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Abstract
Optimization algorithms are used to improve model accuracy. The optimization process
undergoes multiple cycles until convergence. A variety of optimization strategies have
been developed to overcome the obstacles involved in the learning process. Some of these
strategies have been considered in this study to learn more about their complexities. It is
crucial to analyse and summarise optimization techniques methodically from a machine
learning standpoint since this can provide direction for future work in both machine
learning and optimization. The approaches under consideration include the Stochastic
Gradient Descent (SGD), Stochastic Optimization Descent with Momentum, Rung Kutta,
Adaptive Learning Rate, Root Mean Square Propagation, Adaptive Moment Estimation,
Deep Ensembles, Feedback Alignment, Direct Feedback Alignment, Adfactor,
AMSGrad, and Gravity. prove the ability of each optimizer applied to machine learning
models. Firstly, tests on a skin cancer using the ISIC standard dataset for skin cancer
detection were applied using three common optimizers (Adaptive Moment, SGD, and
Root Mean Square Propagation) to explore the effect of the algorithms on the skin
images. The optimal training results from the analysis indicate that the performance
values are enhanced using the Adam optimizer, which achieved 97.30% accuracy. The
second dataset is COVIDx CT images, and the results achieved are 99.07% accuracy
based on the Adam optimizer. The result indicated that the utilisation of optimizers such
as SGD and Adam improved the accuracy in training, testing, and validation stages.
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1 Introduction

Machine learning (ML) uses data and algorithms to replicate how humans learn and constantly
improve its accuracy. Statistical techniques are applied to train algorithms and subsequently
improve visual tasks and predict them. The data expansion task is growing, and the demand to
find the most optimal solution has become widespread. Consequently, the required data have
also expanded. Then, based on the input data, a data pattern is estimated using an optimization
algorithm, as shown in Fig. 1 [32]. By using data, the objective function can estimate the
model prediction and model accuracy. Once the model can fit the data points in the training set,
weights are adjusted to reduce the distance between the known data and the model prediction
[7]. Supervised learning entails the use of labeled datasets to train algorithms for predicting
outcomes. As more data is introduced into the model, weights are continuously adjusted until
the model is properly fitted, implying that one of the important tasks is to ensure that the model
does not suffer from overfitting or underfitting [75]. Organizations use supervised learning to
tackle a range of real-world problems at different scales, such as spam classification by using a
distinct folder of an email account. Unsupervised learning analyzes unlabeled datasets via ML
techniques. Deep learning (DL) is a popular method of addressing a variety of real-world
issues. In DL, the dataset is used to train a computer, supposedly to increase its performance
over time [81]. When an input value is given to the model, a function is applied to it, and it is
turned into an output value through a series of layers. Thereafter, the generated output is
compared with the real output, and the model calculates the difference [80]. Then, the resulting
output is propagated into the model to lessen the difference. The DL architecture adjusts the
weights and repeats the process until a convergence is achieved [46, 77]. An algorithm is
searched to speed up the learning process while producing the best results. The main
motivation behind this study is to compare with more virous optimizers to find out which
one of them is best for solving medical diagnosis datasets without the need for human
intervention. The algorithms can uncover hidden patterns in the data to find similarities and
differences for computer vision tasks. The challenge with optimization is to identify a group of
input data points for an objective function and the maximum or minimum function evaluation
points. Several optimization techniques have been created and tested in this direction of

Fig. 1 The general overview for optimization algorithm idea
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solving a variety of problems. The impact of the most extensively used optimization algo-
rithms on the learning process is investigated in this survey [89]. ML and DL are used as
optimization methods to learn the parameters of the input data [82]. In particular, the
parameters of the input data are learned via ML and DL as the optimization methods. The
researchers of this study view optimization techniques as critical in successfully implementing
real-world solutions [59].

ML optimization is the process of altering the hyperparameters to minimize the cost
function using a certain optimization approach. The cost function must be minimized because
of its specific task of determining the difference between the true value of an estimated
parameter and the value predicted by the model [13]. However, prior to this task, the model
parameters must be distinguished from the hyperparameters. In addition, prior to the training of
the model, the hyperparameters must be specified. The number of clusters, learning rate (LR),
among others, should be considered. A model’s structure is described by its hyperparameters.
However, the model’s parameters can only be obtained during the training. At present, no
existing method can calculate the parameters ahead of time.

Similarly, the model’s weights should be known in advance, but this task continues to
be a challenge. Currently, trial and error are adopted with the loss function, and opti-
mizers use the result to determine the ways of altering a neural network’s weights or LRs
to reduce the loss [90]. Optimization algorithms are used to minimize the losses and
ultimately deliver the most precise outcomes to the best extent possible. The process
normally starts by defining a loss function for a DL problem. An optimization procedure
is applied to minimize the loss after the loss function is obtained [60]. A loss function is
frequently referred to as the optimization problem’s objective function during optimiza-
tion. In history and practice, the majority of the optimization algorithms have focused on
minimization. Meanwhile, a straightforward method of maximization is to simply reverse
the sign on the objective. Although optimization contributes to DL by lowering the loss
function, the goals of optimization and DL are fundamentally different [64]. Optimization
is focused on minimizing an objective, whereas DL is oriented towards finding a good
model given a finite amount of data. Moreover, the training error and the generalization
error differ from each other, as the objective function of an optimization algorithm usually
depends on a loss function based on the training dataset, in which the goal of the
optimization is to reduce the training error [87]. Location problem, in example, may take
into account a number of distinct (and potentially competing) objectives, such as
obtaining a level of service commensurate to the location’s importance, lowering the
worst-case service level, and raising the average service level. Taking into account all
those goals in a single mathematical problem could result in a great number of answers
that confound the decision-maker rather than aid them. Due to this, our study offers a
novel analysis based on the comparison of various location solution characteristics using a
battery of key performance indicators (KPIs). We also examine the trend of the given
KPIs over the interventions to produce long-term managerial insights, since charging
infrastructures are often expected to be located through a series of progressive interven-
tions over a predetermined time [29, 30]. By contrast, DL aims to reduce the generaliza-
tion errors. To achieve the latter, the overfitting and the optimization procedure must be
both considered when lowering the training error. Rather than focusing on the generali-
zation error of the model, the emphasis is on the performance of the optimization
techniques for minimizing the objective function. The majority of the objective functions
in DL are complex and devoid of analytical solutions. Thus, numerical optimization
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algorithms must be used instead. All of the optimization algorithms discussed in this
paper fall into the DL category. Nonetheless, DL optimization is fraught with difficulties.
Local minima, saddle points, and disappearing gradients are among the most perplexing
issues. For example, the DL models’ objective functions frequently have plenty of local
optima. As the gradient of the objective function’s solutions approaches or becomes zero,
the numerical solution found by the final iteration can only minimize the objective
function locally rather than globally. This issue is apparent when the numerical solution
of an optimization problem approaches the local optimum. Only a small amount of noise
allows for the parameter to leave the local minimum [53]. In reality, the natural change of
the gradients in mini-batches can dislodge the parameters from the local minima. This
practical concern is one of the advantages of the mini-batch stochastic gradient descent
(SGD) [32]. This study offers the following contributions:

The methods of selecting optimization algorithms in computer vision tasks are compre-
hensively surveyed.

& The motivations for using optimization algorithms to improve computer vision tasks are
summarized.

& The open challenges pertaining to the effects of optimization algorithms in computer
vision tasks are investigated.

& The effects of the selected algorithms on the final result are compared on the basis of
measure metrics.

The rest of the comparative study is organized as follows. Section 2 describes the optimization
algorithms. Section 3 presents a case study for skin cancer diagnosis. Section 4 concludes the
survey.

2 Optimization algorithms

Optimization algorithms are the foundation on which a machine learns from its mistakes.
Gradients are calculated, and the loss function is reduced to the smallest possible value.
Learning can be implemented in many ways using optimization techniques, as shown in
Fig. 2 [7, 68, 75]. The algorithms selected in this study are presented in the next sections. In
this study, we highlighted the most common optimization algorithms such as gradient decent
variants and gradient decent optimization. The gradient decent variant is generally categorized
to batch gradient decent, stochastic gradient decent and mini-batch gradient decent. While the
gradient decent optimization algorithms can be classified to momentum, Adagrad, Adadelta,
RMSProp, Adam and Nestrov accelerated Gradient. The utilization of SGD, minibatch
gradiend decent are more helpful to handle the over-fitting problem as well as optimization
problem to boost the evaluation accuracy [26]. Moreover Adam optimizer are most commonly
used to handle the medical images [70].

2.1 Gradient descent algorithm

Neural network algorithms are improved by taking a small batch of data and performing a type of
gradient descent on them. The gradient descent calculates the slope of the landscape, which is the
derivative of the function at this point with respect to the weights, as shown in Eq. (1) [75].
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w ¼ w−lr:∇wL wð Þ ð1Þ
A constant value is adopted for the LR to determine the step size at each iteration as the
calculation moves towards a minimum loss function [7, 81]. SGD is a fast and computationally
efficient approach, but it adds noise in the estimation of the gradient. The frequent updating of
the weight can lead to large oscillations, causing the training process to be extremely unstable.
A list of stochastic optimization techniques is shown in the succeeding subsections, and each
technique can be updated on a regular basis. The Gradient Descent has many advantages, such
as easy computation, implementing, and understanding. It has some defects, such as weights
being changed after calculating the gradient on the whole dataset. So, if the dataset is too large,
it may take years to converge to the minima. It requires large memory to calculate the gradient
on the whole dataset.

2.1.1 Stochastic gradient descent (SGD)

SGD is a basic algorithm and widely used in ML algorithms. Instead of calculating the
gradient over all training examples and updating the weights, the SGD updates the weights
of each training example xi, yi, as shown in Eq. (2) [32].

w ¼ w−lr:∇wL xi; yi;Wð Þ ð2Þ
The central idea is to start with a random point, and then a technique for updating is selected
for each iteration as they descend the slope. The SGD method randomly selects a single data
point from the entire dataset at each iteration to ease the computation. In “mini-batch” gradient
descent, which is considered a common technique, a small number of data points instead of
only one data point is sampled at each step [7]. However, this basic version of the SGD has
certain limitations that can negatively affect the training. If the change in the loss function is
fast in one direction and slow in another, then the oscillation of the gradients will be high,
rendering the training progress to be extremely slow [32]. Furthermore, if the loss function has
a local minimum, then the SGD will likely be stuck, and a good minimum cannot be
determined. These problems occur when the gradient reaches zero and the weight or other
relevant parameters are not updated. The gradients are noisy because they are estimated on the

Fig. 2 The general structure for optimization algorithms
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basis of only a small sample of the dataset. Subsequently, the noisy updates may not correlate
well with the true direction of the loss function [75]. Selecting a good loss function is
challenging and requires time-consuming experimentation with different hyperparameters.
The same LR is applied to all parameters, which is problematic for features with different
frequencies or significant attributes. Many improvements have been proposed over the years to
overcome some of the aforementioned issues. Figure 3 shows the main and common tasks of
the SGD optimizer in which federated learning and image classification have the highest
precision among all of its performed tasks [81]. Figure 4 shows a plot of the loss, revealing the
distinct properties of the SGD optimizer and its style of convergence in a specific coordinate.

Wenzel et al. [80] demonstrated that the posterior predictive created by the Bayes posterior
produces systematically inferior predictions compared with the simpler approaches, such as the
point estimates provided by SGD via the Markov chain Monte Carlo sampling method.
Numerous theories have been proposed to explain the cold posterior effect, and predictions
have been tested by experiments. Their research has casted doubt on the goal of correct
posterior approximations of the Bayesian DL. Noroozi et al. [57] suggested a model for the
Schema-Guided Dialogue dataset, which includes natural language descriptions for all ele-
ments. Table 1 presents some common tasks that use the SGD optimizer algorithm. According
to a previous study, increasing the batch size of the SGD does not change the expectation of
the stochastic gradient, but the variance is reduced. When the batch size is large, LR can be
increased to achieve the opposite direction of the gradient. In general, SGD plays an important
role in computer vision tasks, but it has not yet solved the two major problems associated with
gradient descent. Thus, SGD is often combined with other algorithms, such as Momentum and
AdaGrad; these algorithms will be presented in the following sections. Using the SGD has a
number of advantages, including frequent changes in the model parameters, indicating a much
more rapid convergence. The values of the loss functions can also be ignored, suggesting less
memory usage, and a new minimum may also be derived. Nonetheless, SGD entails certain
limitations, such as excessive variance in the model parameters. Even after attaining the global
minima, the algorithm may continue to burn. For the SGD to achieve the same convergence as
that in gradient descent, the LR must be gradually reduced.

SGD has not yet solved two major disadvantages of gradient descent. As a result, SGD is
combined with other algorithms such as Momentum and Ada Grad. These algorithms will be
presented in the following sections.

It has several advantages, including frequent changes of model parameters, which means it
converges faster. Hence, there is no need to keep the values of loss functions; hence, it uses
less memory. It’s possible that it’ll acquire new minima as well. SGD has some flaws, such as
excessive model parameter variance. Even after attaining global minima, it may continue to

Federated Learning Image Classification

General Classification Generalization Bounds

SGD (Tasks)

Fig. 3 SGD optimizer algorithm tasks in several computer vision problems
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burn. To achieve the same convergence as gradient descent, the learning rate must be gradually
reduced.

2.1.2 SGD with momentum

In this approach, a momentum term is added to the regular SGD to overcome the limitations of
the gradient descent algorithm, i.e., a gradient descent with a momentum. By using the
principle of momentum from physics, the SGD is forced to continue moving in the same
direction as those in the previous time steps. This momentum is accomplished by introducing
two new variables, namely, velocity and friction, as given by Eqs. (3) and (4), respectively
[46].

vt þ 1 ¼ pvt þ ∇wL x;wð Þ ð3Þ

w ¼ w−lr:vt þ 1 ð4Þ
Velocity is computed as the running mean of the gradients up to a certain point in time,
indicating the direction to which the gradient should keep moving. Friction is a constant
number for achieving decay. At each time step, velocity is updated by decaying the previous

Fig. 4 A plot of the loss reveals distinct properties for SGD optimizer with its style of convergence by ensample
visualization tool, where the steps that the optimizer takes plotted in red, Coordinates: (6.00, 14.00), Global
Minimum: (1, 3), Optimizer Minimum: (1.034, 2.966) [18, 85]

Table 1 Some Related works for using SGD optimizer with vision datasets

Year Author Tasks Dataset Metrics

2021 Wenzel et al. [80] Image Classification CIFAR10
SVHN

ACC=88.2%

2021 Li et al. [46] Limited bandwidth TCP
interconnects network

GLUE ACC=83.9%

2021 Tang et al. [77] TCP interconnects Celeb A GLUE ACC=83.9%
2020 Noroozi et al. [57] Dialogue state tracking Data Augmentation

Goal-Oriented Dialogue
ACC=95.70%
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velocity by a factor and adding the gradient of the weights at the current time. Then, weights
are updated in the direction of the velocity vector.

Radosavovic et al. [65] investigated the ResNet design space and found the network design
to contradict practice. The ResNet design area offers simple and fast networks that perform
well in a variety of failure regimes. ResNet models outperform the popular EfficientNet
models in similar training settings and are five times quicker when solved on GPUs. Author
in [93] proposed a modularized architecture that uses channel-wise attention on multiple
network branches to improve the ability to capture cross-feature interactions and learn diverse
representations. In their work, the unified and simple calculation block can be specified using
only a few variables. Furthermore, in [52] adopted an architecture with a simple and unified
computing block that may be parameterized with only a few variables. The pre-trained model
can outperform EfficientNet in terms of accuracy and latency tradeoff during image classifi-
cation. Resent has also been adopted in the winning submissions of the COCO-LVIS
challenge, and superior transfer learning outcomes on multiple public benchmarks acting as
the backbone are achieved. Table 2 presents some of the tasks that commonly use SGD with
the Momentum optimizer algorithm. Figure 5 shows a plot of the loss, revealing the distinct
properties of the SGD with Momentum optimizer and its style of convergence in a specific
coordinate. As for the scale-decreased backbone, Du et al. [24] proposed that the encoder–
decoder architecture can be ignored when creating strong multi-scale features. SpineNet is a
backbone comprising scale-permuted intermediate characteristics and cross-scale connections,
which are learned by applying the neural architecture search (NAS) method on an object
detection problem. Khosla et al. [42] investigated two different variants of the supervised
contrastive loss to determine which one is the most effective. The top-1 accuracy is 81.4% on
the ImageNet dataset with ResNet-200, a value that is 0.8% higher than the best value recorded
for this architecture. On other datasets and two ResNet variations, the cross-entropy is
consistently surpassed. The loss presents advantages in terms of natural corruption resistance,
and it is relatively stable in terms of handling the hyperparameter settings, such as optimizers
and data augmentations [27, 71, 73]. Moreover in [66] SGD with momentum optimizer of the
applied ImageNet dataset were presented in classification stage achieved loss rate 37.1%. In
[23] MNIST dataset with CIFAR-10 are further applied based on SGD to boost the classifi-
cation proce.

Table 2 Some Related works for using SGD with Momentum optimizer with vision datasets

Year Authors Tasks Datasets Metrics

2020 Zhang et al. [93] • Image Classification
• Semantic Segmentation
• Transfer Learning

• ImageNet
• COCO Cityscapes
• ADE20K PASCAL

Accuracy=81.13%

2020 Du et al. [24] • Image Instance Segmentation
• Real-Time Object Detection

• ImageNet
• COCO
• I Naturalist

AP=52.5%

2020 Khosla et al. [42] • Image Classification
• Data Augmentation

• ImageNet Accuracy=78.7%

2020 Radosavovic, et al. [66] • Image Classification • ImageNet Loss=37.1%
2021 Ding et al. [23] • Image Classification • CIFAR-10

• ImageNet
• MNIST

Accuracy=80%
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Gradient descent does not reach the global minimum point; instead, it merely reaches the
local minimum point. By contrast, SGD with Momentum assists the ball in crossing the
inclined space prior to reaching its destination. However, as the ball moves nearer to the target,
the calculation takes a long time to handle the slope variations before completely halting. This
phenomenon can be explained by the marble’s momentum. This algorithm has several
advantages, including the ability to reduce oscillations and its high variance in handling the
parameters, and it can converge faster than gradient descent. Its disadvantages include the
addition of an extra hyperparameter that must be specified manually and precisely.

2.2 Rung Kutta optimizer

The Rung Kutta (RK) optimizer can address a wide range of future optimization challenges.
As a promising and logical global optimization search process, the RK optimizer employs the
logic of slope variations. The RK optimization process is shown in Fig. 6 and the common
tasks that use this technique. When examining the prospective regions of a feature space, with
the aim of reaching the global optimum, this search strategy benefits from two active stages,
namely, exploration and exploitation. The efficiency of the RK algorithm was compared with
the efficiency of other metaheuristic algorithms by considering 50 mathematical test functions

Fig. 5 A plot of the loss reveals distinct properties for SGD with Momentum optimizer with its style of
convergence by ensample visualization tool, where the steps that the optimizer takes plotted in red, Coordinates:
(6.00, 14.00) Global Minimum: (1, 3)and, Optimizer Minimum: (1.023, 2.977) [18, 85]

Object Detection Semantic Segmentation

Language Modelling Quantization 

RK Tasks

Fig. 6 RK optimizer algorithm tasks in several computer vision problems
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and four real-world engineering situations [1]. RK optimization can provide promising and
competitive outcomes given its superior exploration and exploitation stages, fast convergence
rate, and avoidance of the local optima. Nonetheless, the suitability of this deep-rooted
optimizer as a tool for real-world optimization should be evaluated [1, 9]. Figure 7 shows a
loss plot revealing the distinct properties of the Rung Kutta optimizer and its style of
convergence in a specific coordinate.

The Big DL framework, which has been utilized by a range of users in the industry for
building DL models, was studied by Jason Dai et al. [19]. DL applications can run on an
Apache Hadoop cluster to directly process production data and partake in the deployment and
management pipeline for end-to-end data analysis. Real-world trends from using Big DL have
been published in the past. Xu et al. [83] predicted facial box and landmark positions in real
time with high accuracy. Their proposed method can be classified as an anchor-free approach.
Their work was accomplished by learning the bounding box of each position potentially
containing a face, from which semantic maps were adopted for each position. Ding et al. [23]
described a convolutional neural network (CNN) architecture with a VGG-like inference-time
body composed of a stack of 3 × 3 convolution and ReLU and a multi-branch training-time
model. A structural re-parameterization technique was applied to decouple the training and
inference time of the architecture; the model is appropriately called the Rep VGG. The
accuracy of this approach is over 80% on ImageNet, which is the first time for a straightfor-
ward model to obtain this rate. Hoffman et al. [36] suggested a reinforcement learning
algorithm created in academic and corporate labs. Baseline implementations composed of
several algorithms were built with the available framework. The primary design considerations
were ignored; instead, the focus was on Acme and how it could be leveraged to create the
baselines. The agents at various levels were tested in terms of complexity and computation
ability, including the related distributed versions. Table 3 lists some of the tasks that commonly
use the RK optimizer algorithm.

Fig. 7 A plot of the loss reveals distinct properties for Rung Kutta optimizer optimizer with its style of
convergence by ensmallen visualization tool, where the steps that the optimizer takes plotted in red, Coordinates:
(6.00, 14.00)Global Minimum: (1, 3)and, Optimizer Minimum: (1.426, 2.568) [18, 85]
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2.3 Adaptive learning rate (AdaGrad)

AdaGrad performs small updates on frequently used features and large updates on infrequently
used features. This algorithm can overcome some of the issues encountered by SGD. AdaGrad
is a technique of adjusting the LR according to the parameters as shown in Fig. 8. The
parameters linked to the frequently occurring features are slightly adjusted, whereas the
parameters linked to the infrequently occurring features are updated, indicating a variation in
the LRs. The root of the squared gradients and the magnitude of the gradients are both
considered. AdaGrad, an optimization approach of the AdaGrad family, was introduced by
Defazio et al. [22] as in Eq. 5.

w ¼ w−
1

ffiffiffiffi

G
p þ e

⊙ ∇wL x; y;Wð Þð Þ2 ð5Þ

where G ¼ ∑T
t¼1∇wL x; y;Wtð Þ such that the AdaGrad outperforms the other DL optimization

algorithms in a variety of disciplines, including vision classification and image-to-image tasks.
Even on issues in which adaptive methods typically perform poorly, AdaGrad can match SGD

Fig. 8 A plot of the loss reveals distinct properties for Adagrad optimizer with its style of convergence by
ensmallen visualization tool, where the steps that the optimizer takes plotted in red, Coordinates: (6.00,
14.00)Global Minimum: (1, 3)and, Optimizer Minimum: (1.018, 2.982) [28]

Table 3 Some common related works for using RK optimizer algorithm

Year Author Tasks Dataset Metrics values

2021 Ding et al. [23] • Image Classification
• Semantic Segmentation

• CIFAR-10
• ImageNet
• MNIST
• Cityscapes

ACC=78.5%

2018 Jason Dai et al. [19] • Fraud Detection
• Object Detection

• ImageNet N/A

2019 Xu et al. [83] • Face Detection • Wider face dataset ACC=0.935%
2020 Matt Hoffman et al. [36] • DQN Replay Dataset

• Offline RL
• DQN Replay Dataset N/A
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and Adaptive Moment (Adam) on the test sets of certain tasks. According to [31] recall and
precision enhancements are the two effective options in AdaGrad, and they can be integrated
into the end-to-end network. The method called the Corner Proposal Network (CPN) can
detect objects of varied sizes while also avoiding being misled by many false-positive
suggestions. CPN has an AP of 49.20% on the MS-COCO dataset and is competitive with
state-of-the-art object detection algorithms. Different from the first-order methods (e.g., SGD
and Adam), the second-order algorithms are among the most powerful optimization algorithms
entailing superior convergence features. In an unsupervised domain adaptation (UDA) setting,
Yao et al. [86] described a strategy for encoding visual task correlations to boost model
performance. Semantic segmentation and monocular depth estimation were proven to be
complementary tasks, and the appropriate encoding of their links increased the performance
on both tasks in a multitask learning scenario. According to Chen et al. [17], CADA is a
collection of new rules optimized for adaptive stochastic gradients, and it can be implemented
to save on communication upload. The new methods adaptively reuse stale Adam gradients,
conserving communication while maintaining similar convergence rates to the Adam optimiz-
er. Table 4 shows some of the tasks that commonly use the AdaGrad optimizer algorithm. A
notable drawback of AdaGrad is the decreasing LR over time because of the monotonic
increment of the running squared sum. Nonetheless, one of the most obvious advantages of
AdaGrad is that it eliminates the need to manually modify the LR. By simply setting the
default learning speed to 0.01, the algorithm can then adjust itself. AdaGrad’s disadvantage is
that the variable sum of squares increases over time, causing the learning pace to become
extremely slow and the training to freeze.

2.4 RMSProp optimizer

The sizes of gradients vary by weight and change over time, hence the difficulty in selecting a
single global LR. This aspect is addressed by RMSProp by retaining a moving average of the
squared gradient and altering the weight updates by this magnitude. The gradient updates are
elaborated in [43] as shown in Eqs. 5 and 6.

vt ¼ δvt−1 þ 1−δð Þ ∇wL x; y;wtð Þð Þ2 ð6Þ

w ¼ w−
1

ffiffiffiffi

vt
p þ e

⊙ ∇wL x; y;wð Þð Þ2 ð7Þ

Table 4 Some common related works for using AdaGrad optimizer algorithm

Year Author Tasks Dataset Metrics
Values

2020 Yao et al. [86] • Stochastic Optimization WikiText-103 ACC=
93.08%

2020 Chen et al. [17] • logistic regression task CIFAR10 ACC=95%
2021 Defazio et al.

[21]
• Stochastic Optimization CIFAR-10 ACC=

94.15%
20,220 Duan et al. [63] • Object Detection COCO N/A
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Table 5 presents some of the related works, including that of Khosla et al. [42] who compared
two different supervised contrastive loss models. The top-1 accuracy of 81.4% is achieved on
the ImageNet dataset with ResNet-200, a value that is 0.8% higher than the best value recorded
for this architecture. On the other datasets and two random variations, the cross-entropy can be
consistently surpassed. A semi-supervised learning algorithm presented by Pham et al. [62]
can achieve an accuracy of 90.29% on ImageNet. Meta Pseudo-Labels (MPLs) use a teacher
network to instruct a student network by generating pseudo-labels on unlabeled input.
Different from Pseudo-Labels in which the teacher is fixed, the teacher is continually adapted
in MPL via the feedback of the student’s performance on the labeled dataset. Various
measurements of efficiency on different hardware platforms and a wide range of application
scenarios were considered by Graham et al. [34]. Tests were performed to experimentally
support the technical choices in their study, eventually determining their approach to be
applicable on a majority of systems. The accuracy is 80% on ImageNet. The EvoNorms, a
series of innovative normalization activation layers with architectures surpassing the estab-
lished design patterns, were discovered by Liu et al. [48]. The feature maps were centered on
the activation functions. Their tests showed that EvoNorms could outperform different image
classification models, such as ResNet and Mask R-CNN with SpineNet, for the image
synthesis of segmentation-based layers. The denominator is the root mean square (RMS) error
of the gradients, hence the name of the algorithm. In most adaptive rate algorithms, a very
small value denoted by e is added to prevent the nullification of the denominator. Usually, e is
equal to 1e-7. The most obvious benefit of using RMSprop is that it solves AdaGrad’s problem
of progressive learning pace (i.e., decreasing learning speed over time, thus slowing down the
training, possibly leading to freezing). As for the drawback, the RMSprop algorithm can only
calculate the local minimum rather than the global minimum (i.e., Momentum) [12]. The two
momentum algorithms can be integrated with RMSprop to create an optimal Adam algorithm,
as to be discussed in the next section.

On the other hand, the denominator is the root mean squared error of the gradients (RMS),
hence the name of the algorithm. In most adaptive rate algorithms, a very small value e is
added to prevent nullification of the denominator; usually, it is equal to 1e-7.

Table 5 Some common related works for using RMSProp optimizer algorithm

Year Authors Tasks Datasets

2020 Khosla et al. [42] Contrastive Learning
Representation Learning
Data Augmentation
Image Classification
Self-Supervised Learning

ImageNet ImageNet-C

2021 Pham et al. [62] Image Classification
Meta-Learning Semi-Supervised

CIFAR-10
ImageNet
SVHN

2021 Graham et al. [34] Image Classification CIFAR-10
ImageNet

Liu et al. [48] Image Classification
Image Generation
Instance Segmentation
Semantic Segmentation

CIFAR-10
COCO
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2.5 Adaptive moment estimation (Adam)

Adam is a first-order gradient-based optimization technique for stochastic objective functions
based on adaptive lower-order moment estimates. Instead of using the usual SGD approach,
Adam is used to iteratively update the network weights depending on the training data as
shown in Fig. 9. Adam stems from evolutionary moment calculation and algorithm features as
shown in Eqs. (7), (8), and (9).

mt ¼ δmt þ 1−δ1ð Þ ∇wL x; y;wtð Þð Þ ð8Þ

vt ¼ δ2vt−1 þ 1−δ2ð Þ ∇wL x; y;wtð Þð Þ2 ð9Þ

w ¼ w−lr:
mt
ffiffiffiffiffiffiffiffiffiffiffiffi

vt þ e
p ð10Þ

It has many features and is the most common and fastest optimizer for ML techniques. The
advantages of using Adam include its (i) easy implementation and (ii) efficient computing, and
(iii) memory requirements are not needed. Adam can be viewed as a combination of RMSprop
and momentum. The Adam algorithm has grown in popularity over the years, and efforts have
been pursued to further optimize this technique. The two most promising variations of Adam
are the AdaMax and Nadam, which are supported by deepest-learning frameworks. Xin et al.
[82] found this scheme to have a sluggish inference speed, hence the difficulty of using it in
real-time applications. Aiming to speed up the BERT inference, DeeBERT, which is a simple
but effective approach, was subsequently considered. This method allows for the samples to
quit the model at a much earlier time without having to undergo a complete process.
Experimental results suggest that DeeBERT can reduce inference time by up to 40% without
compromising model quality. Furthermore, the examinations were able to demonstrate the
various behaviors in the BERT transformer layers and their redundancy. Consequently, new
ways of using deep transformer-based models were recommended to solve downstream
problems. Mobile BERT is a method proposed by Sun et al. [76] to compress and speed up
the popular BERT model. Mobile BERT, like the original BERT, is a task-agnostic technique
and thus may be applied generically to various downstream NLP jobs with a slight fine-tuning.
A specifically developed instructor model, namely, the inverted-bottleneck that includes the
BERT LARGE model, is initially trained prior to using the Mobile BERT. Mobile BERT is
4.3 times smaller and 5.5 times faster than the BERT BASE according to empirical

Language Modelling Image Classification

Machine Translation Semantic Segmentation

Adam Tasks

Fig. 9 Adam optimizer algorithm tasks in several computer vision problems
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investigations, and it can attain competitive results on well-known benchmarks with an F1
score of 90%. Akbari et al. [2] showed that the convolution-free VATT outperforms the state-
of-the-art convent-based designs in downstream tasks. VATT’s vision transformer has
achieved new performance marks (82.1% accuracy on Kinetics-400, 83.6% accuracy on
Kinetics-600, and 41.1% accuracy on Moments in Time) while avoiding supervised pre-
training. On ImageNet, the transfer-to-image classification result is 78.7% (top-1 accuracy),
superseding the transfer-from-scratch result of 64.7% when training on the same Transformer,
hence demonstrating the generalizability of their model despite the domain mismatch between
videos and images.In the fields of cross-lingual classification and unsupervised and supervised
machine translation, Lample et al. [44] achieved state-of-the-art results. On XNLI, the
technique can improve state-of-the-art configurations by 4.94% in terms of absolute accuracy.
On the WMT16 German–English, 34.3 BLEU was attained via unsupervised machine trans-
lation, outperforming the prior state-of-the-art methods by more than 9 BLEU. On theWMT16
Romanian–English, a new state-of-the-art 38.5 BLEU for supervised machine translation was
achieved. This scheme can outperform the previous best approach by more than 4 BLEU.
Table 6 lists some of the most frequently encountered Adam optimizer algorithm-related tasks.
As previously stated, Adam is a mix of Momentum and RMSprop. Thus, if Adam is assumed
to be an extremely heavy ball with friction, then momentum is the ball that plunges downhill,
quickly moving from the local minimum to the global minimum; however, the global
minimum cannot be reached. Furthermore, as oscillation around the target takes a long time
to complete due to friction, the algorithm may also easily stop as shown in Fig. 10.

2.6 Deep ensembles (DE)

Ensemble learning combines several individual models to improve generalization perfor-
mance. Although the method requires hyperparameter tuning, it is well-suited for large-scale
distributed data and can be readily implemented in a wide variety of architectures, such as
CNN and those models that do not use dropouts [25] as investigated Fig. 11. Non-Bayesian
approaches and other less popular evaluation metrics were recommended for the predictive
uncertainty of deep ensembles. Izmailov et al. [38] suggested using a posterior representation
comparable to multiple short chains. The performance of Bayesian neural networks was
unaffected by the prior scale, and the results were similar for diagonal Gaussian and mixtures
of Gaussian. Nonetheless, less costly alternatives, such as deep ensembles (DEs), can enhance
the generalization much further when a weight normalization step is added during training,

Table 6 Some common related works for using Adam optimizer algorithm

Year Author Tasks Datasets

2020 Sun et al. [76] Natural Language Inference
Question Answering
Transfer Learning

• SQuAD
• SST
• MRPC
• MobileBERT

2021 Akbari et al. [2] Action Classification
Action Recognition
Action Recognition in Videos
Self-Supervised Learning

• ImageNet
• UCF101
• Kinetics

2018 Lample et al. [44] Language Modelling
Unsupervised Machine Translation

• GLUE
• MUSE
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followed by a substitution of the output layer with a Gaussian process. Ahmadianfar et al. [1]
recommended a model to improve the distance-awareness abilities of modern deep neural
networks (DNNs). With the use of a set of vision tasks, the scheme is competitive with the DE
in terms of making predictions. Basak et al. [9] generated and assembled simplicial complexes
that outperformed the separately trained DEs in terms of accuracy and robustness to changes in
datasets. A pre-trained model was utilized, and the method only required a few training epochs
to determine the low-loss simplex. Ritter et al. [67] expanded Matheron’s conditional Gaussian
sampling rule to achieve a fast weight sampling. This scheme allowed the inference technique
to run faster than ensembles. More importantly, by using fully connected neural networks and
ResNets, competitive performance was achieved with respect to the state-of-the-art models in

Fig. 10 A plot of the loss reveals distinct properties for Adam optimizer with its style of convergence by
ensmallen visualization tool, where the steps that the optimizer takes plotted in red, Coordinates: (6.00,
14.00)Global Minimum: (1, 3)and, Optimizer Minimum: (1.022, 2.976) [28]

Fig. 11 General Deep Ensembles Idea
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terms of prediction and uncertainty estimation tasks, and the parameter size was decreased to
24.3% of that of the single neural network. Siems et al. [74] used multiple regression models
on a dataset and built surrogates via DE to model the uncertainties. The merits of using a
surrogate benchmark over a tabular one was also determined. The NAS-Bench-301 dataset can
be used to acquire results equivalent to that of the true benchmark for a fraction of the cost.
Furthermore, as the training is easily parallelized, separate networks can be considered.
Explicitly decorrelating network predictions similar to the approach in Ref. [61] may enhance
ensemble diversity and performance. An adaptive mixture of experts can increase the perfor-
mance even further by optimizing the ensemble weights. Implicit ensembles may also be
considered when members of the ensemble share the same parameters. Ensembles generally
have a relatively high prediction accuracy, and the size of the ensemble affects the test results.
Furthermore, ensembles can overcome the common challenges of other techniques. Nonethe-
less, each approach has its own unique features. For instance, during data wrangling and
tweaking, various models can be tweaked to improve the fitting. As for the disadvantage,
ensembles are difficult to interpret. Even the best ideas attained via the ensembles are not
always able to persuade decision-makers, and they are not always adopted by the end-
consumers. Finally, creating, training, and deploying ensembles is more expensive than the
other methods. The return on investment of the ensemble technique should be carefully
studied, as increasing the complexity is not always a good approach [11, 49] as shown in
Table 7. Furthermore, method based on data aggregation to predict citywide population
movements using dynamic spatiotemporal correlations [4]. Hence, utilizing Spatio-Temporal
Patterns and Deep Hybrid Neural Networks to Predict Citywide Traffic Crowd Flows is
presented by Ali et al. [3]. However, using attention-based neural networks to predict citywide
traffic flow by using dynamic spatiotemporal correlations and convolutional neural networks
with dynamic spatiotemporal graphs to forecast citywide traffic patterns [5, 6].

2.7 Feedback alignment

By comparing the simple domain and demanding robot simulation tasks, Zhang et al. [94]
empirically demonstrated the benefit of the suggested algorithms and their nonlinear variations
via the competing density-ratio-based approach. Feedback Alignment (FA) assumes the
presence of a global feedback path, which may be biologically implausible because the
feedback layer needs to travel a long physical distance. The principle of FA is centered on
driving the error signal. In the alignment stage, a layer cannot learn unless its upper layers are
roughly aligned. Bass et al. [10], who developed the human connectome project, used UK
Biobank datasets. Their method was validated via Mini-Mental State Examination cognitive

Table 7 Some common related works for using Deep Ensembles optimizer algorithm

Year Authors Tasks Datasets

2021 Izmailov et al. [38] Data Augmentation Variational Inference IMDb
Movie Reviews

2021 Ritter et al. [67] Deep Neural Network CIFAR-100
2020 Siems et al. [74] Neural Architecture Search CIFAR-10

NAS-Bench-101
2020 Liu et al. [49] language understanding SVHN
2021 Benton et al. [11] Connecting Volumes CIFAR-10
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test score prediction for Alzheimer’s disease The neuroimaging initiative cohort and brain age
prediction for both neurodevelopment and neurodegeneration were considered. The generated
FA maps could help to explain the outlier predictions, enabling the regression module to
enhance the latent space disentanglement. Batch normalization, which adds implicit contras-
tive terms, was leveraged by Kefato et al. [41]. Then, four feature augmentation (FA) strategies
for the graphs were implemented, as data augmentation is critical in contrastive learning. Even
if the graph’s topological augmentation (TA) was widely employed, their empirical data
showed that FA is as competitive as the TA. The model proposed by Najafi et al. [55]
suggested a parallelizable model can simultaneously handle several data points. The semantic
similarities of two tweets were compared. As opposed to the existing approaches, the
suggested strategy was found to be effective. Kamran et al. [40] trained a generative adver-
sarial network utilizing multiple weighted losses on separate data modalities via a semi-
supervised technique. According to the tests, the proposed design can outperform the previ-
ously reported generative networks in terms of fundus-to-angiography synthesis. Furthermore,
their vision transformer-based discriminators for retinal illness prediction can be generalized
well on out-of-distribution datasets. Table 8 presents some of the tasks that commonly use the
FA optimizer algorithm. FA requires a thorough investigation of its asymmetric outcomes
under certain network assumptions.

2.8 Direct feedback alignment

A very deep 100-layer network can be trained with Direct Feedback Alignment (DFA).
Furthermore, the reciprocal feedback assumption is replaced with a single feedback layer in
DFA. Thus, DFA can be viewed as skipping the connections on a feedback path, allowing for
more flexibility in the actual form of feedback connections. One of the first attempts of error-
driven learning used directly coupled feedback routes. By skipping non-differentiable layers,
the method can be utilized to deliver error signals. FA presumes a global feedback channel,
which may be biologically untenable because of the single feedback layer’s enormous physical
distance. The error signal is driven by the notion of “feedback alignment” in both FA and
DFA. A layer cannot learn unless the layers above it are roughly aligned in the alignment step.
Thus, FA and DFA are less effective optimization techniques. Replacing the backpropagation
with a learning system with superior generalization performance is a more appropriate and
biologically plausible path. In this scheme, the weights on a layer are updated by initially
fixing the layer’s activation. Nonetheless, the theoretical findings of the negative descending
direction have been inconclusive. Zhuge et al. [95] attempted to define the concept of integrity

Table 8 Some common related works for using Feedback Alignment optimizer algorithm

Year Authors Tasks

2021 Bass et al. [10] Image Registration
2021 T. Kefato et al. [41] Contrastive Learning

Data Augmentation
Self-Supervised Learning

2021 Najafi et al. [55] Platform Semantic Similarity
SemanticTextual Similarity Sentence Embedding

2021 Kamran et al. [40] Disease Prediction
Generation Image

2021 Zhang et al. [92] Function Approximation

16608 Multimedia Tools and Applications (2023) 82:16591–16633



at the micro- and macro-levels. The model could highlight all the components corresponding
to a specific salient object at the micro-level. At the macro-level, the model must discover all
salient objects in the given visual scene. The novel Integrity Cognition Network (ICON) was
designed to aid the integrity learning for salient object recognition. ICON was used to
investigate three key components related to the learning of strong integrity features.

Ohana et al. [58] demonstrated the use of intrinsic noise of optical random projections to
develop a differentially private DFA mechanism, which is the best approach for providing
privacy-by-design training. Their theoretical study focused on the adaptive privacy technique,
meticulously quantifying how optically random projection noise can cause differential privacy.
According to test results, the proposed learning technique can achieve high end-task perfor-
mance. Jinia et al. [50]investigated the extent to which DNN model training may be accom-
plished using a globally broadcast learning signal combined with local weight updates. A
learning rule called the global error-vector broadcasting and a family of DNNs called the
vectored nonnegative networks that use the learning rule were proposed. In this scheme, when
the postsynaptic unit is activated, the learning rule generalizes the three-factor Hebbian
learning by updating each weight using an amount proportionate to the inner product of the
presynaptic activation and a globally broadcast error vector. Liu et al. [50] proposed learning
the weight matrices in DFA in a backward manner by using the Kolen–Pollack learning
methodology to increase training and inference accuracy of DNNs. Through training, the
strategy can improve the learning accuracy and lower the gap between the parallel and serial
training. Table 9 lists some of the tasks that commonly use the DFA optimizer algorithm.

2.9 Layer-wise adaptive rate scaling (LARS)

Layer-Wise Adaptive Rate Scaling (LARS) is a technique for large-batch optimization. LARS
differs from other adaptive algorithms, such as Adam or RMSProp, in two ways. First, LARS
employs a separate LR for each layer rather than each weight. Second, aimed at improving the
management of training pace, the size of the update is adjusted with respect to the weight
norm. Goyal et al. [16]investigated whether self-supervision can be successfully implemented
when large models are trained on non-curated images with no supervision. The model with 1.3
billion parameters and trained on 1 billion random images with 512 GPUs achieved 84.2%
accuracy, exceeding the best self-supervised pre-trained model by 1%. This finding demon-
strates that self-supervised learning can be implemented in real-world settings. According to
Chen et al. [16], development was possible without requiring specific architectures or a
memory bank. The major components of their framework were thoroughly explored as a
means of determining the allowable contrastive prediction tasks in learning effective repre-
sentations. Khosla et al. [42] proposed two different versions of the supervised contrastive loss

Table 9 Some common related works for using Direct Feedback Alignment optimizer algorithm

Year Author Tasks Datasets

2021 Zhuge et al. [95] Object Detection
Salient Object Detection

PASCAL-S

2020 Ohana et al. [58] Image Classification Fashion-MNIST
2020 Jinia et al. [39] Image Classification CIFAR-10 MNIST
2021 Liu et al. [50] Image Classification CIFAR-10

MNIST
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to show which one performs the best. An accuracy of 81.4% on the ImageNet dataset with
ResNet-200 was achieved, in which the value is 0.8% higher than the best value recorded for
this architecture. On the other datasets and two ResNet variations, the cross-entropy was
consistently surpassed. The loss has the features of resisting natural corruption, and it is more
stable when handling hyperparameter settings, such as optimizers and data augmentations.
Table 10 shows some of the tasks that commonly LARS optimizer algorithm.

2.10 Adfactor

Adfactor is a stochastic optimization method based on Adam; it uses less memory while
maintaining the empirical benefits of addictiveness. This algorithm is accomplished by
ensuring that the squared gradient accumulator’s factored representation is constant across
training steps. The Adfactor technique can reconstruct a low-rank approximation of the
exponentially smoothed accumulator at each training step, which is a better optimal approach
compared with the generalized Kullback–Leibler divergence. In the Adfactor method, the
moving averages of the rows and columns sums of the squared gradients are tracked for the
matrix-valued variables. Berkeley et al. [45] presented two strategies to improve transformer
efficiency. The dot-product attention was replaced with locality-sensitive hashing to reduce the
model complexity. Furthermore, reversible residual layers instead of normal residuals were
used, allowing for the activations to be stored in the training phase only once rather than N
times, where N is the number of layers. The Reformer is comparable with the transformer
models in terms of performance, but it is significantly faster on extended sequences. Table 11
shows some of the tasks that commonly use the Adfactor optimizer algorithm. Xue et al. [84]
presented byte-level models that are competitive with token-level models. The byte-level
models are highly robust to noise, and they perform suitably on tasks that are sensitive to
spellings and pronunciations. As part of the authors’ contribution, a new set of pre-trained
byte-level transformer models based on the T5 architecture was released.

2.11 AMSGrad

AMSGrad is a stochastic optimization method aimed at solving a problem by utilizing Adam-
based optimizers. AMSGrad updates the parameters by using the maximum of previously
squared gradients rather than the exponential average as shown in Fig. 12. Lim et al. [47]
proposed a non-asymptotic analysis for the tamed unadjusted stochastic Langevin algorithm
(TUSLA). Non-asymptotic error bounds were established for the TUSLA algorithm in

Table 10 Some common related works for using LARS optimizer algorithm

Year Authors Tasks Datasets

2020 Khosla et al. [42] Contrastive Learning
Data Augmentation

ImageNet ImageNet-C

2020 Chen et al. [16] Image Classification CIFAR-10
ImageNet
Oxford 102 Flower

2021 Goyal et al. [33] Image Classification ImageNet
COCO
Places205
iNaturalist
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Wasserstein-1 and Wasserstein-2 distances. The latter result allowed for the further derivation
of non-asymptotic estimates in relation to the expected excess risk. Table 12 presents some of
the tasks that commonly use the AMSGrad optimizer algorithm. Wang et al. [78] proposed a
new motivation for designing the proximal function of adaptive algorithms called Marginal
Regret Bound Minimization. On this basis, a class of adaptive algorithms that not only can
achieve marginal optimality but also potentially converge much faster than any existing
adaptive algorithms in the long term was proposed. The superiority of the class of adaptive
algorithms was proven theoretically and empirically by performing experiments in DL.

2.12 Gravity

Gravity is a kinematic approach to optimization based on gradients, i.e., a new approach to
gradient-based optimization. Introduced by Bahrami et al. [8], this scheme describes how
parameters can be changed to lower the DL model’s loss. Three intuitive hyperparameters for
the optimal values were proposed. In addition, a moving average option was presented. Five
typical datasets were trained on two VGGNet models with a batch size of 128 for 100 epochs
to compare the performance of the Gravity optimizer with two common optimizers (Adam and
RMS). According to Wang et al. [79], SwingBot is a robot that can learn the physical
properties of a held object through tactile exploration. Tactile information is provided by

Fig. 12 A plot of the loss reveals distinct properties for the Amsgrad optimizer with its style of convergence by
ensmallen visualization tool, where the steps that the optimizer takes plotted in red. The global minimum is (1, 3)
and the optimizer minimum is (1.024, 2.975) [28]

Table 11 Some common related works for using Adfactor optimizer algorithm

Year Authors Tasks Datasets

2020 Berkeley et al. [45] • Image Generation
• Language Modelling

ImageNet
Natural Questions

2021 Xue et al. [84] • Natural Language Inference N/A
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two exploration actions (tilting and shaking), which are used to generate a physical feature
embedding space. By using the embedding, a Swing Bot can anticipate the swing angle
obtained by a robot conducting dynamic swing-up actions on a previously encountered object.
Table 13 shows some of the tasks that commonly use the Gravity optimizer algorithm.

Table 14 illustrates some common optimization algorithms tasks that help in detecting the
best optimizer for a specific computer vision task. It is critical for anyone selecting an
optimizer to identify the hyper parameters that may differ from one to the next. Model
parameters are configuration variables that are internal to the model, and a model learns them
on its own. The values of parameters can be estimated by optimization algorithms, such as
gradient descent. Model hyperparameters are the learning rate for training a neural network.
Detecting the initial values of hyparameters is essential for all types of optimizers that are
shown in Table 14. The forthcoming section includes the proposed optimization algorithms to
tackle two important challenges with two different types of datasets. The first one is the Seven
Skin Cancer (SSC) detection based on ISIC dataset. While the second challenge is the
utilization of Covid-19 CT and X-ray images extracted from COVIDx dataset. The two dataset
are utilized to ensure the effect of optimizer algorithms with different types of medical images.
Accordingly, we implement the two scinarios of images using the same hyperparameter values
listed in Table 15. Furthermore, SGD and Adam optimizers achieved reliable and promising
results comparing with other optimization algorithms.

3 Proposed method

In this section, we present two different types of medical images. One using colored skin
cancer images, and the other using grayscale COVID-19 images. One of the most common
diseases in the world is skin cancer. Given that the skin is the body’s largest organ, it is natural
that skin cancer is the most prevalent type of cancer in humans [56]. DL reduces the need for

Table 12 Some common related works for using AMSGrad optimizer algorithm

Year Author Tasks Datasets Metrics

2019 Lim et al. [47] Applications to neural networks
with relu activation function

N/A N/A

2021 Wang et al. [78] Classification Task CT scan dataset AUC=0.90%
ACC=82.9%Sensitivity=0.81%

Table 13 Some common related works for using Gravity optimizer algorithm

Year Authors Datasets Tasks

2021 Bahrami et al. [8] CIFAR-10
MNIST
CIFAR-100
Fashion-MNIST

Image Classification

2021 Wang et al. [79] N/A Self-Supervised Learning
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feature engineering by learning and extracting meaningful features from raw data automati-
cally. Many fields, particularly computer vision, have been transformed by DL. Furthermore,
DL has recently achieved many successes in biomedical engineering. DL can reduce the need
for feature engineering by learning and extracting meaningful features from raw data auto-
matically. Many fields, particularly computer vision, have been transformed by DL. Further-
more, DL has recently achieved many successes in biomedical engineering, as shown in
Table 15. Datta et al. [20] compared the performance of VGG, ResNet, InceptionResNetv2,
and DenseNet architectures with and without the Soft-Attention mechanism while classifying
skin lesions. The original network, when coupled with Soft-Attention, can outperform the
baseline by 4.7% while achieving a precision of 93.7% on the HAM10000 dataset. Nadipineni
et al. [54]. Mahboda et al. [51] developed a baseline classifier as the reference model without
using any segmentation mask. On this basis, we used either manually or automatically created
segmentation masks in both the training and test phases in different scenarios and investigated
the classification performances. By using the International Skin Imaging Collaboration (ISIC)
dataset from 2019, Hosny et al. [37] suggested a CAD system for skin lesions. However, this
dataset is limited by many issues, including uneven classes. A multiclass SVM with a
bootstrap-weighted classifier was then used. According to the image class, this classifier can
adjust the weights. GoogleNet was also given a new class with a different quantity of unknown
images, which were acquired from various sources for the training. Hameed et al. [35]
suggested a multiclass and multilevel algorithm-based skin lesion classification system. With
the suggested model, traditional ML and DL methods can be applied.

3.1 Data augmentation

The data augmentation is conducted through affine transformations, and it involves the
following elements: i) random brightness, ii) contrast changes, iii) random flipping, iv) random
rotation, v) random scaling, and vi) random shear.

Table 14 The most common optimization algorithms task

Year Optimizer Name Common Task used

1951 Stochastic Gradient Descent Federated Learning
Image Classification

1999 SGD with Momentum Image Classification
Object Detection

2000 Rung Kutta optimization Object Detection
2011 AdaGrad Language Modelling
2013 RMSProp Image Classification
2014 Adam Language Modelling
2014 Feedback Alignment Object Detection

Knowledge Distillation
2016 Deep Ensembles Image Classification
2016 Direct Feedback Alignment Image Classification

Out-of-Distribution Detection
2017 LARS Image Classification

Self-Supervised Learning
2018 Adafactor Question Answering
2019 AMSGrad Time Series
2021 Gravity Numerical Integration
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Table 15 The default values for common optimization algorithms

Optimizer Name Attribute Default Value

AdaGrad StepSize 0.01
BatchSize 32
Epsilon 1e-8
MaxIterations 100,000
Tolerance Tolerance
Shuffle True
Resetpolicy True
Exactobjective False

Adam Stepsize 0.001
Batchsize 32
Beta1 0.9
Beta2 0.999
Eps 1e-8
Max_iterations 100,000
Tolerance 1e-5
Shuffle True
Resetpolicy True
Exactobjective False

AdaMax Stepsize 0.001
Batchsize 32
Beta1 0.9
Beta2 0.999
Eps 1e-8
Max_iterations 100,000
Tolerance 1e-5
Shuffle True
Exactobjective False
Resetpolicy True

AMSGrad Stepsize 0.001
Batchsize 32
Beta1 0.9
Beta2 0.999
Eps 1e-8
Max_iterations 100,000
Tolerance 1e-5
Shuffle True
Exactobjective False
Resetpolicy True

Momentum SGD Stepsize 0.01
Batchsize 32
Maxiterations 100,000
Tolerance 1e-5
Shuffle True
Updatepolicy Momentumupdate()
Decaypolicy Decaypolicytype()
Reset policy True
Exact objective False

Nadam Max_iterations 100,000
Tolerance 1e-5
Shuffle True
Reset policy True
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3.2 Building deep learning model

The Seven Skin Cancer (SSC) proposed model consists of CNN sequential layers, as shown in
Fig. 13. The focus of this comparative survey on constructing an automated model for skin
lesion classification is to enhance the model accuracy by incorporating the new methodologies.
The accuracy is enhanced when new techniques are introduced into the equation. Although the
CNN model has two layers, appropriate preprocessing, input, and training procedures can
significantly improve the model accuracy. Data augmentation, image production via an
adversarial generative network, and transfer learning can help to overcome the difficulty of
training with a small dataset. Some academics rely on private datasets from the Internet.
However, the required dataset is not available, and it is even more difficult to duplicate the
findings and outcomes. Furthermore, the image selection from the Internet may be biased.
Another key issue in this subject is the production of large public image collections containing
photographs that can fully represent the world’s inhabitants to eliminate racial bias as shown in
Fig. 13. Discrimination based on race and gender must be considered. For people from
underrepresented gender or ethnicity, AI discrimination means that models and algorithms

Fig. 13 The proposed work model layers with input and output size
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have failed to produce optimal results. In most current datasets, skin lesions on light-colored
skin are the most apparent.

Data augmentation, image production via an adversarial generative network, and transfer
learning could all help with the difficulty of training with a small dataset. Some academics rely
on private datasets from the internet. Because the dataset is not available, it is more difficult to
duplicate the findings and outcomes, and the image selection from the internet may be biased.
Another key issue in this subject is the production of large public image collections containing
photographs that are as representative of the world’s inhabitants as possible in order to
eliminate racial bias. Consider discrimination based on race and gender. For people of
an under-represented gender or ethnicity, AI discrimination means that models and
algorithms fail to produce optimal results. In most current datasets, skin lesions on light-
colored skin can be seen.

3.3 Results

The SSC proposed model is applied to the ISIC dataset for skin cancer detection. Model
evaluation is a core stage of measuring the performance of a model. In the following section,
we compare the three optimizers (SGD, RMSProp, and Adam) commonly used for image
classification tasks.

3.3.1 Datasets

This research applied the ISIC dataset [15] and COVIDx dataset [88] to review and evaluate a
well-known dataset extracted from both skin cancer colored images and Covid-19 CT
grayscale images, as shown in Figs. 14 and 15. The ResNet (50) model was pre-trained using
the ISIC dataset, which contains 2594 images. The ISIC dataset covers seven classes. The
work was written in CUDA and ran on a GPU. Using a GPU helps to sufficiently manage the
voluminous training data while keeping the model error rate low. The SSC proposed model’s
final three layers (completely connected, softmax layer, and classification layer) were elimi-
nated and replaced with the new three algorithms. The preceding three layers of the pre-trained
ResNet (50) were built to classify 1000 classes, but only seven classes (melanoma,
melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma,
and vascular lesion) were needed in the proposed work.

Fig. 14 Random sample from seven classes of ISIC dataset
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COVID-19 has infected over 1.3 million people around the world and caused the deaths of
over 106,000 people. Inefficiency and a lack of diagnosis are two major roadblocks to
regulating the progression of this disease. We compared different types of optimizations with
another dataset that we called COVIDx CT, a benchmark CT image dataset derived from a
variety of sources of CT imaging data currently comprising 104,009 images across 1489
patient cases. We used a sample of 13,413 cases that were divided into two class labels; 7395
infected COVID-19 cases and the remaining 6018 were not infected or normal cases. The
figure shows samples of chest CT images with COVID-19 CT cases and normal cases.

The proposed model’s reliability was assessed by considering several performance indica-
tors, including sensitivity, specificity, precision, negative predictive value, false-positive rate,
false discovery rate, accuracy, F-score, and Matthews Correlation Coefficient. These measures
can be computed on the basis of the following Eqs. (10–19) [72]:

Recall ¼ TP

TPþ FNð Þ ð11Þ

Specificity ¼ TN

FPþ TNð Þ ð12Þ

Precision ¼ TP

TPþ FPð Þ ð13Þ

NPV ¼ TN

TNþ FNð Þ ð14Þ

FPR ¼ FP

FPþ TNð Þ ð15Þ

(a)

(b)

Fig. 15 Example chest CT images from the COVIDx-CT dataset, (a) COVID-19 cases, and (b) Normal cases
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FDR ¼ FP

FPþ TPð Þ ð16Þ

FNR ¼ FN

FNþ TPð Þ ð17Þ

Accuracy ¼ TN þ TP
TP þ FPþ TN þ FN

ð18Þ

F1−score ¼ 2TP

2T Pþ F Pþ F N
ð19Þ

MCC ¼ TP*TN−FP*FN
Sqrt TPþ FPð Þ* TPþ FNð Þ* TNþ FPð Þ* TNþ FNð Þð Þ ð20Þ

where TP, FP, FN, and TN refer to a true positive, false positive, false negative, and true
negative, respectively.

3.3.2 Optimizer algorithms

Optimizers are methods or strategies for lowering losses by altering the neural network’s
features, such as weights and LR. Optimizers are used to address the optimization problems by
minimizing the function. The main metrics values with the ISIC dataset are illustrated in
Table 16.

SGD optimizer Gradient Descent has the disadvantage of requiring voluminous memory to
load the entire dataset of n-points at a given time to compute the derivative of the loss function.
Nonetheless, some of the disadvantages of the SGD algorithm can be alleviated. Nesterov

Table 16 A related works for Skin cancer diagnosing on ISIC dataset

Year Authors Model Task Metrics values

2021 Datta et al. [20] Soft Attention Image Classification
Lesion Classification

ACC=93.40%
AUC=98.40%
Precision=93.70%

2020 Nadipineni et al. [54] Skin lesion classification Data Augmentation
Lesion Classification

N/A

2020 Mahbodet al. [51] CNN Classification Model Skin Lesion Classification N/A
2020 Hosny el al. [37] Transfer learning model Classifying the challenging

dataset ISIC2019
ACC=98.70%
AUC=95.60%
Precision=95.06%

2020 Hameed
et al. [35]

K-means, transfer learning,
Augmentation.

Skin lesions Classification N/A

2020 Zhang el al. [91] Optimized algorithm for
weight selection

Applying genetic algorithm
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Momentum is a slight variation of the normal gradient descent, and it can significantly speed
up the training and improve the convergence. We applied the SGD optimizer to the ISIC
dataset and achieved an accuracy measure metric of 0.9445%, as shown in Figs. 16 and 17.

RMSProp optimizer The RMSProp optimizer aids in various computer vision tasks by
utilizing leaky averaging, which it shares with momentum. Figures 18 and 19 show the
accuracy measure metrics in relation to the effect RMSProp.

Adam Adam can be viewed as a combination of RMSprop and SGD, with the addition of
momentum. For each parameter, Adam calculates the adaptive LRs as investigated in Figs. 20,
and 21 which describes the training, and validation loss and accuracy, respectively.

(a)                                             No. of iteration

(b)                                             No. of iteration

Fig. 16 a The Training Loss, b The Training accuracy of the proposed model based on SGD optimizer on ISIC
dataset
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Compared with another dataset is a helpful way to decide and distinguish between different
optimization algorithms. The SSC model is implemented on the COVIDX dataset and
achieves a metric result that is converging with the ISIC dataset. For the previous implemen-
tation with ISCI, we decided to use the ADAM and SGD optimizers for this comparison.
Figures 22 and 23 have the training and validation curves with the ADAM optimizer.
Figures 24 and 25 show the training and validation curves with the SGD optimizer. Metric
values are illustrated in Table 17. We utilised the subsampled COVIDx dataset and analysed
the performance of the proposed algorithm using both Adam and SGD optimize as shown in
Table 18. We found that slightly improved results were achieved. On the other hand, we plan

(a)                                             No. of iteration

(b)                                             No. of iteration

Fig. 17 a The Validation Loss, b The Validation accuracy of the proposed model based on SGD optimizer on
ISIC dataset
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to use other classifiers to monitor the performance of algorithms that may exhibit performance
degradation. This behaviour results from the fact that the classifiers may still use the other
features to provide an accurate performance even if one feature has declined. However, if the
quality of every feature decreased, the algorithm’s performance would likewise have de-
creased. Therefore, every classifier acted appropriately when the sampling duration was long.
Therefore, the ideal classifier to use in order to apply this technique should be one that delivers
[14].

This research presents a comparative survey of several optimization algorithms and a
comprehensive study of diagnosing skin cancer infection with deep CNNmodels. The selected

(a)                                             No. of iteration

(b)                                             No. of iteration

Fig. 18 a The Training Loss, b The Training accuracy of the proposed model based on RMSProp on ISIC
dataset
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(a)                                             No. of iteration

(b)                                             No. of iteration

Fig. 19 a The Validation Loss, b The Validation accuracy of the proposed model based on RMSProp on ISIC
dataset
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(a)                                             No. of iteration

(b)                                             No. of iteration

Fig. 20 a The Training Loss, b The Training accuracy of the proposed model based on Adam optimizer on ISIC
dataset
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(a)                                             No. of iteration

(b)                                             No. of iteration

Fig. 21 a The Validation Loss, b The Validation accuracy of the proposed model based on Adam optimizer on
ISIC dataset
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available and known algorithms are described and then compared. The comparison of the skin
lesion classification methods indicates that the problem formulations of each study vary
slightly. The efficient melanoma detection process entails five core elements: data acquisition
(collection), fine-tuning, selection of features, DL, and final model development. The first step

i -

                                                                        (a)                                             No. of iteration

                                                                        (b)                                             No. of iteration

Fig. 22 a The Training Loss, b The Validation accuracy of the proposed model based on Adam optimizer on
COVIDx dataset
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nvolves the acquisition of data on skin cancer detection from publicly available benchmarks
and non-listed and non-public databases, such as the melanoma detection images collected
from the Internet.

4 Conclusion

The survey was run by optimization algorithms such as AdaMax, SGD, Root Mean Square
Propagation, Adaptive Gradient Algorithm, Namax, and Adam. Optimization algorithms are
available and commonly used to solve complex problems. Then, a comprehensive survey was

                                                                        (a)                                             No. of iteration

                                                                        (b)                                             No. of iteration

Fig. 23 a The Validation Loss, b The Validation accuracy of the proposed model based on Adam optimizer on
COVIDx dataset
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conducted, aiming to gain deeper insights into the different aspects of the algorithms. Among
the optimization algorithms, results are better when trapping is prevented by local optimal
solutions. The performance of AdaMax is superior among the selected algorithms in terms of
numerical function optimization. DL makes intelligent decisions on its own and ultimately
achieves a higher accuracy rate. The pre-trained DL models and handcrafted methods based on
the DL approach have already shown promising results for the high-precision accuracy of
melanoma detection. However, in this study, we highlighted the importance and effect of
optimization algorithms to improve the accuracy of the applied medical image datasets with

                                                                        (a)                                             No. of iteration

                                                                        (b)                                             No. of iteration

Fig. 24 a The Training Loss, b The Training accuracy of the proposed model based on SGD optimizer on
COVIDx dataset
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                                                                        (a)                                             No. of iteration

                                                                        (b)                                             No. of iteration

Fig. 25 Note: This data is mandatory. Please provide

Table 17 The overall common metrics for all optimization algorithms with ISIC dataset

SGD Optimizer

Sensitivity Specificity Precision NPV FPR FDR FNR Accuracy F-score MCC

0.9507 0.9370 0.9480 0.9402 0.0630 0.0520 0.0493 0.9445 0.9494 0.8879
RMSprop Optimizer
Sensitivity Specificity Precision NPV FPR FDR FNR Accuracy F-score MCC
0.9133 0.9091 0.9199 0.9016 0.0909 0.0801 0.0867 0.9113 0.9166 0.8220
Adam Optimizer
Sensitivity Specificity Precision NPV FPR FDR FNR Accuracy F-score MCC
0.9773 0.9685 0.9700 0.9762 0.0315 0.0300 0.0227 0.9730 0.9737 0.9460
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different challenges, such as skin cancer and COVIDx. We further highlight the location
problem and how to tackle this problem to boost the performance of the algorithm with
different applied classifiers and datasets. In the future, we plan to use it to monitor the
performance of the algorithm with a sub-sampled dataset. In this way, it is possible to know
which algorithm is extracting more information from the data.
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