
Data Mining and Knowledge Discovery (2023) 37:1230–1261
https://doi.org/10.1007/s10618-023-00921-z

Joint leaf-refinement and ensemble pruning through L1
regularization

Sebastian Buschjäger1 · Katharina Morik1

Received: 10 December 2021 / Accepted: 5 January 2023 / Published online: 15 March 2023
© The Author(s) 2023

Abstract
Ensembles are among the state-of-the-art in many machine learning applications.
With the ongoing integration of ML models into everyday life, e.g., in the form of
the Internet of Things, the deployment and continuous application of models become
more and more an important issue. Therefore, small models that offer good predictive
performance and use small amounts of memory are required. Ensemble pruning is a
standard technique for removing unnecessary classifiers from a large ensemble that
reduces the overall resource consumption and sometimes improves the performance
of the original ensemble. Similarly, leaf-refinement is a technique that improves the
performance of a tree ensemble by jointly re-learning the probability estimates in the
leaf nodes of the trees, thereby allowing for smaller ensembles while preserving their
predictive performance. In this paper, we develop a new method that combines both
approaches into a single algorithm. To do so, we introduce L1 regularization into the
leaf-refinement objective, which allows us to jointly prune and refine trees at the same
time. In an extensive experimental evaluation, we show that our approach not only
offers statistically significantly better performance than the state-of-the-art but also
offers a better accuracy-memory trade-off. We conclude our experimental evaluation
with a case study showing the effectiveness of our method in a real-world setting.

Keywords Ensemble · Ensemble pruning · Random Forest · Memory management

Responsible editor: Albrecht Zimmermann

B Sebastian Buschjäger
sebastian.buschjaeger@tu-dortmund.de

Katharina Morik
katharina.morik@tu-dortmund.de

1 Chair for Artificial Intelligence, TU Dortmund University, Otto-Hahn-Straße 12, 44221 Dortmund,
NRW, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00921-z&domain=pdf
http://orcid.org/0000-0002-2780-3618

Joint leaf-refinement and ensemble pruning 1231

1 Introduction

Ensemble algorithms offer state-of-the-art performance inmany applications and often
outperform single classifiers by a largemargin.With the ongoing integration of embed-
ded systems and machine learning models into our everyday life, e.g., in the form of
the Internet of Things, the hardware platforms which execute ensembles must also be
taken into account when training ensembles.

From a hardware perspective, a small ensemble with minimal execution time and a
small memory footprint is desired. Moreover, learning theory indicates that ensembles
of small models should generalize better so that they are ideal candidates for small,
resource constraint devices (Koltchinskii 2002; Cortes et al. 2014). Practical prob-
lems, on the other hand, often require ensembles of complex base learners to achieve
good results, and some ensemble techniques such as Random Forest (RF) even prefer
individual trees to be as large as possible, leading to overall large ensembles (Breiman
2000; Biau 2012; Denil et al. 2014; Biau and Scornet 2016). As depicted in Table 1,
microcontroller units (MCU) for IoT devices typically only offer a few KB to a few
MB of memory, while RF models can easily grow beyond that limit (see Tables 4 and
5). Hence, to deploy RF onto these small devices, we require an algorithm that trains
good models for a variety of different memory constraints.

Ensemble pruning is a standard technique for transforming a large, memory-hungry
ensemble into a smaller ensemble that can be deployed onto a small device by removing
classifiers from it (Tsoumakas et al. 2009; Zhang et al. 2006). Remarkably, this removal
can sometimes lead to a better predictive performance (Margineantu and Dietterich
1997; Martínez-Muñoz and Suárez 2006; Li et al. 2012) leading to smaller and better
ensembles at the same time. Similar, leaf-refinement (LR) is a technique that jointly
refines the probability estimates in a given tree ensemble (Ren et al. 2015; Buschjäger
andMorik 2021) to improve its performance.Hence,with leaf-refinement, it is possible
to refine smaller forests, i.e., a Random Forest with only a few trees, so that it achieves
a performance comparable to larger forests, i.e., an RF with many trees (c.f. Ren et al.
2015 and Table 4). We wonder whether we can combine both approaches into a single
algorithm that jointly removes unnecessary classifiers from a tree ensemble while
further improving its performance by refining the probability estimates in the leaf
nodes. To do so, we incorporate L1 regularization into the leaf-refinement objective
and adopt proximal gradient descent to solve this objective. Our contributions are as
follows:

• Unified objective for leaf-refinement and pruning: We present a novel optimiza-
tion objective that leverages L1 regularization to select only a few trees from the
ensemble while jointly refining the probability estimates in all trees.

• Pruning via proximal gradient descent (L1 + LR): We present a new algorithm
that uses proximal gradient descent to refine the probability estimates of the tree
ensemble while pruning it by minimizing our novel objective.

• Experiments:We study the performance of our algorithm on 20 datasets and com-
pare it against 8 state-of-the-art methods. We conduct over 13,200 experiments
with a variety of different hyperparameter configurations and show that our L1 +
LR method has the statistically significant best performance in terms of accuracy

123

1232 S. Buschjäger, K. Morik

Table 1 Typical microcontroller units (MCUs) found in edge and IoT devices

MCU Arch. Clock Float Word SIMD Flash (S)RAM Power

Arduino Uno ATMega128P 16MHz ✗ 8bit ✗ 32 KB 2 KB 12 mA

Arduino Mega ATMega2560 16MHz ✗ 8bit ✗ 256 KB 8 KB 6 mA

Arduino Nano ATMega2560 16MHz ✗ 8bit ✗ 26–32 KB 1–2 KB 6 mA

STM32L0 ARM Cortex-M0 32MHz ✗ 32bit ✗ 192 KB 20 KB 7 mA

Arduino MKR1000 ARM Cortex-M0 48MHz ✗ 32bit ✗ 256 KB 32 KB 4 mA

Arduino Due ARM Cortex-M3 84MHz ✗ 32bit ✗ 512 KB 96 KB 50 mA

STM32F2 ARM Cortex-M3 120MHz ✗ 32bit ✗ 1 MB 128 KB 21mA

STM32F4 ARM Cortex-M4 180MHz ✚ 32bit ✚ 2 MB 384 KB 50 mA

Raspberry PI A+ ARMv6 700MHz ✓ 32bit ✗ SD Card 256 MB 80 mA

Raspberry PI Zero ARMv6 1GHz ✓ 32bit ✗ SD Card 512 MB 80 mA

Raspberry PI 3B ARMv8 4@1.2GHz ✓ 64bit ✓ SD Card 1 GB 260 mA

Intel i7-7700K x86 4@4.5GHz ✓ 64bit ✓ HDD/SSD 2–64 GB ≈ 80 A

The top group shows bare-metal MCUs, which typically do not run an operating system. The bottom group
shows MCUs that typically also run an operating system. ✓ denotes the availability of a feature, ✗ marks
its absence and ✚ denotes optional/partial support. The original table is due to Branco et al. (2019), but
the float, SIMD, word, and architecture columns have been added by taking the corresponding values
from the referenced data sheets. For comparison, the Intel i7-7700K CPU has also been added as a typical
desktop/server CPU

and F1 score. Moreover, we show that leaf-refinement, including our L1 + LR
method, has the best performance when less than 768 KB of memory is avail-
able. Last, we present a real-world use case in the context of IoT warehousing
and highlight how our method can be applied to deploy tree ensembles to tiny,
ultra-low-power IoT devices.

The paper is organized as follows. Section 2 presents our notation and related work,
including detailed explanations on ensemble pruning and leaf-refinement. In Sect. 3
we present our combination of ensemble pruning and leaf-refinement into a single
objective and present a novel algorithm that solves this objective. Section 4 contains the
experimental analysis, including a real-world use case in IoT Warehousing. Section 5
concludes the paper.

2 Background and notation

We consider a supervised learning setting in which training and test points are drawn
i.i.d. according to some distributionD over the input spaceX ⊆ R

d of d-dimensional
feature vectors and labels Y ⊆ R

C . For classification problems with C ≥ 2 classes
we encode each label as a one-hot vector y = (0, . . . , 0, 1, 0, . . . , 0) which contains
a ‘1’ at coordinate c for label c ∈ {0, . . . ,C − 1}.

We assume that we have given an already trained additive tree ensemble
{h1, . . . , hM } of M axis-aligned decision trees (DT) with the following decision func-
tion:

123

Joint leaf-refinement and ensemble pruning 1233

f (x) = 1

M

M∑

i=1

hi (x) (1)

A DT partitions the input spaceX into d-dimensional hypercubes called leaves and
uses independent predictions for each leaf in the tree. To do so, it uses a series of axis-
aligned splits of the form 1{xi ≤ t} and 1{xi > t} where i is a pre-computed feature
index and t is a precomputed threshold to determine the leaf nodes. Each leaf node l
contains a probability estimate ŷl ∈ R

C using the class frequencies of the observations
from the training points occurring in that leaf node. Let sl(x) : X → {0, 1} be an
indicator function that is ‘1’ if x belongs to leaf l and ‘0’ if not, and let L be the total
number of leaf nodes in the tree, then the prediction of a tree is given by

h(x) =
L∑

l=1

ŷl sl(x) (2)

Note that per tree construction there is exactly one leaf node visited per example so that
sl(x) = 1 for exactly one l ∈ {1, . . . , L} whereas the remaining indicators evaluate
for to zero. Hence, h(x) effectively evaluates to ŷl where l is the corresponding leaf
node of the input x .

In this paper, we assume that we have given an already trained forest of DTs, but we
do not assume that any specific training algorithm was used to train it. For example,
the forest can be a Random Forest (Breiman 2001), a forest of boosted decision trees
(Schapire and Freund 2012), etc. For simplicity, we assume that each tree in the
ensemble is equallyweighted. If the forest isweighted (e.g. as inAdaBoost) so that each
classifier h′

i has a corresponding weightwi , then we re-scale the individual classifier’s
predictions to include the weight. To do so, we scale the probability estimates in all
leaves of each tree h′

i by M · wi , so that

f (x) =
M∑

i=1

wi h
′
i (x) = 1

M

M∑

i=1

Mwi h
′
i (x) = 1

M

M∑

i=1

hi (x) (3)

In addition to the trained ensemble, we receive a labeled pruning sample S =
{(xi , yi) | i = 1, . . . , N }. This sample can either be the original training data used to
train f or another pruning data set not related to the training or test data. In this paper,
we will focus on classification problems, but note that our approach is also directly
applicable to regression tasks. Moreover, we will focus on Random Forests (RF), but
note that most of our discussion directly translates to other tree ensembles such as
Bagging (Breiman 1996), ExtraTrees (Geurts et al. 2006), Random Subspaces (Ho
1998) or Random Patches (Louppe and Geurts 2012).

2.1 Ensemble pruning

The goal of ensemble pruning is to select a subset of K classifier from {h1, . . . , hM }
that forms a small and accurate subensemble. Formally, each classifier hi receives a

123

1234 S. Buschjäger, K. Morik

corresponding pruning weight wi ∈ {0, 1} so that the ensemble’s prediction can be
expressed as

f (x) = 1

‖w‖0
M∑

i=1

wi hi (x) (4)

where ‖w‖0 = ∑M
i=1 1{wi > 0} is the L0 norm that counts the number of nonzero

entries in the weight vector w = (w1, . . . , wM). Many effective ensemble pruning
methods have been proposed in the literature. These methods usually differ in the
specific loss function used to measure the performance of a subensemble and the way
this loss is minimized. Tsoumakas et al. (2009) give a detailed taxonomy of pruning
methods that was later expanded in Zhou (2012).
Ranking-based pruning: Early works on ensemble pruning focus on ranking-based
approaches that assign a rank to each classifier depending on their individual perfor-
mance and then select the top K classifier from that ranking. Formally, ranking-based
approaches use the following optimization problem:

argmin
w∈{0,1}M

1

N

∑

(x,y)∈S

M∑

i=1

wi�(hi (x), y) st. ‖w‖0 = K (5)

where � : RC × Y → R is a loss function. To solve this objective the following
approach can be used: First, all individual losses �(hi (x), y) are computed and sorted
in decreasing order. Then, the K models with the smallest losses are selected, and their
corresponding weights are set to 1. The remaining weights are set to 0. This makes
ranking-based pruning methods appealing since they are very fast, easy to implement,
and the optimum is easily obtained. One of the earliest ranking-based pruningmethods
was due to Margineantu and Dietterich who employ the Cohen-Kappa statistic to rate
the effectiveness of each classifier (Margineantu andDietterich 1997). Later,Martinez-
Munoz and Suarez propose the use of the cosine similarity to measure how close the
ensemble prediction is to the subensemble (Martínez-Muñoz and Suárez 2006). More
recent approaches also incorporate the ensemble’s diversity into the selection. Lu et al.
propose to measure the individual contribution of each classifier to form a diverse and
effective subensemble (Lu et al. 2010) and Guo et al. propose to directly maximize the
classification margin, as well as the diversity of the subensemble (Guo et al. 2018).
Mixed Quadratic Integer Programming (MQIP): MQIP-based pruning methods
enhance ranking-based methods by also adding a pairwise loss function that measures
the relationship between two classifiers hi and h j . Formally, they use the following
objective:

argmin
w∈{0,1}M

1

N

∑

(x,y)∈S

⎛

⎝α

M∑

i=1

wi �1(hi (x), y) + (1 − α) ·
M∑

i=1

M∑

j=1

wiw j �2(hi (x), h j (x), y)

⎞

⎠ st. ‖w‖0 = K

(6)

where α ∈ [0, 1] models the trade-off between the two losses �1 : RC × Y → R and
�2 : RC × R

C × Y → R. Here, �1 is again a loss function that relates the predictions
of each classifier to the true label and �2 is a loss that relates the predictions of two
classifiers hi (x) and h j (x) to each other and potentially also to the true label y.

123

Joint leaf-refinement and ensemble pruning 1235

Note that MQIP encapsulates ranking-based methods and recovers them for α = 1.
However, also note that solving MQIP problems can be difficult and often takes much
more time compared to e.g. ranking-based approaches. Originally this approach was
proposed by Zhang et al. (2006) which uses the pairwise errors of each classifier
and α = 0 (�1 is not used). Cavalcanti et al. (2016) expand this idea and combine 5
different measures into �1 and �2 including the diversity, correlation, kappa-statistic,
disagreement, and double fault measure.
Clustering-based pruning:Another approach to pruning is to first cluster the different
models into groups and then select one representative from each group. To do so, let

Hi = (hi (x1)1, . . . , hi (x1)C , hi (x2)1, . . . , hi (x2)C , . . . , hi (xN)1, . . . , hi (xN)C)

denote the (stacked) vector of all predictions of classifier hi on the sample S with
N · C entries. Further, let

c(i) = argmin
j=1,...,K

{
d(μ j , Hi)

}

be the index of the closest cluster center {μ1, . . . , μK } ⊆ R
NC to Hi given a distance

function d : RNC ×R
NC → R+. Then, clustering-based pruning formally solves the

following optimization problem:

argmin
w ∈ {0, 1}M

μ1, . . . , μK ∈ R
NC

1

N

∑

(x,y)∈S
�

(
1

‖w‖0
M∑

i=1

wi hi (x), y

)
+

M∑

i=1

d(μc(i) − Hi)

(7)

st. ∀wi = 1, w j = 1, i �= j : c(i) �= c(j) and ‖w‖0 = K

Equation 7 has three parts: The first part 1
N

∑
(x,y)∈S �

(∑M
i=1 wi hi (x), y

)
measures

the error of the selected subensemble whereas
∑M

i=1 d(μc(i) − Hi) computes the
appropriate cluster centers. Finally, the constraints combine both parts to select one
representative fromeach cluster. This optimization problemcanbe solvedwith existing
clustering algorithms in two steps: First, a clustering is obtained (e.g. byusingK-Means
(Lazarevic and Obradovic 2001) or Hierarchical Agglomerative Clustering (Giacinto
et al. 2000)) and then representatives are selected from each cluster based on the
loss �. For example, Giacinto et al. (2000) propose to use hierarchical agglomerative
clustering using the pairwise error probability as distance. Then, once the clusters
have been obtained they select the most distant representatives from each cluster to
form a diverse ensemble. Lazarevic and Obradovic (2001) propose to use K-means
clustering with the Euclidean distance. In contrast to Giacinto et al., they iteratively
remove the least accurate classifier from a cluster until only one classifier is left which
is then included in the subensemble. More recent works on cluster-based pruning also
directly include the diversity into the distance measure (Zyblewski andWoźniak 2019,
2020).

123

1236 S. Buschjäger, K. Morik

Algorithm 1 Ordering-based optimization.
Input Trained forest with M trees, constraint K < M , Loss �

Output Weight vector w ∈ {0, 1}M so that ‖w‖0 = K
1: w ← (0, . . . , 0)

2: i ← argmin
i=1,...,M

{
1
N

∑

(x,y)∈S
� (hi (x), y)

}

3: wi ← 1
4: for k = 1, . . . , K − 1 do

5: i ← argmin
i=1,...,M

{
∑

(x,y)∈S
�
(

1
‖w‖0+1

∑M
j=1 w j h j (x) + hi (x)

)
|wi �= 1

}

6: wi ← 1
7: end for

Ordering-based pruning: Ordering-based pruning orders all ensemble members
according to their individual performances as well as their overall contribution to
the ensemble and then picks the top K classifier from this list. In this sense, ordering-
based approaches are the most general method for ensemble pruning as they allow to
directly minimize the ensemble error:

argmin
w∈{0,1}M

1

N

∑

(x,y)∈S
�

(
1

‖w‖0
M∑

i=1

wi hi (x), y

)
st. ‖w‖0 ≤ K (8)

where � : RC ×Y → R is again a loss function. To do so, ordering-based approaches
sort individual classifiers according to their performance and greedily select the tree
that minimizes the overall ensemble error the most. Algorithm 1 depicts the ordering-
based optimization approach. First, the classifier with the best individual loss is
selected in line 2. Then, line 4−6 selects the classifier that minimizes � the most given
the already selected ensemble

∑M
j=1 w j h j (x). In a sense, ordering-based approaches

are greedy, because they select the model which improves the ensemble the most
without considering all different combinations. Ordering-based pruning was also first
presented byMargineantu and Dietterich (1997) which proposed to greedily minimize
the overall ensemble error. A series of works by Martínez-Muñoz and Suárez (2004,
2006) and Martínez-Muñoz et al. (2008) add to this work by proposing different error
measures. More recently, theoretical insights from Probably Approximately Correct
Learning (PAC) theory and the bias-variance decomposition were also transformed
into greedy pruning approaches (Li et al. 2012; Jiang et al. 2017).

2.2 Leaf-refinement

Looking beyond ensemble pruning itself there are numerous orthogonal methods to
deploy ensembles to small devices. First, ‘classic’ decision tree pruning algorithms
(e.g. minimal cost complexity pruning or sample complexity pruning, c.f. Barros et al.
2015) and more recent adaptations, such as cost-complexity forest pruning (Ravi and
Serra 2017) already reduce the size of DTs while offering a better accuracy. Second,
in the context of model compression (see e.g. Choudhary et al. 2020 for an overview)

123

Joint leaf-refinement and ensemble pruning 1237

specific models such as Bonsai (Kumar et al. 2017), Decision Jungles (Shotton et al.
2013) or X-CLEaVER (Lucchese et al. 2018) aim to find smaller tree ensembles
already during training, sometimes involving pruning as a sub-procedure.

One particular interestingmethod called leaf-refinement refines the probability esti-
mates in the leaf nodes of each tree by using a global loss that exploits complementary
information between multiple trees (Ren et al. 2015; Buschjäger and Morik 2021).
Since we can incorporate the ensemble weights into the leaf nodes as described above,
leaf-refinement is a generalization of the re-weighting of ensembles (Akash et al.
2019; Shahhosseini et al. 2022; Shahhosseini and Hu 2020) making it a very general
framework for improving tree ensembles. Formally, let θi = (ŷi,1, . . . , ŷi,Li) be the
probability estimates of all leaf nodes in tree hi and let hi,θi (x) denote the prediction
of tree i using the probability estimates θi . Further, let θ = [θ1, . . . , θM] be the matrix
of all probability estimates of all trees in the ensemble and let fθ (x) denote the pre-
diction of the ensemble with estimates θ . Then, leaf-refinement proposes to minimize
a global loss function

θ = argmin
θ1,...,θM

1

N

∑

(xi ,yi)∈S
�

⎛

⎝ 1

M

∑

j=1

h j,θ j (xi), yi

⎞

⎠ (9)

This global loss takes into account all the interactions between individual trees to refine
the probability estimates in the leaves, but it does not change the structure of individual
trees. Hence, it can be easily minimized by stochastic gradient descent (SGD). SGD is
an iterative algorithm that takes a small step into the negative direction of the gradient
in each iteration by using an estimate of the true gradient:

θ ← θ − αgB(θ) (10)

where gB(θ) is the gradient of � w.r.t. to θ computed on a mini-batch B and α ∈ R+
is the step-size. The gradients for the individual entries θi are given by the chain rule:

gB(θi) = 1

|B|

⎛

⎝
∑

(x,y)∈B

∂�(fθ (x), y)

∂ fθ (x)

1

M
si,l(x)

⎞

⎠

l=1,2,...,Li

(11)

Algorithm 2 summarizes the Leaf-Refinement (LR) algorithm. First, the original
probability estimates from the tree in the leaf nodes are used as an initialization for the
parameter vectors θi in line 2. Then, SGD is performed for E epochs using Eqs. (10)
and (11) in lines 4–10. Here, one epoch refers to one linear scan over the entire dataset

in which
⌈

N
|B|

⌉
batches are processed so that each example occurs exactly in one batch

during each epoch.
The specific choice for the loss functions differs in the literature. Ren et al. (2015)

propose to use the hinge-loss in combination with a L2 regularization term similar to

123

1238 S. Buschjäger, K. Morik

Algorithm 2 Leaf-Refinement (LR)
Input Trained forest with trees h1, . . . , hM , Loss �, Step size α

Number of epochs E , Batch size |B|
Output Trees h1, . . . , hM with refined leaf-values

1: for i = 1, . . . , M do Init. leaf predictions
2: θi ← (ŷi,1, ŷi,2, . . .)
3: end for
4: for epoch 1, . . . , E do Perform SGD for E epochs
5: for next batch B in epoch do
6: for i = 1, . . . , M do
7: θi ← θi − αgB(θi) Perform update using Eq. (11)
8: end for
9: end for
10: end for

the SVM. Let λ ∈ R+ be a regularization strength, then they propose to minimize

�λ(fθ (x), y) = λ · max(0, 1 − fθ (x) · y) + 1

2
‖θ‖22 (12)

where ‖·‖22 is the L2 norm introduced to combat overfitting.
Buschjäger and Morik (2021) adapt the negative correlation learning algorithm

(NCL) from the context of neural network training for leaf-refinement to enforce
different levels of diversity. NCL is based on the bias-(co-)variance decomposition
that is then transformed into a regularized learning objective (c.f. Brown et al. 2005).
Again, let λ ∈ R+ be the regularization strength then they propose to minimize

�λ(fθ (x), y) = 1

M

M∑

i=1

(hi,θi (x) − y)2 − λ

2M

M∑

i=1

di
T Ddi (13)

where di = (hi,θi (x) − f (x)), D = 2 · IC is the C × C identity matrix with 2 on
the main diagonal and λ ∈ R+ is the regularization strength. For λ = 0 this trains
M classifier independently and no further diversity among the ensemble members is
enforced, for λ > 0 more diversity is enforced during training and for λ < 0 diversity
is discouraged.

3 Combining leaf-refinement and ensemble pruning

leaf-refinement as well as ensemble pruning enable better and smaller tree ensembles.
However, both approaches tackle this challenge from different points of view. Ensem-
ble pruning removes entire trees from the ensemble to reduce its memory consumption
and, as a by-product, improves its predictive performance. leaf-refinement on the other
hand, refines the probability estimates in the trees to improve the performance and, as
a byproduct, enables the use of smaller forests with similar performance.

This leads to twoquestions: First, which of the twomethods is better suited to deploy
tree ensembles to small devices? Second, can we combine both methods to further

123

Joint leaf-refinement and ensemble pruning 1239

improve the predictive performance of the forest while having a smaller memory
consumption at the same time? In this section, we present a method that combines
leaf-refinement with ensemble pruning to compute a small and powerful ensemble at
the same time.

Arguably, the simplest method to combine both approaches is to first prune the
ensemble and then refine it afterward. However, this method does not consider the
interactions between the pruning algorithm and leaf refinement. It is conceivable that
pruningwould select different trees if the probability estimates had been refined before
the pruning process. Similarly, it is conceivable that refinement would compute differ-
ent leaf values if it had been performed on the unpruned ensemble. We advocate that
the selection of trees, as well as the refinement of the corresponding leaf values,
should be performed simultaneously to find the overall smallest and best ensem-
ble. The key challenge in this scenario is to incorporate the selection of trees into
the gradient-based approach of leaf-refinement. In ensemble pruning each tree either
receives weight 0 (not selected) or 1 (selected). Unfortunately, it is difficult to opti-
mize over discrete values {0, 1}M with gradient-based approaches because we apply
small, non-binary changes to the weights during optimization. One possible approach
to solve this dilemma is to relax the constraints and optimize over real-valued weights
w ∈ R

M in combination with an L1 regularization penalty that enforces sparsity:

θ,w = argmin
θ,w∈RM

1

N

∑

(xi ,yi)∈S
�

⎛

⎝
M∑

j=1

w j h j,θ j (xi), yi

⎞

⎠ + λ‖w‖1 (14)

Enforcing sparsity through a L1 regularization has a long history in Data Mining
and Machine Learning. Arguably the largest application of it can be found in feature
selection via the LASSO and relatedmethods (see e.g. Tibshirani 1996; Li et al. 2017),
but also other application areas such as Matrix Factorization (Kumar and Sindhwani
2015), Neural Network Pruning (Li et al. 2016), Dictionary Learning (Jiang et al.
2015) have been explored.

Objective 14 is non-smooth due to the L1 norm and hence cannot be minimized via
SGD directly. Stochastic proximal gradient descent (SPGD) is an adaption of SGD
that incorporates a projection operation into the updates so that it can cope with non-
smooth objectives (Parikh and Boyd 2014). SPGD is an iterative algorithm, where
every iteration consists of two steps: first, a gradient descent update of the objective
function is performed without considering its non-smooth part (e.g. ignoring the L1
regularizer). Then, a projection operator (sometimes called prox) is applied to project
the updated parameters onto the correct solution considering the non-smooth part of
the objective. Letw be the weight vector at step t and let gB(w)i be the gradient of the
i − th entry in w without considering the L1 term. Furthermore, let Pα be the prox
operator of λ‖w‖1 with step size α, then PSGD performs the following updates

w ← Pα (w − αgB(w)) (15)

123

1240 S. Buschjäger, K. Morik

using the gradient via the chain-rule

gB(w) = 1

|B|

⎛

⎝
∑

(x,y)∈B

∂�(fw,θ (x), y)

∂ fw,θ (x)
hi,θi (x)

⎞

⎠

i=1,...,M

(16)

and the prox Pα : RM → R
M (Parikh and Boyd 2014):

Pα (w) = (sign(wi)max(|w| − λα, 0))i=1,...,M (17)

Since there is no regularizer for the leaf nodes we can directly minimize the objective
wrt. θ without using the prox. In this case, the gradient for hi now also contains its
weights (again using the chain rule):

gB(θi) = 1

|B|

⎛

⎝
∑

(x,y)∈B

∂�(fw,θ (x), y)

∂ fw,θ (x)
wi si,l(x)

⎞

⎠

l=1,2,...,Li

(18)

Algorithm 3 summarizes this approach. Similar to before the probability estimates
in the leaf nodes are used as an initialization for the parameter vectors θi in line 2.
Then, PSGD is performed for E epochs using Eqs. (16), (18), and (17). To do so, the
gradient for eachweight gB(w)i is computed, and a regularweight update is performed
in line 7. Similarly, the gradient for the leaf nodes of each tree gB(θi) is computed
in line 8 and a regular gradient descent update is performed. After the leaf nodes of
each tree as well as its weights have been updated the prox operator is applied in
line 10. For λ > 0 we call this algorithm leaf-refinement with L1 regularization (L1
+ LR). Setting λ = 0 and ignoring any weight updates (line 7) recovers the original
leaf-refinement (LR) algorithm. Similarly, ignoring any updates for the leaf nodes in
line 8 yields a new pruning algorithm that selects trees purely based on the L1 norm
which we call L1 pruning.

Algorithm 3 Leaf-Refinement with L1 regularization (L1 + LR)
Input Trained forest with trees h1, . . . , hM , Loss �, Step size α

Number of epochs E , Batch size |B|, regularization strength λ

Output Trees h1, . . . , hM with refined leaf-values and weights w1, . . . , wM
1: for i = 1, . . . , M do Init. leaf predictions
2: θi ← (ŷi,1, ŷi,2, . . .)
3: end for
4: for epoch 1, . . . , E do Perform PSGD for E epochs
5: for next batch B in epoch do
6: for i = 1, . . . , M do
7: wi ← wi − αt gB(w)i Perform update using Eq. (16)
8: θi ← θi − αgB(θi) Perform update using Eq. (18)
9: end for
10: w ← Pα (w) Apply the prox using Eq. (17)
11: end for
12: end for

123

Joint leaf-refinement and ensemble pruning 1241

4 Experiments

In this section, we experimentally evaluate the combination of leaf-refinement and
pruning (L1 + LR) and compare its performance with vanilla Random Forests, pruned
RFs, and vanilla Leaf refinement in the context of IoT. As argued before, our main
concern is the final model size as it determines the resource consumption, runtime,
and energy of the model application during deployment (Buschjäger and Morik 2017;
Buschjäger et al. 2018). Hence, we adopt a hardware-agnostic view and ask the fol-
lowing three questions:

• Question 1What method has the best predictive performance?
• Question 2 What method has the best predictive performance under memory
constraints?

• Question 3 How do these methods behave in a real-world use case?

An overview of all the hyperparameters for our experiments is given in Table 2. We
use the following experimental protocol: The basic idea of ensemble pruning is to first
overtrain the ensemble and then remove unnecessary classifiers from this overtrained
pool. Oshiro et al. studied the impact of the number of trees on the performance of
a regular RF and showed on a variety of datasets that there is no significant perfor-
mance improvement when using more than 128 trees (Oshiro et al. 2012). Therefore,
we ‘overtrain’ our base Random Forests with M = 256 trees to increase the classifier
pool for pruning without increasing the training time significantly. To control the indi-
vidual errors of trees, we set the maximum number of leaf nodes nl to values between
nl ∈ {16, 32, 64, 128, 256, 512, 1024}. From greedy pruning methods, we use com-
plementariness pruning (COMP) (Martínez-Muñoz and Suárez 2004), reduced error
pruning (RE) (Margineantu and Dietterich 1997), and DREP (Li et al. 2012). COMP
uses complementariness, i.e., the number of examples on which an estimator disagrees
with the ensemble’s prediction but is correct to rate each member of the ensemble.
RE uses the error of the subensemble to rate each estimator, whereas DREP uses a
PAC-style bound to rate each classifier. For cluster-based pruning we utilize largest
mean distance (LMD) pruning (Giacinto et al. 2000) that first builds an agglomerative
clustering of the estimators’ accuracies and then selects those estimators that are the
farthest away from each cluster into the new ensemble. For rank-based pruning, we
employ individual error (IE) pruning (Lu et al. 2010), and individual contribution (IC)
pruning (Jiang et al. 2017). IE uses the individual error of each estimator, whereas
IC computes the individual contributions to the ensemble’s prediction. Last, we also
experimented with MIQP-based pruning (Zhang et al. 2006), but unfortunately, the
MIQP optimizer would frequently fail or time-out during experiments1 Each pruning
method is tasked to select K ∈ {2, 4, 8, 16, 32, 64, 128} trees from the base forest. For
DREP we additionally vary ρ ∈ {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. During the develop-
ment of our leaf-refinement method, we found that 50 epochs in combination with
a batch size of 1024 minimizing the MSE loss works well on a variety of datasets.
Hence, for leaf-refinement, we randomly select K ∈ {2, 4, 8, 16, 32, 64, 128} trees
from the random forests (which is similar to training a smaller forest directly) and

1 We used Gurobi https://www.gurobi.com/. so that we did not include it in our evaluation.

123

https://www.gurobi.com/

1242 S. Buschjäger, K. Morik

Table 2 The methods and their corresponding hyperparameters

Method Abbreviation Hyperparameter

Random Forest (Breiman 2001) RF nl ∈ {16, 32, 64, 128, 256, 512, 1024}
M ∈ {2, 4, 8, 16, 32, 64, 128, 256}

Reduced error pruning (Margineantu and
Dietterich 1997)

RE K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

Individual contribution pruning (Lu et al.
2010)

IC K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

Individual error pruning (Jiang et al. 2017) IE K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

Complementariness pruning
(Martínez-Muñoz and Suárez 2004)

comp K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

Largest mean distance pruning (Giacinto
et al. 2000)

LMD K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

DREP (Li et al. 2012) DREP ρ ∈ {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, K ∈
{2, 4, 8, 16, 32, 64, 128, 256}

RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

Leaf refinement (Ren et al. 2015) LR K ∈ {2, 4, 8, 16, 32, 64, 128}, MSE loss

Adam, α = 0.01, E = 50, |B| = 128

RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

L1 L1 λ ∈
{0.1, 0.2 . . . , 0.9, 0.925, 0.955, 0.975, 1},
MSE loss

Adam, α = 0.01, E = 50, |B| = 128

RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

Leaf refinement + L1 LR + L1 λ ∈
{0.1, 0.2 . . . , 0.9, 0.925, 0.955, 0.975, 1},
MSE loss

Adam, α = 0.01, E = 50, |B| = 128

RF with M = 256,
nl ∈ {16, 32, 64, 128, 256, 512, 1024}

Each pruning method and leaf refinement receive an RF trained with M = 256 trees and
nl ∈ {16, 32, 64, 128, 256, 512, 1024} leaf nodes. Each pruning method is tasked to select K ∈
{2, 4, 8, 16, 32, 64, 128} trees from this forest. ρ denotes the hyperparameter of DREP as outlined in Li
et al. (2012). λ is the regularization strength as outlined in Sect. 3. For leaf-refinement the MSE loss has
been minimized for 50 epochs with a batch size of 1024 using Adam

123

Joint leaf-refinement and ensemble pruning 1243

minimize the MSE loss for 50 epochs with a batch size of 1024 using the Adam opti-
mizer (Kingma and Ba 2015) implemented in PyTorch (Paszke et al. 2019). Recall
that our L1 + LR method indirectly controls the number of trees in the forest through
the regularization strength λ ∈ {1, 0.5, 0.1, 0.05, 0.01}. As discussed previously, we
study two variations of our algorithm. In the first version, we do not perform any leaf-
refinement, but only select trees using the L1 norm and call this algorithm L1. In the
second version, we combine leaf-refinement with the L1 regularization as outlined in
Algorithm 3 and call this algorithm L1 + LR. For our experiments, we use 20 publicly
available classification datasets with 6435 to 78,095 examples as outlined in Table 3.
Here, N denotes the total number of data points, d is the dimensionality, and C is the
number of classes ranging from 2 to 11. The class distribution is also given for each
dataset and each class. A dash ‘–’ indicates that the corresponding dataset has fewer
classes, e.g., adult has only two classes, and hence entries for C2–C17 are marked
with a dash. In all experiments, we perform a 5-fold cross-validation except when the
dataset has a dedicated train/test split in which case we perform five repetitions of the
experiment using different random seeds. We use the training set for both, training the
initial forest and pruning it. For a fair comparison, we made sure that each method
receives the same forest in each cross-validation run. In all experiments, we use min-
imal preprocessing and encode categorical features as one-hot encoding. The random
forests have been trained with scikit-learn (Pedregosa et al. 2011). We implemented
all pruning algorithms in a Python package for other researchers called PyPruning,
which is available under https://github.com/sbuschjaeger/PyPruning. The code for
the experiments in this paper is available under https://github.com/sbuschjaeger/leaf-
refinement-experiments. In total, we evaluated 660 hyperparameter configurations per
dataset, leading to a total of 13,200 experiments.

4.1 What method has the best predictive performance?

In the first experiment, we study the predictive performance of pruning and leaf-
refinement without considering any memory constraints. To do so, we pick the
hyperparameter configuration of eachmethod that has the best predictive performance.
To account for imbalanced datasets (e.g. ida2016) we study the predictive performance
in terms of accuracy and F1 score.

Table 4 shows the accuracy of each method on each dataset with the corresponding
model size. For datasets without a dedicated train/test split we report the average
accuracy and its standard deviation over the cross-validation folds. For datasets with
a dedicated train/test split, we repeat the experiments with 5 different random seeds
and report the average accuracy and its standard deviation over these repetitions.
The highest accuracy is marked in bold. It can be clearly seen that the combination
of leaf-refinement and L1 regularization (LR + L1) offers the best accuracy on 13
datasets (adult, avila, bank, chess, connect, eeg, elec, fashion, har, ida2016, mnist,
mozilla, statlog) and is tied for the first place on 3 datasets (anuran, magic postures).
LR is the best method on gas-drift and nursery, whereas RF ranks first on jm1. As
was to be expected, Random Forest seems to underperform on most datasets and
improvements are possible due to leaf refinement or pruning. However, it is also

123

https://github.com/sbuschjaeger/PyPruning
https://github.com/sbuschjaeger/leaf-refinement-experiments
https://github.com/sbuschjaeger/leaf-refinement-experiments

1244 S. Buschjäger, K. Morik

Ta
bl
e
3

D
at
as
et
s
us
ed

fo
r
th
e
ex
pe
ri
m
en
ts

N
de
no
te
s
th
e
to
ta
ln

um
be
r
of

da
ta
po
in
ts
,d

is
th
e
di
m
en
si
on
al
ity

an
d
C

is
th
e
nu
m
be
r
of

cl
as
se
s
ra
ng
in
g
fr
om

2
to

18
.T

he
cl
as
s
di
st
ri
bu
tio

n
is
al
so

gi
ve
n
fo
r
ea
ch

da
ta
se
t

an
d
ea
ch

cl
as
s.
A
da
sh

‘–
’
in
di
ca
te
s
th
at
th
e
co
rr
es
po
nd
in
g
da
ta
se
th

as
fe
w
er

cl
as
se
s,
e.
g.

ad
ul
th

as
on
ly

tw
o
cl
as
se
s
an
d
he
nc
e
en
tr
ie
s
fo
r
C
2
–C

17
ar
e
m
ar
ke
d
w
ith

a
da
sh

123

Joint leaf-refinement and ensemble pruning 1245

noteworthy that large improvements seem only to be possible with refinement and
not with pruning. For example, RF only achieves 76.23% accuracy on the connect
dataset and L1 + LR achieves up to 84.16%whereas the best pruningmethod (here L1)
achieves 71.86% accuracy. Table 5 shows the F1 score for eachmethod in each dataset.
Again, for datasets without a dedicated train/test split we report the average F1 score
and its standard deviation over the cross-validation folds. For datasets with a dedicated
train/test split, we repeat the experiments with 5 different random seeds and report the
average F1 score and its standard deviation over these repetitions. The best method is
marked in bold. Similar to before, L1 + LR ranks first on 14 datasets (adult, avila, bank,
chess, connect, eeg, elec, fashion, har, ida2016, jm1, magic, mozilla, statlog) and is
tied for first place on four datasets (anuran, mnist, nursery, postures) with LR. LR is the
best method on two datasets (gas-drift, japanese-vowels). Interestingly, L1 + LR now
also ranks first on the bank and jm1 datasets using the F1 score which was not the case
for the accuracy. We explain this behavior with the more imbalanced class distribution
of these datasets. As expected, the model size greatly varies between data sets in both
tables, but there is also a sizable difference between the individual methods. RF has
arguably the largest models, followed by the various pruning methods, whereas LR,
as well as L1 + LR, seem to have the smallest models, although it is difficult to give a
general recommendation here. We will examine the model size in more detail in the
next section.

To give a statistically meaningful comparison we present the results in Tables 4 and
5 as a CD diagram (Demšar 2006). In a CD diagram, each method is ranked according
to its performance, and a Friedman-Test is used to determine if there is a statistical
difference between the average rank of each method. If this is the case, then a pairwise
Wilcoxon-Test between all methods checks whether there is a statistical difference
between two classifiers. CD diagrams visualize this evaluation by plotting the average
rank of each method on the x-axis and connecting all classifiers whose performances
are statistically similar via a horizontal bar. Figure 1 shows the corresponding CD
diagram for the accuracy (left side) and F1 score (right side), where p = 0.95 was
used for all statistical tests. In both cases, we see that L1 + LR ranks first, followed
by LR. L1 + LR and LR are the statistically significant best methods. With some
distance, L1, COMP, IC, RE, IE, RF, DREP, and LMD follow. Random Forest, LMD,
and DREP are generally ranked last, whereas IE, RE, COMP, and L1 form one (for
the accuracy) and two (in the case of the F1 score) cliques ranked in the middle.
We conclude that pruning and leaf-refinement improve the accuracy over the base
Random Forest in almost all cases, confirming the results in the literature. However,
leaf-refinement seems to perform better than pruning, and larger improvements in
terms of accuracy and F1 are possible when leaf values are refined. Last, the joint
selection and refinement of trees via the L1 + LR algorithm seem to generally perform
best ranking first in both cases, thereby supporting our initial hypothesis that both
pruning and refinement should be integrated into each other for the best performance.

123

1246 S. Buschjäger, K. Morik
Ta
bl
e
4

T
he

ac
cu
ra
cy

an
d
m
od
el
si
ze

of
ea
ch

m
et
ho
d
on

ea
ch

da
ta
se
t

Fo
r
da
ta
se
ts
w
ith

ou
t
a
de
di
ca
te
d
tr
ai
n/
te
st
sp
lit

th
e
av
er
ag
e
ac
cu
ra
cy

an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
e
cr
os
s-
va
lid

at
io
n
fo
ld
s
ar
e
re
po
rt
ed
.
Fo

r
da
ta
se
ts
w
ith

a
de
di
ca
te
d

tr
ai
n/
te
st
sp
lit

th
e
ex
pe
ri
m
en
ts
ar
e
re
pe
at
ed

w
ith

5
di
ff
er
en
tr
an
do
m

se
ed
s
an
d
th
e
av
er
ag
e
ac
cu
ra
cy

an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
es
e
re
pe
tit
io
ns

ar
e
re
po

rt
ed
.E

ac
h
en
tr
y

is
ro
un
de
d
to

th
e
se
co
nd

di
gi
ta
ft
er

to
de
ci
m
al
po
in
t.
E
ac
h
ro
w
re
pr
es
en
ts
on
e
da
ta
se
ta
nd

ea
ch

co
lu
m
n
is
on
e
m
et
ho
d.

L
ar
ge
r
is
be
tte
r.
T
he

be
st
av
er
ag
e
ac
cu
ra
cy

is
m
ar
ke
d

in
bo

ld

123

Joint leaf-refinement and ensemble pruning 1247
Ta
bl
e
5

T
he

F
1
sc
or
e
an
d
m
od
el
si
ze

of
ea
ch

m
et
ho
d
on

ea
ch

da
ta
se
t

Fo
r
da
ta
se
ts
w
ith

ou
ta

de
di
ca
te
d
tr
ai
n/
te
st
sp
lit

th
e
av
er
ag
e
F
1
sc
or
e
an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
e
cr
os
s-
va
lid

at
io
n
fo
ld
s
ar
e
re
po

rt
ed
.F

or
da
ta
se
ts
w
ith

a
de
di
ca
te
d
tr
ai
n/
te
st
sp
lit

th
e
ex
pe
ri
m
en
ts
ar
e
re
pe
at
ed

w
ith

5
di
ff
er
en
tr
an
do
m

se
ed
s
an
d
th
e
av
er
ag
e
F
1
sc
or
e
an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
es
e
re
pe
tit
io
ns

ar
e
re
po
rt
ed
.E

ac
h
en
tr
y
is
ro
un

de
d
to

th
e
fo
ur
th

di
gi
ta
ft
er

to
de
ci
m
al
po

in
t.
E
ac
h
ro
w
re
pr
es
en
ts
on

e
da
ta
se
ta
nd

ea
ch

co
lu
m
n
is
on

e
m
et
ho

d.
L
ar
ge
r
is
be
tte

r.
T
he

be
st
F
1
sc
or
e
is
m
ar
ke
d
in

bo
ld

123

1248 S. Buschjäger, K. Morik

Fig. 1 CD-diagram for the accuracy (left side) and F1 score (right side) of the different methods over
multiple datasets. For all statistical tests, p = 0.95 was used. More to the right (lower rank) is better. The
methods in connected cliques are statistically similar

4.2 What method has the best predictive performance under memory
constraints?

In the second experiment, we study the predictive performance of pruning and leaf-
refinement under memory constraints. Recall that small IoT devices are often severely
limited in terms of memory (c.f. Table 1) and we can only deploy models that fit
the available memory. For our analysis, we adopt a hardware-agnostic view which
assumes that we are given a fixed memory budget for our model, which should, nat-
urally, maintain a state-of-the-art performance. To do so, we pick the hyperparameter
configuration of each method that has the best predictive performance while having
a model size smaller than {256, 512, 768, 1024, 2048} KB. The size of the model is
computed as follows: A baseline implementation of DTs stores each node in an array
and iterates over it. Each node inside the array requires a pointer to the left / right child
(8 bytes in total assuming int is used), a boolean flag if it is a leaf-node (1 byte), the
feature index as well as the threshold to compare the feature against (8 bytes assuming
int and float is used). Finally, entries for class probabilities are required for the
leaf nodes (4 bytes per class, assuming that float is used). Thus, in total, a single
node requires 17 + 4 · C Bytes per node, which we sum over all nodes in the entire
ensemble (Buschjäger et al. 2018).

We could not find meaningful differences between the F1 score and the accuracy,
and hence we will focus on the accuracy for now and revisit the F1 score later on.
Moreover, we will focus on {256, 768, 2048} KB constraints. Additional tables with
additional memory constraints, as well as the F1 score, are given in the appendix.
Table 6 shows the accuracy for model sizes below 256 KB. Contrary to the accuracies
without anymemory constraints, this table is nowmore fragmented. L1 +LR is the best
method on 4 datasets (adult, har, nursery, statlog), whereas vanilla LR ranks first on 10
datasets (anuran, chess, connect, eeg, elec fashion, gas-drift, japanese-vowels, mnist
postures). RE pruning is the best option on two datasets (avila, mozilla), IC is the best
option on the jm1 dataset, COMP is the best algorithm on themagic dataset, and IC and
COMP are the best options on the jda2016 dataset. Somewhat surprisingly, pruning
via L1 did not lead to valid models on any dataset, whereas L1 + LR produces valid
models on 12 datasets.We suspect that L1 and L1 + LR require different values for λ to
select a similar amount of trees. We investigate this phenomenon in more detail in the
next section. Going from 256KB constraints to 768KB constraints in Table 7, L1 +LR
seems to improve. It now ranks first on 7 datasets (adult, anuran, bank, eeg, har, magic,
statlog), followed by LR, which ranks first on 10 datasets (chess,connect,elec, fashion,

123

Joint leaf-refinement and ensemble pruning 1249

Ta
bl
e
6

T
he

ac
cu
ra
cy

of
ea
ch

m
et
ho
d
on

ea
ch

da
ta
se
tw

ith
a
m
od
el
si
ze

be
lo
w
25
6
K
B

Fo
r
da
ta
se
ts
w
ith

ou
t
a
de
di
ca
te
d
tr
ai
n/
te
st
sp
lit
,t
he

av
er
ag
e
ac
cu
ra
cy

an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
e
cr
os
s-
va
lid

at
io
n
fo
ld
s
ar
e
re
po
rt
ed
.F

or
da
ta
se
ts
w
ith

a
de
di
ca
te
d

tr
ai
n/
te
st
sp
lit
,t
he

ex
pe
ri
m
en
ts
ar
e
re
pe
at
ed

w
ith

5
di
ff
er
en
tr
an
do
m

se
ed
s,
an
d
th
e
av
er
ag
e
ac
cu
ra
cy

an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
es
e
re
pe
tit
io
ns

ar
e
re
po

rt
ed
.A

da
sh

‘–
’

in
di
ca
te
s
th
at
a
m
et
ho

d
di
d
no

tp
ro
du

ce
an
y
m
od

el
th
at
fit
s
th
e
m
em

or
y
co
ns
tr
ai
nt
.E

ac
h
en
tr
y
is
ro
un

de
d
to

th
e
se
co
nd

di
gi
ta
ft
er

to
de
ci
m
al
po

in
t.
E
ac
h
ro
w
re
pr
es
en
ts
on

e
da
ta
se
t,
an
d
ea
ch

co
lu
m
n
is
on
e
m
et
ho
d.

L
ar
ge
r
is
be
tte
r.
T
he

be
st
m
et
ho
d
is
m
ar
ke
d
in

bo
ld

123

1250 S. Buschjäger, K. Morik

Ta
bl
e
7

T
he

ac
cu
ra
cy

of
ea
ch

m
et
ho
d
on

ea
ch

da
ta
se
tw

ith
a
m
od
el
si
ze

be
lo
w
76
8
K
B

Fo
r
da
ta
se
ts
w
ith

ou
t
a
de
di
ca
te
d
tr
ai
n/
te
st
sp
lit
,t
he

av
er
ag
e
ac
cu
ra
cy

an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
e
cr
os
s-
va
lid

at
io
n
fo
ld
s
ar
e
re
po
rt
ed
.F

or
da
ta
se
ts
w
ith

a
de
di
ca
te
d

tr
ai
n/
te
st
sp
lit
,t
he

ex
pe
ri
m
en
ts
ar
e
re
pe
at
ed

w
ith

5
di
ff
er
en
tr
an
do
m

se
ed
s,
an
d
th
e
av
er
ag
e
ac
cu
ra
cy

an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
es
e
re
pe
tit
io
ns

ar
e
re
po

rt
ed
.A

da
sh

‘–
’

in
di
ca
te
s
th
at
a
m
et
ho

d
di
d
no

tp
ro
du

ce
an
y
m
od

el
th
at
fit
s
th
e
m
em

or
y
co
ns
tr
ai
nt
.E

ac
h
en
tr
y
is
ro
un

de
d
to

th
e
se
co
nd

di
gi
ta
ft
er

to
de
ci
m
al
po

in
t.
E
ac
h
ro
w
re
pr
es
en
ts
on

e
da
ta
se
t,
an
d
ea
ch

co
lu
m
n
is
on
e
m
et
ho
d.

L
ar
ge
r
is
be
tte
r.
T
he

be
st
m
et
ho
d
is
m
ar
ke
d
in

bo
ld

123

Joint leaf-refinement and ensemble pruning 1251

gas-drift, ida2016, japanese-vowels, mnist, nursery, postures) and IE that ranks first
on one dataset (avila). L1 + LR and IE share the first place on the mozilla dataset, and
IC ranks first on one dataset (jm1). This trend continues for larger memory sizes as
depicted in Table 8. Here, L1 + LR now ranks first on 12 datasets with a performance
close to that of the unconstrained ones in Table 4. LR ranks first on 7 datasets, and IC
ranks first on one dataset.

We conclude that for small model sizes below 256KB, pruning and refinement offer
better predictive performance than a vanilla random forest, but it is difficult to give
a clear recommendation of what method works best in this scenario. We hypothesize
that due to the small model size, each method can only pick a few comparably small
trees all with similar performance, and hence we find similar performances across the
methods. Furthermore, LR seems to perform slightly better than L1 + LR. Once more
memory is available, eachmethod can pickmore and larger trees, thereby leavingmore
room for picking ‘good’ and ‘bad’ trees. Hence, we see more differences between the
individual methods and a clear trend toward refinement. Finally, for larger models with
2048 KB constraints, there is a clear trend towards L1 + LR for the best performance.

The difference between vanilla LR and L1 + LR for smaller model sizes can be
explained by the choice of hyperparameters in this experiment. LR considers K ∈
{2, 4, 8, 16, 32, 64, 128} trees for refinement, whereas L1 + LR indirectly chooses the
number of trees via λ ∈ {0.1, 0.2, . . . , 0.9, 0.925, 0.955, 0.975, 1.0}. We suspect that
a more fine-grained selection for values of λ would have led to a more fine-grained
distribution of different models with potentially better performance. Figure 2 shows
the average number of estimators across all datasets and all configurations selected
for different λ values in L1 + LR. The error band shows the standard deviation. As
expected, increasing λ leads to a reduction in the number of trees. Between λ = 0.1
and λ = 0.9, there is a large, almost linear drop in the number of estimators from
more than 200 to just under 100. An even steeper drop occurs for λ > 0.9, but the
number of estimators remains above 50 on average, even for λ = 1.0. Hence, it is
conceivable that choosing additional values λ ∈ [0.9, 1.0], and maybe even values
λ > 1 would lead to a selection of even fewer trees below 50, and, therefore, leading
to better performance for model sizes below 256 KB.

To further study this phenomenon, we investigate the performance of pruning and
leaf-refinement over the number of trees directly. Figure 3 shows the average test
accuracy (left column) and average F1 score (right column) on the chess dataset (top
row, average is computed over the cross-validation folds) and eeg dataset (bottom
row, average is computed over the cross-validation folds). Please note that we found
a similar behavior on the other datasets and hence decided to focus on these two
datasets as they show the most distinctive behavior. On the chess dataset, one can
see that the L1 + LR never selects less than just under 100 trees, indicating that a
more careful choice for λ would have been necessary to select fewer trees. Here, LR
with fewer estimators gives a better trade-off between the accuracy (and F1 score)
and the number of trees. Last, we see how pruning can improve the performance over
a regular RF: All pruning methods improve over the vanilla RF between 16 and 64
trees and then slowly converge to the original RF’s performance. In all cases, methods
with leaf-refinement outperform pruning. Looking at the eeg dataset (bottom row), we
see a slightly different picture. Here, L1 + LR selects ensembles with 16 to 256 trees

123

1252 S. Buschjäger, K. Morik

Ta
bl
e
8

T
he

ac
cu
ra
cy

of
ea
ch

m
et
ho
d
on

ea
ch

da
ta
se
tw

ith
a
m
od
el
si
ze

be
lo
w
76
8
K
B

Fo
r
da
ta
se
ts
w
ith

ou
t
a
de
di
ca
te
d
tr
ai
n/
te
st
sp
lit
,t
he

av
er
ag
e
ac
cu
ra
cy

an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
e
cr
os
s-
va
lid

at
io
n
fo
ld
s
ar
e
re
po
rt
ed
.F

or
da
ta
se
ts
w
ith

a
de
di
ca
te
d

tr
ai
n/
te
st
sp
lit
,t
he

ex
pe
ri
m
en
ts
ar
e
re
pe
at
ed

w
ith

5
di
ff
er
en
tr
an
do
m

se
ed
s,
an
d
th
e
av
er
ag
e
ac
cu
ra
cy

an
d
its

st
an
da
rd

de
vi
at
io
n
ov
er

th
es
e
re
pe
tit
io
ns

ar
e
re
po

rt
ed
.A

da
sh

’–
’

in
di
ca
te
s
th
at
a
m
et
ho

d
di
d
no

tp
ro
du

ce
an
y
m
od

el
th
at
fit
s
th
e
m
em

or
y
co
ns
tr
ai
nt
.E

ac
h
en
tr
y
is
ro
un

de
d
to

th
e
se
co
nd

di
gi
ta
ft
er

to
de
ci
m
al
po

in
t.
E
ac
h
ro
w
re
pr
es
en
ts
on

e
da
ta
se
t,
an
d
ea
ch

co
lu
m
n
is
on
e
m
et
ho
d.

L
ar
ge
r
is
be
tte
r.
T
he

be
st
m
et
ho
d
is
m
ar
ke
d
in

bo
ld

123

Joint leaf-refinement and ensemble pruning 1253

Fig. 2 Average number of estimators across all datasets and configuration of L1 + LR for different λ values.
The error band shows the standard deviation

Fig. 3 Average accuracy (left column) and the average F1 score (right column) across a different number
of estimators for the chess dataset (top row, average is computed over the cross-validation folds) and eeg
dataset (bottom row, average is computed over the cross-validation folds)

123

1254 S. Buschjäger, K. Morik

Fig. 4 2 CD-diagram for the accuracy and {256, 512, 768, 1024, 2048} KB memory constraints. For all
statistical tests, p = 0.95 was used. More to the right (lower rank) is better. The Methods in connected
cliques are statistically similar

indicating that λ was better fitting for the problem. Contrary to before, we find that
regular leaf-refinement does not perform well for smaller ensembles on this dataset
and is outperformed by L1 + LR for ensembles with 200 trees or less.

Similar to the previous section, we want to give a more statistical overview of our
findings using CD diagrams. To do so, we expand them into two-dimensional CD
diagrams where we apply memory constraints for each level on the y-axis. In the first
level, we apply very restrictive constraints, only allowing for models below 256 KB,
and plot the average rank of each method. This will likely result in small ensembles of
small trees. On the next level, we double the amount ofmemory allowed to 512KB and
again plot the average rank similar to a ‘regular’ CD diagram. We repeat this process
for all constraints and plot 5 levels with {256, 512, 768, 1024, 2048} KB constraints.
Figure 4 shows the CD diagram for accuracy. As indicated by the previous discussion,
all methods are relatively close to each other if only limited memory is available. LR is
the best method, followed by IC, COMP, RE, RE, L1 + LR, DREP, LMD, RF, and L1
for 256KB. As discussed previously, L1 on its own is the worst method for all memory
constraints. Going to 512KB constraints, we see that themethods begin to differentiate
more but keep their relative ranking. For 765 KB constraints, L1 + LR starts to move
up the ranks, now ranking second place, and for 1024 KB and for 2048 KB constraints,
it becomes the best method, ranking first place. Figure 5 shows the CD diagram for
the F1 score. The overall plot is similar to Fig. 4: If limited memory is available, then
it becomes more difficult to distinguish the performance of single methods, whereas,
with more memory available, the average ranks seem to differentiate more. Moreover,
L1 is the worst method overall, whereas LR is the best method for 256 and 512 KB
constraints, and L1 + LR is the best method for 1024–2048 KB constraints. For 768
KB constraints, there is no clear winner, although LR seems to rank slightly better
than L1 + LR.

123

Joint leaf-refinement and ensemble pruning 1255

Fig. 5 2 CD-diagram for the F1 score and {256, 512, 768, 1024, 2048} KB memory constraints. For all
statistical tests, p = 0.95 was used. More to the right (lower rank) is better. The methods in connected
cliques are statistically similar

4.3 Case-study for the PhyNetLab

To showcase the effectiveness of our approach, we will now compare the performance
of ensemble pruning, and leaf-refinement in the context of the PhyNetLab warehouse
(Masoudinejad et al. 2018). The PhyNetLab is a hardware test platform for the eval-
uation and analysis of IoT-based warehouses. It consists of small, ultra-low power,
energy-neutral devices called PhyNodes that are placed on storage boxes inside the
warehouse. The nodes are connected to various access points and form a wireless sen-
sor network. Each nodemeasures the current light intensity, the current temperature, its
acceleration as well as the WiFi signal strength to the access points in the warehouse.
The goal is to estimate the current position of each node and, thereby, allow for effi-
cient routing and detection of storage boxes in the warehouse.While machine learning
is ideally suited for such a task, the challenge lies in the deployment of models. The
PhyNode has a MSP430 MCU with a total of 64 KB of Ferroelectric Random Access
Memory (FRAM) available, of which 48 KB are accessible by the compact instruction
set. Roughly one-third of this memory is already used for the operating system and
drivers, leaving about 30 KB of memory for the top-level application, including the
model. Subtracting an additional top-level application code of around 10 KB leaves
roughly 20 KB for the localization model (Masoudinejad et al. 2018). Therefore, our
goal is to find the best localization model that still fits into the remaining 20 KB.

During 42 experiments conducted at various light and temperature levels, a total
of 41,431 measurements at 31 different locations inside the warehouse have been
taken. Each measurement consists of the acceleration (X,Y,Z) of the box, the current
temperature, the current light intensity, as well as theWiFi signal strength to 3 different
access points and a unique identifier for each box.During earlier experiments,we noted
that the acceleration can have a huge impact on the performance because, in some
experiments, the boxes would not be leveled, introducing biases into the acceleration.
Hence, the model would over-fit on this feature, although by design, the acceleration

123

1256 S. Buschjäger, K. Morik

of a (standing) box should not impact the performance of the classification. Hence,
we ignore the acceleration in this experiment. To further reduce overfitting against
specific environmental properties (e.g., a particular shiny or warm day), we train the
models on the data from the first 41 experiments and test them on the last experiment.
The resulting training data has Ntrain = 40,444 samples with d = 6 features, C = 31
classes, and the test set contains Ntest = 987 test samples2.

Recall that the model must fit into 20 KB of memory. The size of the implemented
model is highly dependent on the specific implementation and can vary across mod-
els, MCUs, and implementations. Hence, we perform a two-step process to find good
models that fit into 20 KB of RAM: First, we train small models that approximately fit
into the memory of the PhyNode. To do so, we estimate the size of the model during
training by again counting the total number of nodes ntotal in all trees inside the forest
and then by computing the size via (17+4 ·C) ·ntotal as outlined above. In the second
step, we FastInference3 to generate the implementation of these models, automatically
compile them and remove all models that result in an overflow during the compilation,
thereby leaving only models that can actually be deployed to the PhyNode. FastInfer-
ence is a model compiler that generates model- and CPU-specific inference code for
various machine-learning models such as Decision Trees and Random Forests. To do
so, FastInference runs in four steps (c.f. Fig. 6): In the first step, the model is loaded
from a file into an internal representation. Then, the model is optimized, e.g., by con-
verting floats to a fixed-point quantization, by pruning decision trees4 etc. Third, the
user chooses a backend that determines the target CPU’s properties, such as cache size,
available memory, etc., as well as the desired implementation. With this information,
FastInference re-structures the optimizedmodel such that it can be expressed through a
combination of different code templates, which is then realized by a template engine in
step 4. The output of this operation is the C++ inferencing code of an optimized model
that can be easily integrated into the compilation toolchain for deployment. FastInfer-
ence offers two different types of tree implementations, namely native trees that iterate
over a static array of nodes using a while-loop and if-else trees that decompose the DT
into its if-else structure (c.f. Buschjäger et al. 2018). Unfortunately, if-else trees result
in very large code sizes and hence would use too much memory during compilation.
Therefore, we chose native trees for this experiment. Some additional pre-processing
was required to make the models fit into 20 KB: Recall that there are C = 31 classes
and, hence, a tree with 16 leaf nodes requires 2 KB to store the class probabilities
in leaf nodes if a float variable is used. To reduce the memory consumption, we,
therefore, employed a fixed-point quantization that scales each probability by a factor
of 10,000 and rounds it down towards the next integer. In this way, the probabilities
in each leaf node can be stored within a 2 Byte short variable, effectively halving
the size. This operation is also implemented in FastInference, and we could not detect
any change in the accuracy with this quantization.

2 The data is available under http://phynetlab.com/.
3 https://github.com/sbuschjaeger/fastinference.
4 Technically ensemble pruning can be seen as a part of this pre-processing, andwe implemented an adapter
that integrates the PyPruning library into FastInference.

123

http://phynetlab.com/
https://github.com/sbuschjaeger/fastinference

Joint leaf-refinement and ensemble pruning 1257

Fig. 6 Workflow of the FastInference model compiler

Table 9 Accuracy (rounded to the second decimal digit) and F1 score (rounded to the fourth decimal digit)
of the best model per method that can still fit into the memory of the PhyNode

COMP DREP IC IE L1 L1 + LR LMD LR RE RF

Accuracy (%) 68.39 51.32 56.50 56.80 62.50 71.04 61.28 68.09 63.21 56.40

F1 0.5757 0.5180 0.4266 0.4383 0.5234 0.5758 0.5300 0.5627 0.5163 0.4220

The best model is marked in bold

In a series of pre-experiments, we determined reasonable ranges for the hyperpa-
rameters of each algorithm so that the estimated model size is below 24 KB. Similar
to before, we train a base Random Forest with M = 256 trees and nl ∈ {4, 8, 12}
leaf nodes. Each pruning method is tasked to select K ∈ {2, 4, 8} trees. For DREP,
we used ρ ∈ {0.25, 0.3, . . . , 0.5}. For L1 and L1 + LR, we minimized the MSE
over 20 epochs with the Adam optimizer using α = 0.01, |B| = 1024 and
λ ∈ {1.0465, 1.0466, . . . , 1.047}. Table 9 shows the accuracy and F1 score for the
best models that could still fit in the PhyNode. As can be seen, L1 + LR offers the
best predictive accuracy as well as the best F1 score, highlighting the usefulness of
our approach. Moreover, we found that the accuracy seems to vary a lot between the
different methods. For example, DREP is the worst method with 51.32% accuracy,
whereas L1 + LR is nearly 20 percentage points better with an accuracy of 71.04%.
Given that all models are derived from the RF, these large differences seem surprising
to us, but we could not find any errors in our evaluation pipeline. In particular, we
made sure that all methods receive the same base forest so that no re-training of the
forest would occur.

5 Conclusion

Ensemble algorithms are among the state-of-the-art in many machine learning appli-
cations.With the ongoing integration ofMLmodels into everyday life, the deployment

123

1258 S. Buschjäger, K. Morik

and continuous application of models become more and more important issues. By
today’s standard, large Random Forests are trained for the best performance which can
challenge the resources of small devices and sometimes make deployment impossible.
Various techniques have been proposed in the literature that try to reduce the mem-
ory consumption of tree ensembles while potentially increasing their performance. In
this paper, we studied two common techniques namely ensemble pruning and leaf-
refinement. Ensemble pruning removes unnecessary classifiers from the ensemble to
reduce the overall resource consumption while potentially improving its accuracy.
Leaf-refinement, on the other hand, refines the probability estimates of the trees inside
the ensemble byminimizing a global loss. In this paper, we combined both approaches
into a single objective and presented an efficient algorithm to optimize it. Our L1 + LR
method performs pruning by minimizing an L1-regularized loss via proximal gradient
descent while refining the probability estimates in the leaf nodes at the same time.
In a series of 13,200 experiments on 20 publicly available datasets, we showed that
L1 + LR has the statistically significant best accuracy and the statistically significant
best F1 score compared with 8 state-of-the-art methods. Moreover, we detailed how
these algorithms behave under different memory constraints. We found that if only
a very limited amount of memory is available, then L1 + LR and leaf-refinement
behave similarly offering better performance than ensemble pruning. If more memory
is available, then L1 + LR seems to dominate over vanilla LR making it the overall
best choice. Last, we highlighted the usefulness of our approach in a case study using
the PhyNetLab. We discussed how to train, prune, and implement small tree ensem-
bles using the FastInference tool and showed how to effectively deploy our models to
ultra-low power devices such as the PhyNode.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10618-023-00921-z.

Acknowledgements Part of the work on this paper has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information by
Resource-Constrained Analysis”, DFG project number 124020371, SFB project A1, http://sfb876.tu-
dortmund.de. Part of this research has been funded by the Federal Ministry of Education and Research
of Germany and the state of North-Rhine Westphalia as part of the Lamarr-Institute for Machine Learning
and Artificial Intelligence. https://www.ml2r.de/.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://doi.org/10.1007/s10618-023-00921-z
https://doi.org/10.1007/s10618-023-00921-z
http://sfb876.tu-dortmund.de
http://sfb876.tu-dortmund.de
https://www.ml2r.de/
http://creativecommons.org/licenses/by/4.0/

Joint leaf-refinement and ensemble pruning 1259

References

Akash PS, Kadir M, Ali AA, Tawhid MNA, Shoyaib M (2019) Introducing confidence as a weight in ran-
dom forest. In: 2019 international conference on robotics, electrical and signal processing techniques
(ICREST). IEEE, pp 611–616

Barros RC, de Carvalho ACPLF, Freitas AA (2015) Decision-tree induction. Springer, Cham, pp 7–45.
https://doi.org/10.1007/978-3-319-14231-9_2

Biau G (2012) Analysis of a random forests model. J Mach Learn Res 13(Apr):1063–1095
Biau G, Scornet E (2016) A random forest guided tour. TEST 25(2):197–227
Branco S, Ferreira AG, Cabral J (2019) Machine learning in resource-scarce embedded systems, fpgas, and

end-devices: a survey. Electronics 8(11):1289
Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Breiman L (2000) Some infinity theory for predictor ensembles. Technical report, Technical Report 579,

Statistics Dept. UCB
Breiman L (2001) Random forests. Mach Learn. https://doi.org/10.1023/A:1010933404324
Brown G, Wyatt JL, Tino P (2005) Managing diversity in regression ensembles. JMLR. https://doi.org/10.

1097/IYC.0000000000000008
Buschjäger S, Morik K (2017) Decision tree and random forest implementations for fast filtering of sensor

data. IEEE Trans Circuits Syst I Regul Pap 65(1):209–222
Buschjäger S, Morik K (2021) There is no double-descent in random forests. CoRR arXiv:2111.04409
Buschjäger S, ChenK,Chen J,MorikK (2018) Realization of random forest for real-time evaluation through

tree framing. In: ICDM, pp 19–28. https://doi.org/10.1109/ICDM.2018.00017
Cavalcanti GD, Oliveira LS, Moura TJ, Carvalho GV (2016) Combining diversity measures for ensemble

pruning. Pattern Recogn Lett 74:38–45
Choudhary T, Mishra V, Goswami A, Sarangapani J (2020) A comprehensive survey on model compression

and acceleration. Artif Intell Rev 53(7):5113–5155
Cortes C,MohriM, SyedU (2014)Deep boosting. In: Proceedings of the thirty-first international conference

on machine learning (ICML 2014)
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Denil M, Matheson D, De Freitas N (2014) Narrowing the gap: random forests in theory and in practice.

In: International conference on machine learning (ICML)
Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42
Giacinto G, Roli F, Fumera G (2000) Design of effective multiple classifier systems by clustering of

classifiers. In: Proceedings 15th international conference on pattern recognition. ICPR-2000, vol 2.
IEEE, pp 160–163

Guo H, Liu H, Li R, Wu C, Guo Y, Xu M (2018) Margin & diversity based ordering ensemble pruning.
Neurocomputing 275:237–246

Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal
Mach Intell 20(8):832–844

Jiang W, Nie F, Huang H (2015) Robust dictionary learning with capped l1-norm. In: Twenty-fourth inter-
national joint conference on artificial intelligence

Jiang Z, Liu H, Fu B, Wu Z (2017) Generalized ambiguity decompositions for classification with applica-
tions in active learning and unsupervised ensemble pruning. In: 31st AAAI conference on artificial
intelligence, AAAI 2017, pp 2073–2079

Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y (eds) 3rd
international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7–9,
2015, conference track proceedings. arXiv:1412.6980

KoltchinskiiV et al (2002)Empiricalmargin distributions andbounding the generalization error of combined
classifiers. Ann Stat 30(1):1–50

Kumar A, Sindhwani V (2015) Near-separable non-negative matrix factorization with l1 and Bregman loss
functions. In: Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp
343–351

Kumar A, Goyal S, Varma M (2017) Resource-efficient machine learning in 2 kb ram for the internet of
things. In: International conference on machine learning. PMLR, pp 1935–1944

Lazarevic A, Obradovic Z (2001) Effective pruning of neural network classifier ensembles. In: IJCNN’01,
vol 2. IEEE, pp 796–801

123

https://doi.org/10.1007/978-3-319-14231-9_2
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1097/IYC.0000000000000008
https://doi.org/10.1097/IYC.0000000000000008
http://arxiv.org/abs/2111.04409
https://doi.org/10.1109/ICDM.2018.00017
http://arxiv.org/abs/1412.6980

1260 S. Buschjäger, K. Morik

Li N, Yu Y, Zhou Z-H (2012) Diversity regularized ensemble pruning. In: ECML PKDD. Springer,
pp 330–345

Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2016) Pruning filters for efficient convnets.
arXiv:1608.08710

Li J, ChengK,Wang S,Morstatter F, Trevino RP, Tang J, Liu H (2017) Feature selection: A data perspective.
ACM Comput Surv: CSUR 50(6):1–45

Louppe G, Geurts P (2012) Ensembles on random patches. In: Joint European conference on machine
learning and knowledge discovery in databases. Springer, pp 346–361

Lu Z, Wu X, Zhu X, Bongard J (2010) Ensemble pruning via individual contribution ordering. In: Proceed-
ings of the ACM SIGKDD, pp 871–880

Lucchese C, Nardini FM, Orlando S, Perego R, Silvestri F, Trani S (2018) X-cleaver: learning ranking
ensembles by growing and pruning trees. ACM Trans Intell Syst Technol: TIST 9(6):1–26

Margineantu DD, Dietterich TG (1997) Pruning adaptive boosting. In: ICML, vol 97, pp 211–218
Martínez-Muñoz G, Suárez A (2004) Aggregation ordering in bagging. In: Proceedings of the IASTED,

pp 258–263
Martínez-Muñoz G, Suárez A (2006) Pruning in ordered bagging ensembles. In: ICML, pp 609–616
Martínez-Muñoz G, Hernández-Lobato D, Suárez A (2008) An analysis of ensemble pruning techniques

based on ordered aggregation. IEEE Trans Pattern Anal Mach Intell 31(2):245–259
Masoudinejad M, Ramachandran Venkatapathy AK, Tondorf D, Heinrich D, Falkenberg R, Buschhoff M

(2018) Machine learning based indoor localisation using environmental data in phynetlab warehouse.
In: Smart SysTech 2018; European conference on smart objects, systems and technologies, pp 1–8

OshiroTM,PerezPS,Baranauskas JA (2012)Howmany trees in a random forest? In: Internationalworkshop
on machine learning and data mining in pattern recognition. Springer, pp 154–168

Parikh N, Boyd S (2014) Proximal algorithms. Found Trends Optim 1(3):127–239
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga

L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang
L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In:
Advances in neural information processing systems 32, pp 8024–8035. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Ravi KB, Serra J (2017) Cost-complexity pruning of random forests. arXiv:1703.05430
Ren S, Cao X, Wei Y, Sun J (2015) Global refinement of random forest. In: Proceedings of the IEEE

conference on computer vision and pattern recognition, pp 723–730
Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. The MIT Press, Cambridge
ShahhosseiniM,HuG(2020) Improvedweighted randomforest for classification problems. In: International

online conference on intelligent decision science. Springer, pp 42–56
Shahhosseini M, Hu G, Pham H (2022) Optimizing ensemble weights and hyperparameters of machine

learning models for regression problems. Mach Learn Appl 7:100251
Shotton J, Sharp T, Kohli P, Nowozin S, Winn J, Criminisi A (2013) Decision jungles: compact and rich

models for classification. In: NIPS’13 proceedings of the 26th international conference on neural
information processing systems, pp 234–242

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol)
58(1):267–288

Tsoumakas G, Partalas I, Vlahavas IP (2009) An ensemble pruning primer. In: Okun O, Valentini G (eds)
Applications of supervised and unsupervised ensemblemethods, Studies in computational intelligence,
vol 245. Springer, pp 1–13

Zhang Y, Burer S, Street WN (2006) Ensemble pruning via semi-definite programming. J Mach Learn Res
7(Jul):1315–1338

Zhou Z-H (2012) Ensemble methods: foundations and algorithms. CRC Press, Boca Raton. https://doi.org/
10.1201/b12207

Zyblewski P, Woźniak M (2019) Clustering-based ensemble pruning and multistage organization using
diversity. In: Pérez García H, Sánchez González L, Castejón Limas M, Quintián Pardo H, Corchado
Rodríguez E (eds) Hybrid artificial intelligent systems. Springer, Cham, pp 287-298

123

http://arxiv.org/abs/1608.08710
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1703.05430
https://doi.org/10.1201/b12207
https://doi.org/10.1201/b12207

Joint leaf-refinement and ensemble pruning 1261

Zyblewski P,WoźniakM (2020)Novel clustering-based pruning algorithms. PatternAnal Appl 23(3):1049–
1058

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Joint leaf-refinement and ensemble pruning through L1 regularization
	Abstract
	1 Introduction
	2 Background and notation
	2.1 Ensemble pruning
	2.2 Leaf-refinement

	3 Combining leaf-refinement and ensemble pruning
	4 Experiments
	4.1 What method has the best predictive performance?
	4.2 What method has the best predictive performance under memory constraints?
	4.3 Case-study for the PhyNetLab

	5 Conclusion
	Acknowledgements
	References

