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Abstract
Accurate rainfall estimation is crucial to adequately assess the risk associated with extreme events capable of triggering

floods and landslides. Data gathered from Rain Gauges (RGs), sensors devoted to measuring the intensity of the rain at

individual points, are commonly used to feed interpolation methods (e.g., the Kriging geostatistical approach) and estimate

the precipitation field over an area of interest. However, the information provided by RGs could be insufficient to model

complex phenomena, and computationally expensive interpolation methods could not be used in real-time environments.

Integrating additional data sources (e.g., radar and geostationary satellites) is an effective solution for improving the quality

of the estimate, but it needs to cope with Big Data issues. To overcome all these issues, we propose a Rainfall Estimation

Model (REM) based on an Ensemble of Deep Neural Networks (DeepEns-REM) that can automatically fuse heterogeneous

data sources. The usage of Residual Blocks in the base models and the adoption of a Snapshot procedure to build the

ensemble guarantees a fast convergence and scalability. Experimental results, conducted on a real dataset concerning a

southern region in Italy, demonstrate the quality of the proposal in comparison with the Kriging interpolation technique and

other machine learning techniques, especially in the case of exceptional rainfall events.

Keywords Rainfall estimation � Residual neural network � Snapshot ensemble � Multi-source heterogeneous data fusion

1 Introduction

Accurately estimating the rainfall rate allows for modelling

hydrological and other environmental processes, and

enabling timely countermeasures to mitigate the risks due

to extreme events, such as flash floods and landslides. Real-

time constraints, noise, outliers, incomplete and inconsis-

tent data, and the need of integrating different sources of

data, represent some of the main issues to consider in

defining a solution able to effectively address this problem.

Rain Gauges (RGs) represent a valuable tool to estimate

rainfall in complex environments as these sensors provide

direct measurements of the precipitation at individual

points in different time windows and permit to gather a

large amount and high rate of information used to detect

extreme rainfall events. Interpolation methods are usually

employed to combine the information provided by different

RGs and estimate the rainfall height for spatial coordinates

not covered by sensors. In particular, Kriging geostatistical

interpolation techniques [1] are widely adopted in the lit-

erature to address this problem.

However, since rainfall is a complex phenomenon

characterized by a high spatial and temporal variability

over a wide range of scales [2], the reconstruction of the

space rain field from point measurements represents a

challenging task [3]. Moreover, although dense, RG net-

works could be not able to gather enough information on

the spatial variability of the precipitations, therefore as a

result the interpolation of the gathered values may not

provide a reliable estimate of the rainfall field for real-time

warning systems or for post-analysis of critical events.

Indeed, the information provided by the rain gauges is
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frequently inadequate to extract relevant patterns for con-

vective storms characterized by strong intensity, high

variation and short duration. As a consequence, heavy

precipitations are poorly depicted and this scenario is fur-

ther exacerbated in regions with a complex topography and

small catchments [4].

Some recent approaches propose to address this problem

by integrating heterogeneous rainfall data sources via

interpolation methods [5]. The reconstruction of the spatial

precipitation field can be heavily improved by coupling

rain gauge measurements with precipitation estimates

provided by meteorological radars [6]. Moreover, geosta-

tionary satellites (MSG) represent a further important

source to estimate the rain field, since they allow for

continuously monitoring large areas with problems deriv-

ing from the particular orography [7]. Processing and

handling all these large amounts of heterogeneous data

represents a hard challenge in this context.

A widely used approach for integrating distributed rain

gauge point measurements with radar data is the Kriging

with External Drift (KED), a multivariate geostatistical

interpolation method allowing the processing of non-sta-

tionary random field (rainfall data, in the case of interest

here) taking into account the spatial dependence of the

random variable and also its linear relation to one or more

additional variables (radar data) [8], but it is computa-

tionally expensive since it is based on Gaussian Process

Regression [9] and do not take in account historical data

that represents a precious source for improving the

estimate.

1.1 Related works

Recently, a new line of research focused on the usage of

Machine Learning (ML) techniques to automatically fuse

information from heterogeneous data sources and to pro-

vide a more accurate rainfall estimation [20]. However, the

adoption of ML techniques raises a number of issues to be

coped with, such as imbalanced data, many missing attri-

butes and real-time constraints, which require the devel-

opment of specific solutions. In addition, integrating

heterogeneous rainfall data sources to yield a more accu-

rate estimation is a further relevant research topic, espe-

cially when the hydrological model requires a rainfall

estimate as input [5]. Ensemble and Deep Learning (DL)

are two data-driven paradigms able to effectively tackle

these issues.

Ensembles [21] are well-known ML methods, where the

output of several models trained against different data

samples or using different algorithms, are then combined

according to a given strategy for classifying new unseen

instances. This paradigm permits us to cope with the

problem of unbalanced classes and reduce the variance and

the bias of the error. In the reference scenario, ensemble-

based algorithms can be employed to address the above-

cited issues related to the problem of rainfall estimation,

such as unbalanced data and non-linear correlation among

the different sources of data (radar, Meteosat and rain

gauges).

An interesting preliminary ensemble approach (includ-

ing also a neural network) to improve rainfall rates esti-

mation is proposed in [10], however, it takes into account

only radar data. Kuhnlein et al. [22] also exploit an

ensemble-based approach that employs Random Forests to

estimate rainfall rates from MSG data. A further work

moving in this direction has been proposed in [12]. The

authors devised a framework integrating different data

sources via a Hierarchical Probabilistic Ensemble Classi-

fier (HPEC). Experiments conducted on a real case study

prove the importance to combine different data sources and

the capability of the proposed ensemble method in allevi-

ating the above-mentioned issues.

A different solution approach relies on the usage of

(Deep) Neural Networks. Deep Learning [23] allows for

learning accurate Rainfall Estimation Models (REM) by

directly fusing raw low-level data gathered from hetero-

geneous data sources. Indeed, a hierarchical scheme is

exploited in learning Deep Neural networks: basically, a

DNN can be imagined as a stack of several levels, each one

composed of a number of base computational units (neu-

rons). Here, the idea is that every level of the DNN can

extract high-level features, which can be provided as input

for the next level of the network. In this way, the DNN

enables the automatic extraction of discriminative data

abstractions, therefore these models represent an effective

solution to fuse different types of data provided in different

formats. A further benefit in adopting the DL paradigm is

the possibility to incrementally update the model as soon as

new batches of data are made available so to ensure the

scalability of the overall learning system.

For the above-cited motivations and also for the high

non-linearity of the correlations between sensors data,

cloud properties and rainfall estimates, recently, different

machine learning (and also deep learning) techniques have

been explored [24] [13] to improve the quality of the

models for the problem of rainfall estimation.

In the literature, some preliminary approaches based on

exploiting the DL paradigm have been proposed to address

the rainfall estimation problem [16–18] but these solutions

employ a single data source at a time or train a separate

model for each source. For instance, with the aim to esti-

mate rainfall rate on a daily timescale, the authors of [16]

define an approach based on a NN trained against satellite

data (single source). In the same way, the work in [17]

designs a suitable NN-Based model to process data from

the Meteosat data source.

10348 Neural Computing and Applications (2023) 35:10347–10360

123



A different solution is proposed in [13], i.e., deep

autoencoders and Long Short Time Memory networks are

combined to process image sequences concerning rainfall

events. Basically, the approach allows for denoising,

extracting high-level features and analyzing the data pro-

vided as input to the network.

In [18], the authors define a new methodology to inte-

grate different precipitation data sources by combining an

artificial neural network and a vector space transformation

function. In the work [19], a Multi-Layer Perceptron is

trained by using the surface and altitude mapping data.

A Principal Component Analysis (PCA) is exploited to

preprocess raw data and extract informative features to

feed the DNN. Again, a preliminary approach to solve this

task is proposed in [15] in which different data sources are

automatically combined for providing a rainfall estimate by

using a DNN with a particular topology.

Table 1 summarizes the most significant approaches

among those described above. Compared to these approa-

ches, to the best of our knowledge DeepEns-REM is the

first solution that merges the Deep Learning paradigm with

ensemble-based methods and integrates different types of

data sources.

1.2 Our proposal

To overcome the main limitations of the above-described

works and address the main challenges of the weather

forecast domain (i.e., handling huge amounts of data

yielded by the sensors, integrating different types of data

from different sources and learning incrementally as soon

as new batches of data are available) we defined a scalable

DL-based framework able to effectively detect severe

rainfall events.

In more detail, we propose to merge the robustness of

the ensemble technique with the capability of DNNs to

handle and automatically combine raw low-level data from

heterogeneous data sources: an Ensemble of Deep Neural

Networks (DeepEns-REM) fed with different types of data

sources (i.e., RGs, radars and satellites) is introduced here.

In order to better face the imbalanced nature of the training

data (severe rainfall events are rare cases), the DNN

architecture of the base classifiers has been designed to

include a combination of dropout layers, batch normal-

ization functions and residual-like connections. Each

model composing the ensemble is discovered by exploiting

a Snapshot procedure [25] and their predictions are com-

bined via a not-trainable function. Notably, while Residual

Blocks permit the reduction of the number of epochs for

the learning algorithm convergence, the Snapshot

Table 1 Analysis of ML/DL based techniques for rainfall estimation

Approach Multi-

source

Data source(s) ML/DL

based

Model type Ensemble Ensemble strategy

Tan et al. [10] � Radar data ML Support vector machine, Multi-layer

perceptron

U Hierarchical

combination

Kuhnlein et al.

[11]

� Setellite data ML Random forest U Averaged prediction

Guarascio et al.

[12]

U Rain gauge, radar and

setellite data

ML Random forest, Bayesian model U Stacking method

Tang et al. [13] � Setellite data DL Feed forward neural network � –

Tao et al. [14] � Setellite data DL Stacked denoising autoencoder � –

Folino et al. [15] U Rain gauge, radar and

satellite data

DL Custom feed forward neural network

with weighted loss

� –

Grimes et al.

[16]

� Satellite data DL Feed forward neural network � –

Rivolta et al.

[17]

� Satellite data DL Feed forward neural network � –

Turlapaty et al.

[18]

U Several high resolution

precipitation datasets

DL Feed norward neural network with

vector space Transformation

� –

Zhang et al. [19] � Surface and altitude

mapping data

DL multi-layer perceptron combined with

principal component analysis

� –

DeepEns-REM

(our approach)

U Rain gauge, radar and

setellite data

DL Residual neural network U Snapshot ensemble

with max score

criterion
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procedure allows for learning the base models composing

the ensemble in a single DNN training execution to ensure

efficiency and scalability. Moreover, these classifiers are

trained by using an ad-hoc cost-sensitive (imbalance-

aware) loss function.

The experimental evaluation has been conducted on a

real scenario, described in [12]. Specifically, data concern a

peninsular region of Southern Italy (Calabria) and are

provided by the Italian Department of Civil Protection. It is

an effective test case for its complex orography and strong

climatic variability. In addition, the complex orography,

the heat flux coming from the Mediterranean Sea and the

high reliefs near the warm sea interact strongly and favour

the convective instability of this region, which also pre-

sents frequent floods and landslides.

The proposed framework overcomes the predictive

performances of widely used and recognized methods (i.e.,

KED) and could be of support in many real contexts, as in

the case of an officer of the Department of Civil Protection,

which has to analyze the rainfall in specific zones

exhibiting risks of landslides or floods and has to make

real-time decisions in order to avoid damages, or in the

worst case, injuries and deaths.

1.3 Organization of the paper

The rest of this article is organized as follows. Sect. 2

provides some background information about the problem

of rainfall estimation normally defines the addressed

problem. In Sect. 3 we introduce the reference framework.

Section 4 is devoted to illustrating the Rainfall Estimation

Model devised to tackle the task. Experimental results both

in terms of effectiveness and efficiency of the proposed

approach, conducted on the above-mentioned real test case,

are shown in Sect. 5. Finally, Sect. 6 concludes the work

by summarizing the obtained results and introducing some

new research lines for future works.

2 Background and problem definition

In this work, we address the areal rainfall estimation

problem, which can be defined as the problem to estimate a

highly variable spatial field, both in space and time, by

using data from a number of randomly placed points.

Direct measurements of rainfall are gathered by RG

networks, which provide the amount of precipitation of a

limited set of points over the area of interest. Indeed, even

dense networks of rain gauges may result too sparse to

compute an accurate interpolated spatial rainfall field for

hydrological modelling. Estimates of a spatial precipitation

field can be provided by other meteorological instruments,

like weather radars, which provide high-resolution

observations of precipitation spatial patterns. However, a

radar measurement is an indirect estimate of rainfall, as it

does not guarantee a precise quantitative measure of

rainfall.

In addition, images from meteorological satellites rep-

resent a precious source to compute spatially distributed

rainfall estimation [26]. In fact, from the observations

taken from the satellites with different wavelengths, rain-

fall estimation methods can extract interesting character-

istics of the clouds concerning possible ground

precipitations and therefore this aspect can be used to

indirectly measure the rainfall.

Notably, since the integration of the different temporal

and spatial resolutions of the data sources is crucial to

learning accurate estimation models, the preprocessing

phase described [12] is adopted to make comparable the

measurements logged by the different instruments.

Problem definition

As highlighted above, our final aim consists in discov-

ering accurate predictive models able to estimate the

accumulated rainfall raining at individual points (not

monitored from the rain gauges) in a specific time interval

by automatically fusing further information gathered from

different heterogeneous data sources.

Basically, as shown in Fig. 1, each RG belonging to the

network provides the measurement of the accumulated

rainfall in the point (x, y) where it has been deployed.

Anyway, it can monitor only a limited part of the area

where we want to estimate the rainfall rate, therefore our

task consists in estimating the values of the remaining

uncovered points of the grid for a specific time window.

Fig. 1 View of the integrated rainfall data sources for a generic point

p ¼ ðx; yÞ. Three sources (RG network, Radar and Geostationary

satellites) contribute to feeding the Rainfall Estimation Model
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Formally, the above-described problem can be defined

as follow.

Let be pi ¼ ðxi; yiÞ the spatial coordinates of the ith rain

gauge belonging to the RG network composed of m nodes,

and let be frgðpi; tÞ ¼ v a function providing the observed

height of rainfall by the ith rain gauge at time t. We denote

with RGðtÞ ¼ hðp1; frgðp1; tÞÞ; ðp2; frgðp2; tÞÞ; . . .;
ðpm; frgðpm; tÞÞi the list of pair containing RG spatial

coordinates and rainfall observed at time t for each rain

gauge belonging to the network. Notably, in our setting, we

assume that the spatial coordinates of the rain gauges

cannot change over time.

In addition, different types of side information, extracted

from other data sources, can be coupled with the RG data

to enrich the initial set of features. With this aim, let us

consider a generic point p belonging to the area where we

want to estimate the accumulated rainfall and not be cov-

ered by any rain gauge.

Let be fradarðp; tÞ ¼ hrf1; rf2; . . .; rfki, where rfi is the

value of the ith feature gathered by the radar in p at time t.

Let be fmsgðp; tÞ ¼ hmf1;mf2; . . .;mfli, where mfi is the

value of the ith feature provided by the meteosat satellites

in p at time t.

We define the function fdðp; jÞ, which, given a point p,

returns its distance from the nearest jth rain gauges in

RG(t). We define the function fnðp; jÞ, which, given a point

p, returns the index of the nearest jth rain gauge in RG(t).

Afterwards, we define the function fcðfrgðpi; tÞÞ ¼ c as a

function R� 0 7!C ¼ fc1; c2; . . .; cog which maps each

value of height of rainfall with a specific (discrete) rainfall

class c.

Let be

frg0 ðp; t; nbÞ
¼ hðpfnðp;1Þ; fdðp; fnðp; 1ÞÞ; fcðfrgðpfnðp;1Þ; tÞÞÞ;
ðpfnðp;2Þ; fdðp; fnðp; 2ÞÞ; fcðfrgðpfnðp;2Þ; tÞÞÞ;
. . .; ðpfnðp;nbÞ; fdðp; fnðp; lÞÞ; fcðfrgðpfnðp;nbÞ; tÞÞÞi

where nb is the number of neighbours considered.

We define as extended data input (edi) for a point pi at

time t the following: ediðp; t; nbÞ ¼ frg0 � fradar � fmsg.

Finally, we define a Rainfall Estimation Model REM as

a function REM : Qnb � Rk
� 0 � Rl

� 0 ! C where Q ¼
R2

� 0 � R� 0 � C that maps each tuple s � ediðpi; t; nbÞ
with a rainfall class i.e. s 7!REMðsÞ where REMðsÞ 2 C.

In a nutshell, given as input the concatenation of the data

measured by the three data sources (rain gauges, radars and

Meteosat satellites) at a given time t, this model (REM)

returns the estimated class c of the rainfall event.

3 Reference framework

In this work, we extend the framework defined in [12] by

including a novel REM based on an Ensemble of Deep

Neural Networks. The software architecture of this

framework is divided into different layers, which are used

for data integration and preprocessing, for building the

DNN-based model and finally for evaluating the perfor-

mance and visualizing the results.

Figure 2 shows the above-mentioned layers, described

in the following, starting from the lowest layer comprising

the different information sources (i.e., rain gauges, radar

and satellite data).

First, the Information Retrieval layer permits the

extraction and the integration of the different types of

Fig. 2 Rainfall estimation framework system
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information, extracted from the data sources. The connec-

tion with the different sources of data is guaranteed from

the Data Source Connectors. Then, their output is sent to

the Data Wrapper, which is responsible for supplying a

unified view of these data to the upper level.

Afterward, data are passed to the Machine Learning

layer, in which they are preprocessed to make them suit-

able for the analysis and an undersampling strategy is

adopted to address the class unbalanced problem. In more

detail, this layer includes three main modules: Data Pre-

processing, Data Sampling and Model Building. First,

missing values, outliers, and noise are handled by adopting

different strategies to make data clean for the learning

phase. Indeed, a big issue in handling the different distri-

bution of the classes is represented by the so-named

unbalancing problem, in which the majority class is often

one or two orders of magnitude greater than the minority

class. Consequently, the minority class is present only in a

small portion of the training set, making really hard to train

the classification models. In our framework, an ad-hoc

undersampling strategy is used to mitigate this problem.

Then, a model used to estimate the rainfall is generated by

the REM builder model, trained from the data preprocessed

with the other modules. Finally, test data, opportunely

preprocessed similarly to the training data, and the REM

model are passed to the last layer, in which the visualiza-

tion of the final estimation of the rainfall, together with an

evaluation of the performance of the model, is generated by

using respectively the Rainfall Map Visualization and the

REM Performance Evaluation module.

4 DeepEns-REM

In this section, we describe the classification model adop-

ted to distinguish different rainfall classes. Specifically, our

REM takes the form of an Ensemble of Residual Neural

Networks learned by exploiting a Snapshot procedure.

Below, first, we describe the architecture of the base lear-

ner, and then we illustrate the Snapshot procedure adopted

for building the ensemble model.

4.1 ResNet-REM base model

In Fig. 3a, the overall architecture of the DNNs composing

the ensemble is shown. Basically, it is a feed-forward

neural network including a number of skip connections.

The usage of the skip connections induces in the base

DNN classifier a behaviour similar to Residual Networks

[27], which have been proven to be effective solutions to

the well-known degradation problem (i.e., neural networks

performing worse at increasing depth), and capable of

ensuring a good trade-off between convergence rapidity

and expressivity/accuracy.

Fig. 3 DeepEns-REM base components
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Notably, these benefits seem to depend on the fact that a

residual network can be figured out as an ensemble of

alternative transformation paths: in practice, the final out-

put of the network is yielded by combining paths with

different lengths; therefore, a ResNet could be regarded as

an ensemble itself.

The base learner architecture is based on the sub-net

shown in Fig. 3b including three main components: (i) a

fully-connected dense layer equipped with a (ReLU) acti-

vation function [28], (ii) a batch-normalization layer that

enables more stability in the learning stage [29], (iii) a final

dropout layer to address the overfitting issue[30]. Notably,

in Fig. 3a, we refer with Building Block the stack of these

three components. Interestingly, as highlighted by Hinton

et al. in [31], dropout mechanisms enable within the neural

net an ensemble behaviour: multiple sub-nets resulting

from randomly masking some neurons are combined to

yield the final output.

A Residual Block (including two Building Blocks

stacked with a skip connection) can be replicated several

times within the model to make the architecture more depth

and the number of instances of this sub-net represents a

parameter of the ResNet-REM.

We highlight that we are not addressing a classification

problem but an ordinal learning task. In a nutshell, our

main problem consists in ranking the rainfall events on the

basis of their risk and identifying the most dangerous ones.

Anyway, it would be better whether the errors of the model

in estimating the severity of a rainfall event correspond to

adjacent classes (i.e. a slightly heavier or lighter rainfall

event). On the basis of this rationale, the last layer of our

architecture is equipped with a single neuron that yields a

prediction value ranging in the interval

½0; number of classes�).
In the literature, Mean Absolute Error (MAE) [32] has

been often adopted as loss function for ranking problems

due to its robustness to outliers. However, in our scenario

REM should focus on detecting exceptional behaviours by

tackling the unbalance problem and, hence, reducing the

classification error for the minority classes (exceptional

cases). In this respect, to further improve the detection

capabilities of the network we adopted a weighted variant

of the MAE (named in the following Weighted-MAE),

defined as follows:

Weighted�MAE ¼ 1

n

Xn

i¼1

kyðiÞ � ~yðiÞk � weightðyðiÞÞ ð1Þ

where n represents the batch size i.e. the number of

examples, yðiÞ and ~yðiÞ are the real and the predicted value

for the rainfall event respectively, and weightðyðiÞÞ is a

function that maps each class with a correspondent weight.

In our framework, we adopt a linear weight function, i.e.

instances belonging to the first class are weighted with 1,

instances belonging to the second class are weighted with

2, and so on. Finally, the output of the Residual Blocks and

the Building Block is concatenated and provided as input

for the last layer of the model to exploit different levels of

abstraction to yield the final decision. In the following, we

refer to the base model as ResNet-REM.

4.2 Snapshot procedure

In our solution, we train several base models, whose output

is then combined by using a not-trainable function (the max

rainfall class, i.e., the most severe class event among the

predicted ones by the base models). Each ResNet-REM

composing the ensemble is yielded by means of a

straightforward algorithm, which exploits the iterative

gradient-descent optimization method of the DNN training

stage. The main idea consists in updating the weights of the

base DNN architecture, at each epoch, in opposite direction

to the gradient, with the aim of progressively approaching a

local minimum. In this scheme, the learning rate (lr) acts

the role to control the convergence rate and it is iteratively

updated to ensure fast convergence. Notably, both the local

optimum achieved by means of the SGD procedure and its

variants, depend on the initialization of the network and the

lr value. As highlighted in [25], a cyclic reset of the lr

yields a re-initializing of the network and a restarting of the

optimization from another point in the search space and

allows for discovering different variants of the model. In

our framework, we adopted as a cyclic function, the shifted

cosine function proposed by Loshchilov and Hutter [33].

Specifically, the DeepEns-REM is learned as follows. A

ResNet-REM (named in the following as RN1) is randomly

initialized and trained. Hence, the algorithm iteratively

learns the model RNi by re-training RNi�1 with the initial

learning rate g for a fixed number of epochs. At each

epoch, g is progressively lowered. The trained RNi is added

to the ensemble list and lr is once again reinitialized. The

defined Ensemble Strategy is presented in Fig. 4, where

several ResNet-REMs fRN1;RN2; . . .;RNng are suit-

able combined to compute the final prediction. In the

application phase, the edi of each point to be estimated is

provided as input to each base model composing the

ensemble. The final rainfall severity score (i.e., the rain

event class) is obtained by considering the max class value

estimated by the base model i.e., maxðCRN1
; :::;CRNn

Þ
where n is the number of REMs trained.
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5 Evaluation

To evaluate the quality of our approach to estimating

(extreme) rainfall events, a number of experiments on the

real data concerning Calabria have been conducted. The

first suite of experiments aims to compare our approach

with some ensemble-based techniques (random forest,

boosting) and, in addition, with the decision tree algorithm

and the SVR (support vector regression model), which has

been successfully used in the field of rainfall forecasting

[34]. Furthermore, we compared DeepEns - REM with the

KED (kriging with external drift) baseline method and with

the Hierarchical Probabilistic Ensemble Classifier

(HPEC)[12]. Note that KED represents the state-of-the-art

among interpolation methods for rainfall estimation.

Finally, we compared our deep ensemble model with two

state-of-the-art neural architectures proposed in the

literature.

In particular, all these test suites have been validated

also on the minority class, representing extreme rainfall

events.

5.1 Dataset, parameters and evaluation
measures

The dataset used for the experiments measures the rainfall

events for a period concerning the second half of 2016 in

Calabria and it has 117, 600 tuples and 35 features. The

pre-processing phase of this dataset is described in the

previous subsection and in detail in [4]. Synthetically, for

every cell, for a 30 minutes time step, 35 features were

extracted, 11 features from the MSG satellites, 16 features

from the rain gauges and 5 features from the radars. More

in detail, for each point, we consider the 4 nearest cells in

which a rain gauge is present (latitude, longitude, distance,

and rainfall value measured for each of them). In addition,

also the month of the measure is considered.

The class to be predicted, i.e., the mm of rain fallen in 30

minutes, was discretized into 5 classes, (i.e., less than 0.5,

0.5–2.5, 2.5–7.5, 7.5–15 and greater than 15) [12]. The last

class is particularly important because it includes extreme

rainfall events, which must be handled adequately.

However, as a low number of tuples belong to this class, its

classification is a really challenging problem.

Specifically, the base learner includes two instances of

Residual Block. Each dense layer is equipped with a ReLU

activation function and includes 64 neurons. RMSprop is

used as optimizer with an initial lr ¼ 0:001. DeepEns-

REM is trained over 64 epochs and batch_size = 512.

Finally, the Snapshot procedure is performed until 5 vari-

ants of the model RN1 have been obtained.

As for the implementation of the competitors, we

adopted the well-known scikit-learn machine learning

implementation1 for the boosting, random forest and the

SVR model. No tuning of the parameters was conducted.

The random forest algorithm fixes a maximum depth for

each base learner equals to 7, and an overall number of

trees equal to 50. Standard parameters have been used for

the other algorithms and parameters. Kriging with External

Drift (the baseline method) is based on the ‘‘autokrige’’

function of the Automap library of the statistical software

R2, which automatically fits and chooses the best model

among the different variogram models for the spatial

interpolation.

Each model is trained against a sample of 66% of the

dataset whereas it is evaluated on the remaining examples

(test set). All the experiments were averaged over 30 runs.

Note that, for a fair comparison with the kriging baseline

method, we adopted the same above-defined partition for

the training and test set. In addition, due to the nature of the

interpolation method of the kriging, first, the points

belonging to the test dataset were removed and the other

points (training set) were used to train the autocorrelation

models.

Due to the rarity of the minority class (exceptional

rainfall events), and in order to avoid issues concerning the

correctness of the evaluation of this class, we adopted

measures particularly apt to cope with unbalanced prob-

lems. Therefore, in addition to the metrics of precision and

recall, usually used in the balanced case, we employ other

metrics specific for the rainfall estimation [36], i.e., the

False-Alarm Ratio (FAR), the Critical Success Index (CSI)

and the Probability of Detection (POD). However, these

metrics are defined for a two-class scenario; in a multi-

class scenario, they can be extended in many ways [37],

mainly using two different techniques for averaging these

evaluation measures: macro-averaging and micro-averag-

ing. By using the macro-based technique, first, for each

class, the performance measure is computed and then it is

averaged; for the other case (micro), first, a cumulative sum

of the counts (TPs, FPs, FNs, TNs) is calculated and then

the overall measure is computed. We adopted macro-

Fig. 4 Snapshot-based ensemble model

1 http://scikit-learn.org/stable/.
2 https://cran.r-project.org/web/packages/automap/index.html
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averaging, which weights all the classes equally (micro is

more biased towards larger classes), as we are mainly

interested to predict the minority class.

5.2 Convergence analysis

In this section, we analyze the model behaviour at learning

time. Basically, we are interested to investigate whether

DeepEns-REM architecture enables a faster convergence

of the algorithm to reduce the number of epochs required to

learn an accurate predictive model. Basically, we compared

two architectures (respectively named in figure, ResNet-

REM and Base DNN), that include the same number of

building blocks (i.e., a block composed of a feed-forward

dense layer, a batch normalization layer and a dropout

layer). The only difference between the architecture relies

on the presence of the skip connections and residual blocks

in the former one.

In Fig. 5a, the training loss value per epoch is shown.

First, we pinpoint that, at the first iteration, the ResNet-

REM loss value is lower than the Base DNN one of 0.1;

therefore, we can observe the benefits of adopting the skip

connections already in the early stages of the training

phase. Moreover, 	 38 epochs are required in order for the

two models to exhibit the same values of loss. This beha-

viour is even more evident in Fig. 5b, where we monitored

the loss values in the validation set. In particular, we can

observe an unstable behaviour for the loss in the Base

DNN, whereas ResNet-REM is able to achieve a

stable value of loss in a limited number of iterations. In the

Fig. 6a b, we also report the Macro-F1 values for both

architectures. Once again, as regards the values for the

training set, Base DNN is not able to achieve the same

performance in 40 epochs, whereas, on the validation set,

we observe again an unstable behaviour for this algorithm.

5.3 Performance analysis

Here, we evaluate the rainfall estimation capability of

DeepEns-REM in comparison with other Machine Learn-

ing-based techniques, in particular ensemble methods (in-

cluding the Hierarchical Probabilistic Ensemble Classifier

proposed in [12]) and with the baseline method (kriging

with external drift). Mainly, we are interested in analyzing

the behaviour of our algorithm in coping with exceptional

rainfall events (minority class).

In order to evaluate whether the differences between the

performance of the models are significantly different, a

Wilcoxon signed-ranked test with a confidence level of

0.95 (a ¼ 0:05) was used. The Wilcoxon test is a non-

parametric pairwise test that can be used to detect signifi-

cant differences between two algorithms. It is analogous to

the paired t test, however, it is largely used in the literature

as it does not assume normal distributions and the outliers

(exceptionally good/bad performance) have less effect on

it.

In the first suite of experiments, we compare DeepEns-

REM with other ML-Based methods: in Table 2, we report

CSI (higher is better), FAR (lower is better) and POD

(higher is better) macro-averaged for all the rainfall clas-

ses, while Table 3 shows precision, recall and F-measure

for the class including extreme events. The values, which

are significantly better, are reported in bold while the

values that are significantly worst are reported in italic

face.

As reported in 2, DeepEns-REM exhibits significantly

better rainfall detection capabilities since it obtains the best

value in terms of POD. Moreover, as shown in Table 3, it

represents a good trade-off between precision and recall in

detecting extreme events with the best value in terms of

F-Measure.

Fig. 5 Convergence analysis for ResNet-REM and Base DNN (Weighted-loss)

Neural Computing and Applications (2023) 35:10347–10360 10355

123



Once again, Table 4 reports CSI (higher is better), FAR

(lower is better), POD (higher is better) for all the classes,

while Table 5 reports precision, recall and F-measure for

the minority class, as in the previous experiments, but in

this case, we compare DeepEns-REM, HPEC and RF with

the baseline, Kriging.

We can observe that ML-Based methods outperform the

Kriging in both the tasks i.e., accurately depicting rainfall

Fig. 6 Convergence analysis for ResNet-REM and Base DNN (Macro F1-score)

Table 2 CSI, FAR, POD, and

MSE for the SVR, Decision

tree, boosting, random forest

and DeepEns-REM. The values

in bold (italic face) are

significantly better (worse) than

at least other two methods

Algorithm CSI FAR POD MSE

SVR 0:37 
 0:010 0:40
 0:027 0:43
 0:011 0:11
 0:002

Decision Tree 0:41
 0:009 0:38
 0:033 0:47
 0:011 0:10
 0:002

Boosting 0:43
 0:008 0:33
 0:026 0:49
 0:008 0:09
 0:002

Random Forest 0:43
 0:010 0:31
 0:024 0:49
 0:011 0:09
 0:002

DeepEns-REM 0:45
 0:009 0:38
 0:015 0:53
 0:012 0:09
 0:002

Table 3 Precision, recall and F-measure for the SVR, decision tree,

boosting, random forest and DeepEns-REM for the minority class

(extreme rainfall events). The values in bold (italic face) are signifi-

cantly better (worse) than at least other two methods

Algorithm Precision Recall F-measure

SVR 0:54
 0:14 0:11
 0:05 0:18
 0:08

Decision tree 0:50
 0:14 0:18
 0:07 0:26
 0:08

Boosting 0:69
 0:11 0:24
 0:04 0:35
 0:05

Random forest 0:68
 0:10 0:23
 0:05 0:35
 0:06

DeepEns-REM 0:53
 0:07 0:31
 0:06 0:40
 0:06

Table 4 CSI, FAR, POD and MSE for Kriging, HPEC and DeepEns-REM. The values in bold (italic face) are significantly better (worse) than

the Kriging method

Algorithm CSI FAR POD MSE

Kriging 0:40
 0:010 0:39
 0:018 0:48
 0:013 0:15
 0:002

HPEC 0:44
 0:011 0:46 
 0:016 0:58
 0:016 0:11
 0:002

DeepEns-REM 0:45
 0:009 0:38
 0:015 0:53
 0:012 0:09
 0:002

Table 5 Precision, recall and F-measure for the Kriging, HPEC and

DeepEns-REM for the minority classes (extreme rainfall events). The

values in bold (italic face) are significantly better (worse) than the

Kriging method

Algorithm Precision Recall F-measure

Kriging 0:45
 0:08 0:32
 0:06 0:38
 0:06

HPEC 0:33
 0:06 0:40
 0:07 0:36
 0:06

DeepEns-REM 0:53
 0:07 0:31
 0:06 0:40
 0:06
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field and detecting extreme events. In particular, also in this

case, DeepEns-REM is significantly better in terms of

F-Measure for the minority class.

Finally, in Fig. 7, we show the rainfall field respectively

reconstructed by DeepEns-REM, HPEC and KED for a

particularly severe event that occurred on November 6,

2017, in which three RGs observed their max values in the

same year (i.e., 42.4 mm for hour). Notably, we discretized

the values computed by KED technique on the basis of the

same classes considered for learning the ML-Based mod-

els. Specifically, DeepEns-REM exhibits an interesting

behaviour by highlighting more events belonging to the

class V and yielding a more detailed map for these cases,

however, further investigations should be conducted to

draw a final conclusion.

5.4 Comparison with deep learning architectures

In this subsection, we want to compare our deep ensemble-

based solution with other neural models adopted in the

literature. As highlighted in Sect. 2, current literature

mainly focuses on the usage of feed-forward neural net-

works (combined with different types of pre-processing

procedures) to address our same task. In this respect, to

perform a fair comparison we considered two advanced

feed forward neural networks having a number of param-

eters (i.e., the neural network weights) comparable with our

base model. The former (hereinafter named DNN_BB) is a

deep neural network obtained by stacking several building

blocks composed of three layers: a Dense Layer, a Batch

Normalization Layer and a Dropout Layer. In our experi-

mentation, we tested a network including six building

blocks. The latter neural model is a residual net (hereinafter

name DNN_RES) composed of three residual blocks. To

make the comparison fair, both the competitors have the

same complexity (i.e., they have the same number of

neurons, optimizer, activation functions, they are trained

with the same parameters, etc. of our model). In Tables 6

and 7, we reported the results of our analysis: basically, our

model exhibits better performances compared with its

competitors, obtaining the best results in terms of CSI,

POD and MSE, maintaining the same level of FAR. In

particular, if we focus the analysis on the detection of

extreme rainfall events, DeepEns-REM represents the best

trade-off between precision and recall; indeed, it obtains

the best results in terms of recall by limiting the loss in

terms of precision.

5.5 Analysis of statistical significance

In order to assess, the significance of the differences

observed between our approach and the different methods

considered in the experiments presented in the previous

subsections, the popular Friedman-Nemenyi statistical

procedure [38, 39], a widely used in the evaluation of

classifiers, was adopted. This procedure essentially consists

of two phases: first, the Friedman test is employed to

possibly reject the null hypothesis H0 that the different

populations of results (produced each by a distinguished

classifier-induction method) have the same mean, so that

they can be considered as statistically different (a ¼ 0:05).

Then, if H0 is rejected, a post-hoc Nemenyi test with a

significance level of 0.05 is used (as post-hoc test) to detect

all the pairs of methods that are significantly different from

one another: if a pair of methods is assigned a p-value

under 0.05, these methods are eventually deemed as sig-

nificantly different from a statistical viewpoint.

This statistical study includes both the machine-learning

based methods (i.e, SVR, Decision Tree, Boosting and

Random Forest) and the specific-domain approach (i.e.,

DNN_REM, Kriging and HPEC). Among the different

metrics, considered in our experiments, we show only the

Fig. 7 A qualitative example of how DeepEns-REM, HPEC [12] and KED reconstruct the rainfall map, together with the map of the real values

obtained in the rain gauges
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most relevant for our problem: POD and MSE for all the

classes and the F-Measure in the case of the extreme

rainfall events.

Figures 8, 9 and 10 show the critical difference (CD)

diagram, respectively for the metrics of POD, MSE and F-

measure (for the case of extreme rainfall events), obtained

by using the Friedman-Nemenyi procedure described

above. In this diagram, two methods are connected through

a horizontal line iff they resulted not significantly different

from one another.

From the Fig. 8, all the methods are significantly dif-

ferent (with the exception of Random Forest and Boosting)

and only the HPEC technique obtains better performance

than our method, which outperforms all the others.

In terms of MSE and F-Measure, our approach

(DNN_REM) overcomes the other methods. However, in

the case of MSE, it is not significantly better than Random

Forest, while for the F-Measure, it is not significantly better

than the Kriging technique.

6 Conclusions and future works

A novel Machine Learning-based model for spatial field

estimation has been proposed in this work. The main idea

consists in merging Ensemble and Deep Learning tech-

niques for estimating rainfall intensity in areas not covered

by rain gauge sensors. Specifically, a Rainfall Estimation

Model (REM) is fed with heterogeneous data from different

sources (i.e., Rain gauge network, Radar and Geostationary

satellites) and allows for automatically fusing these data so

to yield more accurate estimates. In our setting, our REM

takes the form of an Ensemble of Deep Neural Networks

built by using a Snapshot procedure and integrating

Residual sub-nets to guarantee a fast convergence and

scalability and make the approach apt to efficiently cope

with large real datasets.

An experimental evaluation, conducted on a real appli-

cation scenario, concerning a peninsular region of Southern

Italy (Calabria), demonstrates the effectiveness of our

proposal in recognizing severe events in comparison with

state-of-the-art approaches used in the literature to solve

this task. In more detail, our approach exhibits significantly

better rainfall detection capabilities both in comparison

with other ML-based techniques and with a state-of-the-art

technique in the domain of rainfall estimation. In addition,

as for the task of detecting extreme rainfall events, the

obtained estimation is a good trade-off in terms of the

metrics of precision and recall.

In future work, we plan to investigate spatio-temporal

correlations by adopting more sophisticated Deep Learning

architectures keeping into account these correlations and

exploring the accuracy of the method in detecting specific

extreme rainfall events.

Table 6 CSI, FAR, POD, and MSE for DNN_BB, DNN_RES and DeepEns-REM. The values in bold (italic face) are significantly better (worse)

than at least other two methods

Algorithm CSI FAR POD MSE

DNN_BB 0:43
 0:11 0:38
 0:035 0:51
 0:012 0:10
 0:002

DNN_RES 0:43
 0:12 0:38
 0:039 0:50
 0:019 0:10
 0:002

DeepEns-REM 0:45
 0:009 0:38
 0:015 0:53
 0:012 0:09
 0:002

Table 7 Precision, recall and F-measure for for DNN_BB, DNN_RES

and DeepEns-REM for the minority class (extreme rainfall events).

The values in bold (italic face) are significantly better (worse) than at

least other two methods

Algorithm Precision Recall F-measure

DNN_BB 0:50
 0:15 0:26
 0:07 0:33
 0:05

DNN_RES 0:52
 0:17 0:24
 0:09 0:30
 0:08

DeepEns-REM 0:53
 0:07 0:31
 0:06 0:40
 0:06

Fig. 8 Critical difference (CD) diagram for POD metric (Friedman test ? Nemenyi test, a ¼ 0:05). All (and only) the pairs of methods resulting

not significantly different according to the test (i.e., receiving a p value � 0:05) are connected through a horizontal line
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