
Algorithmica (2023) 85:1251–1286
https://doi.org/10.1007/s00453-022-01066-z

QuantumMeets Fine-Grained Complexity: Sublinear Time
Quantum Algorithms for String Problems

François Le Gall1 · Saeed Seddighin2

Received: 4 August 2022 / Accepted: 15 November 2022 / Published online: 5 December 2022
© The Author(s) 2022

Abstract
Longest common substring (LCS), longest palindrome substring (LPS), and Ulam dis-
tance (UL) are three fundamental string problems that can be classically solved in near
linear time. In this work, we present sublinear time quantum algorithms for these prob-
lems along with quantum lower bounds. Our results shed light on a very surprising
fact: Although the classic solutions for LCS and LPS are almost identical (via suffix
trees), their quantum computational complexities are different.While we give an exact
Õ(

√
n) time algorithm for LPS, we prove that LCS needs at least time �̃(n2/3) even

for 0/1 strings.

Keywords String algorithms · Quantum algorithms · Sublinear-time algorithms ·
Fine-grained complexity

1 Introduction

Perhaps the earliest questions that were studied in computer science are the algo-
rithmic aspects of string problems. The edit distance, longest common substring, and
longest palindrome substring are some of the more famous problems in this category.
Efforts to solve these problems led to the discovery of several fundamental techniques
such as dynamic programming, hashing algorithms, and suffix trees. These algorithms
have numerous applications in several fields includingDNA-sequencing, socialmedia,
compiler design, anti-virus softwares, etc.

Throughout the paper, when we say an exact solution, we mean a solution that does not lose anything in
the approximation. However, it may be possible that our algorithm succeeds with probability less than 1 in
which case we explicitly mention that.

B François Le Gall
legall@math.nagoya-u.ac.jp

1 Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi
464-8602, Japan

2 Toyota Technological Institute at Chicago, 6045 S Kenwood Avenue, Chicago, IL 60637, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01066-z&domain=pdf

1252 Algorithmica (2023) 85:1251–1286

All of the above problems have received significant attention in the classical setting
(see, e.g., [1–9]). Efficient classical algorithms for these problems emerged early on
in the 1960s [10]. Moreover, thanks to a series of recent developments in fine-grained
complexity [11, 12], we now seem to have a clear understanding of the classical lower
bounds as well. Unless plausible conjectures such as SETH1 are broken, we do not hope
for a substantially better algorithm for edit distance. Failure to extend the fine-grained
lower bounds to the quantum setting has left some very interesting open questions
behind both in terms of quantum complexity and quantum lower bounds.

Despite a plethora of new quantum algorithms for various problems (e.g., [13–
18]), not much attention is given to string problems. Until recently, the only non-trivial
quantum algorithm for such problemswas the Õ(

√
n+√

m) time algorithmofRamesh
and Vinay [19] for pattern matching where n and m are the sizes of the text and
the pattern (we also mention the works [20, 21] that consider string problems with
nonstandard queries in the quantum setting). Recently, Boroujeni, Ehsani, Ghodsi,
Hajiaghayi, and Seddighin [5] made a clever use of the Grover’s search algorithm
[22] to obtain a constant factor approximation quantum algorithm for edit distance in
truly subquadratic time. Shortly after, it was shown by Chakraborty, Das, Goldenberg,
Koucky, and Saks [6] that a similar technique can be used to obtain a classical solution
with the same approximation factor. Several improved classical algorithms have been
given for edit distance in recent years [23–25] though it is still an open question if
a non-trivial quantum algorithm can go beyond what we can do classically for edit
distance.

In this work, we give novel sublinear time quantum algorithms and quantum lower
bounds for LCS, LPS, and a special case of edit distance namely Ulam distance (UL).
All these problems require �̃(n) time in the classical setting even if approximate
solutions are desired. LCS and LPS can be solved in linear time via suffix trees [10]
and there is an O(n log n) time algorithm for Ulam distance [10]. Our results shed
light on a very surprising fact: Although the classical solutions for LCS and LPS are
almost identical, their quantum computational complexities are different. While we
give an exact Õ(

√
n) time quantum algorithm for LPS, we prove that any quantum

algorithm for LCS needs at least time �̃(n2/3) even for 0/1 strings. We accompany this
with several sublinear time quantum algorithm for LCS. A summary of our results is
given in Tables 1 and 2.

1.1 RelatedWork

Our work is very similar in spirit to for instance the work of Ambainis, Balodis, Iraids,
Kokainis, Prusis, and Vihrovs [26], where Grover’s algorithm is cleverly combined
with classical techniques to design more efficient quantum algorithms for dynamic
programming problems. This is particularly similar to our approach since we obtain
our main results by combining known quantum algorithms with new classical ideas. In
the present work, however, we go beyond Grover’s algorithm and make use of several
other quantum techniques such as element distinctness, pattern matching, amplitude

1 The strong exponential time hypothesis states that no algorithm can solve the satisfiability problem in
time 2n(1−ε).

123

Algorithmica (2023) 85:1251–1286 1253

Table 1 Our algorithms are shown in this table

Problem Solution Runtime Reference

Longest common substring (LCS) Exact Õ(n5/6) Theorem 1

Longest palindrome substring (LPS) Exact Õ(
√
n) Theorem 2

Longest common substring (LCS) 1 − ε approximation Õ(n3/4) Theorem 3

LCS for non-repetitive strings exact Õ(n3/4) Theorem 4

LCS for non-repetitive strings 1 − ε approximation Õ(n2/3) Theorem 5

Ulam distance 1 + ε approximation Õ(
√
n) Theorem 6

Table 2 This table includes the quantum lower bounds for the problems we study in this work

Problem Approximation factor Lower bound Reference

LCS 1 − ε approximation �̃(n2/3) Theorems 8 and 9

LPS 1 − ε approximation �̃(
√
n) Theorem 10

Ulam distance 1 + ε approximation �̃(
√
n) Theorem 11

amplification, and amplitude estimation to obtain our improvements. In addition to
this, we also develop quantum walks that improve our more general results for some
special cases. In particular, our quantum walk for obtaining a 1 − ε approximate
solution for LCS is tight up to logarithmic factors due to a lower-bound we give in
Sect. 7.

Another line of researchwhich is closely related to our work is the study of quantum
lower bounds for edit distance [27, 28]. While a SETH-based quadratic lower bound
is known for the classical computation of edit distance, quantum lower bounds are
not very strong. Recently, a quantum lower bound of �(n1.5) was given by Buhrman,
Patro, and Speelman [28] under a mild assumption. Still no quantum algorithm better
than the state of art classical solution (which runs in time O(n2/ log2 n) [1]) is known
for edit distance. The reader can find more details in [27].

While not directly related to string algorithms, another investigation of SETH in the
quantum setting is the recent work by Aaronson, Chia, Lin, Wang, and Zhang [29]
that focuses on the quantum complexity of the closest pair problem, a fundamental
problem in computational geometry. Interestingly, the upper bounds obtained in that
paper also use an approach based on element distinctness and quantum walks. Despite
this, the high-level ideas of our work are substantially different from [29] as we utilize
several novel properties of LCS and LPS to design our algorithms.

In the classical sequential setting, LCS and LPS can be solved in linear time [10].
The solutions are almost identical: we first construct suffix trees for the input strings
and then find the lowest common ancestors for the tree nodes. Ulam distance can
also be solved exactly in time O(n log n) [10] which is the best we can hope for via
a comparison-based algorithm [30] or algebraic decision trees [31]. Approximation
algorithms running in time Õ(n/d + √

d) where d denotes the Ulam distance of
the two strings have also been developed [32, 33]. Finally, we notice that after the

123

1254 Algorithmica (2023) 85:1251–1286

present results have beenmade public, Akmal and Jin [34] have constructed an optimal
Õ(n2/3)-time quantum algorithm for LCS.

1.2 Preliminaries

Description of LCS, LPS and UD
In the longest common substring problem (LCS), the input consists of two strings

and our goal is to find the longest substring2 which is shared between the two strings.
We denote the two input strings by A and B. We assume that A and B have the same
length, which we denote by n. We use � to denote the alphabet of the strings. For any
ε ∈ [0, 1), we say that an algorithm outputs a (1 − ε)-approximation of the longest
common substring if for any input strings A and B, it outputs a common substring of
length at least (1 − ε)d, where d is the length of the longest common substring of A
and B.

In the longest palindrome substring problem (LPS), the goal is to find the longest
substring of a given string A which reads the same both forward and backward. The
length of A is also denoted by n and its alphabet by �. For any ε ∈ [0, 1), we say that
an algorithm outputs a (1 − ε)-approximation of the longest palindrome substring if
for any input string A, it outputs a palindrome substring of length at least (1 − ε)d,
where d is the length of the longest palindrome substring of A.

We say that a string of length n over an alphabet � is non-repetitive if no character
appears twice in the string (note that this can happen only if |�| ≥ n). The Ulam
distance is a special case of the edit distance in which the input strings are non-
repetitive. Let us now define the problem more formally. In Ulam Distance (UD) we
are given two non-repetitive strings A and B of length n, and consider how to transform
one of them to the other one. For this purpose we allow two basic operations character
addition and character deletion, each at a unit cost and our goal is to minimize the
total cost of the transformation3. We denote by ud(A, B) the minimum number of
such operations needed to transform A into B. The goal is to compute ud(A, B),
either exactly or approximately. For any ε ∈ [0, 1], we say that an algorithm outputs a
(1+ ε)-approximation of ud(A, B) if it outputs some value r such that the inequality
(1 − ε) · ud(A, B) ≤ r ≤ (1 + ε) · ud(A, B) holds.
General definitions and conventions

Throughout the paper, we use notations Õ(·) and �̃(·) that hide the polylogarithmic
factors in terms of n. We always assume that the size of � is polynomial in n and
that each character is encoded using O(log n) bits. The size of � thus never appears
explicitly in the complexity of our algorithms. We say that a randomized or a quantum
algorithm solves a problem like LCS, LPS or UL with high probability if it solves the
problem with probability at least 9/10 (this success probability can be easily amplified
to 1 − 1/poly(n) with a logarithmic overhead in the complexity).

2 In a substring, the characters are next to each other. In other words, the positions of the characters of a
substring should make an interval. This is in contrast to subsequence where the positions can be arbitrary.
3 Another popular version allows character substitution as a third operation. These two definitions of the
Ulam distance only differ by a factor at most 2.

123

Algorithmica (2023) 85:1251–1286 1255

For convenience, we often only compute/approximate the size of the solution as
opposed to explicitly giving the solution. However, it is not hard to see that for LCS
and LPS, the same algorithms can also give an explicit solution with a logarithmic
overhead in the runtime. (a solution can be specified by two integers pointing at the
interval of the input.)

For a string X , we denote by X [i, j] the substring of X that starts from the i-th
character and ends at the j-th character. We say a string X is q-periodic if we have
Xi = Xi+q for all 1 ≤ i ≤ |X | − q. Moreover, the periodicity of a string X is equal
to the smallest number q > 0 such that X is q-periodic. We also call a non-repetitive
string of length n over an alphabet of size n a permutation (it represents a permutation
of the set �).
Quantum access to the inputs

In the quantum setting, we suppose that the input strings A and B can be accessed
directly by a quantum algorithm. More precisely, we have an oracle OA that, for
any i ∈ {1, . . . , n}, any a ∈ �, and any z ∈ {0, 1}∗, performs the unitary mapping
OA : |i〉|a〉|z〉 �→ |i〉|a ⊕ A[i]〉|z〉, where ⊕ denotes an appropriate binary operation
defined on � (e.g., bit-wise parity on the binary encodings of a and A[i]). Similarly
we have an oracle OB that, for any i ∈ {1, . . . , n}, any b ∈ �, and any z ∈ {0, 1}∗,
performs the unitary mapping OB : |i〉|b〉|z〉 �→ |i〉|b ⊕ B[i]〉|z〉. Each call to OA or
OB can be implemented at unit cost. This description corresponds to quantum random
access (“QRAM access”) to the input, which is the standard model to investigate the
complexity of sublinear time quantum algorithms.

2 Results

We present sublinear time quantum algorithms along with quantum lower bounds
for LCS, LPS, and UL. For the most part, the novelty of our work is to make use of
existing quantum algorithms to solve our problems. For this purpose, we introduce new
classical techniques that significantly differ from the conventional methods. However
for a special case of LCS, we design a novel quantumwalk that leads to an improvement
over ourmore general solution.We give a brief explanation of this technique later in the
section. For now, we start by stating the quantum tools that we use in our algorithms.

2.1 Quantum Components

Grover’s search ([15, 35]). Given a function f : [n] → {0, 1}, Grover’s algorithm
can find an element x ∈ [n] such that f (x) = 1 or verify if f (i) = 0 for all i ∈ [n].
This quantum algorithm runs in time Õ(

√
n ·T (n)) and succeedswith probability 9/10

(the success probability can be increased to 1 − 1/poly(n) with only a logarithmic
overhead). Here, T (n) represents the time complexity of computing f (i) for one given
element i ∈ [n]. Additionally, distinguishing between the case where f (x) = 1 holds
for at least m elements (for some value 1 ≤ m ≤ n) and the case where f (i) = 0 for
all i ∈ [n] can be done in time Õ(

√
n/m · T (n)).

123

1256 Algorithmica (2023) 85:1251–1286

Pattern matching ([19]). Let P and S be a pattern and a text of lengths n and m
respectively. One can either verify that P does not appear as a substring in S or find
the leftmost (rightmost) occurrence of P in S in time Õ(

√
n + √

m) via a quantum
algorithm. The algorithm gives a correct solution with probability at least 9/10.

Element distinctness ([13]). Let X and Y be two lists of size n and f : (X ∪Y) → N

be a function that is used to compare the elements of X and Y 4.
There is a quantum algorithm that finds (if any) an (x, y) pair such that x ∈ X ,

y ∈ Y and f (x) = f (y). The algorithm succeeds with probability at least 9/10 and
has running time Õ(n2/3 · T (n)), where T (n) represents the time needed to answer to
the following question: Given α, β ∈ X ∪ Y is f (α) = f (β) and if not which one is
smaller?

Amplitude amplification ([35]). Let Q be a decision problem and A be a quantum
algorithm that solves Q with one-sided error and success probability 0 < p < 1 (i.e.,
on a yes-instanceA always accepts, while on a no-instanceA rejects with probability
p). Let T be the runtime ofA. One can design a quantum algorithm for Q with runtime
O(T /

√
p) that solves Q with one-sided error and success probability at least 9/10.

Amplitude estimation ([35]). Let A be a quantum algorithm that outputs 1 with
probability 0 < p < 1 and returns 0 with probability 1− p. Let T be the time needed
forA to generate its output. For any α > 0, one can design a quantum algorithm with
runtime O(T /(α

√
p)) that outputs with probability at least 9/10 an estimate p̃ such

that (1 − α)p ≤ p̃ ≤ (1 + α)p.

2.2 LCS and LPS

In this section, we outline the ideas for obtaining sublinear time algorithms for LCS
and LPS. We begin as a warm up by giving a simple exact algorithm for LCS that runs
in sublinear time when the solution size is small. Next, we explain our techniques for
the cases that the solution size is large (at a high-level, this part of the algorithm is
very similar in both LCS and LPS). In our algorithms, we do a binary search on the
size of the solution. We denote this value by d. Thus, by losing an O(log n) factor in
the runtime, we reduce the problem to verifying if a solution of size at least d exists
for our problem instance.

Exact quantum algorithm for LCS (small d). For small d, we use element distinctness
to solve LCS. Let |�| be the size of the alphabet and v : � → [0, |�|−1] be a function
that maps every element of the alphabet to a distinct number in range 0 . . . |�| − 1.
In other words, v is a perfect hashing for the characters. We extend this definition to
substrings of the two strings so that two substrings t and t ′ are equal if and only if we
have v(t) = v(t ′). From the two strings, we then make two sets of numbers SA and
SB each having n − d + 1 elements. Element i of set SA is a pair (A, i) whose value
is equal to v(A[i, i + d − 1]) and similarly element i of SB is a pair (B, i) whose

4 In the standard definition of element distinctness, we are given a single list of elements and the goal
is to find out if two elements in the list are equal. The present definition, also known as claw finding, is
slightly more general—for completeness we discuss how the upper bound Õ(n2/3 · T (n)) is obtained for
our version as well in Sect. 4.1.

123

Algorithmica (2023) 85:1251–1286 1257

value is equal to v(B[i, i +d−1]). The two sets contain elements with equal values if
and only if the two strings have a common substring of size d. Therefore, by solving
element distinctness for SA and SB we can find out if the size of the solution is at
least d. Although element distinctness can be solved in time Õ(n2/3) when element
comparison can be implemented in Õ(1) time, our algorithm needs more runtime
since comparing elements takes time ω(1). More precisely, each comparison can be
implemented in time Õ(

√
d) in the following way: In order to compare two elements

of the two sets, we can use Grover’s search to find out if the two substrings are different
in any position and if so we can find the leftmost position in time Õ(

√
d). Thus, it

takes time Õ(
√
d) to compare two elements, which results in runtime Õ(n2/3

√
d).

1 − ε approximation for LCS and LPS (large d) We use another technique to solve
LCS and LPS when the solution is large. While for LPS, this new idea alone gives an
optimal solution, for LCS we need to combine it with the previous algorithm to make
sure the runtime is sublinear. Let us focus on LCS first. For a constant 0 < ε < 1, we
define d ′ = (1 − ε)d and randomly draw a substring of length d ′ from A. We denote
this substring by P . More precisely, we sample an 1 ≤ i ≤ n − d ′ + 1 uniformly
at random and set P = A[i, i + d ′ − 1]. Assuming the solution size is at least d, it
follows that P is part of a solution with probability at least εd/n. Then, by searching
this substring in B, we can find a solution of size d ′.

We use the pattern matching quantum algorithm of Ramesh and Vinay [19] to
search P in B. This takes time Õ(

√
n) since |P| ≤ |B| = n. Moreover, the success

probability of this algorithm is �(d/n) and therefore by amplitude amplification,
we can improve the success rate to 9/10 by only losing a factor of O(

√
n/d) in the

runtime. Thus, if the solution is at least d, we can obtain a solution of size at least
(1 − ε)d in time Õ(

√
n/d · √

n) = Õ(n/
√
d). Notice that the runtime is sublinear

when d is large.
The same technique can be used to approximate LPS. Similarly, we define d ′ =

(1− ε)d for some constant 0 < ε < 1 and draw a random substring of size d ′ from A.
With the same argument, provided that the solution size is at least d, the probability
that P is part of an optimal solution is at least �(d/n). We show in Sect. 5 that by
searching the reverse of P in its neighbourhood we are able to find a solution of at
least d ′. This step of the algorithm slightly differs from LCS in that we only search the
reverse of P in the area atmost d away from P . Thus, both the text and the pattern are of
size O(d) and therefore the search can be done in time Õ(

√
d). By utilizing amplitude

amplification, we can obtain an algorithm with runtime Õ(
√
n/d ·√d) = Õ(

√
n) and

approximation factor 1 − ε.

From 1 − ε approximation to exact solution. We further develop a clever technique
to obtain an exact solution with the above ideas. We first focus on LCS to illustrate this
new technique. The high-level intuition is the following: After sampling P from A
and searching P in B, if the pattern appears only once (or a small number of times) in
B then by extending the matching parts of B from both ends we may find a common
substring of size d (see Fig. 1).

Thus intuitively, the challenging case is when there are several occurrences of P
in B. The key observation is that since |P| is large and there are several places that
P appears in B then they must overlap (see Fig. 2). This gives a very convenient

123

1258 Algorithmica (2023) 85:1251–1286

Fig. 1 When P appears in B only once

Fig. 2 When P appears several times in B

approach to tackle the problem. Assume that P appears at positions i and j > i of
B and these parts are overlapping. This implies that P is certainly (j − i)-periodic.
To see how this enables us to solve the problem, assume that P is x-periodic and that
a large continuous area of B is covered by occurrences of P . It follows that except
for the boundary cases, P appears as parts of that interval that are exactly x units
away. Therefore, by detecting such an interval and computing the periodicity of P ,
one can determine all occurrences of P in the interval almost as quickly as finding
one occurrence of P .

Since the techniques are involved, we defer the details to Sect. 3 and here we
just mention some intuition about its complexity analysis: It follows from the above
observations that when several occurrences of P cover an entire interval I of B, then
we only need to consider O(1) places in I that may correspond to an optimal solution.
Moreover, the length of every such interval is at least d. Thus, there are only n/d places
of B that we need to take into account in our algorithm. Therefore at a high-level, when
d is large (say �(n)), the only non-negligible cost we pay is for the pattern matching
which takes time Õ(

√
n). We show in Sect. 3 that as d becomes smaller the runtime

increases; more precisely, when d = n/α the runtime increases by a factor of O(
√

α)

and thus the overall runtime of the algorithm is Õ(
√
n · √

α) = Õ(n/
√
d). A very

similar argument can be used to shave the 1 − ε approximation factor from the LPS
algorithm as well.

To summarize, we obtain the following theorems. Theorem 1 combines the two
algorithms we just described: if d is larger than n1/3 we use the second algorithm with
runtime Õ(n/

√
d) otherwise we use the first algorithm with runtime Õ(n2/3

√
d).

123

Algorithmica (2023) 85:1251–1286 1259

Fig. 3 k = ε
√
d . Only the elements colored in red are included in the two sets (Color figure online)

Theorem 1 The longest common substring of two strings of size n can be computed
with high probability by a quantum algorithm in time Õ(n5/6).

Theorem 2 The longest palindrome substring of a string of size n can be computed
with high probability by a quantum algorithm in time Õ(

√
n).

We accompany Theorems 1 and 2with quantum lower bounds (all the lower bounds
are proven in Sect. 7). Intuitively, obtaining a solution with time better than Õ(

√
n)

is impossible for either problem due to a reduction to searching unordered sets. This
makes our solution for LPS optimal up to subpolynomial factors. For LCS, an improved
lower bound of �̃(n2/3) can be obtained via a reduction from element distinctness.
However, the gap is still open between our upper bound of Õ(n5/6) and lower bound
of �̃(n2/3). Thus, we aim to improve our upper bound by considering approximate
solutions and special cases. In the following, we briefly explain these results.

Improved 1 − ε approximation for LCS.
One way to obtain a better algorithm for LCS is by considering 1 − ε approxima-

tion algorithms. Note that the quantum algorithm for element distinctness is based
on quantum walks, and our solution for LCS is obtained via a reduction to element
distinctness. The runtime of quantum walks can be improved when multiple solutions
are present for a problem. If instead of a solution of size d which is exact, we resort
to solutions of size (1 − ε)d, we are guaranteed to have at least εd solutions. Thus,
intuitively this should help us improve the runtime of our algorithm.

Although the intuition comes from the inner workings of the quantum techniques,
we are actually able to improve the runtime with a completely combinatorial idea.
For small d, instead of constructing two sets SA and SB with n − d + 1 elements, we
construct two sets of size O(n/

√
d) and prove that if the two sets have an element

in common, then there is a solution of size at least (1 − ε)d. The construction of the
two sets is exactly the same as the construction of SA and SB except that only some
of the elements are present in the new subsets (see Fig. 3 for an illustration of the
construction).

We prove that since each set now has size O(n/
√
d), if the two strings have an LCS

of size d then a solution of size (1 − ε)d can be found in time Õ((n/
√
d)2/3

√
d) =

Õ(n2/3d1/6). This combined with the Õ(n/
√
d) algorithm for large d gives us a 1− ε

approximation algorithm with runtime Õ(n3/4).

Theorem 3 For any constant 0 < ε < 1, the longest common substring of two strings
of size n can be approximated within a factor 1−ε with high probability by a quantum
algorithm in time Õ(n3/4).

123

1260 Algorithmica (2023) 85:1251–1286

LCS for non-repetitive strings.
For all string problems, a special case which is of particular interest is when the

characters are different. For instance, although DNA’s consist of only 4 characters,
one can make the representation more informative by assigning a symbol to every
meaningful block of the sequence. This way, there is only little chance a character
appears several times in the sequence. Similarly, in text recognition, one may rather
represent every word with a symbol of the alphabet resulting in a huge alphabet
and strings with low repetitions. These scenarios are motivating examples for the
study of edit distance and longest common subsequence under this assumption, known
respectively as Ulam distance [32, 33, 36] and longest increasing subsequence (which
has been the target of significant research by the string algorithms community—see,
e.g., [37] for references).

We thus consider LCS for input strings A and B that are non-repetitive (an important
special case is when A and B are permutations). We show that there exists an Õ(n3/4)-
time quantum algorithm for exact LCS and an Õ(n2/3)-time quantum algorithm for
approximate LCS. This significantly improves the generic results of Theorems 1 and 3
and, for approximate LCS, this matches (up to possible polylogarithmic factors) the
lower bound of Theorem 8.

Theorem 4 The longest common substring of two non-repetitive strings of size n can
be computed with high probability by a quantum algorithm in time Õ(n3/4).

Theorem 5 For any constant 0 < ε < 1, the longest common substring of two non-
repetitive strings of size n can be approximated within a factor 1 − ε with high
probability by a quantum algorithm in time Õ(n2/3).

The improvements for non-repetitive strings are obtained by improving the com-
plexity of the first part of the algorithm used for general LCS from Õ(n2/3

√
d) to

Õ(n2/3+√
nd) for the case of exact LCS, and from Õ(n2/3d1/6) to Õ(n2/3/d1/3+√

n)

for approximate LCS. We now briefly describe how we achieve such improvements.
Let us first consider exact LCS. The Õ(n2/3

√
d)-time quantum algorithm described

above was based on a “black-box reduction” to element distinctness, i.e., we used the
quantum algorithm for element distinctness (which is based, as already mentioned, on
a technique known as quantumwalk) as a black-box. In comparison, our new algorithm
is constructed by designing a quantum walk especially tailored for our problem. More
precisely, we use the approach byMagniez, Nayak, Roland and Santha [38] to design a
quantumwalk over the Johnson graph (more precisely, weworkwith a graph defined as
the direct product of two Johnson graphs, which is more convenient for our purpose).

We say that a pair (i, j) ∈ [n − d + 1] × [n − d + 1] is marked if there is a
common substring of length d that starts at position i in A and position j in B, i.e.,
A[i, i + d − 1] = B[j, j + d − 1]. The goal of our quantum walk is to find a pair of
subsets (R1, R2) where R1 and R2 are two subsets of [n − d + 1] of size r (for some
parameter r) such that there exists a marked pair (i, j) in R1 × R2. Note that since
the strings are non-repetitive, for two random subsets R1, R2, the expected number of
pairs (i, j) ∈ R1×R2 such that A[i] = B[j] is roughly�(r2/n). A simple but crucial
observation is that only those pairs can be marked since marked pairs should agree on
their first character. Thus for two random subsets R1, R2 we can check if there exists

123

Algorithmica (2023) 85:1251–1286 1261

a marked pair in R1 × R2 in expected time Õ(
√
r2/n) using Grover search, since we

have only �(r2/n) candidates for marked pairs. This significantly improves over the
upper bound Õ(

√
r2) we would get without using the assumption that the strings are

non-repetitive. This is how we can improve the complexity down to Õ(n2/3 + √
nd).

Note that a technical difficulty that we need to overcome is guaranteeing that the
running time of the checking procedure is small not only for random subsets but for
also all (R1, R2), i.e., we need a guarantee on the worst-case running time of the
checking procedure. We solve this issue by disregarding the pairs of subsets (R1, R2)

that contain too many candidates—we are able to prove that the impact is negligible
by using concentration bounds.

The improvement for approximate LCS uses a very similar idea. Themain difference
is that now we consider a pair (i, j) ∈ [n − d + 1] × [n − d + 1] marked if there is
a common substring of length
(1 − ε)d� that starts at position i in A and position j
in B. Since the fraction of marked pairs increases by a factor εd we obtain a further
improvement. Analyzing the running time of the resulting quantum walk shows that
we obtain overall time complexity Õ(n2/3/d1/3 + √

n).

2.3 UlamDistance

Finally, we present a sublinear time quantum algorithm that computes a (1 + ε)-
approximation of the Ulam distance (i.e., the edit distance for non-repetitive strings).

Theorem 6 For any constant ε > 0, there exists a quantum algorithm that computes
with high probability a (1 + ε)-approximation of the Ulam distance of two non-
repetitive strings in time Õ(

√
n).

In comparison, classical algorithms require linear time even for computing a constant-
factor approximation of the Ulam distance when the distance is small (see, e.g., [32]
for a discussion of the classical lower bounds). Theorem 6 thus shows that while for
general strings it is still unknown whether a quantum speed-up is achievable for the
computation of the edit distance, we can obtain a quadratic speed-up for non-repetitive
strings. In Sect. 7 we show a quantum lower bound (see Theorem 11) that matches (up
to possible polylogarithmic factors) the upper bound of Theorem 6. Since it is easy to
show that any quantum algorithm that computes the Ulam distance exactly requires
�(n) time, our results are thus essentially optimal.

Let us now describe briefly how the quantum algorithm of Theorem 6 is obtained.
Our approach is based on a prior work by Naumovitz, Saks, and Seshadhri [33] that
showed how to construct, for any constant ε > 0, a classical algorithm that computes a
(1+ε)-approximation of the Ulam distance and runs in sublinear time when ud(A, B)

is large (the running time becomes linear when ud(A, B) is small). The core technique
is a variant of the Saks-Seshadhri algorithm for estimating the longest increasing
sequence from [39], which can be used to construct a binary “indicator” (we denote this
indicatorUlamIndic in Sect. 6) that outputs 1 with probability p and 0 with probability
1 − p, for some value p that is related to the value of ud(A, B). Conceptually, the
approach is based on estimating the value of ud(A, B) from this indicator using a

123

1262 Algorithmica (2023) 85:1251–1286

hierarchy of gap tests and estimators, each with successively better run time. This
results in a fairly complex algorithm.

At a high level, our strategy is applying quantum amplitude estimation on the classi-
cal indicator UlamIndic to estimate p and thus ud(A, B). Several technical difficulties
nevertheless arise since the indicator requires a rough initial estimation of ud(A, B) to
work efficiently. To solve these difficulties, we first construct a quantum gap test based
on quantum amplitude estimation that enables to test efficiently if the success proba-
bility of an indicator is larger than some given threshold q or smaller than (1−η)q for
some given gap parameter (see Proposition 3 in Sect. 6). We then show how to apply
this gap test to the indicator UlamIndic with successively better initial estimates of
ud(A, B) in order to obtain a (1 + ε)-approximation of ud(A, B) in Õ(

√
n) time.

3 Longest Common Substring

Recall that in LCS, we are given two strings A and B of size n and the goal is to find
the largest string t which is a substring of both A and B. This problem can be solved
in time O(n) via suffix tree in the classical setting. In this section, we give upper
bounds for the quantum complexity of this problem (lower bounds are discussed in
Sect. 7). We first begin by giving an algorithm for exact LCS that runs in time Õ(n5/6)
in Sect. 3.1. We then give an algorithm for approximate LCS that runs in time Õ(n3/4)
in Sect. 3.2.

3.1 Quantum Algorithm for Exact LCS

In our algorithm, we do a binary search on the size of the solution. We denote this
value by d. Thus, by losing an O(log n) factor in the runtime, we reduce the problem
to verifying if a substring of size d is shared between the two strings. Our approach is
twofold; we design separate algorithms for small and large d.

3.1.1 Quantum Algorithm for Small d

Our algorithm for small d is based on a reduction to element distinctness. Let |�|
be the size of the alphabet and v : � → [0, |�| − 1] be a function that maps every
element of the alphabet to a distinct number in range 0 . . . |�| − 1. In other words, v
is a perfect hashing for the characters. We extend this definition to substrings of the
two strings. For a string t , we define v(t) as follows:

v(t) =
|t |∑

i=1

v(ti)|�|i−1.

It follows from the definition that two strings t and t ′ are equal if and only if we have
v(t) = v(t ′).

From the two strings, wemake two sets of numbers SA and SB each having n−d+1
elements. Element i of set SA is a pair (A, i)whose value is equal to v(A[i, i +d−1])

123

Algorithmica (2023) 85:1251–1286 1263

and similarly element i of SB is a pair (B, i)whose value is equal to v(B[i, i+d−1]).
The two sets contain elements with equal values if and only if the two strings have a
common substring of size d. Therefore, by solving element distinctness for SA and SB
we can find out if the size of the solution is at least d. Although element distinctness can
be solved in time Õ(n2/3)when element comparison can be implemented in Õ(1) time,
our algorithm needs more runtime since comparing elements takes time ω(1). More
precisely, each comparison can be implemented in time Õ(

√
d) in the following way:

In order to compare two elements of the two sets, we can use Grover’s search to find
out if the two substrings are different in any position and if so we can find the leftmost
position in time Õ(

√
d). Thus, it takes time Õ(

√
d) to compare two elements which

results in runtime Õ(n2/3
√
d). We summarize this result in the following lemma.

Lemma 1 There exists a quantum algorithm that runs in time Õ(n2/3
√
d) and verifies

with probability 9/10 if there is a common substring of length d between the two
strings.

3.1.2 Quantum Algorithm for Large d

We now present a quantum algorithm that runs in time Õ(n/
√
d) and verifies if there

is a common substring of length d between the two strings.

General description of the algorithm. We say that a character of A is marked if it
appears among the first �d/3� characters of some substring of length d shared between
A and B. For example, If there is exactly one common substring of length d, there
are precisely �d/3� marked characters but we may have more marked characters as
the number of common subsequences of length d between A and B increases. In our
algorithm, we sample a substring of length 2�d/3� of A and a substring of length
d of B. We call the substring sampled from A the pattern and denote it by P and
denote the substring sampled from B by S. We denote the intervals of A and B that
correspond to P and S by [
P , rP] and [
S, rS] respectively. That is, A[
P , rP] = P
and B[
S, rS] = S. We say that the pair (P, S) is good if the following conditions
hold (see Fig. 4 for an illustration):

• There exists a pair (i, j) such that A[i, i + d − 1] = B[j, j + d − 1] is a common
subsequence of size d between the two strings.

• i ≤
P and
P − i < �d/3�.
•
S ≤ j − i +
P ≤ j − i + rP ≤ rS .

It directly follows that if (P, S) is a good pair,
P has to be a marked character. When
we fix a good pair (P, S) and we refer to the optimal solution, we mean the common
subsequence of size d made by A[i, i + d − 1] and B[j, j + d − 1].

If there is no substring of length d shared between A and B, then obviously no
good pair exists. Let us now compute the probability of sampling such P and S under
the assumption that there is a common substring of length d shared between A and B.
There are at least �d/3� marked characters in A and thus with probability �(d/n) we
sample the right pattern. Moreover, the corresponding substring of solution in B has
at least �d/3� positions such that if we sample S starting from those positions the pair
(P, S) is good. Thus, with probability �(d2/n2) we sample a good pair (P, S).

123

1264 Algorithmica (2023) 85:1251–1286

Fig. 4 An example of a good pair (P, Q). The orange part of S shows the part of S that matches with P
(Color figure online)

We describe below a quantum procedure that given a good pair (P, S), constructs
with probability at least 1−1/poly(n) a common substring of length d in time Õ(

√
d).

By first sampling (P, S) and then running this procedure, we get a one-sided procedure
that verifies if there exists a common substring of length d shared between A and B
with probability �(d2/n2) in time Õ(

√
d). With amplitude amplification, we can

thus construct a quantum algorithm that verifies if there exists a common substring of
length d with high probability in time Õ(

√
n2/d2 · √d) = Õ(n/

√
d). We summarize

this result in the following lemma.

Lemma 2 There exists a quantum algorithm that runs in time Õ(n/
√
d) and verifies

with probability 9/10 if there is a common substring of length d between the two
strings.

Constructing a common substring from a good pair. From here on, we assume that
(P, S) is good and describe how to construct a common substring of length d in time
Õ(

√
d).

We aim to find positions of S that match with P . For this purpose, we use the
string matching algorithm of Ramesh and Vinay [19] that searches P in S in time
Õ(

√|S| + √|P|). If there is no match, then we can conclude that S and P do not
meet our property and therefore this should not happen. If there is one such position,
then we can detect in time Õ(

√
d) if by extending this matching from two ends we

can obtain a common substring of size d as follows: We use Grover’s search to find
the left-most (up to d characters away) position where the two substrings differ when
extending them from right. We do the same from the left and it tells us if this gives
a common substring of size at least d. Each search takes time Õ(

√
d). We refer the

reader to Figure 5 for a pictorial illustration.
More generally, the above idea works when there are only O(1) many positions

of S that match with P . However, we should address the case that P appears many
times in S. In the following we discuss how this can be handled. In time Õ(

√
d) we

first find the leftmost and rightmost positions of S that match with P . Let the starting
index of the leftmost match be
 and the starting index of the rightmost match be r .
In other words, P = S[
,
 + |P| − 1] = S[r , r + |P| − 1]. Since |S| = d and we
have |P| = 2�d/3� then the two substrings overlap. Therefore, P as well as the entire

123

Algorithmica (2023) 85:1251–1286 1265

Fig. 5 If P matches S in only one position, by extending the two ends in the two strings we can find a
common substring of length d. The orange part of S shows the part of S that matches with P . Also, the red
and green parts and extensions from left and right for the matched parts (Color figure online)

string S[
, r + |P| − 1] is (r −
)-periodic. This is the key property on which our
algorithm will be based.

Let us denote the substring S[
, r + |P| − 1] by T . We extend both P and T from
left and right up to a distance of 2d in the following way: We increase the index of
the ending point so long as the substring remains (r −
)-periodic. We also stop if we
move the ending point by more than 2d. We do the same for the starting point; we
decrease the starting point so long as the substring remains (r −
)-periodic and up to
at most a distance of 2d. Since we bound the maximum change by 2d, then this can
be done in time Õ(

√
d) via Grover’s search. Let us denote the resulting substrings by

A[α, β] and B[α′, β ′]. The following observation enables us to find the solution in
time Õ(

√
d): one of the following three cases holds for the optimal solution.

1. The starting index of the corresponding optimal solution in A is smaller than
α. Since the matched parts of the solution are both in the periodic segments, this
implies that thefirst non-periodic indices (whengoingbackwards from thematched
parts) in the two solution intervals are A[α − 1] and B[α′ − 1]. As a consequence
the corresponding character of A[α] in B is B[α′] (Figure 6a).

2. The ending index of the corresponding optimal solution in A is larger than β and
thus (with a similar argument as above) the corresponding character of A[β] in B
is B[β ′] (Figure 6b).

3. The corresponding optimal solution in A is in the interval A[α, β] and thus it is
(r −
)-periodic (Figure 6c).

In all three cases, we can find the optimal solution in time Õ(
√
d). For the first two

cases, we know one correspondence between the two common substrings of length d.
More precisely, in Case 1 we know that A[α] is part of the solution and this character
corresponds to B[α′]. Thus, it suffices to do a Grover’s search from two ends to extend
thematching in the two directions. Similarly in Case 2 we know that A[β] corresponds
to B[β ′] and thus via a Grover’s search we find a common substring of length d in the
two strings.

Finally, for Case 3we point out that since the entire solution lies in intervals A[α, β]
and B[α′, β ′] then we have β ≥ α + d − 1 and β ′ ≥ α′ + d − 1. Notice that both
intervals A[α, β] and B[α′, β ′] are (r −
)-periodic. Let the starting position of P in
A be x . For a fixed position y in the interval [α′, β ′] that matches with P , if we extend

123

1266 Algorithmica (2023) 85:1251–1286

(a)

(b)

(c)

Fig. 6 The three cases considered. The red intervals correspond to the longest common substring. The
yellow interval is P and the green interval is S[
, r + |P| − 1]. The blue and grey intervals are extensions
of the yellow and green intervals so long as they remain (r −
)-periodic (Color figure online)

123

Algorithmica (2023) 85:1251–1286 1267

this matching from the two ends we obtain a solution of size min{x − α, y − α′} +
min{β − x +1, β ′ − y+1}. This means that extending one of the following matchings
between P and S gives us a common subsequence of size d:

• An optimal solution when x − α ≥ y − α′: the rightmost matching in the interval
B[α′, α′ + |P| + (x − α)], or

• An optimal solution when x − α ≤ y − α′: the leftmost matching in the interval
B[α′ + (x − α), β ′].
Each matching can be found in time Õ(

√
d) and similar to the ideas explained

above we can extend each matching to verify if it gives us a common substring of size
d in time Õ(

√
d).

3.1.3 Combining the Two Algorithms

Combining Lemmas 1 and 2 gives us a solution in time Õ(n5/6).

Theorem 1 (repeated). The longest common substring of two strings of size n can be
computed with high probability by a quantum algorithm in time Õ(n5/6).

Proof We do a binary search on d (size of the solution). To verify a given d, we
consider two cases: if d < n1/3 we run the algorithm of Lemma 1 and otherwise we
run the algorithm of Lemma 2. Thus, the overall runtime is bounded by Õ(n5/6). ��

3.2 Quantum Algorithm for Approximate LCS

In the following, we show that if an approximate solution is desired then we can
improve the runtime down to Õ(n3/4). Similar to the above discussion, we use two
algorithms for small d and large d. Our algorithm for large d is the same as the one we
use for exact solution. For small d we modify the algorithm of Lemma 1 to improve
its runtime down to Õ(n2/3d1/6). This is explained in Lemma 3.

Lemma 3 For any constant 0 < ε < 1, there exists a quantum algorithm that runs in
time Õ(n2/3d1/6) and if the two strings share a common substring of length d, finds
a common substring of length (1 − ε)d.

Proof Similar to Lemma 1, we use element distinctness for this algorithm. We make
two sets SA and SB and prove that they share two equal elements if and only if their
corresponding substrings of size (1 − ε)d are equal. The difference between this
algorithm and the algorithm of Lemma 1 is that here SA and SB contain O(n/

√
εd)

elements instead of n − d + 1 elements.
Let k = √

εd. We break both strings into blocks of size k and make the two sets in
the following way (see Figure 7 for an illustration):

• For each i such that i mod k = 1, we put element (A, i) in set SA.
• For each i such that
i/k� mod k = 1 we put element (B, i) in set SB .

It follows that among the εd first characters of the solution, there is one position
which is included in SA such that its corresponding position in B is also included

123

1268 Algorithmica (2023) 85:1251–1286

Fig. 7 k = √
εd. Only the elements colored in red are included in the two sets (Color figure online)

in SB . Thus, if we define the equality between two elements (A, i) and (B, j) as
A[i, i + (1− ε)d − 1] = B[j, j + (1− ε)d − 1] then by solving element distinctness
for SA and SB we can find a desired solution. Since we have O(n/

√
d) elements in

each set then the overall runtime is bounded by Õ((n/
√
d)2/3

√
d) = Õ(n2/3d1/6). ��

Lemmas 2 and 3 lead to a quantum algorithm for LCSwith approximation factor 1− ε

and runtime Õ(n3/4).

Theorem 3 (repeated). For any constant 0 < ε < 1, the longest common substring of
two strings of size n can be approximated within a factor 1 − ε with high probability
by a quantum algorithm in time Õ(n3/4).

Proof We do a binary search on d. To verify a given d, we consider two cases: if
d < n1/2 we run the algorithm of Lemma 3 and otherwise we run the algorithm of
Lemma 2. Thus, the overall runtime is bounded by Õ(n3/4). ��

4 Longest Common Substring for Non-repetitive Strings

In this section, we consider LCS for input strings A and B that are non-repetitive
(e.g., permutations). We show that there exists an Õ(n3/4)-time quantum algorithm
that computes an exact LCS and an Õ(n2/3)-time quantum algorithm that computes a
(1 − ε)-approximation of LCS. This significantly improves the generic results of the
previous section.

4.1 QuantumWalks

Wefirst review the quantumwalk approach that solves element distinctness and several
similar problems. We actually consider a variant of the standard approach that is
especially well suited for our purpose: instead of considering a quantum walk on a
Johnson graph we consider a quantum walk on the direct product of two Johnson
graphs. While quantum walks on such graphs have also been used by Buhrman and
Špalek in [14], their implementation used Szegegy’s version of quantum walks [40].
One noteworthy aspect of our approach is that we rely on the stronger version of
quantum walks developed byMagniez, Nayak, Roland and Santha [38] (this is crucial
for the walk we present in Sect. 4.2 and 4.3; using Szegegy’s version does not lead to
an efficient algorithm because the checking cost of our quantum walk is too high).

Let S be a finite set and r be any integer such that r ≤ |S|. Let us denote by Tr
the set of all couples (R1, R2) where both R1 and R2 are subsets of S of size r . The

123

Algorithmica (2023) 85:1251–1286 1269

elements of Tr are called the states of the walk. Let T ∗
r ⊆ Tr be some subset. The

elements of T ∗
r are called the marked states. The quantum walk approach associates

to each (R1, R2) ∈ Tr a data structure D(R1, R2). Three types of costs are associated
with D. The setup cost s(r) is the cost to set up the data structure D(R1, R2) for
any (R1, R2) ∈ Tr . The update cost u(r) is the cost to update D(R1, R2) for any
(R1, R2) ∈ Tr : converting D(R1, R2) to D((R1 \ a) ∪ {a′}, (R2 \ b) ∪ {b′}) for any
a ∈ R1, a′ ∈ S\R1, b ∈ R2 and b′ ∈ S\R2. The checking cost c(r) is the cost of
checking, given D(R1, R2) for any (R1, R2) ∈ Tr , if (R1, R2) ∈ T ∗

r . By combining
amplitude amplification and quantum walks, we can find with high probability one
marked state (R1, R2). We will use in this paper the following statement (we refer to
[38] for details) of this approach.

Proposition 1 Consider any value r ∈ {1, . . . , |S|} and any constant γ > 0. Assume
that either T ∗

r = ∅ or |T ∗
r |

|Tr | ≥ δ holds for some known value δ > 0. There exists a
quantum algorithm that always rejects if T ∗

r = ∅, outputs a set (R1, R2) ∈ T ∗
r with

probability at least 1 − 1
nγ otherwise, and has complexity

Õ
(
s(r) + √

1/δ
(√

r × u(r) + c(r)
))

.

Let us now explain how to solve element distinctness using this framework. Let
x1, . . . , xn denote the n elements of the first list, and y1, . . . , yn denote the n elements
of the second list of the input of element distinctness. Let us first discuss the complexity
in the standard access model, where we assume that each element is encoded using
O(log n) bits and that given i ∈ [n] we can obtain all the bits of xi and yi in O(log n)

time.We set S = {1, . . . , n} and say that a state (R1, R2) ∈ Tr is marked if there exists
a pair (i, j) ∈ R1 × R2 such that xi = y j . Easy calculations show that the fraction of
marked states is�(r2/n2). By using an appropriate data structure that allows insertion,
deletion and lookup operations in polylogarithmic time (see Section 6.2 of [13] for
details about how to construct such a data structure) to store the elements xi for all
i ∈ R1, and using another instance of this data structure to store the elements y j for
all j ∈ R2, we can perform the setup operation in time s(r) = Õ(r) and perform each
update operation in time u(r) = Õ(1). Each checking operation can be implemented
in time c(r) = Õ(

√
r) as follows: perform a Grover search over R1 to check if there

exists i ∈ R1 for which xi = y j for some j ∈ R2 (once i is fixed the later property can
be checked in polylogarithmic time using the data structure representing R2).5 From
Proposition 1, the overall time complexity of the quantum walk is thus

Õ
(
r + n

r

(√
r × 1 + √

r
))

.

By taking r = n2/3 we get time complexity Õ(n2/3). As discussed in Section 6.1 of
[13], the above data structure, and thus the whole quantum walk can also be imple-
mented in the sameway in the (weaker) comparisonmodel: if given any pair of indices

5 The checking operation can actually be implemented more efficiently but the cost c(r) = Õ(
√
r) is

enough for our purpose.

123

1270 Algorithmica (2023) 85:1251–1286

(i, j) ∈ [n] × [n] we can decide in T (n) time whether xi < y j or xi ≥ y j , then the
time complexity of the implementation is Õ(n2/3T (n)).

4.2 Quantum Algorithm for Exact LCS of Non-repetitive Strings

We set S = {1, . . . , n−d +1}. Let us write α = 54 log n. For any state (R1, R2) ∈ Tr
we define the data structure D(R1, R2) as follows:

• D(R1, R2) records all the values A[i] and B[j] for all i ∈ R1 and j ∈ R2 using the
same data structure as the data structure considered above for element distinctness;

• additionally, D(R1, R2) records the number of pairs (i, j) ∈ R1 × R2 such that
A[i] = B[j], and stores explicitly all these pairs (using a history-independent data
structure updatable in polylogarithmic time, which can be constructed based on
the data structure from [13]).

We define the set of marked states T ∗
r as follows. We say that (R1, R2) is marked if

the following two conditions hold:

(i) there exists a pair (i, j) ∈ R1 × R2 such that A[i, i + d − 1] = B[j, j + d − 1];
(ii) the number of pairs (i, j) ∈ R1 × R2 such that A[i] = B[j] is at most⌈

α(r2/n + 1)
⌉
.

The following lemma is easy to show.

Lemma 4 If the two non-repetitive strings A and B have a common substring of
length d, then the fraction of marked states is �

(
r2/n2

)
.

Proof The fraction of states (R1, R2) for which there exists a pair (i, j) ∈ R1 × R2
such that A[i, i + d − 1] = B[j, j + d − 1] is at least

(n−2
r−2

)

(n
r

) = r(r − 1)

n(n − 1)
.

The fraction of (R1, R2) such that Condition (i) holds is thus �(r2/n2).
Let X be the random variable representing the number of pairs (i, j) ∈ R1 × R2

such that A[i] = B[j] when (R1, R2) is taken uniformly at random in Tr . We will
show that X ≤ ⌈

α(r2/n + 1)
⌉
with high probability. Let us prove this upper bound

for the worst possible case: input strings for which the number of pairs (i, j) ∈ S × S
such that A[i] = B[j] is |S|.

Assume that we have fixed R1. For each i ∈ R1 there exists a unique index j ∈ S
such that A[i] = B[j]. Let Y be the random variable representing the total number of
pairs (i, j) ∈ R1 × R2 such that A[i] = B[j] when choosing R2. Note that Y follows
an hypergeometric distribution of mean r2/n. From standard extensions of Chernoff’s
bound (see, e.g., Section 1.6 of [41]), we get

Pr

[
Y ≥ α

(
r2

n
+ 1

)]
≤ exp

(
−(3 log n) ·

(
r2

n
+ 1

))
≤ 1

n3
.

123

Algorithmica (2023) 85:1251–1286 1271

Thus the fraction of (R1, R2) such that Condition (ii) does not hold is at most 1/n3.
The statement of the lemma then follows from the union bound. ��
Let us now analyze the costs corresponding to this quantum walk. The setup and

update operations are similar to the corresponding operations of the quantum walk
for element distinctness described in Sect. 4.1. The only difference is that we need to
keep track of the pairs (i, j) ∈ R1 × R2 such that A[i] = B[j]. Note that for each
i ∈ [n], there is at most one index j ∈ R2 such that A[i] = B[j], since the strings
are non-repetitive. Moreover this index can be found in polylogarithmic time using
the data structure associated with R2. Similarly, for each j ∈ [n], there is at most one
index i ∈ R1 such that A[i] = B[j], which can be also found in polylogarithmic time.
Thus the time complexities of the setup and update operations are s(r) = Õ(r) and
u(r) = Õ(1), respectively, as in the quantum walk for element distinctness described
in Sect. 4.1. The checking operation first checks if the number of pairs (i, j) ∈ R1×R2
such that A[i] = B[j] is at most

⌈
α(r2/n + 1)

⌉
and then, if this condition is satisfied,

performs a Grover search on all pairs (i, j) ∈ R1 × R2 such that A[i] = B[j] stored
in D(R1, R2), in order to check if there exists a pair (i, j) ∈ R1 × R2 such that
A[i, i + d − 1] = B[j, j + d − 1]. The time complexity is

c(r) = Õ(1 +
√⌈

α(r2/n + 1)
⌉ · √

d).

Using Proposition 1, we get that the overall time complexity of the quantum walk is

Õ

(
r + n

r
(
√
r × 1 +

√⌈
α(r2/n + 1)

⌉ · √
d)

)
= Õ

(

r + n√
r

+ n
√
d

r
+ √

nd

)

.

For d ≤ n1/3, this expression isminimized for r = n2/3 and gives complexity Õ(n2/3).
For d ≥ n1/3, the complexity is dominated by the last term Õ(

√
nd).

By combining the above algorithmwith the Õ(n/
√
d)-time algorithm of Lemma 2,

we get overall complexity Õ(n3/4).

Theorem 4 (repeated). The longest common substring of two non-repetitive strings of
size n can be computed with high probability by a quantum algorithm in time Õ(n3/4).

Proof We do a binary search on d. To verify a given d, we consider two cases: if
d <

√
n we run the Õ(

√
nd)-time quantum algorithmwe just described and otherwise

we run the algorithm of Lemma 2. Thus, the overall runtime is bounded by Õ(n3/4).
��

4.3 Quantum Algorithm for Approximate LCS of Non-repetitive Strings

We set again S = {1, . . . , n − d + 1} and, for any (R1, R2) ∈ Tr , we define the data
structure D(R1, R2) exactly as above. This time, we say that (R1, R2) is marked if the
following two conditions hold:

(i) there exists a pair (i, j) ∈ R1 × R2 such that A[i, i +
(1 − ε)d�−1] = B[j, j +

(1 − ε)d� − 1];

123

1272 Algorithmica (2023) 85:1251–1286

(ii) the number of pairs (i, j) ∈ R1 × R2 such that A[i] = B[j] is at most
⌈
αr2/n

⌉
;

where we use the same value α = 54 log n as above. We now show the following
lemma.

Lemma 5 Assume that r ≤ n/d. If A and B have a common subsequence of length d,

then the fraction of marked sets is �
(
dr2

n2

)
.

Proof Let us write m = d −
(1 − ε)d� and say that a pair (i, j) ∈ S × S is good if
A[i, i +
(1 − ε)d�− 1] = B[j, j +
(1 − ε)d�− 1]. There are at least m good pairs
in S× S. The probability that R1 does not contain any element involved in a good pair
is

(n−m
r

)

(n
r

) = (n − m)!r !(n − r)!
r !(n − m − r)!n!

= (n − m)(n − m − 1) · · · (n − m − r + 1)

n(n − 1) · · · (n − r + 1)

≤
(
n − m

n

)r

=
(
1 − m

n

)r ≤ exp
(
−rm

n

)

≤ 1 − rm

2n
,

where we used the fact that exp(−x) ≤ 1 − x/2 on x ∈ [0, 1] to derive the last
inequality. Thus with probability at least rm/(2n), the set R1 contains at least one
element involved in a good pair.

Assuming that R1 contains at least one element involved in a good pair, when
choosing R2 at random with probability at least r/n it contains a good pair. Thus the
overall probability that R1 × R2 contains a good pair (and thus satisfies Condition (i))
is at least �(dr2/n2).

The fraction of (R1, R2) such that Condition (ii) does not hold is at most 1/n3 (the
proof of this claim is exactly the same as for Lemma 4). The statement of the lemma
then follows from the union bound. ��

We thus get a quantum walk with running time

Õ

(
r + n

r
√
d

(
√
r × 1 +

√⌈
α(r2/n + 1)

⌉ · √
d)

)
= Õ

(
r + n√

rd
+ n

r
+ √

n

)
.

If d ≤ √
n then the expression is minimized for r = n2/3/d1/3 and the complexity is

Õ(n2/3/d1/3). (Note that with this value of r the condition of Lemma 5 is satisfied.)
If d >

√
n we obtain complexity Õ(d) by taking r = n/d.6

By combining the above algorithmwith the Õ(n/
√
d)-time algorithm of Lemma 2,

we get overall complexity Õ(n2/3).

6 For d >
√
n, we can actually obtain the better upper bound Õ(

√
n) by slightly modifying the algorithm.

The bound Õ(d) is nevertheless sufficient for our purpose.

123

Algorithmica (2023) 85:1251–1286 1273

Theorem 5 (repeated). For any constant 0 < ε < 1, the longest common substring
of two non-repetitive strings of size n can be approximated within a factor 1− ε with
high probability by a quantum algorithm in time Õ(n2/3).

Proof We do a binary search on d. To verify a given d, we consider two cases: if
d < n2/3 we run the Õ(n2/3/d1/3+d)-time quantum algorithm we just described and
otherwise we run the algorithm of Lemma 2. Thus, the overall runtime is bounded by
Õ(n2/3). ��

5 Longest Palindrome Substring

In this section, we present a quantum algorithm that solves the longest palindrome
substring problem (LPS) in time Õ(

√
n). In Sect. 7, we complement this result by a

tight lower bound of �̃(
√
n) for quantum algorithms even for the special case of 0/1

strings and even for approximating the solution.

5.1 General Description of Our Quantum Algorithm

Our algorithm starts with a binary search on the size of the solution. We use l and u
as a lower bound and an upper bound on the size of the solution. Initially we set l = 1
and u = n. Each time we set d =
(l + u)/2� and try to find a solution of size at
least d. If such a solution exists, then we continue on by setting l = d. Otherwise we
set u = d − 1. After O(log n) steps we have l = u which is equal to the size of the
solution. Thus, in the following, we assume that an integer d is given and our goal is
to find out if a solution of size at least d exists in the string.

One thing to keep in mind is that if the solution size is larger than d, we may not
necessarily have a palindrome substring of size d but in that case, we certainly have a
palindrome substring of size d + 1. Thus, all it takes to verify if the solution size is at
least d is to look for a solution of size either d or d + 1, and we can simply consider
each case separately. From here on, we assume that our string contains a palindrome
substring of size exactly d and we wish to find such a substring.

For each palindrome substring of length d, we mark the first �d/2� characters of
this substring. We will show in Sect. 5.2 how to check if a character is marked or
not in time Õ(

√
d). Since we may have several palindrome substrings of length d we

may have more than d/2 marked characters in our string. However, since there is at
least one solution of size d, then the number of marked characters is at least �(d).
Our quantum algorithm applies Grover algorithm to find one marked character. The
running time is Õ(

√
n/d · √

d) = Õ(
√
n). We thus obtain the following result.

Theorem 2 (repeated). The longest palindrome substring of a string of size n can be
computed with high probability by a quantum algorithm in time Õ(

√
n).

123

1274 Algorithmica (2023) 85:1251–1286

Fig. 8 If A[
,
 + d − 1] is a palindrome, then the blue substring is equal to the reverse of the orange
substring (Color figure online)

5.2 Description of the Checking Procedure

We now describe the main idea of the procedure that checks whether a given position
r is a marked character or not. This is the main technical contribution of the whole
section.

Define the center of a palindrome substring as the average of its starting position
and its ending position (it is not integer if the length of the palindrome substring is
even). Note that if we fix a center c, we can via Grover’s search determine in time
Õ(

√
d) whether the size of the corresponding palindrome substring is d or not.

We now bring a crucial observation on which the checking procedure is built.
Assume that position r of the input string is marked. Let
 be the leftmost character
of a corresponding solution, i.e., the substring A[
,
 + d − 1] of the input array is
palindrome and position r is one of the first �d/2� characters of this interval. Since
A[
,
 + d − 1] is palindrome then we have that A[r , r +
d/2� − 1] is equal to the
reverse of A[2
 + d −
d/2� − r , 2
 + d − r − 1]. See Figure 8 for an illustration.

Let S be the substring of length d that spans the interval [r , r + d − 1] of the input
string. The main strategy of our checking procedure is to identify positions of S that
are candidates for the center of the solution. For this purpose we also define a pattern
P of length
d/2� which is equal to the reverse of interval [r , r +
d/2� − 1]. We say
a position i of S matches with pattern P if S[i, i + |P| − 1] = P .

If r is marked, then it is in the left half of some palindrome substring A[
,
+d−1].
Moreover, the size of S is equal to d and by the way we construct P it is equal to the
reverse of A[r , r +
d/2�− 1]. Thus, A[2
+ d −
d/2�− r , 2
+ d − r − 1] is equal
to P and completely lies inside S. Thus, by finding all positions of S that match with
P , we definitely find A[2
 + d −
d/2� − r , 2
 + d − r − 1]. In particular, if there
is only one position of S that matches with P , this enables to identify the center of
A[
,
 + d − 1].

In Sect. 5.2.1 below we show how to identify efficiently all the positions of S that
match with pattern P . These positions give a list of candidates for the center of a
solution. At least one of them is the center of a solution. If there is only one candidate
(or a constant number of candidates), we can then via Grover’s search determine in
time Õ(

√
d) whether the size of the corresponding palindrome substring is d or not.

123

Algorithmica (2023) 85:1251–1286 1275

Fig. 9 The green substring is equal to pattern P and the orange substring is the reverse of P . Since P is
(or − o)-periodic, then the entire substring of S[1, or + |P| − 1] is also (or − o)-periodic (Color figure
online)

In Sect. 5.2.2, we explain how to deal with the case where there are many candidates
for the center.

5.2.1 Identifying the Patterns

Below we describe how to identify all positions of the S that match with pattern P by
considering the periodicity of P . We show that this can be done in time Õ(

√
d).

To do so, we first find the rightmost occurrence of the P in S using the quantum
algorithm of Ramesh and Vinay [19]. This takes time Õ(

√
d) since |S|+|P| = O(d).

If P does not appear in S at all or only once, we are done. Otherwise, let or be
the rightmost position of S that matches with P . That is S[or , or + |P| − 1] = P .
Moreover, let o be the position of the second rightmost occurrence of P in S. We argue
that T = {or − i(or − o) | 0 ≤ i ≤ �(or − 1)/(or − o)�} is the set of all occurrences
of P in S. More precisely, every element of T is the starting position of an occurrence
of P in S. Since |S| ≤ 2|P|, there is one special case in which o = or − |P|. In this
case |T | contains exactly two elements and the proof is trivial. Thus, we assume in
the following that the two rightmost occurrences of P in S overlap.

Remember that we say a string s is q-periodic if we have si = si+q for all 1 ≤ i ≤
|s| − q. Since P appears as a substring of S at both locations or and o, the pattern
P is (or − o)-periodic. Moreover, P is not i-periodic for any 1 < i < or − o since
otherwise o would not be the position of the second rightmost occurrence of P in S.
We first prove that each element of T is a position in S that matches with P . Recall that
by the way we construct S and P , P is equal to the reverse of the first |P| characters
of S. Moreover, |S| ≤ 2|P| and thus the entire interval S[1, or + |P| − 1] is (or − o)-
periodic (we refer to Figure 9 for an illustration). This implies that every element of
T is the beginning of one occurrence of P in S.

In order to show that T contains all occurrences of P in S, assume for the sake of
contradiction that there is a position p of S that is the beginning of one occurrence
of P but p is not included in T . This implies that there is one element e ∈ T such
that |e − p| < or − o. Thus, with the same argument P is |e − p|-periodic. This is in
contradiction with what we proved previously.

123

1276 Algorithmica (2023) 85:1251–1286

Fig. 10 Illustration for the proof of Lemma 6. All the colored intervals are palindrome (Color figure online)

5.2.2 Checking the Patterns

We have shown that the set T computed in Sect. 5.2.1 is the set of the starting positions
of each occurrence of P in S. We define

C = {r − 1 + (e +
d/2�)/2 | e ∈ T },

which is the set of all possible centers for the solution. Since we consider all occur-
rences of P in S, one of the elements in C is equal to the actual center of our solution.
If |C | = O(1), one can iterate over all elements ofC and verify in time O(

√
d) if each

one is a center for a palindrome substring of size d. In the following, we show that
even if |C | is large, we can narrow down the search to a constant number of elements
in C , which makes it possible to find efficiently a palindrome substring of length d.

We showed in Sect. 5.2.1 thatC is large only if P is periodic with small periodicity.
Let α be the periodicity of P . As we discuss in Sect. 5.2.1, every consecutive pair
of elements in T have distance α. Thus, each pair of consecutive elements in C have
distance α/2. Let y be the largest index of A such that A[r , y] is α-periodic. Also, let
x be the smallest index of A such that A[x, y] is α-periodic. We prove two things in
the following:

1) If y − x + 1 ≥ d + α then we already have a palindrome substring of size d in the
interval [x, y] that can easily be found in time Õ(

√
d);

2) Otherwise the center of our solution has a distance of at most α/2 from (x + y)/2,
and thus we only need to consider a constant number of elements in C , which
enables us to solve the problem in time Õ(

√
d) as well.

Here is the proof of the first statement (we refer to Fig. 10 for an illustration).

Lemma 6 If y − x + 1 ≥ d + α then one can find a palindrome substring of size at
least d in time Õ(

√
d).

Let e ∈ T be an arbitrary element of T . This means that P = A[r + e− 1, r + e−
1+|P|− 1]. Since A[r , r +|P|− 1] is equal to the reverse of P and the two intervals
[r , r+|P|−1] and [r+e−1, r+e−1+|P|−1] overlap then A[r , r+e−1+|P|−1]
is a palindrome substring. Recall that P is α-periodic and thus so is the entire substring
A[r , r+e−1+|P|−1]. This implies that interval [r , r+e−1+|P|−1] is inside interval
[x, y]. We start by x ′ = r and y′ = r + e− 1+ |P| − 1. Next, we shift [x ′, y′] within
[x, y] by multiples of α until ||x − x ′|− |y− y′|| ≤ α. Since A[x, y] is α-periodic, we

123

Algorithmica (2023) 85:1251–1286 1277

Fig. 11 Illustration for the proof of Lemma 7. Dashed arrows show that the two strings are the reverse of
each other. Solid arrows show that the two strings are equal

still have A[x ′, y′] = A[r , r + e− 1+ |P| − 1] and therefore A[x ′, y′] is palindrome.
Finally, we set x ′′ = x ′ −min{|x− x ′|, |y− y′|} and y′′ = y′ +min{|x− x ′|, |y− y′|}.
It follows from the periodicity of A[x, y] that A[x ′′, y′′] is palindrome. Moreover, the
size of [x ′′, y′′] is at most α smaller that the size of [x, y]. Thus, A[x ′′, y′′] is a desired
substring.

It is easy to find such a solution in time Õ(
√
d). The only part of the proof which

is non-trivial from a computational standpoint is finding [x, y]. If y − x = O(d)

then one can find it via Grover’s search in time Õ(
√
d). Otherwise, instead of finding

x and y, we extend r from both ends up to a distance of 2d so long as it remains
α-periodic. This can be done in time Õ(

√
d) and then with the same analysis we can

find a palindrome substring of size at least d. ��
The proof of the second statement relies on the following lemma (we refer to Fig.

11 for an illustration).

Lemma 7 If y − x + 1 < d + α then the center of the solution cannot be more than
2α away from (x + y)/2.

We denote the optimal solution by A[
,
 + d − 1]. Let c =
 + (d − 1)/2 be the
center of the solution. Assume for the sake of contradiction that c < (x + y)/2− 2α.
This means that
 < x − α. Thus, the interval A[x − α, x − 1] is exactly equal
to the interval A[x, x + α − 1] and thus A[x − α, y] is also α-periodic. This is in
contradiction with the maximality of [x, y]. A similar proof holds for the case that
c > (x + y)/2 + 2α. ��

Lemma 7 implies that we only need to consider all candidates in C that are within
the range [(x+ y)/2−2α, (x+ y)/2+2α]. Moreover, the distance between every pair
of candidates in C is α/2 and therefore we only need to consider a constant number
of elements. Therefore, we can find the solution in time Õ(

√
d).

6 (1+ �)-Approximation of the UlamDistance

In this section we prove the following theorem.

Theorem 6 (repeated). For any constant ε > 0, there exists a quantum algorithm that
computes with high probability a (1 + ε)-approximation of the Ulam distance of two
non-repetitive strings in time Õ(

√
n).

123

1278 Algorithmica (2023) 85:1251–1286

6.1 Classical Indicator for the UlamDistance

Naumovitz, Saks and Seshadhri [33] showed how to construct, for any constant ε > 0,
a classical algorithm that computes a (1 + ε)-approximation of the Ulam distance
of two non-repetitive strings A, B of length n in time Õ(n/ud(A, B) + √

n). Their
algorithm is complex: it consists of nine procedures that form a hierarchy of gap tests
and estimators, each with successively better run time. The core technique, which lies
at the lowest layer of the hierarchy and gives a very good—but slow—estimation of the
Ulam distance, is a variant of the Saks-Seshadhri algorithm for estimating the longest
increasing sequence from [39].

For our purpose, we will only need the following result from [33].7

Proposition 2 ([33]) Let δ > 0 be any constant. For any two non-repetitive
strings A, B of length n and any integer parameter t ′ ≥ c · ud(A, B) for some
constant c depending only on δ, there exists a Õ(

√
t ′)-time classical algorithm

UlamIndic(A, B, δ, t ′) that outputs 1 with some probability p and 0 with probabil-
ity (1 − p), for some probability p such that

p ∈
[
(1 − δ) · ud(A, B)

n + t ′
, (1 + δ) · ud(A, B)

n + t ′
+ δ

n + t ′

]
.

The procedure of Proposition 2 lies at one of the lowest layers of the hierarchy in [33],
and works by applying the Saks-Seshadhri algorithm from [39] on randomly chosen
substrings of A and B (of size roughly t).8

6.2 Quantum Algorithm for the UlamDistance

To prove Theorem 6, the basic idea is to apply quantum amplitude estimation on the
classical algorithm UlamIndic from Proposition 2. Let us explain this strategy more
precisely and show the technical difficulties we need to overcome. Assume that we
know that ud(A, B) is in the interval [D1, D2] for some values D1 and D2. We can
then use UlamIndic(A, B, δ, t) with t = c · D2, and apply the quantum amplitude
estimation algorithm of Theorem 7 to estimate the probability it outputs 1. If we
use k = �(

√
(n + t)/D1) = �(

√
n/D1) in Theorem 7 and δ small enough, we

will get a good approximation of the quantity ud(A, B)/(n + t), and thus a good
approximation of ud(A, B). The complexity of this strategy is Õ(

√
n/D1 · √

D2),

which is Õ(
√
n) when D1 ≈ D2.

7 The precise statement of this result appears in Lemma 8.5 and Table 1 in [33]. The procedure is denoted
XLI2 in [33]. Note that the original statement is actually more general: it considers strings A, B of different
lengths and gives an indicator for a slightly different quantity (called Xloss(A, B) in [33]). When A and B
have the same length we have Xloss(A, B) = 1

2 ud(A, B), which gives the statement of Proposition 2.
8 We stress that this procedure is still too slow to get a Õ(n/ud(A, B) + √

ud(A, B))-time classical algo-
rithm. Indeed, getting a good approximation of ud(A, B) based only on this procedure would require
repeating it �((n + t)/ud(A, B)) times, which would require �(

√
ud(A, B) · (n + t)/ud(A, B)) =

�(n/
√
ud(A, B)) time. This is why several additional techniques (which lead to several additional lay-

ers in the hierarchy) are used in [33].

123

Algorithmica (2023) 85:1251–1286 1279

Fig. 12 Quantum gap test

The main issue is that we do not know such tight upper and lower bounds on
ud(A, B). Concerning the upper bound, we overcome this difficultly by simply suc-
cessively trying D2 = n, D2 = (1−η)n, D2 = (1−η)2n, . . . for some small constant
η (for technical reasons we actually start from D2 = (1 − η)(1 − ε)

√
n/c, and deal

with the case of larger D2 using the classical algorithm from [33]). For the lower
bound, on the other hand, we cannot simply start with D1 = 1 and iteratively increase
this value, since the cost would be too high: in order to achieve an overall running
time of Õ(

√
n) we need to keep D1 ≈ D2. Instead of estimating the probability that

UlamIndic outputs 1 using Theorem 7, which is too costly, we thus design a gap test
(see Proposition 3 below) that enables us to check if this probability is larger than D2
or smaller than (1 − η)D2 much more efficiently, in time Õ(

√
n/D2).

We now present the details of our quantum algorithm. Let us first present the gap
test. This test relies on quantum amplitude amplification. Here is the precise statement
of quantum amplitude amplification that we will use.

Theorem 7 (Theorem 12 in [35]) Let A be a classical algorithm that runs in time T ,
outputs 1 with probability p and outputs 0 with probability 1− p, for some (unknown)
value p ∈ [0, 1]. For any integer k ≥ 1, there exists a quantum algorithm that runs in
time Õ(kT) and outputs with probability at least 8/π2 an estimate p̃ such that

|p − p̃| ≤ 2π

√
p(1 − p)

k
+ π2

k2
.

The gap test is described in the following proposition.

Proposition 3 Let A be a classical algorithm that runs in time T , outputs 1 with
probability p and outputs 0 with probability 1 − p, for some (unknown) value p. For
any q ∈ (0, 1] and any constant η ∈ (0, 1], there exists a quantum algorithm denoted
QTest(A, q, η) that runs in time Õ(T /

√
q) and with probability at least 1 − poly(n)

outputs LARGE if p ≥ q and SMALL if p ≤ (1 − η)q.

Proof Figure 12 describes our main quantum gap test. The complexity of this test is
Õ(T /

√
q), from Theorem 7. We show below that its success probability is at least

8/π2. The success probability can then be increased to 1 − 1/poly(n) by repeating
the test �(log n) times and using majority voting.

Let us analyze the success probability of the quantum gap test of Figure 12. Note
that Theorem 7 guarantees that with probability at least 8/π2 the value p̃ satisfies the
following two inequalities:

p̃ ≤ p + 2πη

√
p(1 − p)

√
q

20
+ π2η2

q

400
, (1)

123

1280 Algorithmica (2023) 85:1251–1286

p̃ ≥ p − 2πη

√
p(1 − p)

√
q

20
− π2η2

q

400
. (2)

Let us first consider the case p ≤ (1 − η)q. In that case Inequality (1) implies

p̃ ≤ (1 − η)q + 2πη
q

20
+ π2η2

q

400
< (1 − η/2)q

since 2π/20 + π2/400 < 1/2. The probability that the algorithm outputs LARGE is
thus at most 1 − 8/π2.

Now consider the case p ≥ q. In that case Inequality (2) implies

p̃ ≥ p − 2πη

√
p
√
q

20
− π2η2

q

400

= √
p

(√
p − 2πη

√
q

20

)
− π2η2

q

400

≥ q − 2πη
q

20
− π2η2

q

400
> (1 − η/2)q.

The probability that the algorithm outputs SMALL is thus at most 1 − 8/π2. ��
We are now ready to give the proof of Theorem 6.

Proof of Theorem 6 If ud(A, B) ≥ 1−ε
c

√
n, where c is the constant from Proposition 2,

then ud(A, B) can already be computed in Õ(
√
n) time by the classical algorithm

from [33]. We thus assume below that ud(A, B) ≤ 1−ε
c

√
n. We also assume that

ud(A, B) > 0, since otherwise the two strings are identical, which can be checked in
Õ(

√
n) time using Grover search.

Our quantum algorithm is described in Figure 13. The algorithm invokes
UlamIndic(A, B, δ, c

1−ε
t) with several values of t such that t ≤ 1−ε

c

√
n. The analysis

of the correctness done belowwill show that with probability at least 1−1/poly(n), all
calls to UlamIndic performed by the algorithm satisfy the condition t ′ ≥ c · ud(A, B)

required in the statement of Proposition 3 (in our case t ′ = c
1−ε

t). Now assume that
the condition is satisfied and write pt the probability that UlamIndic(A, B, δ, c

1−ε
t)

outputs 1. Observe that Proposition 2 guarantees that

pt ∈
[
(1 − δ)

(
1 − 1√

n

)
· ud(A, B)

n
, (1 + δ) · ud(A, B)

n
+ δ

n

]
(3)

since we have c
1−ε

t ≤ √
n.

Then observe that for r =
⌈
log((1−δ)(

√
n−1)/n)

log(1−η)

⌉
, the inequality

(1 − δ)

(
1 − 1√

n

)
· ud(A, B)

n
≥ (1 − η)r/

√
n

holds, since we are assuming that ud(A, B) ≥ 1. From Proposition 3 combined with
(3), this means that with probability at least 1 − 1/poly(n), the algorithm will never

123

Algorithmica (2023) 85:1251–1286 1281

Fig. 13 Quantum algorithm
computing a
(1 + ε)-approximation of the
Ulam distance of two strings A
and B

reach Step 3 (and thus does not output ERROR). In the remaining of the proof, we
assume that the algorithm stops before reaching Step 3. Let i∗ denote the value of i
during the last iteration of the loop of Step 2, and write t∗ = (1 − η)i

∗ · 1−ε
c

√
n and

q∗ = t∗/n. Observe that the output of the algorithm is t∗.
Assume first that i∗ = 1. The output is thus t∗ = (1 − η) 1−ε

c

√
n. Observe that

AlgorithmQTest then necessarily outputted LARGE for i = 1. Proposition 3 guarantees
that with probability at least 1 − 1/poly(n) the inequality pt∗ ≥ (1 − η)q∗ holds
(otherwise it would have outputted SMALL). This inequality combinedwith (3) implies
that

(1 + δ) · ud(A, B)

n
+ δ

n
≥ (1 − η)q∗

and thus the output t∗ = nq∗ of the algorithm satisfies the following inequalities:

t∗ ≤ ((1 + δ) · ud(A, B) + δ)/(1 − η)

≤ (1 + 2δ) · ud(A, B)/(1 − η)

≤ (1 + 2δ)(1 + 2η) · ud(A, B)

≤ (1 + ε) · ud(A, B),

(4)

where we used the inequality 1/(1 − x) ≤ 1 + 2x , which holds for any x ∈ [0, 1/2].
Also note that the inequality

t∗ = (1 − η) · 1 − ε

c

√
n ≥ (1 − ε) · ud(A, B)

is trivially satisfied since we are assuming ud(A, B) ≤ 1−ε
c

√
n and η < ε. The output

is thus a (1 + ε)-approximation of ud(A, B).
Assume now that i∗ ≥ 2. Observe that Algorithm QTest then necessarily outputted

LARGE for i = i∗ and SMALL for i = i∗ − 1. Since it outputted LARGE for i =
i∗, Inequalities (4) hold with probability at least 1 − 1/poly(n), from exactly the
same argument as above. Since the output was SMALL for i = i∗ − 1, Proposition 3
guarantees that with probability at least 1 − 1/poly(n) the inequality pt∗/(1−η) ≤
q∗/(1 − η) holds (otherwise it would have outputted LARGE). Since t∗ = nq∗, this

123

1282 Algorithmica (2023) 85:1251–1286

inequality combined with (3) implies:

t∗ ≥ n(1 − η)pt∗/(1−η)

≥ (1 − η)(1 − δ)

(
1 − 1√

n

)
· ud(A, B)

= (1 − ε/3)(1 − ε/3)

(
1 − 1√

n

)
· ud(A, B)

≥ (1 − ε) · ud(A, B).

The output of the algorithm is thus a (1 + ε)-approximation of ud(A, B) as well.
Since the complexity of applyingAlgorithmUlamIndic at Step i is Õ(

√
(1 − η)i

√
n),

the overall complexity of the algorithm is

Õ

(
r∑

i=1

1
√

(1 − η)i/
√
n

√
(1 − η)i

√
n

)

= Õ
(√

n
)
,

as claimed. ��

7 Lower Bounds

In this section we prove lower bounds for the problems considered in this paper.
We start by an easy lower bound for the longest common substring over a large

alphabet.

Theorem 8 For any constant c ∈ (0, 1], any quantum algorithm that computes with
high probability a c-approximation of the longest common substring of two strings of
length n over an alphabet of size 2n requires �(n2/3) time. This lower bound also
holds for non-repetitive strings.

Proof Consider the following version of the element distinctness problem: given a list
L of m characters in an alphabet of size m such that either all the characters of L
are distinct, or only one character occurs twice in L (i.e., the other m − 2 characters
are distinct), decide which of the two cases holds. A �(m2/3)-query lower bound is
known for this problem in the quantum setting [42–44].

Let us take m = 2n. Construct a string A of length n by taking n elements from L
uniformly at random, and construct another string B of length n using the remaining
n elements from L . Observe that if all the characters in L are distinct then A and B
are non-repetitive and have no common substring. On the other hand, if the characters
in L are not all distinct, then with probability at least 1/2 the two strings A and B are
non-repetitive and have a common substring of length 1. This gives a (randomized)
reduction from element distinctness problem to our problem since a c-approximation
of the longest common substring enables us to distinguish between the two cases. ��

We now present a lower bound for LCS that holds even for binary strings.

123

Algorithmica (2023) 85:1251–1286 1283

Theorem 9 For any constant c ∈ (0, 1], any quantum algorithm that computes with
high probability a c-approximation of longest common substring of two binary strings
of length n requires �̃(n2/3) time.

Proof The main idea is simple: by dividing the input strings into blocks of size
�(log n), we can reduce the case with alphabet of size 2n to the case of binary alpha-
bets, and thus use the lower bound of Theorem 8 with only a logarithmic overhead.

We now give more details of the reduction. Let A and B denote strings of length
n over an alphabet of size 2n. Each character of the alphabet is encoded by a random
binary string of length s (i.e., a binary string of length s such that each bit is 1 with
probability 1/2). Using easy arguments from probability theory (see, e.g., Section 2 of
[45]), for any constant α > 0 we can guarantee that the following property holds with
probability at least 9/10 if we take s ≥ dα · log n for some constant dα that depends
only on α: the length of the longest common substring of the encodings of any two
distinct characters is at most αs. Let us choose α = c/3 and consider s =
dα · log n�.
Belowwe assume that the above property holds (with happens with probability at least
9/10).

If the longest common substring of A and B has length zero then the longest
common substring of their binary versions has length at most 2αs = 2cs/3 < cs. If
the longest common substring of A and B has length at least one, on the other hand,
then the longest common substring of their binary versions has length at least s. Thus
a c-approximation of the longest common substring of the binary versions enables us
to distinguish, with high probability, between the two cases. ��

Wenowgive our lower bounds for LPS and for the computation of theUlamdistance.

Theorem 10 For any constant c ∈ (0, 1], any quantum algorithm that computes with
high probability a c-approximation of the longest palindrome of a binary string of
length n requires �(

√
n) time.

Proof Let m ≥ 3 be an integer. Let S1 ⊆ {0, 1}m denote the set of all m-bit strings
of Hamming weight one in which the first and last characters are both zero, and let
S0 ⊆ {0, 1}m be the set containing only the all-zero string. Distinguishing between
strings in S0 and S1 requires �(

√
m) queries in the quantum setting (see, e.g., [46]).

Let us write k =
3/c�. Given a string x ∈ S0 ∪ S1 and any r ∈ {1, . . . , k}, let xr
be the binary string of length km obtained from x by replacing each 0 in x by 0k and
each 1 in x by 1r0k−r .

Take n = k2m. We now consider the string A ∈ {0, 1}n obtained by concatenating
the strings x1, x2, . . ., xk . Each xi , for i ∈ {1, . . . , k}, is called a block of A. Observe
that if x ∈ S0 (i.e., if x is the all-zero string), then A is also the all-zero strings. In this
case the length of the LPS of A is n. On the other hand, if x ∈ S1 then no palindrome of
A can include two full blocks (since the numbers of repeated 1s in distinct blocks do not
match), and thus the lengthof the LPSof A is atmost km+2(km−1) ≤ 3km < cn. Thus
computing a c-approximation of the LPS of A enables us to distinguishing between
strings in S0 and S1. This gives the lower bound �(

√
m) = �(

√
n) on the complexity

of computing a c-approximation of the LPS . ��

123

1284 Algorithmica (2023) 85:1251–1286

Theorem 11 For any ε ∈ [0, 1), any quantum algorithm that computes with high
probability a (1+ε)-approximation of the Ulam distance of two non-repetitive strings
requires �(

√
n) time.

Proof Let us consider the alphabet {1, 2, . . . , n}. Let A be the all-increasing string,
i.e., A = 123 · · · n. Let B either the all-increasing string or the string obtained by
permuting the
-th position and the (
 + 1)-position of the all-increasing string for
some unknown
 ∈ {1, . . . , n − 1}. Note that in former case the Ulam distance of A
and B is zero, while in the second case the Ulam distance is two. Computing a (1+ε)-
factor approximation of the Ulam distance of A and B thus requires distinguishing
between the two cases, which requires�(

√
n) queries from the lower bound onGrover

search [46]. ��
Acknowledgements The authors are grateful toMichael Saks and C. Seshadhri for helpful correspondence.

Funding FLGwas supportedby the JSPSKAKENHIGrantsNos. JP16H01705, JP19H04066, JP20H00579,
JP20H04139, JP20H05966, JP21H04879 and by the MEXT Quantum Leap Flagship Program (MEXT Q-
LEAP)Grant No. JPMXS0120319794. SSwas supported in part by anAdobeResearchAward and aGoogle
Research Gift.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci.
20(1), 18–31 (1980)

2. Bar-Yossef, Z., Jayram, T., Krauthgamer, R., Kumar, R.: Approximating edit distance efficiently. In:
Proceedings of the 45th Annual IEEE Symposium on the Foundations of Computer Science, pp. 550–
559 (2004)

3. Batu, T., Ergun, F., Sahinalp, C.: Oblivious string embeddings and edit distance approximations. In:
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 792–801 (2006)

4. Andoni, A., Krauthgamer, R., Onak, K.: Polylogarithmic approximation for edit distance and the
asymmetric query complexity. In: Proceedings of the 51stAnnual IEEESymposiumon the Foundations
of Computer Science, pp. 377–386 (2010)

5. Boroujeni, M., Ehsani, S., Ghodsi, M., HajiAghayi, M., Seddighin, S.: Approximating edit distance
in truly subquadratic time: quantum and MapReduce. In: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1170–1189 (2018)

6. Chakraborty, D., Das, D., Goldenberg, E., Koucky, M., Saks, M.: Approximating edit distance within
constant factor in truly sub-quadratic time. In: Proceedings of the 59th Annual IEEE Symposium on
the Foundations of Computer Science, pp. 979–990 (2018)

7. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science, pp. 137–143 (1997)

8. Amir, A., Charalampopoulos, P., Pissis, S.P., Radoszewski, J.: Longest common substring made fully
dynamic. In: Proceedings of the 27th Annual European Symposium on Algorithms, pp. 6–1617 (2018)

9. Kociumaka, T., Starikovskaya, T., Vildhøj, H.W.: Sublinear space algorithms for the longest common
substring problem. In: Proceedings of the 22th Annual European Symposium on Algorithms, pp.
605–617 (2014)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2023) 85:1251–1286 1285

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cam-
bridge (2009)

11. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic time (unless SETH
is false). SIAM J. Comput. 47(3), 1087–1097 (2018)

12. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other sequence similarity
measures. In: Proceedings of the 56th Annual IEEE Symposium on the Foundations of Computer
Science, pp. 59–78 (2015)

13. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239
(2007)

14. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 880–889 (2006)

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

16. Harrow, A.W., A.H., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett.
103, 150502 (2006)

17. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput.
37(2), 413–424 (2007)

18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

19. Ramesh, H., Vinay, V.: String matching in Õ(
√
n + √

m) quantum time. J. Discrete Algorithms 1(1),
103–110 (2003)

20. Ambainis, A., Montanaro, A.: Quantum algorithms for search with wildcards and combinatorial group
testing. Quantum Inf. Comput. 14(5–6), 439–453 (2014)

21. Cleve, R., Iwama, K., Le Gall, F., Nishimura, H., Tani, S., Teruyama, J., Yamashita, S.: Reconstructing
strings from substrings with quantum queries. In: Proceedings of the 13th Scandinavian Symposium
and Workshops on Algorithm Theory, pp. 388–397 (2012)

22. Kaye, P., Laflamme, R., Mosca, M., et al.: An Introduction to Quantum Computing. Oxford University
Press, Oxford (2007)

23. Andoni, A., Nosatzki, N.S.: Edit distance in near-linear time: it’s a constant factor. In: Proceedings of
the 61st Annual IEEE Symposium on Foundations of Computer Science (2020)

24. Kouckỳ, M., Saks, M.: Constant factor approximations to edit distance on far input pairs in nearly
linear time. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 699–712 (2020)

25. Brakensiek, J., Rubinstein, A.: Constant-factor approximation of near-linear edit distance in near-linear
time. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp.
685–698 (2020)

26. Ambainis, A., Balodis, K., Iraids, J., Kokainis, M., Prūsis, K., Vihrovs, J.: Quantum speedups for
exponential-time dynamic programming algorithms. In: Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1783–1793 (2019)

27. Rubinstein, A.: Quantum DNA sequencing and the ultimate hardness hypothesis. https://theorydish.
blog/2019/12/09/quantum-dna-sequencing-the-ultimate-hardness-hypothesis/ (2019)

28. Buhrman, H., Patro, S., Speelman, F.: A framework of quantum strong exponential-time hypotheses.
In: Proceedings of the 38th International Symposium on Theoretical Aspects of Computer Science.
LIPIcs, vol. 187 (article 19), pp. 1–19 (2021)

29. Aaronson, S., Chia, N., Lin, H., Wang, C., Zhang, R.: On the quantum complexity of closest pair and
related problems. In: Proceedings of the 35th Computational Complexity Conference. LIPIcs, vol. 169
(article 16), pp. 1–43 (2020)

30. Fredman, M.L.: On computing the length of longest increasing subsequences. Discrete Math. 11(1),
29–35 (1975)

31. Ramanan, P.: Tight�(n lg n) lower bound for finding a longest increasing subsequence. Int. J. Comput.
Math. 65(3–4), 161–164 (1997)

32. Andoni, A., Nguyen, H.L.: Near-optimal sublinear time algorithms for Ulam distance. In: Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 76–86 (2010)

33. Naumovitz, T., Saks, M.E., Seshadhri, C.: Accurate and nearly optimal sublinear approximations
to Ulam distance. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 2012–2031 (2017). Revised version available at https://users.soe.ucsc.edu/sesh/
publication.html

123

https://theorydish.blog/2019/12/09/quantum-dna-sequencing-the-ultimate-hardness-hypothesis/
https://theorydish.blog/2019/12/09/quantum-dna-sequencing-the-ultimate-hardness-hypothesis/
https://users.soe.ucsc.edu/sesh/publication.html
https://users.soe.ucsc.edu/sesh/publication.html

1286 Algorithmica (2023) 85:1251–1286

34. Akmal, S., Jin, C.: Near-optimal quantum algorithms for string problems. In: Naor, J., Buchbinder, N.
(eds.) Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pp.
2791–2832. SIAM (2022). https://doi.org/10.1137/1.9781611977073.109

35. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Con-
temp. Math. 305, 53–74 (2002)

36. Charikar, M., Krauthgamer, R.: Embedding the Ulam metric into
1. Theory Comput. 2(11), 207–224
(2006)

37. Mitzenmacher, M., Seddighin, S.: Dynamic algorithms for LIS and distance to monotonicity. In:
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 671–684
(2020)

38. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1),
142–164 (2011)

39. Saks, M.E., Seshadhri, C.: Estimating the longest increasing sequence in polylogarithmic time. In:
Proceedings of the 51th Annual IEEE Symposium on Foundations of Computer Science, pp. 458–467
(2010)

40. Szegedy,M.: Quantum speed-up ofmarkov chain based algorithms. In: Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)

41. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, Cambridge (2009)

42. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems.
J. ACM 51(4), 595–605 (2004)

43. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: collision and element
distinctness with small range. Theory Comput. 1(1), 37–46 (2005)

44. Kutin, S.: Quantum lower bound for the collision problem with small range. Theory Comput. 1(1),
29–36 (2005)

45. Arratia, R., Waterman, M.S.: An Erdös-Rényi law with shifts. Adv. Math. 55(1), 13–23 (1985)
46. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weaknesses of quantum

computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1137/1.9781611977073.109

	Quantum Meets Fine-Grained Complexity: Sublinear Time Quantum Algorithms for String Problems
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Preliminaries

	2 Results
	2.1 Quantum Components
	2.2 LCS and LPS
	2.3 Ulam Distance

	3 Longest Common Substring
	3.1 Quantum Algorithm for Exact LCS
	3.1.1 Quantum Algorithm for Small d
	3.1.2 Quantum Algorithm for Large d
	3.1.3 Combining the Two Algorithms

	3.2 Quantum Algorithm for Approximate LCS

	4 Longest Common Substring for Non-repetitive Strings
	4.1 Quantum Walks
	4.2 Quantum Algorithm for Exact LCS of Non-repetitive Strings
	4.3 Quantum Algorithm for Approximate LCS of Non-repetitive Strings

	5 Longest Palindrome Substring
	5.1 General Description of Our Quantum Algorithm
	5.2 Description of the Checking Procedure
	5.2.1 Identifying the Patterns
	5.2.2 Checking the Patterns

	6 (1+ε)-Approximation of the Ulam Distance
	6.1 Classical Indicator for the Ulam Distance
	6.2 Quantum Algorithm for the Ulam Distance

	7 Lower Bounds
	Acknowledgements
	References

