(√
2ψ1(p + 1)(Γ − Γ �)WhW

�
h

h
(

1 +
√

1 + ‖Wh‖2

h

)

+√
2ψ1(p + 1)Γ

))
. (45)

With (23) we define

SWik,(p) = SFS,(p) +
√

2ψ1(p + 1)(Γ − Γ �)

1 +
√

1 + ‖Wh‖2

h

· WhW
�
h

h
+ √

2ψ1(p + 1)Γ (46)

which allows for an efficient implementation of Wiktorsson’s algorithm using

ÂWik,(p)(h) = h

2π

(
SWik,(p) − SWik,(p)�)

. (47)

This version of Wiktorsson’s algorithm that is optimized for an efficient implemen-
tation can be found in Algorithm 3 presented as pseudocode.

Algorithm 3 Lévy area — Wiktorsson method.

3.4 TheMrongowius–Rößler algorithm

Compared to the Fourier algorithms that make use of linear functionals of the Wiener
processes only, the algorithm proposed by Wiktorsson [53] reduces the computational
cost significantly by including also a kind of non-linear information of the Wiener

44

Numerical Algorithms (2023) 93:27–66

processes for the additional approximation of the remainder terms. However, Wik-
torsson’s algorithm needs the calculation of the square root of a M × M covariance
matrix, which can be expensive for high-dimensional problems. The following algo-
rithm that has been recently proposed by Mrongowius and Rößler [41] improves the
algorithm by Wiktorsson such that the error estimate allows for a smaller constant by
a factor 1/

√
5, see Section 4. In addition, the covariance matrix used in the algorithm

by Mrongowius and Rößler is just the identity matrix and thus independent of Wh.
Compared to Wiktorsson’s algorithm, this makes the calculation of the square root of
the full covariance matrix �∞ depending on Wh in (43) obsolete. This allows for sav-
ing computational cost, especially in the context of the simulation of SDE and SPDE
solutions where the value of Wh varies each time step. Thus, the algorithm by Mron-
gowius and Rößler saves computational cost and allows for an easier implementation
that is discussed in the following.

3.4.1 Derivation of the Mrongowius–Rößler algorithm

Instead of approximating the whole rest term R(p)(h) at once as in Wiktorsson’s
algorithm, Mrongowius and Rößler combine the exact approximation of the rest term
R

(p)

1 (h) in (26) with an approximation of the second rest term R
(p)

2 (h) that is related

to Wiktorsson’s approach. For the approximation of R
(p)

2 (h), we rewrite this term as

vec(R(p)

2 (h)) = h

2π

∞∑

r=p+1

1

r
(Pm − Im2)(αr ⊗ βr) (48)

and we define the M-dimensional vector r
(p)

2 (h) = Kmvec(R(p)

2 (h)). Then, the ran-

dom vector
√

2π

h
√

ψ1(p+1)
r
(p)

2 (h) is conditionally Gaussian with conditional expectation

0M and conditional covariance matrix �
(p)

2 that depends on αr , r ≥ p + 1. Here, the
covariance matrix is given by (cf. (36))

�
(p)

2 = 1

2
Km(Im2 − Pm)

(
Im ⊗ 1

ψ1(p + 1)

∞∑

r=p+1

1

r2
αrα

�
r

)
(Im2 − Pm)K�

m . (49)

As a result of this, it holds
√

2π

h
√

ψ1(p + 1)
r
(p)

2 (h) =
√

�
(p)

2 γ2

with some N (0M, IM) distributed random vector γ2 that is given by

γ2 =
√

2π

h
√

ψ1(p + 1)

(
�

(p)

2

)−1/2
r
(p)

2 (h) . (50)

Mrongowius and Rößler showed that these covariance matrices converge as p → ∞
in the L2, F-norm to the very simple, constant identity matrix [41, Prop. 4.2]

�∞
2 = IM . (51)

45

Numerical Algorithms (2023) 93:27–66

Next, the approximation of the remainder term r
(p)

2 (h) based on the approximate
covariance matrix �∞

2 is calculated as

r̂
(p)

2 (h) = h√
2π

√
ψ1(p + 1)

(
�∞

2

)1/2
γ2 = h√

2π

√
ψ1(p + 1)γ2 (52)

where γ2 is the N (0M,IM) distributed random vector in (50). From this vector we
can rebuild the full m × m matrix as shown in (34) by

R̂
MR,(p)

2 (h) = mat
(
(Im2 − Pm)K�

m r̂
(p)

2 (h)
)

. (53)

Now, the approximation of the Lévy area by the Mrongowius–Rößler algorithm
is defined by the standard Fourier approximation combined with two rest term
approximations

ÂMR,(p)(h) = ÂFS,(p)(h) + R
(p)

1 (h) + R̂
MR,(p)

2 (h) (54)

with ÂFS,(p)(h), R
(p)

1 (h) and R̂
MR,(p)

2 (h) defined in (20), (26) and (53), respectively.

3.4.2 Implementation of the Mrongowius–Rößler algorithm

Similar to Section 3.3.3, we simplify the expression (53) by eliminating the matrices
Pm and Km as well as the costly reshaping operation. This can be done in a much
easier way due to the simple structure of the covariance matrix for this algorithm.
First, we define Γ2 = mat

(
K�

mγ2
)

to be the lower triangular matrix corresponding to
γ2. Then, it follows that

R̂
MR,(p)

2 (h) = h

2π

√
2ψ1(p + 1)

(
Γ2 − Γ �

2

)
. (55)

Now, with SFS,(p) in (23) we can define

SMR,(p) = SFS,(p) + √
2ψ1(p + 1)

Wh√
h

γ �
1 + √

2ψ1(p + 1) Γ2 (56)

and then we finally arrive at

ÂMR,(p)(h) = h

2π

(
SMR,(p) − SMR,(p)�)

(57)

that allows for an efficient implementation. This formulation of the algorithm due to
Mrongowius and Rößler is also given in Algorithm 4 as pseudocode.

4 Error estimates and simulation of iterated stochastic integrals

The considered algorithms differ significantly with respect to their accuracy and
computational cost. Therefore, we first compare the corresponding approximation
error estimates in the max, L2-norm. For h > 0 and p ∈ N, let

ÎAlg,(p)(h) = WhW
�
h − hIm

2
+ ÂAlg,(p)(h) (58)

46

Numerical Algorithms (2023) 93:27–66

Algorithm 4 Lévy area — Mrongowius–Rößler method.

where ’Alg’ denotes the corresponding algorithm that is applied for the approxima-
tion of the Lévy areas.

Theorem 2 Let h > 0, p ∈ N, let I denote the matrix of all iterated stochastic
integrals as in (13) and let Î denote the corresponding approximations defined in
(58).

(i) For the Fourier algorithm with ÂFS,(p)(h) as in (22), it holds

‖I(h) − ÎFS,(p)(h)‖max,L2 ≤
√

3

2π2
· h√

p
. (59)

(ii) For the Milstein algorithm with ÂMil,(p)(h) as in (27), it holds

‖I(h) − ÎMil,(p)(h)‖max,L2 ≤
√

1

2π2
· h√

p
. (60)

(iii) For the Wiktorsson algorithm with ÂWik,(p)(h) as in (42), it holds

‖I(h) − ÎWik,(p)(h)‖max,L2 ≤
√

5m

12π2
· h

p
. (61)

(iv) For the Mrongowius–Rößler algorithm with ÂMR,(p)(h) as in (54), it holds

‖I(h) − ÎMR,(p)(h)‖max,L2 ≤
√

m

12π2
· h

p
. (62)

To the best of our knowledge, there is no reference for (59) yet. Therefore, we
present the proof for completeness. The proof for error estimate (60) can be found in
[29, 40]. The presented error estimate (61) follows from the original result in [53] and

47

Numerical Algorithms (2023) 93:27–66

is an improvement that we also prove in the following. Finally, for the error estimate
(62) we refer to [41].

Proof (i) For the proof of (59), we first observe that E
[∣∣I(i,i)(h)−ÎFS,(p)

(i,i) (h)
∣∣2] = 0

for i = 1, . . . , m. Further, noting that all ai
k and b

j
l for k, l ∈ N and i, j =

1, . . . , m are i.i.d. Gaussian random variables with distribution given in (10) that
are also independent from W

q
h for q = 1, . . . , m, we calculate with (12) for

i 	= j that

E
[∣∣I(i,j)(h)−ÎFS,(p)

(i,j) (h)
∣∣2

]
= E

[∣∣∣π
∞∑

r=p+1

r
(
ai
r

(
b

j
r − 1

πr
W

j
h

)
−

(
bi
r −

1

πr
Wi

h

)
a

j
r

)∣∣∣
2]

= 2π2
∞∑

r=p+1

r2 E
[(

ai
r

)2
]

E
[(

b
j
r − 1

πr
W

j
h

)2]

= 3h2

2π2

∞∑

r=p+1

1

r2
. (63)

Then, the error estimate (59) follows with the estimate
∞∑

r=p+1

1

r2
≤

∫ ∞

p

1

r2
dr = 1

p
.

(iii) In order to prove (61), we proceed analogously to [41]. Instead of [53, Lemma 4.1]
we employ the variant [41, Lemma 4.3] and note that one can prove the following
stronger version of [53, Theorem 4.2] similar to [41, Proposition 4.2]

M∑

q=1

E
[∣∣(�(p) − �∞)r,q

∣∣2
∣∣∣Wh

]

=
∑∞

k=p+11/k4

(2
∑∞

k=p+11/k2)2
· 2

(
m + m

(Wi
h)

2

h
+ m

(W
j
h)2

h
+ 2

‖Wh‖2

h

)

for all 1 ≤ r ≤ M where 1 ≤ j < i ≤ m with (j − 1)(m − j
2) + i − j = r .

Recognizing that E
[
m + m

(Wi
h)2

h
+ m

(W
j
h)2

h
+ 2 ‖Wh‖2

h

]
= 5m and using that

∑∞
k=p+11/k4

(
∑∞

k=p+11/k2)2 ≤ 1
3p

(see also the proof of [53, Theorem 4.2]) completes the

proof.

Here, it has to be pointed out that the Milstein algorithm is asymptotically optimal
in the class of algorithms that only make use of linear functionals of the Wiener pro-
cesses like, e.g., the Fourier algorithm, see [11]. Algorithms that belong to this class
have also been considered in the seminal paper by Clark and Cameron, see [7], where
as a consequence it is shown that the same order of convergence as for the Milstein
algorithm can be obtained if the Euler–Maruyama scheme is applied for approximat-
ing the iterated stochastic integrals. On the other hand, the algorithms by Wiktorsson

48

Numerical Algorithms (2023) 93:27–66

and by Mrongowius and Rößler do not belong to this class as they make also use of
non-linear information about the Wiener process. That is why these two algorithms
allow for a higher order of convergence w.r.t. the parameter p. While the algorithm by
Wiktorsson is based on the Fourier algorithm approach, the improved algorithm by
Mrongowius and Rößler is build on the asymptotically optimal approach of the Mil-
stein algorithm. As a result of this, the algorithm by Mrongowius and Rößler allows
for a smaller error constant by a factor 1/

√
5 compared to the Wiktorsson algorithm.

Next to the error estimates in L2(�)-norm presented in Theorem 2, it is worth
mentioning that there also exist error estimates in general Lq(�)-norm with q > 2
for the Milstein algorithm and for the Mrongowius–Rößler algorithm, see [41, Prop.
4.6, Thm. 4.8].

Algorithm 5 Calculation of the iterated integrals.

For the simulation of the iterated stochastic integrals ÎAlg,(p) by making use of
(58) and by applying one of the presented algorithms (Alg) in Sections 3.1–3.4 for the
approximate simulation of the Lévy areas we refer to the pseudocode of Algorithm 5.
That is, given a realization of an increment of the m-dimensional Wiener process
Wh w.r.t. step size h > 0 and a value of the truncation parameter p ∈ N for the
tail sum of the Lévy area approximation as input parameters, Algorithm 5 calculates
and returns the matrix ÎAlg,(p)(h) based on the algorithm LEVY AREA() for the Lévy
area approximation that has to be replaced by the choice of any of the algorithms
described in Sections 3.1–3.4.

If iterated stochastic integrals are needed for numerical approximations of, e.g.,
solutions of SDEs in the root mean square sense, then one has to simulate these
iterated stochastic integrals with sufficient accuracy in order to preserve the over-
all convergence rate of the approximation scheme. For SDEs, let γ > 0 denote
the order of convergence in the L2-norm of the numerical scheme under considera-
tion, e.g., γ = 1 for the well known Milstein scheme [29, 40] or a corresponding
stochastic Runge–Kutta scheme [46]. Then, the required order of convergence for
the approximation of some random variable like, e.g., an iterated stochastic integral,
that occurs in a given numerical scheme for SDEs such that its order γ is pre-
served has been established in [40, Lem. 6.2] and [29, Cor. 10.6.5]. Since it holds

49

Numerical Algorithms (2023) 93:27–66

E
[
I(i,j)(h)−ÎAlg,(p)

(i,j) (h)
] = 0 for 1 ≤ i, j ≤ m for all algorithms under consideration

in Section 3, the iterated stochastic integral approximations need to fulfil

∥∥I(i,j)(h) − ÎAlg,(p)

(i,j) (h)
∥∥

L2(�)
≤ c1 hγ+ 1

2 (64)

for all 1 ≤ i, j ≤ m, all sufficiently small h > 0 and some constant c1 > 0 inde-
pendent of h. This condition can equivalently be expressed using the max, L2-norm
as

∥∥I(h) − ÎAlg,(p)(h)
∥∥

max,L2 ≤ c1 hγ+ 1
2 . (65)

Together with Theorem 2 this condition specifies how to choose the truncation
parameter p.

For the Fourier algorithm (Algorithm 1) or the Milstein algorithm (Algorithm 2)
we have to choose p such that

p ≥ c2

c2
1

· h1−2γ ∈ O
(
h1−2γ

)
(66)

with c2 = 3
2π2 for the Fourier algorithm and c2 = 1

2π2 for the Milstein algorithm.
On the other hand, for the Wiktorsson algorithm (Algorithm 3) or the

Mrongowius–Rößler algorithm (Algorithm 4) we can choose p such that

p ≥
√

c3

c1
· h

1
2 −γ ∈ O

(
h

1
2 −γ

)
(67)

where c3 = 5m

12π2 for the Wiktorsson algorithm and c3 = m

12π2 for the Mrongowius–
Rößler algorithm.

As a result of this, we have to choose p ∈ O
(
h−1

)
if Algorithm 1 or Algorithm 2

is applied and p ∈ O
(
h− 1

2
)

if Algorithm 3 or Algorithm 4 is applied in the Milstein
scheme or any other numerical scheme for SDEs which has an order of convergence
γ = 1 in the L2-norm and thus also strong order of convergence γ = 1. Hence,
the algorithm by Wiktorsson as well as the algorithm by Mrongowius and Rößler
typically need a significantly lower value of the truncation parameter p compared
to the Fourier algorithm and the Milstein algorithm. Additionally, for the algorithm
by Mrongowius and Rößler the parameter p can be chosen to be by a factor 1/

√
5

smaller than for the algorithm by Wiktorsson.

5 Comparison of the algorithms and their performance

In this section we will look at the costs of each algorithm to achieve a given precision.
In particular we will see how to choose the optimal parameters for each algorithm in
a given setting. After that we show the results of a simulation study to confirm the
theoretical order of convergence for each algorithm.

50

Numerical Algorithms (2023) 93:27–66

Table 1 Number of random
numbers that need to be
generated in terms of the
dimension m of the Wiener
process and the truncation
parameter p

Algorithm # N (0, 1) random numbers

Fourier 2pm

Milstein 2pm + m

Wiktorsson 2pm + m2−m
2

Mrongowius–Rößler 2pm + m2−m
2 + m

5.1 Comparison of computational cost

We will measure the computational cost in terms of the number of random numbers
drawn from a standard Gaussian distribution that have to be generated for the simu-
lation of all twice iterated stochastic integrals corresponding to one given increment
of an underlying m-dimensional Wiener process. For a fixed truncation parameter p

these can be easily counted in the derivation or in the pseudocode of the algorithms
presented above. E.g., Algorithm 1 needs 2pm random numbers corresponding to the
Fourier coefficients αi

r and βi
r for 1 ≤ r ≤ p and 1 ≤ i ≤ m. For each algorithm

these costs are summarized in Table 1.
In practice however, a fixed precision ε̄ is usually given with respect to some

norm for the error and we are interested in the minimal cost to simulate the iter-
ated stochastic integrals to this precision. For this we need to choose the truncation
parameter p = p(m, h, ε̄) that may depend on the dimension m, the step size h

and the desired precision ε̄, as discussed in Section 4, and insert this expression for
p into the cost in Table 1. Again, considering for example the Fourier algorithm
(Algorithm 1), we calculate from (59) that the truncation parameter has to be cho-

sen as p ≥ 3h2

2π2ε̄2 if we measure the error in the max, L2-norm. This allows us to

calculate the actual cost to be c(m, h, ε̄) = 2pm = 3h2m

π2ε̄2 . If instead we want to

bound the error in the L2, F-norm, we have to choose p ≥ 3h2(m2−m)

2π2ε̄2 with the cost

of c(m, h, ε̄) = 3h2(m3−m2)

π2ε̄2 .
On the other hand, sometimes we are willing to invest a specific amount of com-

putation time or cost and are interested in the minimal error we can achieve without
exceeding this given cost budget. Rearranging the expression from above for the
cost, we find that given some fixed cost budget c̄ > 0 we can get an upper bound

on the max, L2-error for the Fourier algorithm of ε(m, h, c̄) =
√

3h
√

m

π
√

c̄
. In Table 2,

we list the lower bound for the truncation parameter p(m, h, ε̄), the resulting cost
c(m, h, ε̄) and the minimal achievable error ε(m, h, c̄) for a prescribed error ε̄ or a
given cost budget c̄ for all four algorithms and two different error criteria introduced
in Section 2.5.

Now we can calculate for concrete situations the cost of each algorithm and deter-
mine the cheapest one. Consider again the example of a numerical scheme for SDEs
with L2-convergence of order γ = 1. In this situation we have seen before that we
have to couple the error and the step size as ε̄ = O(h3/2) (cf. (65)). Using this cou-
pling the cost only depends on the dimension, the step size and the chosen error norm.
In Fig. 1 we choose ε̄ = h3/2 and we visualize for two of the random matrix norms

51

Numerical Algorithms (2023) 93:27–66

Table 2 Comparison of theoretical properties of the Algorithms 1–4 in Section 3. The cutoff p(m, h, ε̄)

describes how to choose the truncation parameter p in order to guarantee that the error in the corresponding
norm is less than ε̄. The cost c(m, h, ε̄) is the number of random numbers that need to be generated to
achieve this error. Finally, the error ε(m, h, c̄) is the minimal achievable error given a fixed cost budget c̄.
Note that m and h are the dimension of the Wiener process and the step size, respectively

Algorithm Objective Applied error criterion

‖ · ‖max,L2 ‖ · ‖L2,F

Fourier

cutoff p(m, h, ε̄) 3h2

2π2 ε̄2
3h2(m2−m)

2π2 ε̄2

cost c(m, h, ε̄) 3h2m

π2 ε̄2
3h2(m3−m2)

π2 ε̄2

error ε(m, h, c̄)
√

3
π

· h·√m√
c̄

√
3

π
· h·m√

m−1√
c̄

Milstein

cutoff p(m, h, ε̄) h2

2π2 ε̄2
h2(m2−m)

2π2 ε̄2

cost c(m, h, ε̄) h2m

π2 ε̄2 + m
h2(m3−m2)

π2 ε̄2 + m

error ε(m, h, c̄) 1
π

· h·√m√
c̄−m

1
π

· h·m√
m−1√

c̄−m

Wiktorsson

cutoff p(m, h, ε̄)

√
5h

√
m√

12πε̄

√
5hm

√
m−1√

12πε̄

cost c(m, h, ε̄)
√

5hm3/2√
3πε̄

+ m2−m
2

√
5hm2√

m−1√
3πε̄

+ m2−m
2

error ε(m, h, c̄) 2
√

5√
3π

· h·m3/2

2c̄−m2+m

2
√

5√
3π

· h·m2√
m−1

2c̄−m2+m

Mrongowius–Rößler

cutoff p(m, h, ε̄)
h
√

m√
12πε̄

hm
√

m−1√
12πε̄

cost c(m, h, ε̄) hm3/2√
3πε̄

+ m2+m
2

hm2√
m−1√

3πε̄
+ m2+m

2

error ε(m, h, c̄) 2√
3π

· h·m3/2

2c̄−m2−m
2√
3π

· h·m2√
m−1

2c̄−m2−m

introduced in Section 2.5 the algorithm with minimal cost subject to dimension and
step size.

The first thing we see is that the Wiktorsson algorithm is never the best choice in
these scenarios. This is because for the Mrongowius–Rößler algorithm the required
value of the truncation parameter can be reduced by a factor

√
5 while only requir-

ing m additional random numbers. Figure 1 confirms that this trade-off is always
worth it, i.e., the Mrongowius–Rößler algorithm always outperforms the Wiktorsson
algorithm.

Moreover, for the max, L2-error we see in the left plot of Fig. 1 that if we fix some
step size then there always exists some sufficiently high dimension such that it will
be more efficient to apply the Milstein algorithm. This is a consequence of the higher
order dependency on the dimension of the Mrongowius–Rößler algorithm (and also
for the Wiktorsson algorithm) compared to the Milstein algorithm which dominates
the error for large enough dimension if the step size is fixed. This means the Milstein
algorithm is the optimal choice in this setting.

52

Numerical Algorithms (2023) 93:27–66

Fig. 1 Optimal algorithm given the dimension m and the step size h in the respective norm for ε̄ = h3/2

However, for any fixed dimension of the Wiener process (as it is the case for,
e.g., SDEs) there always exists some threshold step size such that for all step sizes
smaller than this threshold the Mrongowius–Rößler algorithm is more efficient than
the other algorithms. This is due to the higher order of convergence in time of the
Mrongowius–Rößler algorithm. Thus, as the step size tends to zero or if the step size
is sufficiently small, the Mrongowius–Rößler algorithm is the optimal choice.

The situation in the right plot of Fig. 1 for the L2, F-error is different, because
the simple scaling factor due to Lemma 1 does not translate into a simple scaling of
the associated cost. Indeed it is no simple scaling at all if the cost contains additive
terms independent of the error. Instead, only the error-dependent part of the cost is
scaled by m2 − m for the Fourier and Milstein algorithms and by

√
m2 − m for the

Wiktorsson and Mrongowius–Rößler algorithms (cf. Table 2). This is due to the dif-
ferent exponents of the truncation parameter in the corresponding error estimates. As
a result of this, for the L2, F-error the Mrongowius–Rößler algorithm is the optimal
choice except for the particular case of a rather big step size and a low dimension of
the Wiener process.

5.2 A study on the order of convergence

Convergence plots are an appropriate tool to complement theoretical convergence
results with numerical simulations. Unfortunately, studying the convergence of ran-
dom variables can be difficult, especially if the target (limit) random variable that has
to be approximated can not be simulated exactly because its distribution is unknown.
One way out of this problem is to substitute the target random variable by a highly
accurate approximate random variable that allows to draw realizations from its known
distribution.

53

Numerical Algorithms (2023) 93:27–66

In the present simulation study, we substitute the target random variable I(h) by
the approximate random variable Iref,(pref)(h) = ÎFS,(pref)(h) based on the funda-
mental and accepted Fourier algorithm with high accuracy due to some large value
for the parameter pref. Therefore, we refer to Iref,(pref)(h) as the reference random
variable and let ÎAlg,(p)(h) denote the approximation based on one of the algo-
rithms described in Section 3. We focus on the max, L2-error and the L2, F-error
of the approximation algorithms that we want to compare. We proceed as follows:
Let pref ∈ N be sufficiently large. First, some realizations of Wh and the reference
random variable Iref,(pref)(h) are simulated. Then, the corresponding realizations of
the Fourier coefficients αr and βr for 1 ≤ r ≤ pref are stored together with Wh.
Next, the approximations ÎAlg,(p)(h) are calculated based on the same realization,
which has to be done carefully. The stored Fourier coefficients and the stored incre-
ment of the Wiener process are used to compute approximate solutions using each
of the algorithms with a truncation parameter p � pref. Especially, we are able
to exactly extract from the stored Fourier coefficients and the stored increment of
the Wiener process the corresponding realizations of the underlying standard Gaus-
sian random variables that are used in Wiktorsson’s algorithm as well as in the
Mrongowius–Rößler algorithm to approximate the tail.

To be precise, set h = 1 and choose a large value pref for the reference random
variable, for example pref = 106. Now, simulate and store the Wiener increment Wh

as well as the Fourier coefficients αi
r and βi

r for i = 1, . . . , m and r = 1, . . . , pref.
Then, calculate the reference random variable Iref,(pref)(h) using the Fourier algo-
rithm. Since every realization of the reference random variable Iref(h) is also an
approximation to some realization of the random variable I(h), we can control the
precision in max, L2-norm of the reference random variable exactly due to (63), i.e.,
it holds

∥∥I(h) − Iref,(pref)(h)
∥∥

max,L2 =
(

3h2

2π2

(
π2

6
−

pref∑

r=1

1

r2

)) 1
2

.

For a large enough value of pref this error will be sufficiently small such that it can
be neglected in our considerations. This justifies to work with the reference random
variable.

Next, choose a truncation value p � pref for the approximation under considera-
tion. First, calculate ÎFS,(p)(h) by the Fourier algorithm using only the first p stored
Fourier coefficients. Then, extract the necessary standard Gaussian vectors from the
remaining stored Fourier coefficients using (25), (35), (37) and (50), i.e., calculate

γ1 = 1√
ψ1(p + 1)

pref∑

r=p+1

1

r
αr ,

γ = 1√
2ψ1(p + 1)

(
�(p)

)−1/2
Km(Pm − Im2)

pref∑

r=p+1

1

r

(
αr ⊗ (

βr − √
2Wh

))
,

γ2 = 1√
2ψ1(p + 1)

(
�

p

2

)−1/2
Km(Pm − Im2)

pref∑

r=p+1

1

r
(αr ⊗ βr) .

54

Numerical Algorithms (2023) 93:27–66

Fig. 2 max, L2-error versus the number of random variables (cost) used for different dimensions of the
Wiener process based on 100 realizations. The error is computed w.r.t. the reference random variable with
pref = 106 and for h = 1. The dotted lines show the corresponding theoretical error bounds according to
Theorem 2

Calculating the vectors γ1, γ and γ2 based on the already simulated and stored
Fourier coefficients guarantees that they fit correctly together with the realization of
the reference random variable. Note that for r > pref the Fourier coefficients αi

r and
βi

r for i = 1, . . . , m of the reference random variable are all zero. Now, we calcu-
late ÎMil,(p)(h) by the Milstein, ÎWik,(p)(h) by the Wiktorsson and ÎMR,(p)(h) by the
Mrongowius–Rößler algorithm using only the first p Fourier coefficients as well as
γ1, γ and γ2, respectively.

In Fig. 2 the computed max, L2-errors are plotted versus the costs. Here, the cost
is determined as the number of random numbers necessary to calculate the correspon-
ding approximation for the iterated stochastic integral for each algorithm. To generate
the random numbers we use the Mersenne Twister generator from Julia version 1.6.
The steeper slope of the Wiktorsson and Mrongowius–Rößler algorithms can be clearly
seen. This confirms the higher order of convergence of these algorithms in contrast to
the Fourier and Milstein algorithms. Furthermore, it is interesting to observe that the
Wiktorsson as well as the Mrongowius–Rößler algorithm perform better than their
theoretical upper error bound given in Theorem 2. This gives reason to suspect that
the error estimates for both algorithms given in Theorem 2 are not sharp.

6 A simulation toolbox for Julia andMATLAB

There exist several software packages to simulate SDEs in various programming
languages. A short search brought up the following 20 toolboxes: for the C++
programming language [4, 25], for the Julia programming language [2, 48–50], for

55

Numerical Algorithms (2023) 93:27–66

Mathematica [54], for MATLAB [17, 22, 44, 52], for the Python programming lan-
guage [1, 3, 15, 16, 36] and for the R programming language [6, 18, 23, 24]. However,
only four of these toolboxes seem to contain an implementation of an approxima-
tion for the iterated stochastic integrals using Wiktorsson’s algorithm and none of
them provide an implementation of the recently proposed Mrongowius–Rößler algo-
rithm. To be precise, Wiktorsson’s algorithm is contained in the software packages
SDELab [17] in Matlab as well as in its Julia continuation SDELab2.jl [50],
in the Python package sdeint [1] and more recently also in the Julia package
StochasticDiffEq.jl [49].

Note that among these four software packages only three have the source code
readily available on GitHub:

• The software package SDELab2.jl does not seem to be maintained any more.
It is worth mentioning that its implementation avoids the explicit use of Kro-
necker products. However, it is not as efficient as the implementations discussed
in Section 3.3.3. Moreover, some simple test revealed that the implementation
seems to suffer from some typos that may cause inexact results. Additionally, the
current version of this package does not run with the current Julia version 1.6.

• The software package sdeint is purely written in Python and as such it is
inherently slower than comparable implementations in a compiled language.
Furthermore, it is based on a rather naı̈ve implementation, e.g., explicitly con-
structing the Kronecker products and the permutation and selection matrices as
described in Section 3.3.2. However, this is computational costly and thus rather
inefficient, see also the discussion in Section 3.3.3.

• The software package StochasticDiffEq.jl offers the latest implementa-
tion of Wiktorsson’s approximation in the high-performance language Julia. Up
to now, it is actively maintained and has a strong focus on good performance.
It is basically a slightly optimized version of the SDELab2.jl implementa-
tion and thus it also does not achieve the maximal possible efficiency, especially
compared to the discussion in Section 3.3.3.

In summary, there is currently no package providing an efficient algorithm for the
simulation of iterated integrals. That is the main reason we provide a new simulation
toolbox for Julia and MATLAB that, among others, features Wiktorsson’s algorithm
as well as the Mrongowius–Rößler algorithm. In Section 6.1 we present some more
features of the toolbox. After giving usage examples in Section 6.2, we analyse
the performance of our toolbox as compared to some existing implementations in
Section 6.3.

6.1 Features of the new Julia andMATLAB simulation toolbox

We introduce a new simulation toolbox for the simulation of twofold iterated stochas-
tic integrals and the corresponding Lévy areas for the Julia, see also [5], and MATLAB

programming languages. The aim of the toolbox is to provide both high performance
and ease of use. On the one hand, experts can directly control each part of the algo-
rithms. On the other hand, our software can automatically choose omitted parameters.

56

Numerical Algorithms (2023) 93:27–66

Thus, a non-expert user only has to provide the Wiener increment and the associated
step size and all other parameters will be chosen in an optimal way.

The toolbox is available as the software packages LevyArea.jl and
LevyArea.m for Julia and MATLAB, respectively. Both software packages are
freely available from Netlib4 as the na57 package and from GitHub [27, 28]. Addi-
tionally, the Julia package is registered in the ‘General’ registry of Julia and can be
installed using the built-in package manager, while the MATLAB package is listed
on the ‘MATLAB Central - File Exchange’ and can be installed using the Add-On
Explorer. This allows for an easy integration of these packages into other software
projects.

Both packages provide the Fourier algorithm, the Milstein algorithm, the Wiktors-
son algorithm and, to the best of our knowledge, for the first time the Mrongowius–
Rößler algorithm. As the most important feature, all four algorithms are implemented
following the insights from Section 3 to provide fast and highly efficient implementa-
tions. In Section 6.3 the performance of the Julia package is analysed in comparison
to existing software.

Additional features include the ability to automatically choose the optimal algo-
rithm based on the costs listed in Table 2. That is, given the increment of the driving
Wiener process, the step size and an error bound in some norm, both software pack-
ages will automatically determine the optimal algorithm and the associated optimal
value for the truncation parameter. Recall that optimal always means in terms of the
number of random numbers that have to be generated in order to obtain minimal
computing time. Thus, using the option for an optimal choice of the algorithm results
in the best possible performance for each setting. Especially, for the simulation of
SDE solutions with some strong order 1 numerical scheme, both software packages
can determine all necessary parameters by passing only the Wiener increment and
the step size to the toolbox. Everything else is determined automatically such that the
global order of convergence of the numerical integrator is preserved.

Furthermore, it is possible to directly simulate iterated stochastic integrals based
on Q-Wiener processes on finite-dimensional spaces as they typically appear for the
approximate simulation of solutions to SPDEs. In that case, the eigenvalues of the
covariance operator Q need to be passed to the software toolbox in order to compute
the correctly scaled iterated stochastic integrals. This scaling is briefly described at
the end of Section 2.1, see also [34] for a detailed discussion.

6.2 Usage of the software package

Next, we give some basic examples how to make use of the two software pack-
ages LevyArea.jl for Julia and LevyArea.m for MATLAB. The aim is not to
give a full documentation but rather to show some example invocations of the main
functions. For more information we refer to the documentation that comes with the
software and can be easily accessed in Julia and MATLAB.

4http://www.netlib.org/numeralgo/

57

http://www.netlib.org/numeralgo/

Numerical Algorithms (2023) 93:27–66

6.2.1 The Julia package LevyArea.jl

The following code works with Julia version 1.6. First of all, the software package
LevyArea.jl [27] needs to be installed to make it available. Therefore, start Julia
and enter the package manager by typing] (a closing square bracket). Then execute

which downloads the package and adds it to the current project. After the installation
of the package, one can load the package and initialize some variables that we use in
the following:

Here, W is the m-dimensional vector of increments of the driving Wiener process on
some time interval of length h.

For the simulation of the corresponding twofold iterated stochastic integrals, one
can use the following default call of the function iterated integrals where
only the increment and the step size are mandatory:

In this example, the error ε̄ is not explicitly specified. Therefore, the function assumes
the desired precision to be ε̄ = h3/2 as it has to be chosen for the numerical
solution of SDEs, see end of Section 4, and automatically chooses the optimal algo-
rithm according to the logic in Section 5.1, see also Fig. 1. If not stated otherwise,
the default error criterion is the max, L2-error and the function returns the m × m

matrix II containing a realization of the approximate iterated stochastic integrals
that correspond to the given increment W .

The desired precision ε̄ can be optionally provided using a third positional
argument:

Again, the software package automatically chooses the optimal algorithm as analysed
in Section 5.1.

To determine which algorithm is chosen by the package without simulating any
iterated stochastic integrals yet, the function optimal algorithm can be used.
The arguments to this function are the dimension of the Wiener process, the step size
and the desired precision:

58

Numerical Algorithms (2023) 93:27–66

It is also possible to choose the algorithm directly using the keyword argument
alg. The value can be one of Fourier(), Milstein(), Wiktorsson() and
MronRoe():

As the norm for the considered error, e.g., the max, L2- and L2, F-norm can
be selected using a keyword argument. The accepted values are MaxL2() and
FrobeniusL2():

If iterated stochastic integrals for some Q-Wiener process need to be simulated,
like for the numerical simulation of solutions to SPDEs, then the increment of the
Q-Wiener process together with the square roots of the eigenvalues of the associated
covariance operator have to be provided, see Section 2.1:

In this case, the function iterated integrals utilizes a scaling of the iterated
stochastic integrals as explained in Section 2.1 and also adjusts the error estimates
appropriately such that the error bound holds w.r.t. the iterated stochastic integrals
IQ(h) based on the Q-Wiener process. Here the error norm defaults to the L2, F-
error.

Note that all discussed keyword arguments are optional and can be combined as
favoured. Additional information can be found using the Julia help mode:

6.2.2 The MATLAB package LevyArea.m

The following code works with MATLAB version 2020a. The installation of the soft-
ware package LevyArea.m [28] in MATLAB is done either by copying the package
folder +levyarea into the current working directory or by installing the MAT-
LAB toolbox file LevyArea.mltbx. This can also be done through the Add-On
Explorer.

The main function of the toolbox is the function iterated integrals. It can
be called by prepending the package name levyarea.iterated integrals.
However, since this may be cumbersome one can import the used functions once by

59

Numerical Algorithms (2023) 93:27–66

and then one can omit the package name by simply calling iterated integrals
or optimal algorithm, respectively. In the following, we assume that the two
functions are imported, so that we can always call them directly without the package
name.

For the examples considered next we initialize some auxiliary variables:

Note that W denotes the m-dimensional vector of increments of the Wiener process
on some time interval of length h.

For directly simulating the twofold iterated stochastic integrals given the incre-
ment of the Wiener process, one can call the main function iterated integrals
passing the increment and the step size:

These two parameters are mandatory. In this case, the precision is set to the default
ε̄ = h3/2 and the optimal algorithm is applied automatically according to Section 5.1
(see also Fig. 1). The default norm for the error is set to be the max, L2-norm.

The desired precision ε̄ can be optionally provided using a third positional
argument:

Here, again the software package automatically chooses the optimal algorithm as
analysed in Section 5.1.

In order to determine which algorithm is optimal for some given param-
eters without simulating the iterated stochastic integrals yet, the function
optimal algorithm can be used:

The arguments to this function are the dimension of the Wiener process, the step size
and the desired precision.

On the other hand, it is also possible to choose the used algorithm directly using a
key-value pair. The value can be one of ‘Fourier’, ‘Milstein’, ‘Wiktorsson’
and ‘MronRoe’. E.g., to use the Milstein algorithm call:

60

Numerical Algorithms (2023) 93:27–66

The desired norm for the prescribed error bound can also be selected using a
key-value pair. The accepted values are 'MaxL2' and 'FrobeniusL2' for the
max, L2- and L2, F-norm, respectively. E.g., in order to use the L2, F-norm call:

The simulation of numerical solutions to SPDEs often requires iterated stochastic
integrals based on Q-Wiener processes. In that case, the square roots of the eigenval-
ues of the associated covariance operator need to be provided. Therefore, first define
all necessary variables and then call the function iterated integrals using the
key ‘QWiener’ as follows:

In this case, the function utilizes the scaling of the iterated stochastic integrals
as explained in Section 2.1 and it also adjusts the error estimates w.r.t. IQ(h)

appropriately.
Note that all discussed keyword arguments (key-value pairs) are optional and

can be combined as desired. Additional information can be found using the help
function:

6.3 Benchmark comparison

To assess the performance of the new software package, we compare it with
some existing implementations. Therefore, we consider the software packages
SDELab2.jl [50], sdeint [1] and StochasticDiffEq.jl [49]. First, the
software package sdeint is completely written in Python and a quick simulation
example with m = 50, h = 0.01, ε = 0.001 and thus p = 15 takes 9.9 sec-
onds to generate the matrix of iterated integrals with Wiktorsson’s algorithm. For
the same parameters, our implementation of Wiktorsson’s algorithm in the pack-
age LevyArea.jl completed in only 5.5 · 10−6 seconds. This is a speed-up by a
factor 1.8 × 106 and therefore we exclude the Python package sdeint from our
further comparison. Moreover, since the package SDELab2.jl seems to be unmain-
tained and does not run unmodified on current Julia versions, it is excluded from our
benchmark as well. Thus, we compare the new package LevyArea.jl with the
implementation in the package StochasticDiffEq.jl in the following.

For the benchmark we measure the time it takes to generate the full matrix of iter-
ated stochastic integrals over a range of step sizes and for two different dimensions of
the driving Wiener process. To deal with measurement noise, we average the comput-
ing times over 100 runs. Further, in order to guarantee a fair comparison, we calculate

61

Numerical Algorithms (2023) 93:27–66

the value of the truncation parameter according to Table 2 for all algorithms under
consideration. We consider the setting where a strong order 1 numerical scheme is
applied for the simulation of solutions to SDEs. This setting is of high importance
for many applications and a typical situation where iterated stochastic integrals need
to be efficiently simulated. In order to retain the strong order 1 if the twofold iterated
stochastic integrals are replaced by their approximations, we need to choose the preci-
sion for the simulated iterated stochastic integrals following the discussion at the end
of Section 4. Therefore, the error is always chosen as ε̄ = h3/2 in the max, L2-norm
and we consider step sizes 100, 10−1, . . . , 10−8 for the case m = 100. For the case of
m = 1000, we initially use the same step sizes, however we refrain from applying the
smaller step sizes for the Fourier and Milstein algorithms whenever the computing
time or the needed memory becomes too large for reasonable computations.

The Julia package StochasticDiffEq.jl is used at version 6.37.1 and
we run the in-place function StochasticDiffEq.get iterated I!(h,W,
nothing,iip,p) where iip is a preallocated buffer. Note that the creation of
this buffer is not included in our computing time measurements. The newly proposed
Julia package LevyArea.jl is used at its current version 1.0.0. The benchmark is
performed on a computer with an Intel Xeon E3-1245 v5 CPU at 3.50 GHz and 32 GB
of memory using Julia version 1.6. Furthermore, the Julia package DrWatson.jl
[9] is employed. The simulation results for both settings with m = 100 and m = 1000
are shown in Fig. 3.

Considering the benchmark results in Fig. 3, we can see that Wiktorsson’s
algorithm as well as the Mrongowius–Rößler algorithm attain a higher order of con-
vergence compared to the Fourier and the Milstein algorithms. This confirms the

Fig. 3 Runtime of the algorithms for variable step size and two different dimensions of the underlying
Wiener process. The value of the truncation parameter is always chosen to guarantee that ‖I− Î‖max,L2 ≤
h3/2 according to the error estimates in Theorem 2. The timings are averaged over 100 repetitions

62

Numerical Algorithms (2023) 93:27–66

Table 3 Minimal and maximal relative speed-ups of the new implementations in LevyArea.jl with
respect to the implementations in StochasticDiffEq.jl for two different dimensions of the
underlying Wiener process

Algorithm A from Algorithm B from Relative speed-up (tA
tB

)

StochasticDiffEq.jl LevyArea.jl m = 100 m = 1000

Milstein Milstein 1.5×–14.8× 1.5×–196.8×
Wiktorsson Wiktorsson 2.1×–25.1× 3.0×–165.8×
Wiktorsson Mrongowius–Rößler 6.2×–52.1× 4.4×–356.1×

See also Fig. 3

theoretical results in Theorem 2. Moreover, the simulation results show that for the
Milstein algorithm as well as for Wiktorsson’s algorithm the implementation in the
newly proposed package LevyArea.jl (blue, purple, orange and yellow colours)
clearly outperforms the implementations in the package StochasticDiffEq.jl
(red and green colours). This is due to the ideas for an efficient implementation
presented in Section 3 that are incorporated in the package LevyArea.jl. This
allows for a speed-up by factors up to 165.8 for Wiktorsson’s algorithm in the case
of m = 1000 for the range of parameters we tested.

Comparing the cases m = 100 and m = 1000, it seems that the implementations
in the package StochasticDiffEq.jl have a much higher overhead for high-
dimensional Wiener processes.

Moreover, it can be seen that for both settings the Mrongowius–Rößler algorithm
is the best algorithm for sufficiently small step sizes as they typically arise for SDE
and SPDE approximation problems. This confirms the theoretical results presented
in Fig. 1.

The relative speed-up of the implementations in package LevyArea.jl com-
pared to package StochasticDiffEq.jl are specified in Table 3. There is a
serious speed-up for each algorithm in the package LevyArea.jl that becomes
even greater when step sizes are getting smaller or if the dimension of the Wiener pro-
cess is rather high. Thus, the proposed software package LevyArea.jl allows for
very efficient simulations of iterated stochastic integrals with very good performance
also for small step sizes and small error bounds as well as for high-dimensional
Wiener processes. This makes the package valuable especially for SDE and SPDE
simulations based on higher order approximation schemes.

Funding Open Access funding enabled and organized by Projekt DEAL. This work received funding and
support from the Graduate School for Computing in Medicine and Life Sciences funded by Germany’s
Excellence Initiative (DFG GSC 235/2).

Data availability Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.

Declarations
Competing interests The authors declare no competing interests.

63

Numerical Algorithms (2023) 93:27–66

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Aburn, M.: sdeint. Version 0.2.2. https://github.com/mattja/sdeint (2021)
2. Åkerlindh, C.: SDEModels.jl. Version 0.2.0. https://github.com/Godisemo/SDEModels.jl (2019)
3. Ansmann, G.: Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE,

and JiTCSDE. In: Chaos: An interdisciplinary journal of nonlinear science vol. 28.4, pp. 043116.
https://doi.org/10.1063/1.5019320 (2018)

4. Avramidis, E., Lalik, M., Akman. O.E.: SODECL: an open-source library for calculating multi-
ple orbits of a system of stochastic differential equations in parallel. In: ACM transactions on
mathematical software vol. 46.3, pp. 1–21. https://doi.org/10.1145/3385076 (2020)

5. Bezanson, J., et al: Julia: A fresh approach to numerical computing. In: SIAM Review vol. 59.1, pp.
65–98. https://doi.org/10.1137/141000671 (2017)

6. Brouste, A., et al.: The YUIMA Project: a computational framework for simulation and
inference of stochastic differential equations. In: Journal of statistical software vol. 57.4.
https://doi.org/10.18637/jss.v057.i04 (2014)

7. Clark, J.M.C., Cameron, R.J.: The maximum rate of convergence of discrete approximations for
stochastic differential equations. In: Stochastic differential systems filtering and control. Lecture notes
in control and information sciences. Springer, pp. 162–171. https://doi.org/10.1007/BFb0004007
(1980)

8. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Second edition. Vol. 152.
Encyclopedia of Mathematics and its Applications, pp. xviii+493. Cambridge University Press,
Cambridge (2014). https://doi.org/10.1017/CBO9781107295513

9. Datseris, G., et al.: DrWatson: the perfect sidekick for your scientific inquiries. In: Journal of open
source software vol 5.54, pp. 2673. https://doi.org/10.21105/joss.02673 (2020)

10. Davie, A.: KMT theory applied to approximations of SDE. In: Stochastic analysis and applications
2014. In honour of Terry Lyons. Selected articles based on the presentations at the conference, Oxford,
UK, September 23–27, 2013. Cham: Springer, pp. 185–201. https://doi.org/10.1007/978-3-319-
11292-3 7 (2014)

11. Dickinson, A.S.: Optimal approximation of the second iterated integral of Brownian motion. In: Stoch.
Anal. Appl. vol. 25.5, pp. 1109–1128. https://doi.org/10.1080/07362990701540592 (2007)

12. Flint, G., Lyons, T.: Pathwise approximation of SDEs by coupling piecewise abelian rough paths. In:
arXiv:1505.01298 (2015)

13. Foster, J., Habermann, K.: Brownian bridge expansions for Lévy area approximations and partic-
ular values of the Riemann zeta function. In: Combinatorics, Probability and Computing (2022).
https://doi.org/10.1017/S096354832200030X

14. Gaines, J.G., Lyons, T.J.: Random generation of stochastic area integrals. In: SIAM Journal on applied
mathematics vol. 54.4, pp. 1132–1146. https://doi.org/10.1137/S0036139992235706 (1994)

15. Gevorkyan, M.N., et al.: Stochastic Runge-Kutta software package for stochastic differential equa-
tions. In: Dependability engineering and complex systems. Springer pp. 169–179. https://doi.org/10.
1007/978-3-319-39639-2 15 (2016)

16. Gevorkyan, M.N., et al.: Issues in the software implementation of stochastic numerical Runge-Kutta.
In: Developments in language theory. Springer pp. 532–546. https://doi.org/10.1007/978-3-319-
99447-5 46 (2018)

64

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/mattja/sdeint
https://github.com/Godisemo/SDEModels.jl
https://doi.org/10.1063/1.5019320
https://doi.org/10.1145/3385076
https://doi.org/10.1137/141000671
https://doi.org/10.18637/jss.v057.i04
https://doi.org/10.1007/BFb0004007
https://doi.org/10.1017/CBO9781107295513
https://doi.org/10.21105/joss.02673
https://doi.org/10.1007/978-3-319-11292-3_7
https://doi.org/10.1007/978-3-319-11292-3_7
https://doi.org/10.1080/07362990701540592
http://arxiv.org/abs/1505.01298
https://doi.org/10.1017/S096354832200030X
https://doi.org/10.1137/S0036139992235706
https://doi.org/10.1007/978-3-319-39639-2_15
https://doi.org/10.1007/978-3-319-39639-2_15
https://doi.org/10.1007/978-3-319-99447-5_46
https://doi.org/10.1007/978-3-319-99447-5_46

Numerical Algorithms (2023) 93:27–66

17. Gilsing, H., Shardlow, T.: SDELab: A package for solving stochastic differential equations in
MATLAB. In: Journal of computational and applied mathematics vol. 205.2, pp. 1002–1018.
https://doi.org/10.1016/j.cam.2006.05.037 (2007)

18. Guidoum, A.C., Boukhetala, K.: Performing parallel Monte Carlo and moment equations methods for
Itô and Stratonovich stochastic differential systems: R Package Sim.DiffProc. In: Journal of statistical
software vol. 96.2. https://doi.org/10.18637/jss.v096.i02 (2020)

19. von Hallern, C., Rößler, A.: A derivative-free Milstein type approximation method for SPDEs cov-
ering the Non-Commutative Noise case. To appear in: Stoch. PDE: Anal. Comp., https://doi.org/10.
1007/s40072-022-00274-6 (2022)

20. von Hallern, C., Rößler, A.: An analysis of the Milstein scheme for SPDEs without a commutative
noise condition. In: Monte Carlo and quasi-Monte Carlo methods. MCQMC 2018. Proceedings of the
13th international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computing,
Rennes, France, July 1–6, 2018. Cham: Springer, pp. 503–521. https://doi.org/10.1007/978-3-030-
43465-6 25 (2020)

21. Henderson, H.V., Searle, S.R.: The vec-permutation matrix, the vec operator and Kronecker prod-
ucts: a review. In: Linear and Multilinear Algebra vol. 9.4, pp. 271–288. https://doi.org/10.1080/
03081088108817379 (1981)

22. Horchler, A.D.: SDETools. Version 1.2. https://github.com/horchler/SDETools (2013)
23. Iacus, S.M.: Simulation and Inference For Stochastic Differential Equations. Springer, New York

(2008). https://doi.org/10.1007/978-0-387-75839-8
24. Iacus, S.M., Yoshida, N.: Simulation and Inference for Stochastic Processes with YUIMA, Springer

International Publishing. https://doi.org/10.1007/978-3-319-55569-0 (2018)
25. Janicki, A., Izydorczyk, A., Gradalski. P.: Computer simulation of stochastic models with SDE-Solver

software package. In: Computational science – ICCS 2003. international conference, Melbourne, Aus-
tralia and St. Petersburg, Russia, June 2–4, 2003. Proceedings, Part I. Berlin: Springer, pp. 361–370.
https://doi.org/10.1007/3-540-44860-8 37 (2003)

26. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Springer-Verlag. https://doi.org/
10.1007/978-1-4612-0949-2 (1991)

27. Kastner, F., Rößler, A.: LevyArea.jl. https://doi.org/10.5281/zenodo.5883748. https://github.com/
stochastics-uni-luebeck/LevyArea.jl (2022)

28. Kastner, F., Rößler, A.: LevyArea.m. 2022. https://doi.org/10.5281/zenodo.5883929. https://github.
com/stochastics-uni-luebeck/LevyArea.m

29. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Second corrected
printing. vol. 23. Applications of Mathematics. Springer, Berlin, pp. xxxvi+632. https://doi.org/10.
1007/978-3-662-12616-5 (1995)

30. Kloeden, P.E., Platen, E., Wright, I.W.: The approximation of multiple stochastic integrals. In: Stoch.
Anal. Appl. vol. 10.4, pp. 431–441. https://doi.org/10.1080/07362999208809281 (1992)

31. Kuznetsov, D.F.: A comparative analysis of efficiency of using the Legendre polynomials
and trigonometric functions for the numerical solution of Ito stochastic differential equa-
tions. In: Computational mathematics and mathematical physics vol. 59.8, pp. 1236–1250.
https://doi.org/10.1134/s0965542519080116 (2019)

32. Kuznetsov, D.F.: Development and application of the fourier method for the numerical solution of Ito
stochastic differential equations. In: Computational Mathematics and Mathematical Physics vol. 58.7,
pp. 1058–1070. https://doi.org/10.1134/s0965542518070096 (2018)

33. Leonhard, C., Rößler, A.: Enhancing the order of the Milstein scheme for stochastic partial dif-
ferential equations with commutative noise. In: SIAM J. Numer. Anal. vol. 56.4, pp. 2585–2622.
https://doi.org/10.1137/16M1094087 (2018)

34. Leonhard, C., Rößler, A.: Iterated stochastic integrals in infinite dimensions: approximation and
error estimates. In: Stoch. PDE: Anal. Comp., vol. 7.2, pp. 209–239. https://doi.org/10.1007/s40072-
018-0126-9 (2019)

35. Lévy, P.: Wieners random function, and other Laplacian random functions. In: Proceedings of the
Second Berkeley symposium on mathematical statistics and probability, 1950. University of California
Press, Berkeley and Los Angeles, pp. 171–187 (1951)

36. Li, X.: torchsde. Version 0.2.4. https://github.com/google-research/torchsde (2021)
37. Liske, H., Platen, E., Wagner, W.: About mixed multiple Wiener integrals. Prepr., Akad. Wiss. DDR,

Inst. Math. P-MATH-23/82, vol. 17 (1982)

65

https://doi.org/10.1016/j.cam.2006.05.037
https://doi.org/10.18637/jss.v096.i02
https://doi.org/10.1007/s40072-022-00274-6
https://doi.org/10.1007/s40072-022-00274-6
https://doi.org/10.1007/978-3-030-43465-6_25
https://doi.org/10.1007/978-3-030-43465-6_25
https://doi.org/10.1080/03081088108817379
https://doi.org/10.1080/03081088108817379
https://github.com/horchler/SDETools
https://doi.org/10.1007/978-0-387-75839-8
https://doi.org/10.1007/978-3-319-55569-0
https://doi.org/10.1007/3-540-44860-8_37
https://doi.org/10.1007/978-1-4612-0949-2
https://doi.org/10.1007/978-1-4612-0949-2
https://doi.org/10.5281/zenodo.5883748
https://github.com/stochastics-uni-luebeck/LevyArea.jl
https://github.com/stochastics-uni-luebeck/LevyArea.jl
https://doi.org/10.5281/zenodo.5883929
https://github.com/stochastics-uni-luebeck/LevyArea.m
https://github.com/stochastics-uni-luebeck/LevyArea.m
https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/10.1080/07362999208809281
https://doi.org/10.1134/s0965542519080116
https://doi.org/10.1134/s0965542518070096
https://doi.org/10.1137/16M1094087
https://doi.org/10.1007/s40072-018-0126-9
https://doi.org/10.1007/s40072-018-0126-9
https://github.com/google-research/torchsde

Numerical Algorithms (2023) 93:27–66

38. Magnus, J.R., Neudecker, H.: The commutation matrix: some properties and applications. In: The
Annals of Statistics, vol. 7.2, pp. 381–394. https://doi.org/10.1214/aos/1176344621 (1979)

39. Malham, S.J.A., Wiese, A.: Efficient almost-exact Lévy area sampling. In: Statistics & Probability
Letters vol. 88, pp. 50–55. https://doi.org/10.1016/j.spl.2014.01.022 (2014)

40. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. vol. 313. Mathematics
and its Applications. Translated and Revised from the Russian 1988 Original, pp. viii+169. Kluwer
Academic Publishers, Dordrecht (1995). https://doi.org/10.1007/978-94-015-8455-5

41. Mrongowius, J., Rößler, A.: On the approximation and simulation of iterated stochastic integrals and
the corresponding Lévy areas in terms of a multidimensional Brownian motion. In: Stoch. Anal. Appl.,
vol. 40.3, p. 397–425. https://doi.org/10.1080/07362994.2021.1922291 (2022)

42. Neuenkirch, A., Tindel, S., Unterberger, J.: Discretizing the fractional Lévy area. In: Stochastic
Processes and their Applications vol. 120.2, pp. 223–254. https://doi.org/10.1016/j.spa.2009.10.007
(2010)

43. Neuenkirch, A., Shalaiko, T.: The maximum rate of convergence for the approximation of the frac-
tional Lévy area at a single point. In: Journal of Complexity vol. 33, pp. 107–117. https://doi.org/
10.1016/j.jco.2015.09.008 (2016)

44. Picchini, U.: SDE Toolbox. Version 1.4.1. http://sdetoolbox.sourceforge.net (2017)
45. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. vol. 1905

Lecture Notes in Mathematics, pp. vi+144. Springer, Berlin (2007). https://doi.org/10.1007/978-3-
540-70781-3

46. Rößler, A.: Runge-Kutta methods for the strong approximation of solutions of stochastic differen-
tial equations. In: SIAM J. Numer. Anal. vol. 48.3, pp. 922–952. https://doi.org/10.1137/09076636X
(2010)

47. Rydén, T., Wiktorsson, M.: On the simulation of iterated Itô integrals. In: Stochastic Process. Appl.
vol. 91.1, pp. 151–168. https://doi.org/10.1016/S0304-4149(00)00053-3 (2001)

48. Schauer, M.: Bridge.jl. Version 0.11.6. https://github.com/mschauer/Bridge.jl (2021)
49. SciML: StochasticDiffEq.jl. Version 6.37.1. https://github.com/SciML/StochasticDiffEq.jl (2021)
50. Shardlow, T.: SDELab2. Version 1.0. https://github.com/tonyshardlow/SDELAB2 (2016)
51. Stump, D.M., Hill, J.M.: On an infinite integral arising in the numerical integration of stochastic dif-

ferential equations. In: Proceedings of the Royal society of London. Series A. mathematical, physical
and engineering sciences vol. 461.2054, pp. 397–413. https://doi.org/10.1098/rspa.2004.1379 (2005)

52. The MathWorks Inc.: Financial toolbox. Natick, Massachusetts, United States. https://www.
mathworks.com/help/finance/ (2021)

53. Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated Itô inte-
grals for multiple independent Brownian motions. In: Ann. Appl. Probab. vol. 11.2, pp. 470–487.
https://doi.org/10.1214/aoap/1015345301 (2001)

54. Wolfram Research: ItoProcess. Version 12.2.0. https://reference.wolfram.com/language/ref/
ItoProcess.html (2016)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

66

https://doi.org/10.1214/aos/1176344621
https://doi.org/10.1016/j.spl.2014.01.022
https://doi.org/10.1007/978-94-015-8455-5
https://doi.org/10.1080/07362994.2021.1922291
https://doi.org/10.1016/j.spa.2009.10.007
https://doi.org/10.1016/j.jco.2015.09.008
https://doi.org/10.1016/j.jco.2015.09.008
http://sdetoolbox.sourceforge.net
https://doi.org/10.1007/978-3-540-70781-3
https://doi.org/10.1007/978-3-540-70781-3
https://doi.org/10.1137/09076636X
https://doi.org/10.1016/S0304-4149(00)00053-3
https://github.com/mschauer/Bridge.jl
https://github.com/SciML/StochasticDiffEq.jl
https://github.com/tonyshardlow/SDELAB2
https://doi.org/10.1098/rspa.2004.1379
https://www.mathworks.com/help/finance/
https://www.mathworks.com/help/finance/
https://doi.org/10.1214/aoap/1015345301
https://reference.wolfram.com/language/ref/ItoProcess.html
https://reference.wolfram.com/language/ref/ItoProcess.html

	An analysis of approximation algorithms for iterated stochastic integrals and a Julia and Matlab simulation toolbox
	Abstract
	Introduction
	Theoretical foundations for the simulation of iterated stochastic integrals
	Iterated stochastic integrals and the Lévy area
	The Fourier series approach
	Approximation vs. simulation
	Simulating with a prescribed precision
	Relationship between different error criteria

	The algorithms for the simulation of Lévy areas
	The Fourier algorithm
	Derivation of the Fourier algorithm
	Implementation of the Fourier algorithm

	The Milstein algorithm
	Derivation of the Milstein algorithm
	Implementation of the Milstein algorithm

	The Wiktorsson algorithm
	Vectorization and the Kronecker product representation
	Derivation of the Wiktorsson algorithm
	Implementation of the Wiktorsson algorithm

	The Mrongowius–Rößler algorithm
	Derivation of the Mrongowius–Rößler algorithm
	Implementation of the Mrongowius–Rößler algorithm

	Error estimates and simulation of iterated stochastic integrals
	Comparison of the algorithms and their performance
	Comparison of computational cost
	A study on the order of convergence

	A simulation toolbox for Julia and MATLAB
	Features of the new Julia and MATLAB simulation toolbox
	Usage of the software package
	The Julia package LevyArea.jl
	The MATLAB package LevyArea.m

	Benchmark comparison

	Declarations
	References

