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This erratum aims to correct errors in the sections 1, 3, and
5 of Lee et al. (2022). Some of the texts in these sections
were reproduced in non-final form. It resulted in omissions
of several major extensions that are made during the revision
process. Figures and Tables are not affected.

1. Introduction

e The following sentence in the 3rd paragraph (Fig. 1) should
be modified as:

In our work, we go in a similar direction as we robustly esti-

mate the global sun direction and other lighting parameters

(Lalonde & Matthews, 2014) by fusing estimates both from

the spatial and temporal domains.

al., 2016). In our work, we go in a similar direction as we
robustly estimate the global sun direction by fusing estimates
both from the spatial and temporal domain. The key is that

Figure 1 Text to be modified

e The 5th paragraph (Fig. 2) should be modified as:
. which accounts for individual orientations and field-
of-views of the input frames. With this novel pipeline, we

The original article can be found online at https://doi.org/10.1007/
s11263-022-01725-2.
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eliminate the necessity of intricate hyperparameter tun-
ing required for post-processing. In our experiments in
Sect. 4, we replace parts of our estimation pipeline and
adapt the architecture of Dosovitskiy et al. (2020) for
lighting source regression. To the best of our knowledge,
we are the first to use an attention-based model for the
task of lighting estimation. Finally, we extend our lighting
model. Unlike previous work which predicted only the sun
direction, the proposed work estimates parameters of the
Lalonde-Matthews outdoor illumination model (Lalonde
& Matthews, 2014).

A preliminary version of this work has been published
in Lee et al. (2021). In this paper, we extend that work by
using an end-2-end filtering approach that supersedes the
statistical post-processing in Lee et al. (2021) by using a
Transformer architecture (Dosovitskiy et al., 2020: Ranftl
et al., 2021: Girdhar et al., 2019) which accounts for indi-
vidual orientations and field-of-views of the input frames.
In our experiments in Sect.4. we replace parts of our esti-
mation pipeline and adapt the architecture of Dosovitskiy et
al. (2020) for lighting source regression. To the best of our
knowledge. we are the first to use an attention based model
for the task of lighting estimation.

Figure 2 Text to be modified

e The list of contributions in the 6th paragraph (Fig. 3)
should be modified as:

1. Building on top of our preliminary work, we propose
a spatio-temporal aggregation for sunlight estimation
that is trained end-to-end using a Transformer archi-
tecture.

2. A novel handcrafted positional encoding tailored to
encode the local and global camera angles for spatio-
temporal aggregation.

3. More realistic lighting estimation using the Lalonde-
Matthews illumination model (Lalonde & Matthews,
2014).

4. Superior performance compared to the state-of-the-art.


http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-022-01747-w&domain=pdf
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1. Building on top of our preliminary work, we propose a
spatio-temporal aggregation for sunlight estimation that
is trained end-to-end using a Transformer architecture.

. A novel handcrafted positional encoding tailored to'the
angular domain for sunlight estimation.

3. More empirical results, showing the superiority of our

new method.

88

Figure 3 Text to be modified

3. Proposed Method

e An additional sentence should be inserted after the last

sentence of the Ist paragraph:

In this way, the samples obtained from each sequence
provide different observations for the same global light-
ing condition. This design is motivated by our empirical
results, which showed that lighting can be estimated well
from many small parts.

The 2nd paragraph (Fig. 4) is completely rewritten as:
All image crops are passed through the backbone network
and projected to a sequence of patch embeddings. We
then add an orientation-invariant positional encoding and
pass the sequence to our transformer network. Through
the attention layers, the noisy spatio-temporal observa-
tions can be effectively aggregated to a final estimate.
Weighted features are delivered to a dense layer that pro-
duces the estimated Lalonde-Matthews illumination model
parameters. The sun direction estimates are formulated in
their own camera coordinate systems. We compensate the
camera yaw angle of each subimage in order to obtain
aligned estimates in a unified global coordinate system.
Our final prediction is given as the average of all estimates.
Note that the sky parameters of the Lalonde-Matthews
model do not require the alignment step, as they do not
vary with respect to the camera yaw angle. The assump-
tion behind our spatio-temporal aggregation is that distant
sun-environment lighting can be considered invariant for
small-scale translations (e.g., driving) and that the vari-
ation in lighting direction is negligible for short videos.
Through the following sections, we introduce the details
of our method.

The ResNet18 network processes these images and yields
patch embeddings. The input of the transformer network
is then the sum of the patch embeddings and their corre-
sponding cyclic 3D positional encodings (see Sect. 3.3).
The transformer network examines the noisy spatio-temporal
observations and assigns proper attentions. The weighted fea-
tures are delivered to a dense layer which outputs lighting
condition estimates in the camera coordinate systems. Lastly,
we perform a calibration step where we compensate the cam-
era yaw angle of each subimage so that all estimates are in
the unified global coordinate system. The final estimate of the
given sequence is then the average of calibrated estimates.
The assumption behind our spatio-temporal aggregation is
that distant sun-environment lighting is invariant to the loca-
tion the picture was taken and that the variation in lighting
direction is negligible for short videos. Through the follow-
ing sections, we introduce the details of our method.

Figure 4 Text to be modified

3.1 Lighting Estimation

e The 1st paragraph (Fig. 5) is completely rewritten as:
There have been several sun and sky models to parameter-
ize outdoor lighting conditions such as the Hosek-Wilkie
sky model (Hosek & Wilkie, 2012) or the Lalonde-
Matthews (Lalonde & Matthews, 2014) outdoor illumina-
tion model. In this work, we extend our previous method by
predicting the parameters of the Lalonde-Matthews model.
This hemispherical illumination model (f757) describes
the luminance of outdoor illumination for a light direction
[ as the sum of sun ( f;,,) and sky ( fyxy) components based
on 11 parameters:

Sem s qrm) = Wsun fsun €5 By K, Lsun) + wskyfsky(l; t, Lsun),
frun (l, ﬁ, K, lxun) = exp(_BeXp(_K/COS Yl)),
f?ky(l; ty Lsun) = fp Osuns vi> 1),

qLmM = {wsun’ Wsky, B, K, 1, l:un}’

where wy,, € R? and Wiky € R3 are the mean sun and
sky colors, (B, k) are the sun shape descriptors, ¢ is the sky
turbidity, Is,n = [O5un, dsun] is the sun position, y; is the
angle between the light direction / and the sun position Iy,
and fp is the Preetham sky model (Preetham et al., 1999). For
more details, please refer to (Lalonde & Matthews, 2014).
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There have been several sun and sky models to parameterize
outdoor lighting conditions (Hosek & Wilkie, 2012; Lalonde
& Matthews, 2014). Although those methods are potentially
useful to estimate complex lighting models. we focus only
on the most critical lighting parameter: the sun direction.
The rationale behind this is that ground-truth training data
can easily be generated for video sequences having GPS and
timestamp information (e.g., KITTI dataset (Geiger et al.,
2012)). Therefore, the estimated lighting condition is given
as a 3D vector ﬁp,ﬂi pointing to the sun’s location in the
sequence.

Figure 5 Text to be modified

e The following sentence should be inserted at the beginning
of the 2" paragraph (Fig. 6):
Among the parameters, the sun direction may be the most
critical component. Unlike our predecessors ...

Unlike our predecessors (Hold-Geoffroy et al., 2017
Zhang et al., 2019), we design our network as a direct regres-
sion model to overcome the need for a sensitive discretization
of the hemisphere. The recent work of Jin et al. (2020) and

Figure 6 An additional sentence should be attached

e The loss functions for the extended sun sky model
should be attached at the end of Sect. 3.1 (below Eq. 4)
as a new paragraph:

For the remaining parameters, we apply the mean squared
error (MSE) to the predicted values and the normalized
ground truth values as in Jin et al. (2020):

_ 1 pred gt 2
Wsun — §|| sun  — Wsun ”2
1 d 2

_ pre gt
stky - 5” sky  — Wsky ”2

d 2

Lpeta = 1B77C — B&' I3
d 2
Lkappa = ”Kpre - th”z

d 12
Ly = |[tP7 — 155

1
Lparam = g[men + stky + Lbeta + Lkappa + Lt]
Since the two loss functions Ly, and L p4rqm have similar
magnitudes, we define the final loss function as the sum

of them:

Llight = Lsyn + Lparam-
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3.3 Orientation-Invariant Positional Encoding

e The occurrences of an abbreviation fov (field of view) in
the 1st paragraph (Fig. 7) should be substituted with a
spherical angle symbol <:

For example, the top left pixel gets a coordinate of
(—%, S¢) for a pinhole camera model with a field of
view of < and <, horizontally and vertically, respectively.

and vertical field of views. For example. the top left pixel
gets a coordinate of (—@ %) for a pinhole camera
model with a field of view of fov, and fov, horizontally
and vertically respectively. To this end we concatenate the 2D

Figure 7 Text to be modified

e The first occurrence of x; in the equation 5 (Fig. 8) should
be substituted with x{"¢:
We use an absolute positional encoding, i.e.

enc
X; <~ X;i + pi,

where the positional encoding p; and the subimage feature
vector x; € Rﬁ are superimposed.

angle and apply a 3D cyclic positional encoding. We use an
absolute positional encoding, i.e.

Xi «<—Xxi+pi, (5)

where the positional encoding p; and the subimage feature
vector x; € R“’. are superimposed. Similar to Vaswani et al.

Figure 8 Text to be modified

e The following sentence should be inserted after the last

sentence:

The resulting positional encoding of a subimage is the
stacked vector of the three cyclic positional encodings.
Note that the depth parameter d is carefully determined so
that the depth of the stacked vector matches the channel
size of the transformer network.

3.4 Calibration

e Occurrences of ‘calibration’ and ‘calibrated’ should be

substituted with ‘alignment’ and ‘aligned’. This change
includes the subsection title.

e The first two sentences are completely rewritten to reflect

the changes introduced by an extended sun and sky model.

e A new sentence is inserted at the end of the 1st paragraph.

The correct text for these three changes is:
3.4 Alignment



International Journal of Computer Vision (2023) 131:1302-1306

1305

Our neural network outputs the lighting parametersasa 11-
dimensional vector for a given sequence of image patches.
Although this prediction was made by considering patches
from different temporal and spatial locations, the sun direc-
tion estimates are in their own local camera coordinate
systems. Therefore, we perform an alignment step using
the camera ego-motion data to transform the estimated sun
direction vectors into the world coordinate system. We
assume the noise and drift in the ego-motion estimation
is small relative to the lighting estimation. Therefore, we
employ a widely used structure-from-motion (SfM) tech-
nique such as Schonberger & Frahm (2016) to estimate the
egomotion of an image sequence.

Each frame f has a camera rotation matrix Ry and the

resulting aligned vector _v)p,ed is computed as Rjjl .

v pred- Finally, we take the mean of the aligned lighting
estimates as our final prediction.

Our neural network finally outputs a set of 3D coordinates
which are the estimated sun directions of the given image
patches in a sequence. Although this prediction was made
by considering all patches from different time and space
together, the estimates are in their own local camera coor-
dinate systems. Therefore, we perform a calibration step
using the camera ego-motion data to transform the estimated
sun direction vectors into the world coordinate system. We
assume the noise and drift in the ego-motion estimation is
small relative to the lighting estimation. Hence, we employ
a widely used structure-from-motion (SfM) technique such
as (Schonberger & Frahm, 2016) to estimate the ego-motion
from an image sequence. Each frames f has a camera rota-
tion matrix Ry and the resulting calibrated vector ﬁ,,,-a/ is

computed as R ¢

® i;prezb
Figure 9 Text to be modified
e The second paragraph should be removed.

Having the temporal estimates aligned in the same global
coordinate system, we consider them as coherent observa-
tions of the same lighting condition in the temporal domain
due to the spatio-temporal attention given from our trans-
former network. Finally, we take the mean of the individual
aligned lighting estimates as our final prediction.

Figure 10 Text to be deleted

5. Conclusion

e The 2nd paragraph (Fig. 11) is completely rewritten as:

Although we demonstrated visually appealing results in
augmented reality applications, intriguing future research
topics are remaining open. Intuitively, the performance
of the model should scale with the sequence length,
as more information is present. We plan to scale both
our model and data to examine the limit of attention-
based spatio-temporal aggregation for lighting estimation.
Another interesting direction would be the integration of
our method into reconstruction pipelines, such as SLAM.
Knowing the lighting direction and shadow-casting can
help initializing camera estimation. Lastly, we want to
investigate further into the sampling methods. Instead of
picking 8 random frames from an image sequence, we
could think of selecting consecutive frames and experi-
ment with the number of frames and the distance from the
starting point.

Although we demonstrated noticeable outcomes in aug-
mented reality applications, intriguing future research topics
are remaining. We plan to extend our model to examine
other factors such as cloudiness or exposure as it helps to
accomplish diverse targets, including photorealistic virtual
object augmentation across an image sequence. With such
augmented datasets, we could enhance the performance of
other deep learning techniques. And last, knowing the light-
ing in the 3D scene behind an image can facilitate shadow
detection or removal algorithms and help initializing global
camera orientation estimation in SLAM approaches.

Figure 11 Text to be modified

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
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