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Abstract
Given the rise of deep learning and its inherent black-box nature, the desire to interpret these systems and explain their

behaviour became increasingly more prominent. The main idea of so-called explainers is to identify which features of

particular samples have the most influence on a classifier’s prediction, and present them as explanations. Evaluating

explainers, however, is difficult, due to reasons such as a lack of ground truth. In this work, we construct adversarial

examples to check the plausibility of explanations, perturbing input deliberately to change a classifier’s prediction. This

allows us to investigate whether explainers are able to detect these perturbed regions as the parts of an input that strongly

influence a particular classification. Our results from the audio and image domain suggest that the investigated explainers

often fail to identify the input regions most relevant for a prediction; hence, it remains questionable whether explanations

are useful or potentially misleading.

Keywords Interpretability � Explainability � Adversarial examples � Evaluation

1 Introduction

In recent years, a wide variety of explanation methods

(‘‘explainers’’) have been developed in order to explain the

inner workings of deep neural networks, with two large

groups being perturbation- and gradient-based explainers.

The large number of approaches available makes it hard or

even impossible to decide which explanation technique to

choose and which explanation to trust. Since there is no

agreement on what constitutes a ‘‘good explanation’’ [1],

an explanation is often simply evaluated based on whether

it looks reasonable or matches one’s expectation (‘‘confir-

mation bias’’) [2].

This lack of standard evaluation metrics hinders a

comparison between different explanation techniques.

Even worse, it was shown that different explanation

methods disagree [3, 4], which suggests that at least some

of them do not capture the real inner workings of a system

and that explanations produced by an explainer A cannot

serve as a ground truth for a newly developed explainer B.

While no standard evaluation procedure for explanations

has emerged so far, a few different approaches were pro-

posed in the past. On one hand, these include metrics that

quantify the quality of single explanations, e.g. fidelity,

consistency, or comprehensibility [5]. These metrics may

sometimes be hard to compute (e.g. comprehensibility) and

can—in the worst case—give a false sense of trust into a

particular explanation (cf. [6]). On the other hand, also

approaches for evaluating an explanation algorithm as a

whole were proposed, e.g. region perturbation [7], ROAR

[8], sanity checks [2], and the CLEVR-XAI benchmark [9].

But again, the assumptions underlying many of these

approaches have been questioned in the past (cf. [9, 10]).

Previous approaches to compare different explainers

either focus on pixel-wise attributions computed by gra-

dient-based explainers (without considering perturbation-

based explainers like Local Interpretable Model-agnostic

Explanations (LIME)) [2, 8, 9] or compare LIME to rule-
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based techniques or other methods, which are often not

applicable to domains such as images [11, 12]. A com-

parison between gradient-based and perturbation-based

explanations is not straightforward, as the granularity of

these explanations is different; as opposed to pixel-wise

explanations, LIME explanations consist of groups of

pixels, also called super-pixels or segments. Recent work

has therefore tried to address evaluation from a different

angle, namely by using dataset modifications [13] or

adversarial examples [14] as ground truth. As adversarial

perturbations lead to changes in a system’s original pre-

diction, the reason for such an (erroneous) prediction can

be found in these perturbations of the input. Göpfert et al.

[14] use so-called localised adversarial attacks, which

attack a constrained region of an input image, in order to

evaluate classic Saliency [15], Guided Backpropagation

[16], and LIME [17], making it one of the first attempts to

compare pixel-wise attribution maps with a method such as

LIME. The evaluation in Göpfert et al. [14] is based on

how well each explainer recovers the affected region as the

cause for the adversarial prediction, with LIME being the

explainer that performs best in their setting.

In this work, we follow a similar idea and use adver-

sarial perturbations to evaluate the plausibility of expla-

nations in two different domains, namely audio as well as

images. We refine and extend the analysis along several

dimensions, in order to provide more detailed insights and

a fairer comparison for different explainers. In particular,

we test explainers using adversarial perturbations spread

over either parts or the entirety of a sample. Since we are

not restricting perturbations to very dense regions of a

sample, we do not favour explanations which are inherently

more concentrated (such as LIME).

In a bit more detail, the paper is structured as follows:

First, we give an overview over all examined explainers in

Sect. 2, as well as the attacks on the audio / image systems

in Sect. 3. We then detail our experimental setup in Sect. 4.

In Sect. 5, we evaluate LIME on an audio classification

task for which we chose a state-of-the-art Singing Voice

Detection System (SVDS) [18]. In this set of experiments,

we focus on LIME with time-frequency segments (i.e.

rectangular subparts of spectrograms) as an explainer, as

this is the most prominent method in audio (cf. [19–22]).

Then, in Sect. 6, we evaluate a wider range of explainers,

including earlier approaches (e.g. LIME, Saliency and

Guided Backpropagation), as previously compared by

Göpfert et al., as well as more recent methods (e.g.

SmoothGrad [23] or VarGrad [2]) on a variety of pre-

trained ImageNet classifiers. For the experiments in the

image domain, we use more commonly used super-pixels

computed by the Simple Linear Iterative Clustering (SLIC)

algorithm [24] as segments, as well as rectangular image

segments. We also propose to aggregate pixel-wise

attributions to such super-pixels or segments. In contrast

with Göpfert et al. [14], we propose a non-random baseline

based on the magnitude of the adversarial perturbation for

all our experiments. We finally discuss our findings and

give an outlook in Sect. 7. This article is an expanded

version of a conference paper (Praher et al. [6]), with the

following new contributions:

• We present the first work that compares different

explainers for multiple models in the image domain as

well as an explainer applied to an audio system, using

adversarial perturbations as ground truth;

• We propose to aggregate pixel-wise attributions com-

puted by gradient-based explainers for an improved

comparison with LIME;

• Finally, in contrast with [14], we compare explanations

with a stronger, non-random baseline.

2 Explainers

This section contains a brief description of a variety of

methods that are often used to explain the decisions of

computational models, all of which we subsequently

compare in different experiments. Each of these following

approaches is local (explains individual predictions) and

post hoc (can be used on a trained model without modi-

fying it). An explainer can be model-specific (it only works

for a subset of model classes with specific properties, e.g.

gradient-based methods) or model-agnostic (e.g. LIME).

Model-agnostic explainers can be applied to any model

type and only require inputs and the corresponding outputs

[25]. For more detailed descriptions, we refer the reader to

the original papers.

2.1 Local interpretable model-agnostic
explanations

The main idea of LIME [17] is to approximate the neigh-

bourhood of a prediction f(x), which we want to explain,

with a model g that is simpler than f (most commonly, g is

linear). To do this, the first step requires the derivation of

an interpretable representation depending on the input

domain. For images, this can be (perceptually) grouped

pixels, also called super-pixels.

Let x 2 Rd be a sample in the original input domain1,

and let x0 2 f0; 1gd
0
be the interpretable representation (0 /

1 denote the absence / presence of interpretable features).

We then sample Ns instances around x0 by randomly gen-

erating vectors containing 0’s or 1’s. Each of these

1 E.g. d ¼ width� height� channels for images, or d ¼ time�
frequency for input spectrograms.
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generated instances z0 is subsequently mapped back to

z 2 Rd, i.e. its representation in the input domain; z can

here be imagined to look like the original input x, yet with

all parts that equal 0 in z0 being occluded. All created

instances z0 and their predictions of the original model f(z)

are then used to train the explanation model g [17]. A

model g most often corresponds to a linear model, e.g.

gðz0Þ ¼ bþ wgz
0: ð1Þ

Note here that samples z are usually additionally weighted

based on how close they are to the original input x during

training of the model g.

The most typical interpretable representations used in

the image domain are super-pixels (i.e. segments) com-

puted with the SLIC [24] algorithm or any standard image

segmentation algorithm [17]. One could also use a neural

network to predict image segments. In the audio domain,

rectangular time–frequency segments were previously

proposed [19].

In what follows, we use these rectangular segments

when investigating an SVDS; we also adapt this to our

experiments in the image domain, using equally sized

rectangular image segments. Additionally, we repeat all

experiments in the image domain with SLIC segments.

2.2 Gradient-based explanations

Next to LIME, we want to look at a different and popular

family of explainers, based on gradients. To avoid confu-

sion between the general term saliency maps (often used to

refer to the attribution maps that serve as explanations) and

the approach ‘‘Saliency Maps’’, we are going to use

‘‘Saliency Maps’’ to refer to the concrete algorithm and

‘‘attribution maps’’ when we talk about the resulting

visualisation.

Saliency Maps (Sal) [15] (also called ‘‘Classic Saliency’’

[14] or ‘‘Gradient’’ [2, 8]) are one of the first approaches

for visualising the importance of each pixel for a class

decision (‘‘which pixels need to be changed the least to

affect the class score the most’’). This is achieved by taking

the derivative of the class score Sc with respect to the input

image x, i.e.

A ¼ S0cðxÞ: ð2Þ

Guided Backpropagation (GBP) also takes the derivative

of the class score Sc with respect to the input image, but

additionally overrides the backpropagation of the ReLU

function in a way to only backpropagate non-negative

gradients. This leads to sharper visualisations than previous

methods [16].

Integrated Gradients (IG) [26] addresses different

weaknesses of previously published methods. It computes

the straight-line path from a baseline x0 (e.g. a black

image) to the input of interest x and accumulates all gra-

dients at k different points along that path, i.e.

A ¼ ðx� x0Þ �
Xk

i¼1

of ðx0 þ i
k ðx� x0ÞÞ
ox

� 1

k
: ð3Þ

Note that f here denotes the model we want to interpret.

2.3 Smoothing noisy attributions

Attribution maps like the ones in Sect. 2.2 often look

‘‘noisy’’ to a human observer [26] as shown in Fig. 1. In the

following, we therefore describe different approaches for

smoothing attribution maps. Smoothing can be applied to

any of the gradient-based explainers, resulting in 9 differ-

ent combinations (subsequently indicated by a concatena-

tion of their abbreviations, e.g. IG-SG for Integrated

Gradients with SmoothGrad). Examples are shown in

Appendix in Fig. 9. Following the terminology in [8], we

will refer to the smoothed versions of the previously

explained standard explainers as ‘‘ensemble explainers’’.

SmoothGrad (SG) [23] averages a set of J noisy attri-

bution maps, which are constructed by adding Gaussian

noise N ð0; r2Þ with standard deviation r to the input of

interest x independently J times:

A ¼ E ej �N ð0;r2Þ

h
S0c
�
xþ ej

�i
: ð4Þ

SmoothGrad-Squared (SG2) is based on SmoothGrad with

the small difference that the each of the J attribution maps

is squared before averaging [8], i.e.

A ¼ E ej �N ð0;r2Þ

h
S0c
�
xþ ej

�2i
: ð5Þ

VarGrad (VG) is also based on SmoothGrad, but instead of

averaging, the variance over J noisy attribution maps is

computed [2], i.e.

A ¼ Var ej �N ð0;r2Þ

h
S0c
�
xþ ej

�i
: ð6Þ

2.4 Hyper-parameters for the explanations

LIME: The hyper-parameters for LIME were chosen based

on preliminary experiments. For audio explanations, we

occlude segments based on their mean spectrogram value

(cf. [22]). We set the number of perturbed samples to Ns ¼
8; 192 for explanations in the audio domain. This value is

set to Ns ¼ 512 in the image domain as a trade-off between

stability [22] and run time. We use an exponential kernel

defined on the cosine distance function with kernel width

0.25 for explanations in both domains.
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GBP, Sal, IG: Gradient-based explainers have less

hyper-parameters that need to be considered. GBP and Sal

do not have any hyper-parameters. For IG, we need to

select the baseline, for which we choose a black image (all

zeroes).

SG, SG2, VG: For SG, SG2 and VG, we set J (the

number of noisy attribution maps that are used for

smoothing) to 25, as suggested by [8].

3 Adversarial attacks

To attack different image classifiers, we apply a targeted

version of Projected Gradient Descent (PGD), originally

proposed by Madry et al. [27]. The targeted PGD attack

iteratively changes an input image such that its system loss

w.r.t. a new target prediction is decreased, i.e.

~xepþ1 ¼ clip �ð~xep � g � sign ðr ~xep Lðf ð~xepÞ; tÞÞÞ: ð7Þ

Every adversarial example ~x is subsequently initialised

with the original (clean) image x. In each iteration ep, ~x is

updated based on the sign of the gradient w.r.t. the input

(i.e. r ~x) of the system loss L. Note that f denotes a system,

and t denotes a particular target. The perceptibility of an

adversarial perturbation is influenced by the step size g, as
well as the clipping factor �, which is used to ensure that a

perturbation stays within the range of ½��; ��.
We use this attack when attacking image classifiers to

avoid unnecessary high runtime complexity (cf. exemplary

adversaries in Appendix B.2). For audio data, it was pre-

viously shown [28] that additional restrictions when using a

Carlini & Wagner (C&W) like attack as opposed to PGD

leads to less perceptible audio perturbations. We therefore

apply C &W to attack the SVDS. This results in a modified

adversarial objective (cf. [28, 29]), now expressed as an

optimisation for the adversarial perturbation d (i.e.

~x ¼ xþ d) itself:

Ltotal ¼ kdepk22 þ a � Lsysðf ðxþ depÞ; tÞ;
depþ1 ¼ clip �ðdep � g � sign ðrdep LtotalÞÞ:

ð8Þ

The notation here remains the same; the most significant

change is the integration of the squared L2-norm of the

perturbation kdk22 as an attempt to keep it as small (im-

perceptible) as possible. The factor a balances the focus of

the attack on either keeping a perturbation as small as

possible, or changing the prediction on the adversary

quickly.

To find hyper-parameters for PGD, we perform a grid

search over values for the clipping factor � and the update

rate g on a subset of our image data. We choose the hyper-

parameters based on what leads to the highest number of

successful attacks with the overall smallest difference in

magnitude between clean and adversarial samples. The

maximal number of iterations we use to search for a suc-

cessful adversarial example is 100; the target t is chosen for

each sample separately to be any random but different

prediction (in comparison to the prediction on a clean

sample). For C&W, we set the maximum number of iter-

ations to 1000; the remaining hyper-parameters, i.e. clip-

ping factor �, update factor g and weight factor a, are tuned
on the audio validation set (cf. Sect. 4.1). They are chosen

as the setting that leads to the highest number of successful

adversarial perturbations. The target t for each sample is,

due to the binary nature of the SVDS, the class that is not

the original prediction. For exact hyper-parameters, we

refer to Tables 4 and 5 in Appendix.

Fig. 1 Example explanations for

each of the used standard

explainers. Different colours

visualise the weights/

attributions that different

explainers assign to particular

segments/pixels, with higher

numbers indicating more, and

lower numbers less ‘‘important’’

features for a prediction
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4 Experimental setup

In this section, we describe the experimental setup,

including the data we use and the classifiers we investigate

in our experiments. We provide the code via Github2; for

further implementation details, we refer to Appendix C.

4.1 Data

To train the singing voice detection system (cf. [6]), we use

the openly available Jamendo dataset [30], which consists

of 93 songs resulting in roughly 6 hours of music. The

training / validation / test split is proposed to contain 61 /

16 / 16 songs, respectively, with roughly the same pro-

portion of annotated singing voice versus non-singing

voice in all three splits. The audio files have a sampling

rate of 44.1kHz, and are annotated with the presence

(‘‘sing’’) or absence (‘‘no sing’’) of singing voice on a sub-

second granularity [31]. Note that during training and test

time, songs are not used as a whole, but instead split into a

multitude of smaller excerpts (length � 1:6 seconds).

To extend these experiments to the image domain, we

use the ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) dataset [32]. The dataset contains 1,000

different classes and provides around 1.2 million images

for training, as well as 50,000 images for validation (i.e. 50

per class). Subsequent experiments are performed on all

validation images or a subset thereof3. Hyper-parameters

are tuned on validation data as well, as we assume an

attacker as well as people looking for explanations have

access to the respective data.

4.2 Singing voice detection system

For experiments on audio data, we use the SVDS previ-

ously introduced by Schlüter and Lehner [18]. Data pre-

processing, which consists of resampling and computing

normalised magnitude Mel spectrograms, as well as the

training procedure itself is done as proposed for the sug-

gested Convolutional Neural Network (CNN) architecture.

To compute performance metrics of the SVDS, we use

binary predictions of the network, which are obtained by

application of a median filter followed by thresholding (cf.

[18]). The classification error (%) on the test data is

11:54	 0:96 (given as mean ± standard deviation over 5

runs with different random initialisations). Recall and

specificity are 89:61	 1:71 and 87:46	 1:00, respectively.

4.3 Image classifiers

To perform experiments on image data, we look at a

variety of different pre-trained image classifiers. Other

work on evaluating explanations (cf. [2, 8, 14]) investi-

gated Inception v3 [33] and ResNet-50 [34]. In addition to

these networks, we compare our results on AlexNet [35],

VGG16 [36], and DenseNet161 [37].

The top-1 accuracy of each pre-trained model on the

validation data of ImageNet is shown in the second column

in Table 1, as well as the accuracy of the classifiers after an

attack (column 3). For more information regarding the

networks we used, we refer to our implementation details

in Appendix (section C).

5 Evaluation of LIME in the audio domain

In our first set of experiments, we look at explanations of

the predictions on singing voice data. We first compute

adversarial excerpts and explanations for their predicted

class. Each of the explanations consists of a list of 20

interpretable features (rectangular segments) and their

corresponding weight, which is interpreted as its impor-

tance for making a prediction [17, 19]. We also present a

baseline for choosing candidates of ‘‘most influential’’

segments of an input.

5.1 Explaining predictions on adversarial
examples

To evaluate whether LIME can successfully detect causes

for a prediction, we use (imperceptible) adversarial per-

turbations as ground truth. The goal is to investigate

whether the explanation can highlight the segments that are

responsible for the adversarial (and new) prediction.

5.1.1 Using a fixed number of interpretable features

It is often claimed that a small number of inter-

pretable features k are sufficient to explain a classifier’s

prediction [17]. In the particular case of our singing voice

detector, a choice for k in existing work is 3 [19].

We use LIME to explain predictions after successful

adversarial attacks where perturbations of the original

signal could have appeared anywhere in the spectrogram

and also on possibly more than 3 segments. We then per-

form another attack adding only those perturbation seg-

ments coinciding with the 3 segments highlighted by LIME

and evaluate how well they are able to change a prediction.

We argue that if these highlighted segments actually

explain a particular prediction, we can expect using this2 https://github.com/CPJKU/plausible_xai.
3 Annotated test samples are only available for the challenge itself.
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subset of perturbed segments to achieve the same change in

prediction as the full perturbation did. However, using k ¼
3 changes only 32% (‘‘sing’’ ! ‘‘no sing’’) and 41% (‘‘no

sing’’ ! ‘‘sing’’) of the predictions. Subsequently, we call

this metric the label-flip rate.

5.1.2 Varying the number of interpretable features

As fixing k ¼ 3 could also simply be a suboptimal choice

for k, we perform this analysis for all k 2 f1; :::; 20g.
Additionally, we select k perturbation segments based on

their magnitude (i.e. the squared L2 norm) as a baseline.

The according label-flip rates are shown in Fig. 2.

Almost regardless of the value for k, the explanations

provided by LIME do not reach the performance of the

baseline. For LIME-chosen segments, it requires almost all

20 segments to achieve label-flip rates close to 100%,

whereas for the baseline, this is the case with a fraction of

the number of segments.

5.2 Explaining ‘‘localised’’ perturbations

As it is often sufficient to add even small numbers of

selected segments of a perturbation and still achieve new

classifications, we conduct an additional experiment on

how different explainers can recover changed segments of

such refined or partial adversaries. We refine adversarial

perturbations by splitting them into segments that corre-

spond to the segments we use for LIME (i.e. rectangles).

We then choose the k segments with the highest magnitude

and use them to perturb the original (clean) data. In what

follows, we show results on adversarial subsets of the data,

namely samples for which adding k 2 f1; 3; 5g adversarial

segments change ‘‘sing’’ to ‘‘no sing’’ or vice versa.

Table 1 Top-1 accuracies of different image classifiers. The second

column shows the accuracy on all 50,000 validation samples; the third

column contains the accuracy on 50,000 samples where we predict on

an adversary if available, or else the clean image. The final column

shows the number of successful adversaries

Architecture ImageNet (val) ImageNet (adv) #Adversarial examples

AlexNet 56.52 % 0.19 % 49,879

VGG16 71.59 % 0.17 % 49,912

ResNet-50 76.13 % 0.16 % 49,925

DenseNet161 77.14 % 0.19 % 49,899

Inception v3 77.21 % 0.38 % 49,846

(a) (b)

Fig. 2 Label-flip rate (y-axis)

for LIME compared to norm-

based baseline. The x-axis

shows number of perturbed

segments that are added to clean

input

Fig. 3 Relative number of segments correctly recovered by LIME, after adding only k perturbed segments to each sample. We look at 52 / 146 /

215 adversaries in total for k ¼ 1=3=5
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We use LIME to compute explanations for this set of

refined adversaries and set the number of inter-

pretable features k to be equal to the number of perturbed

segments in a sample (i.e. 1, 3 or 5). Since the segments of

the explainer and the partial perturbations align, we can

examine how often LIME is able to recover the correct

segments that are perturbed, and hence are responsible for

the new prediction. The result of this experiment is shown

in Fig. 3; even for k ¼ 1, LIME shows the correct segment

as explanation in less than half of the cases. Also for k ¼ 3

or k ¼ 5, the explainer rarely finds all modified segments,

Fig. 4 First row shows the

original input image, the raw IG

attributions, and the most

relevant pixels in binarised form

(as used in [14]). The second

and third rows show the

proposed techniques for

aggregating pixel-wise

attributions using rectangular

and SLIC segments,

respectively. Colours again

show importance of segments,

with higher values denoting

higher importance

Table 2 Label-flip rates for standard explainers (SLIC segments,

k ¼ 3)

Model LIME IG Sal GBP

AlexNet 68.54 52.16 57.78 60.18

VGG16 55.44 40.90 40.60 49.44

ResNet-50 44.70 27.18 27.10 36.20

DenseNet161 37.82 22.42 22.84 19.42

Inception v3 40.86 28.14 26.52 27.90

Table 3 Label-flip rates for

ensemble explainers (SLIC

segments, k ¼ 3)

Smoothgrad Smoothgrad2 Vargrad

Model IG Sal GBP IG Sal GBP IG Sal GBP

AlexNet 50.68 54.32 49.60 50.70 54.84 47.84 50.34 54.82 47.34

VGG16 39.42 43.32 39.72 40.84 43.30 38.22 41.68 44.36 40.82

ResNet-50 33.26 34.28 33.74 34.06 35.54 33.56 33.82 35.40 32.38

DenseNet161 27.24 28.10 14.10 27.18 29.28 14.62 26.48 29.04 14.52

Inception v3 33.74 35.38 25.22 33.60 36.04 24.18 35.50 36.66 23.46
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and in some settings none of the segments responsible for a

prediction.

6 Evaluation of explanations in the image
domain

We extend our previous experiments by analysing image

classification. We once more split all perturbations into the

segments (here: image subparts) that the explainers work

with, i.e. now either rectangles4 or SLIC segments. We are

using 4� 4 ¼ 16 rectangular segments or set n_seg-

ments=16 for the SLIC experiments 5. To ensure a fair

comparison between LIME and other explainers, we pro-

pose to aggregate pixel-wise attributions using the same

segments that LIME uses. The aggregation procedure is

explained in more detail subsequently, followed by a set of

experiments for evaluating different explanations in the

image domain. As a baseline for our explainers in the

following experiments, we again use the selection of most

important segments as the segments exhibiting the highest

norm. Due to the huge computational cost for computing

explanations, the experiments in Sects. 6.2 and 6.3 are

performed on 10% of the validation dataset.

6.1 Aggregating pixel-wise attributions
into segments

In order to compare Sal, GBP and LIME, Göpfert et al.

[14] treat the segment weights computed by LIME as pixel-

wise attributions. They fix the number of ‘‘most influential

pixels’’ that contribute to an explanations for all explainers,

and compute the overlap between the pixel-wise attribu-

tions and the ground truth, i.e. all pixels in a segment that

were adversarially perturbed. This might be unfair toward

gradient-based explainers since pixel-wise attributions are

often spread out over the whole image yet still could be

concentrated around the most relevant regions. The loca-

lised perturbations of Göpfert et al. [14], however, only

cover constrained parts of the image.

We focus on highlighted regions as opposed to high-

lighted pixels. Even publications about saliency-based

attribution maps often talk about finding or highlighting

regions [23], highlighting areas or regions [38], or ‘‘de-

scriptive image regions’’ [16] rather than pixels. We further

motivate this approach by the fact that attribution maps

look like they are highlighting regions, e.g. CAM [39],

Grad-CAM [40], Occlusion [41], and Deconvolution [41].

Recently, there have also been attempts at smoothing noisy

attribution maps in order to highlight meaningful regions

instead of seemingly random pixels [23].

Due to the fact that the goal of many of these explainers

is highlighting regions rather than single pixels, it seems

fair to also evaluate their capability in doing so. We pro-

pose aggregating pixel-wise attributions per segment to

receive one importance value per segment, as we obtain for

LIME. The only other work we are aware of who aggregate

pixel-wise attributions into segments (or ‘‘patches’’) [42]

uses an aggregation method called ‘‘total patch saliency’’,

without specifying how pixels are actually aggregated.

We compare three approaches:

• mean: average over raw pixel-wise attributions per

segment;

• mean_abs: average over the absolute pixel-wise attri-

butions per segment;

• mean_pos: average over the positive pixel-wise attri-

butions per segment.

An example for each of the aggregation approaches, along

with an example of how Göpfert et al. [14] post-process

attribution maps, is shown in Fig. 4.

In preliminary experiments, mean_abs led to the highest

label-flip rates (cf. Sect. 5.1), which is why we report

results using this approach below.

(a) (b) (c)

Fig. 5 Label-flip rates of different explainers with rectangular and SLIC segments (ResNet-50) for different percentage of perturbed segments

added

4 Here: squares; we continue to refer to rectangles for consistency.
5 This leads to approximately 16 segments per image, see Table 6 in

Appendix.
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(a) (b) (c)

Fig. 6 Label-flip rates of standard explainers vs. baseline on different models (SLIC segments) for different percentage of perturbed segments

added

(a) (b) (c)

Fig. 7 Label-flip rates of standard explainers for different models

(a)

(b)

Fig. 8 Percentage of correctly recovered k segments after adding k 2 f1; 3; 5g segments of a perturbation, for different explainers
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6.2 Using a fixed number
of interpretable features

Similar to the experiments in Sect. 5.1, we compute

explanations for all adversarial examples, this time for 13

different explainers and two types of segmentation: rect-

angles and SLIC. For each explainer and segmentation, we

fix k ¼ 3 and add segments of perturbations coinciding

with the most influential segments to the original input and

count how often the label is changed to compute the label-

flip rate. Results for explanations using SLIC segmentation

are found in Tables 2 and 3. The label-flip rates for the

rectangular segments are summarised in Appendix in

Tables 7 and 8. The results show the following: (i)

Explanations in the image domain appear more meaningful

when using SLIC segments compared to rectangular seg-

ments for k ¼ 3. (ii) When using rectangular segments, all

standard explainers perform similarly across models, with

GBP slightly outperforming the others for AlexNet,

VGG16, and ResNet-50; and LIME slightly outperforming

the others for DenseNet and Inception v3. (iii) Explainers

generally perform best for AlexNet, followed by VGG16,

and worst for DenseNet161. (iv) When using SLIC seg-

ments, LIME outperforms all other explainers by a large

margin. The ranking of LIME, GBP, and Sal is consistent

with the results in [14] (who analysed Inception v3) for

AlexNet, VGG16, ResNet-50, and Inception v3.

(v) Smoothing does not always help and in many cases it

even decreases the performance. There is a noticeable

pattern, however, when smoothing helps. For ResNet-50,

DenseNet161, and Inception v3, smoothing increases—

across all ensemble methods—the label-flip rate (i.e. the

relative number of times parts of a perturbation change the

original prediction of an input) for the setting with SLIC

segments. (vi) In most cases, 3 segments are not sufficient

to ‘‘explain’’ a prediction.

6.3 Varying the number
of interpretable features

We also look at the label-flip rate of each explainer when

increasing k and analyse the findings from the previous

section inmore detail. For rectangular segments, we perform

this analysis for all k 2 f1; :::; 16g. Due to the varying

number of SLIC segments (cf. Table 6), we follow a dif-

ferent approach: we iteratively add ½20; 30; :::; 100�% of all

segments. Based on the findings in the previous experiment,

we particularly want to investigate the following:

Rectangles vs. SLIC: For this experiment, we also add

rectangular segments in percentage steps. Figure 5

shows the results for LIME, IG and Sal on ResNet-50.

LIME works better when SLIC segments are used, while

the other explainers work better with rectangles. This

finding holds across all models.

Standard explainers vs. baseline: Figure 6 shows that in

contrast with the audio domain, all explainers are at least

on par with our proposed magnitude baseline. For

AlexNet and Inception v3, all explainers slightly

outperform the baseline, for DenseNet only LIME

manages to do so.

Comparing different architectures: In Fig. 7, the perfor-

mance of standard explainers for different model archi-

tectures is compared. As already suggested by the results

in the previous section, it seems ‘‘easier’’ to explain

predictions made by AlexNet as indicated by the higher

label-flip rate across all explainers. VGG16 follows

AlexNet in all comparisons. For the rest of the models, it

is not as clear, but in general explainers perform

(slightly) better for ResNet-50 and worst for Inception

v3 and DenseNet161.

6.4 Explaining ‘‘localised’’ perturbations

We also want to look at refined adversarial image pertur-

bations. After splitting the perturbations into image seg-

ments corresponding to the segments used by our

explainers, the k segments with the highest magnitude are

chosen and used to perturb the original data. In Fig. 8, we

show results on adversarial subsets of the data for which

adding k 2 f1; 3; 5g adversarial segments change the

original prediction of a network to any new classification6.

As the results for the explainers vary only slightly for

different settings, Fig. 8 shows exemplary results for

Inception v3 on rectangular and SLIC segments (experi-

ment performed on 10% of validation data). The x-axes

show different explainers; the y-axes show, in different

colours, the fraction of times a particular amount of seg-

ments (out of k) has been recovered by the explainer. For

more experimental results, we refer to Appendix

(Sect. E.1).

Figure 8 shows that all explainers we look at struggle to

recover perturbed segments. In the extreme case, i.e. when

perturbing only a single segment (left-most plots), the

majority of segments is not detected (darkest colour), only

improving slightly if we look at SLIC segments. For

increasing k, the explainers tend to detect 1-3 (out of 3 or 5)

perturbed segments (medium colours). In the rarest cases,

all segments are recovered correctly. The main observable

trends are that SLIC segments tend to be easier to detect

6 Due to complexity, we report results on either 100% or 10% of the

adversaries; preliminary experiments showed, however, similar

trends.
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except in the case of AlexNet (results omitted here) and

that standard explainers, i.e. LIME, IG, Sal, and GBP,

usually slightly outperform their more advanced

counterparts.

7 Discussion and conclusion

In this work, we (i) investigated the performance of dif-

ferent explanation methods on detecting non-obvious cau-

ses for a prediction by using adversarial perturbations as a

ground truth and (ii) compared these explainers to a new

non-random baseline. We tested explainers in two different

domains, namely for audio (singing voice detector) and

images (different ImageNet classifiers). To treat perturba-

tion- and gradient-based explainers fairly, we proposed a

pixel-wise attribution aggregation, where different granu-

larities are overcome by mapping all attributions to

interpretable segments.

Our overarching result is that explainers struggle—re-

gardless of the particular domain, task or model architec-

ture—to find the parts of inputs that are really relevant for a

system’s prediction. We were able to demonstrate this

empirically via a number of carefully designed experiments

providing numerous counterexamples to one of the central

claims of the field of explanation: being able to ‘‘ex-

plain[s] the predictions of any classifier in an inter-

pretable and faithful manner’’ [17]. Our counterexamples

disprove such universal statements concerning explanation

methods. In more detail, our results show that:

• In the audio domain, the explanation method LIME is

not able to recover perturbed segments in a satisfactory

manner, with even the baseline performing better

• In the image domain, all investigated explanation

methods at least surpass the baseline, but nevertheless

are again not able to recover perturbed segments

correctly

• In the image domain, explainers perform somewhat

better in recognising perturbed segments when looking

at ‘‘simpler’’ image classifier architectures

• For images, LIME performs best among the explainers

(particularly when using SLIC segments), while stan-

dard gradient-based explainers (e.g. IG, Sal, GBP)

usually outperform their more advanced versions

There are two major lessons from our work that could

move the field of explainability forward: (i) In line with

previous results [14], we recommend using ground-truth

based on adversarial perturbations. This approach, and also

more general dataset modifications (cf. [13]), will no

longer rely on questionable ground-truth provided by

human observers, avoid their confirmation bias (cf. [2]),

and hence allow for a more objective comparison of

methods. (ii) We recommend to always use and compare

different explainers since our experiments indicate that

methods perform differently depending on the application

domain (cf. LIME performing below baseline for audio but

clearly above for images). This is in line with previous

results where explainers perform differently even for dif-

ferent datasets within the same domain [43].

Supplementary information Not applicable.

Appendix A Explanations

In this section, we show exemplary explanations for dif-

ferent ensemble explainers we compare in this work in

Fig. 9. The figure shows an input image and how the nine

different ensemble explainers would explain the (correct)

prediction of the image.
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Appendix B Adversarial attacks

B.1 Hyper-parameters

In this section, we list the exact hyper-parameters used to

attack the image classifiers (Table 4) with PGD and the

singing voice detector (Table 5) with the C&W-based

attack.

Fig. 9 Example explanations for

each of the used ensemble

explainers. Different colours

depict the weights/attributions

that different explainers assign

to particular segments/pixels,

with higher numbers indicating

more, and lower numbers less

‘‘important’’ features for a

prediction

Table 4 Hyper-parameters of

PGD attack on different

architectures. Settings were

chosen based on most

successful adversaries with least

difference between clean and

adversarial images within grid

search

Architecture � g

AlexNet 0.10 0.01

VGG16 0.05 0.01

ResNet-50 0.05 0.01

DenseNet161 0.05 0.01

Inceptionv3 0.05 0.01

Table 5 Hyper-parameters of C &W attack on SVDS. Setting was

chosen based on the highest amount of successful attacks on the audio

validation data

a � g

15 0.1 0.0005
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B.2 Exemplary adversaries

In this section, we show (five random) exemplary adver-

sarial examples for each of the attacked model architec-

tures in Figs. 10, 11 and 12.

Fig. 10 5 Random examples of adversaries computed with a Projected Gradient Descent (PGD) attack for AlexNet. First row denotes original

files, second row adversaries. Hyper-parameters for attacks are picked as explained in Sect. B.1
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(b)

(c)
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Appendix C Implementation details

For all experiments on image data, we use pre-trained

classifiers provided by torchvision7. In order to per-

form our experiments on a variety of different explainers,

we use the library captum8 to both implement the dis-

cussed explanation methods, as well as the PGD attack.

Appendix D SLIC segmentation

In this section, we provide a table with the average (±

standard deviation) of the number of segments which are

found by the SLIC algorithm. We compute these segments

for all adversaries of different model architectures

(Table 6).

Appendix E Additional results: image
domain

In this section, we show additional results for the experi-

ments in Sect. 6.2 and 6.4.

E.1 Using a fixed number
of interpretable features

Here we show the omitted results from Sect. 6.2, in par-

ticular the label-flip rates for standard explainers (Table 7)

and ensemble explainers (Table 8) for rectangular

segments.

bFig. 11 5 Random examples of adversaries computed with a PGD

attack for VGG16, ResNet-50, and DenseNet161. First rows denote

original files, second rows adversaries. Hyper-parameters for attacks

are picked as explained in Sect. B.1

Fig. 12 5 Random examples of adversaries computed with a PGD attack for Inception v3. First rows denote original files, second rows

adversaries. Hyper-parameters for attacks are picked as explained in Sect. B.1

Table 6 Average ± standard

deviation of number of

segments found by SLIC for

adversaries of different models

Architecture # Segments

AlexNet 11.039 ± 2.307

VGG16 11.048 ± 2.305

ResNet-50 11.042 ± 2.307

DenseNet161 11.046 ± 2.300

Inceptionv3 10.837 ± 2.384

Table 7 Label-flip rates for standard explainers using rectangular

segments and k ¼ 3

Model LIME IG Sal GBP

AlexNet 41.14 38.90 41.52 43.80

VGG16 28.14 27.72 27.74 31.84

ResNet-50 17.52 15.56 15.36 17.60

DenseNet161 13.90 12.96 12.34 9.34

Inception v3 15.10 14.98 14.54 13.00

7 https://pytorch.org/vision/stable/models.html.
8 https://captum.ai/.
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E.2 Explaining ‘‘localised’’ perturbations

In what follows, results omitted in Sect. 6.4 are shown. We

show an excerpt thereof, as the results vary only slightly.

Figure 13 shows results when trying to recover a fixed

number of perturbed segments with different explainers for

two architectures for rectangular segments. Figure 14

shows the same for SLIC segments. All plots show the

results when perturbing k 2 f1; 3; 5g segments; the x-axes

show different explainers, the y-axes their success-rate in

recovering a certain number out of all changed segments.

Table 8 Label-flip rates for

ensemble explainers using

rectangular segments and k ¼ 3

Smoothgrad Smoothgrad2 Vargrad

Model IG Sal GBP IG Sal GBP IG Sal GBP

AlexNet 32.96 34.92 30.08 34.62 35.02 29.52 33.76 35.56 30.58

VGG16 24.36 24.30 21.60 23.74 25.28 22.08 25.24 24.86 21.82

ResNet-50 17.78 16.90 16.72 17.10 17.16 16.38 17.24 17.24 16.46

DenseNet161 13.92 14.44 6.48 13.66 14.90 6.20 14.22 14.22 6.62

Inception v3 17.80 17.64 13.36 17.62 18.20 11.24 17.52 17.94 11.12

(a)

(b)

Fig. 13 Percentage of correctly recovered k segments after adding k 2 f1; 3; 5g rectangular segments of a perturbation, for different explainers
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