
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-023-00213-y

RESEARCH PAPER

A Framework to Maximize Group Fairness for Workers on Online Labor
Platforms

Anis El Rabaa1 · Shady Elbassuoni1 · Jihad Hanna2 · Amer E. Mouawad1 · Ayham Olleik2 · Sihem Amer‑Yahia3

Received: 2 February 2023 / Revised: 17 March 2023 / Accepted: 6 April 2023
© The Author(s) 2023

Abstract
As the number of online labor platforms and the diversity of jobs on these platforms increase, ensuring group fairness for
workers needs to be the focus of job-matching services. Risk of discrimination against workers occurs in two different job-
matching services: when someone is looking for a job (i.e., a job seeker) and when someone wants to deploy jobs (i.e., a
job provider). To maximize their chances of getting hired, job seekers submit their profiles on different platforms. Similarly,
job providers publish their job offers on multiple platforms with the goal of reaching a wide and diverse workforce. In this
paper, we propose a theoretical framework to maximize group fairness for workers 1) when job seekers are looking for jobs
on multiple platforms, and 2) when jobs are being deployed by job providers on multiple platforms. We formulate each
goal as different optimization problems with different constraints, prove most of them are computationally hard to solve and
propose various efficient algorithms to solve all of them in reasonable time. We then design a series of experiments that rely
on synthetic and semi-synthetic data generated from a real-world online labor platform to evaluate our framework.

Keywords Group fairness · Online labor platforms · Crowdsourcing · Optimization · Job seeker · Job provider

1 Introduction

Online labor marketplaces such as TaskRabbit1 and Upwork2
are gaining popularity as platforms to hire workers to per-
form certain jobs. On these platforms, people can hire

temporary workers in the physical world (e.g., someone to
clean an apartment in New York City), or remote workers
(e.g., someone to design a website) by submitting a descrip-
tion of the job and receiving a ranked list of potential work-
ers deemed qualified for the job. A job seeker (i.e., a worker
looking for a job) provides her job interests and skills and
is matched to certain jobs available on the platform. A job
provider (i.e., an employer looking for workers to perform a
certain job) provides a description of the job and is matched
to potential workers. In the majority of these platforms, such
job-matching services are algorithmic and most of the time
opaque. This raises fairness concerns. A ranking of work-
ers will be considered unfair if it is biased toward certain
groups of people, such as white males. This commonly hap-
pens since ranking usually depends on the social feedback
received by workers in the form of reviews and ratings, and
on the number of their past jobs, both of which perpetuate
bias against certain groups of workers [9, 16, 17, 29]. In this
paper, we propose the first theoretical framework that can be
used to assess and compare worker fairness of multiple jobs
on multiple platforms.

 * Shady Elbassuoni
 se58@aub.edu.lb

 Anis El Rabaa
 ase29@mail.aub.edu

 Jihad Hanna
 jgh20@mail.aub.edu

 Amer E. Mouawad
 aa368@aub.edu.lb

 Ayham Olleik
 abo00@mail.aub.edu

 Sihem Amer-Yahia
 sihem.amer-yahia@univ-grenoble-alpes.fr

1 Computer Science Department, American University
of Beirut, Beirut, Lebanon

2 Electrical and Computer Engineering Department, American
University of Beirut, Beirut, Lebanon

3 CNRS, University Grenoble Alpes, Grenoble, France

1 https:// www. taskr abbit. com/.
2 https:// www. upwork. com/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-023-00213-y&domain=pdf
http://orcid.org/0000-0002-3491-6311
https://www.taskrabbit.com/
https://www.upwork.com/

 A. E. Rabaa et al.

1 3

Motivating Examples

We consider the example of Mary, a website developer, who
is seeking some gigs in the summer (Fig. 1). Mary would
like to know on which platform (e.g., TaskRabbit, Fiverr)
and for which jobs (e.g., website design, website portability,
website translation) she is most likely to land a gig. Today,
Mary would need to apply to multiple jobs on several plat-
forms. Mary would benefit from a tool that will provide her
with the (job,platform) pairs where she is most likely to get
hired. This could be made possible by analyzing how people
like Mary, in terms of her demographics, skills and other
characteristics, are treated on existing platforms for website
development jobs. Moreover, Mary may also wish to make
at least a certain amount of money for her summer vaca-
tion. This could be achieved by setting a constraint on the
cumulated reward of the set of (job,platform) pairs she is
most likely to get. Additional constraints such as the total
time required to complete all gigs could also be desired and
incorporated. Therefore, with the proposed tool, a job seeker
such as Mary will not only save time in her search but also
be empowered to only target jobs and platforms she is most
likely to get selected for and for which she wishes to set her
own conditions.

We now consider the case of Angela who wishes to deploy
some jobs on several platforms (Fig. 2). Angela wants to treat
job seekers fairly and at the same time stay within her budget.
Without a dedicated tool, a job provider like Angela would

not be able to assess fairness on different platforms and make
an informed decision on where to deploy which jobs. Such a
tool would optimize worker fairness and also incorporate her
constraints. Job providers may have a specific per-platform
budget. That is the case when platforms operate with differ-
ent currencies or when a job provider already has some jobs
running on a platform and wants to cap the number of jobs.
For example, Angela may already have some jobs deployed
on TaskRabbit and some funds on Prolific Academic. In that
case, she will deploy her remaining jobs in such a way that
she maximizes worker fairness and satisfies platform-specific
budgets. Providing such expressive tools for job seekers and
job providers is the topic of our work.

We focus on group fairness, which is defined as the fair
treatment of all groups of people [4, 37], where groups are
defined using protected attributes such as gender, age and
ethnicity. For example, the worker groups could be males,
asians, black females, young white males, etc. Our frame-
work can accommodate multiple group fairness definitions
as long as they rely on ranking or scoring of workers, i.e.,
fairness of exposure, which directly relates to the chances
of workers landing jobs [31]. It does so by defining a single
function f(j, p, g), where j is a job, p is a platform, g is a
demographic group, and f(j, p, g) is a fairness value of job j
on platform p for group g. To serve both job seekers and job
providers, we formulate several optimization problems that
aim to maximize worker group fairness subject to desired
constraints such as payment and number of jobs.

Fig. 1 Motivating example: Mary the job seeker

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

Optimization Problems for Job Seekers
Our first and second optimization problems aim to maxi-

mize worker fairness for job seekers. Given a set of worker
groups that the job seeker belongs to, a set of jobs of interest
and a set of platforms on which these jobs might be avail-
able, our first optimization problem seeks the top-k fairest
job-platform pairs. The worker can then use those k retrieved
pairs to focus her efforts on when applying for jobs. We also
consider the case where jobs are associated with rewards.
That is, we assume that each job available on a platform is
associated with a reward. This constitutes the basis for our
second optimization problem, where the goal is to find the
top-k fairest job-platform pairs such that their total reward
is above a certain threshold. In this case, the worker’s goal
is to find the top-k fairest job-platform pairs that increase
her chances of landing a job, while guaranteeing a minimum
reward or payment.

Optimization Problems for Job Providers
Our third and fourth optimization problems aim to maxi-

mize worker fairness when a job provider is deploying a
set of jobs on different platforms. Each job is associated
with a cost, e.g., the worker compensation for completing
that job, and this cost may differ from one platform to the
other. Given a set of jobs to be deployed on a set of plat-
forms and a budget, the third optimization problem seeks to
assign each job to at most one platform such that the total
cost of the jobs assigned does not exceed the budget and the

total fairness of the assigned jobs is maximized. We impose
that each job is deployed on at most one platform to reduce
deployment cost and satisfy as many providers as possible.
A variation of this optimization problem is: given a set of
jobs to be deployed on a set of platforms and a budget for
each platform, our goal is to assign each job to at most one
platform such that the total cost of the jobs assigned to each
platform does not exceed its budget, and the total worker
fairness of the assigned jobs is maximized. The result of
both optimization problems can be used by the job provider
to decide on which platforms to deploy her jobs so as to
maximize worker fairness subject to budget constraint(s) the
job provider might have.

Computational Solutions
We prove that three of our four optimization problems

are computationally hard by reductions from well-known
NP-hard problems such as Knapsack [20] and general
assignment problems [21], and we propose algorithms to
efficiently solve them. More precisely, for the first job seeker
optimization problem, we propose an adaptation of Fagin’s
top-k algorithm [10]. For the second job seeker problem, we
propose a dynamic programing (DP) algorithm. Similarly,
for the first job provider optimization problem, we also pro-
pose a dynamic programming algorithm and finally, for the
second job provider problem, we explore various exact and
approximation algorithms from the literature.

Fig. 2 Motivating example: Angela the job provider

 A. E. Rabaa et al.

1 3

Empirical Validation
We design a series of experiments using synthetic and

semi-synthetic data generated from TaskRabbit, a real-world
online labor platform, to evaluate our proposed framework
and algorithms. We use synthetic data to demonstrate the
scalability of our algorithms as the number of jobs, the num-
ber of platforms and the number of worker groups increase
and to compare them to adequate baselines. To compute fair-
ness values, we use the two metrics defined in [1], namely
Earth Mover Distance (EMD) and Exposure. Our experi-
ments demonstrate that our algorithms scale very well and
that they consistently outperform their baselines. On the
other hand, we use semi-synthetic data to conduct case
studies that highlight the merits of the solutions generated
by our algorithms from a qualitative perspective. To create
semi-synthetic data, we propose a data generation protocol
based on interventions [30] to create multiple worlds, each
of which simulates a platform. An intervention is a sam-
pling of workers from a snapshot of TaskRabbit such that the
sampled “world” matches a desired distribution of protected
attributes (in our case either on gender or ethnicity). We run
a series of qualitative experiments on different worlds. Our
results confirm that our framework can indeed increase the
chances of job seekers landing jobs and can result in maxi-
mizing worker fairness when job providers are deploying
jobs, subject to various constraints such as reward or budget.

In summary, this paper makes the following contributions:

1. We formulate four novel optimization problems to maxi-
mize group fairness for workers when job seekers are
looking for multiple jobs on multiple online labor plat-
forms and when job providers are deploying multiple
jobs on multiple online labor platforms.

2. We prove that three of our optimization problems are
computationally hard, and propose algorithms to solve
the four problems efficiently.

3. We establish a benchmark of synthetic and semi-syn-
thetic data based on interventions to evaluate our algo-
rithms both from a scalability perspective as well as
from a usability one. Given that there exists no available
benchmarks to perform such evaluations, our established
benchmark and proposed experimental framework is
thus a major contribution of this work.

The rest of the paper is organized as follows. In Sect. 2, we
review related work that addresses fairness in online labor
platforms. In Sect. 3, we describe our proposed framework,
which is composed of four optimization problems and algo-
rithms to solve them efficiently. In Sect. 4, we describe the
experiments that we used to evaluate our proposed frame-
work and their results. Finally, we conclude and present
future work directions in Sect. 5.

2 Related Work

Fairness of ranking is an increasingly trending topic in
research. Many works have already underlined the impor-
tance of fair rankings, and their impact on the actual selec-
tion of ranked items by users. As Singh and Joachims
explained in [32], the probability of a ranked item being
selected (e.g., a job candidate being hired) decreases sig-
nificantly with lower ranking positions; a concept referred
to as exposure. Along the same topic, the experiment in
[19] studied user behavior when presented with manipu-
lated Google search results, and found that users exhibit
“partial bias” toward an item’s rank, tending to select
items at the top of search results. Fairness of ranking is
thus especially important for online labor platforms, where
unfair rankings of workers can lead to disparate distribu-
tions of work opportunities or income [3]. In this work,
we focus only on group fairness, as opposed to individual
fairness [3, 7, 26], which is the subject of our future work.

Many notable works focused on assessing fairness of
a worker ranking in online labor platforms. For instance,
the authors in [16] found evidence of bias in two promi-
nent online labor platforms, TaskRabbit and Fiverr. In both
platforms, they found that perceived gender and race have
significant correlations with worker evaluations, and even
with worker rankings in the case of TaskRabbit. In [6], the
author examined gender bias in the resume search plat-
forms: Indeed, Monster and CareerBuilder. Two notions
of fairness issues were considered: a) ranking bias, which
is the disparity of ranking distributions across genders
(group unfairness), and b) unfairness, i.e., the gap in rank-
ing between male and female applicants having the same
qualifications (individual unfairness). The author found
evidence of both issues on all three platforms.

Notable efforts have also been made to quantify unfair-
ness [8, 9, 13, 14]. In [8, 9, 14], the authors formulated
an optimization problem to find the partitioning of work-
ers (based on their protected attributes) that exhibits the
highest unfairness based on a given scoring function. They
used Earth Mover’s Distance (EMD) between score dis-
tributions as a measure of unfairness. In [1], the authors
proposed a unified framework to study fairness in online
jobs. They defined two generic fairness problems: quan-
tification, which is finding the k worker groups, or jobs
or locations, for which a job search site is most or least
unfair, and comparison, which is finding the locations at
which fairness between two groups differs from all loca-
tions, or finding the jobs for which fairness at two loca-
tions differ from all jobs for instance. They adapted Fagin
top-k algorithms to address their fairness problems and
case-studied two particular job search sites: Google job
search and TaskRabbit.

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

To address fairness of ranking, various methods have
been proposed to actively generate fair rankings. Many of
them are post-processing methods (e.g., [3, 5, 23, 24, 35,
36]), where given an existing ranking of items, a new order-
ing of the items is generated so as to satisfy certain fair-
ness constraints. On the other hand, in-processing methods
address ranking bias of an algorithm at the training phase,
such as the DELTR Learn-to-Rank framework in [34].

Our proposed work differs from all the reviewed related
work above in that it is, to the best of our knowledge, the first
to establish a generic framework that can be used to assess
and compare worker fairness of multiple jobs on multiple
online labor platforms. Our framework can accommodate
all definitions of group fairness proposed before. It also has
multiple use cases from the perspective of both job seekers
and job providers. It can be deployed as a stand-alone ser-
vice on top of existing online labor platforms to maximize
fairness of job-matching services on these platforms when
job seekers are being matched to jobs and when job provid-
ers are deploying jobs on these platforms. Our framework is
theoretically founded and we propose an extensive and thor-
ough experimental setup to evaluate it using both synthetic
and real-world generated data.

3 Framework

3.1 Setting

We assume that our framework has access to an unbounded
number of platform signatures. A platform signature is a list
of job descriptions available on the platform, and where each
job is associated with a list of worker profiles that indicate
the protected attributes of each worker and the score or rank
of the worker for the job by the platform. We also assume
that the same job can be available on multiple platforms, and
for each job-platform pair, we define all worker groups using
one or more protected attributes of the workers provided by
the platform signature. For example, if the protected attrib-
utes are gender, ethnicity and age, then the worker groups
would be males, females, asians, whites, blacks, black
females, young white males and so on. Finally, we assume
that each job-platform pair is associated with a fairness value
for each worker group on each platform. The fairness value
of a worker group depends on the ranking or scores of the
workers that belong to that group and thus can be different
for different platforms.

More precisely, a job j for worker group g on platform
p is associated with a fairness value f(j, p, g). Without loss
of generality, we assume that f(j, p, g) is a value between 0
and 1, and that the higher the value is, the more fair job j is
considered for group g on platform p. To obtain such fair-
ness values for each job-platform-group tuple, we assume

the presence of a blackbox that takes as input a job j, a plat-
form p and a group g and returns a fairness value f(j, p, g)
between 0 and 1. The fairness values are computed using
the platform signature which indicates for each job, the list
of worker profiles (i.e., their protected attributes) and their
scores or ranks for the job by the platform. In our experi-
ments, we make use of the framework in [1], which uses two
different notions for computing group fairness. However,
other notions of group fairness can also be used, as long as
they can be computed using the scores or ranks of workers
with respect to jobs [2, 28, 31].

Furthermore, we assume the presence of two predicates:
a(j, p) which is only true if job j is available on platform
p and e(j, p, g) which is only true if job j is available on
platform p for group g. This is done to accommodate the
fact that in practice in online labor platforms not all jobs are
and not all worker groups are available on every platform.
Our framework thus operates on an incomplete weighted
bipartite graph where the first set of nodes represent jobs,
the second set of nodes represent platforms and there is an
edge between a job j and a platform p only if a(j, p) = true .
Moreover, each edge in this bipartite graph is associated
with a set of weights {f (j, p, g)|g ∈ G ∧ e(j, p, g) = true} that

Fig. 3 An example bipartite graph with jobs on one side and plat-
forms on the other side. Each edge between a job j and a platform p
has a set of weights representing the fairness values of job j for the
different groups g on platform p

Table 1 Summary of terminology

Variable Meaning

j Job
p Platform
g Group
f(j, p, g) Fairness of job j for group g on platform p
a(j, p) Predicate indicating the availability of job

j on platform p
e(j, p, g) Predicate indicating the availability of

group g for job j on platform p

 A. E. Rabaa et al.

1 3

correspond to the different fairness values for the different
groups that exist in the platform p for job j. Figure 3 shows
an example of such a bipartite graph. Table 1 provides a
summary of the main terminology in this paper.

The main goal of our framework is to assess and com-
pare worker fairness of multiple jobs on multiple platforms,
which can then be used to maximize fairness of job-match-
ing services on online labor platforms when job seekers are
being matched to jobs and when job providers are deploying
jobs on these platforms. To achieve this goal, we define four
different optimization problems, two for the job seeker case
and two for the job provider case. We prove that three of
our optimization problems are at least as hard as NP-hard
problems and we propose a set of algorithms to solve the
four of them efficiently.

3.2 Maximizing Fairness for Job Seekers

A job seeker is a person looking for the top-k fairest jobs
available on different platforms that fits her interests or
skills. A job seeker belongs to multiple demographic groups.
For example, a job seeker can be female, white and middle-
aged. We also consider combinations of these values to
exhaust all the groups the job seeker belongs to. That is, in
our example, the job seeker would be also a white female,
a middle-aged white and a middle-aged white female. Our
first optimization problem for maximizing fairness for job
seekers is defined below.

Problem 1 (Unconstrained) Job Seeker Problem Given a
set of demographic groups G that the job seeker belongs to,
a set of jobs of interest J and a set of platforms P on which
these jobs might be available, our goal is to find the top-k

fairest (j, p) pairs, where j ∈ J is a job, p ∈ P is a platform,
and the pair (j, p) means job j on platform P. Our job seeker
problem can then be formulated as the following optimiza-
tion problem:

Since each job seeker belongs to different worker groups,
we need to aggregate the different fairness values for each
group the job seeker belongs to in order to obtain a single
fairness value for a job-platform pair. In the optimization
problem above, we use minimum as an aggregation operator.
Thus, we take a conservative worst-case approach here to
quantify the fairness value of a job-platform pair for a given
job seeker. This is motivated by the large body of literature
on intersectional fairness [12, 15, 22]. Other aggregation
methods such as taking the average or the maximum can be
also applied without any fundamental changes.

The input in the job seeker problem is a set of jobs J,
a set of platforms P and all the demographic groups G
that the job seeker belongs to. A naive approach to solve
the job seeker problem defined above is to loop over all
jobs, all the platforms and all the groups, and for each job-
platform pair (j, p) such that a(j, p) is true, it computes the
minimum fairness for that pair overall groups G the job
seeker belongs to and for which e(j, p, g) is true. It then
returns the k job-platform pairs with the highest minimum
fairness over all groups G. The complexity of this naive
approach is thus O(|J||P||G|).

argmax
S

∑

(j,p)∈S

min
g∈G∧e(j,p,g)=true

f (j, p, g)

subject to: S ⊆ J × P

a(j, p) = true ∀(j, p) ∈ S

|S| = k

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

Algorithm 1 Top-k Job Seeker Algorithm
1: Input: a set of jobs J , a set of platforms P , a set of groups G, k
2: output: the k (j, p) pairs with the highest minimum fairness over all groups G
3: topk ← minHeap() � Initialization
4: cursor ← 0
5: while topk.minV alue() < τ or topk.size() < k do
6: τ ← −∞
7: for g ∈ G do
8: ((j, p), f(j, p, g)) ← Ig.getEntry(cursor) � Read entry at current line

(cursor)
9: if j ∈ J and p ∈ P then

10: if τ < f(j, p, g) then � Update threshold value
11: τ ← f(j, p, g)
12: end if
13: min ← f(j, p, g)
14: for g′ ∈ G and g′ �= g do � Perform random access on all other lists
15: if e(j, p, g′) is true then
16: f(j, p, g′) ← Ig′ .getV alue((j, p))
17: if f(j, p, g′) < min then
18: min ← f(j, p, g′)
19: end if
20: end if
21: end for
22: if topk.size() < k then � Update top-k set (if needed)
23: topk.insert(((j, p),min)
24: else
25: if topk.minV alue() < min then
26: topk.pop()
27: topk.insert((j, p),min)
28: end if
29: end if
30: end if
31: end for
32: cursor ← cursor + 1
33: end while
34: return topk

A more efficient approach can make use of optimal
aggregation algorithms such as Fagin’s algorithm [10]
provided we use a monotone aggregation function (such
as the minimum in our formulation) to compute the fair-
ness value of a job-platform pair over groups. To be able to
do this, we assume the existence of a set of inverted lists,
one for each worker group g. The inverted list Ig contains
an entry for each job-platform pair (j, p) where e(j, p, g) is
true. The entries in Ig are sorted in descending order based
on the fairness values f(j, p, g).

Our optimal aggregation algorithm (Algorithm 1) is an
adaptation of Fagin’s Threshold algorithm to solve our job
seeker problem. The algorithm operates on |G| inverted
lists, one for each group, and it uses a threshold value �
initially set to −∞ , a cursor (line counter) initially set to 0

Fig. 4 An example bipartite graph for the constrained job seeker
problem. In addition to the fairness values per group, each edge
between a job j and a platform p has a weight r(j, p) representing the
reward of job j on platform p

 A. E. Rabaa et al.

1 3

and a min-heap topk that will store the top-k job-platform
pairs seen so far. The algorithm then reads the inverted
lists in parallel using sequential access. It starts by read-
ing the first entry (cursor = 0 , so first line) from each list.
Each of the entries read corresponds to a job-platform pair,
and its associated fairness value for the group correspond-
ing to the inverted list that entry belongs to. � is then set
to the largest of these values, and for each of the pairs,
we derive its aggregated fairness value by looking up its
equivalent entries from the other inverted lists (using ran-
dom access). The topk set is updated with the newly read
pairs (and their aggregated fairness values) if necessary,
and cursor is incremented by 1 for the next iteration (so
as to read the next line of the lists). The algorithm keeps
iterating until topk contains k elements and � becomes
smaller than the smallest fairness value in topk.

Note that a group g might not be available for a certain
job-platform pair (j, p) (i.e., e(j, p, g) = 0). Hence, this job-
platform pair will not be present in the inverted list Ig . If
at each iteration, we update the threshold � to be the mini-
mum of the last read fairness values (as custom in the tra-
ditional Fagin’s Threshold algorithm), then the algorithm
might end up stopping too early and potentially missing
some job-platform pairs with high minimum fairness that
are present in some lists but not in others. This explains
why in our adaptation of the algorithm, the threshold � is
updated to be the maximum of the last seen values, rather
than their minimum (lines 10 to 12 in Algorithm 1). Also
note that Fagin’s Threshold algorithm is known to be
instance optimal [10].

We also consider a scenario where the job seeker is
interested in retrieving the top-k fairest job-platform pairs,
subject to some user-defined constraints. For instance, one
such constraint could be minimum reward integrated as
follows. Assume that each job j available on platform p is
associated with a reward r(j, p), representing the earnings
the job seeker can make by executing job j on platform
p. Thus, each edge in our bipartite graph will include an
additional weight as shown in Fig. 4. In this case, the goal
of the job seeker can be formulated as the following opti-
mization problem.

Problem 2 Constrained Job Seeker Problem Given a set of
demographic groups G that the job seeker belongs to, a set
of jobs of interest J, and a set of platforms P on which these
jobs might be available, our goal is to find the top-k fairest
(j, p) pairs, where j ∈ J is a job, p ∈ P is a platform, and the
pair (j, p) means job j on platform P and such that the total
reward for the selected job-platform pairs is above a certain
threshold R. Our constrained job seeker problem can then be
casted as the following optimization problem:

The same problem can be formulated as an integer linear
programming (ILP) optimization problem as follows:

Theorem 1 The optimization variant of the knapsack prob-
lem is polynomial-time reducible to the constrained job
seeker problem, and therefore, the latter problem is at least
as hard as the former.

Proof Note that by having only one group and one platform,
the constrained job seeker problem reduces to the following.
Given a list M of pairs mi = (fi, ri) , where fi is the assigned
fairness value and ri the reward value, select k pairs such
that fairness is maximized and the total reward is at least R.
Using this version of the problem, we give a polynomial-
time reduction from the optimization version of Knapsack.
Given a list L of pairs ai = (vi,wi) , where vi represents the
value of the pair and wi its weight and an integer W, the
Knapsack problem asks for a subset of L of maximum value
such that the total weight is at most W.

Given an instance of the knapsack problem where |L| = n ,
create a list M of n pairs mi = (fi, ri) where fi = vi and
ri = W − wi . Moreover, add n additional pairs (0, W) to M.
Set k = n and R = (n − 1)W . We prove equivalence of both
instances in Appendix A. In other words, we prove that L
contains a subset of total value X, satisfying the Knapsack
constraints, if and only if M contains a subset of size n with
total fairness X, satisfying the constrained job seeker prob-
lem constraints. ◻

Note that since the knapsack optimization problem is
known to be at least as hard as its decision version, also
known to be NP-Complete [20], Theorem 1 implies that
polynomial-time algorithms for the constrained job seeker
problem are unlikely to exist.

argmax
S

∑

(j,p)∈S

min
g∈G∧e(j,p,g)=true

f (j, p, g)

subject to: S ⊆ J × P

a(j, p) = true ∀(j, p) ∈ S

|S| = k
∑

(j,p)∈S

r(j, p) ≥ R

max
∑

j∈J

∑

p∈P

min
g∈G∧e(j,p,g)=true

f (j, p, g) × x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1 → a(j, p) = true ∀j ∈ J,∀p ∈ P
∑

j∈J

∑

p∈P

x(j, p) = k ∀j ∈ J,∀p ∈ P

∑

j∈J

∑

p∈P

r(j, p) × x(j, p) ≥ R

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

Next, we describe how to solve this problem efficiently in
practice. The similarity with the knapsack problem gives a
nearly immediate dynamic programming (DP) solution that

we describe in Algorithms 2 and 3. This solution expects
fairness values to be integers. For non-integer fairness val-
ues (like in our case), we provide a systematic method of
converting them into integers in Sect. 4.3.4.

Algorithm 2 Constrained Job Seeker Algorithm
1: Input: A set of jobs J , a set of platforms P , a set of groups G, and two integers

k and R
2: Output: The k (j, p) pairs with the highest minimum fairness over all groups G

having reward at least R

� Step 1: Initialization + aggregation of fairness values

3: minFair[1...len(J)][1...len(P)] ← new 2D array initialized to +∞
4: for j ∈ J and p ∈ P and g ∈ G do
5: if e(j, p, g) = true then
6: minFair[j][p] ← min(minFair[j][p], f(j, p, g))
7: end if
8: end for

9: L ← Empty list
10: for j ∈ J and p ∈ P do
11: (j, p, f, r) ← (j, p,minFair[j][p], r(j, p))
12: L.append((j, p, f, r))
13: end for

� Step 2: Call recursive DP procedure (see Algorithm 3)

14: DP [0...len(L)][0...k][0...R] ← new 3D array initialized to −1
15: choice[0...len(L)][0...k][0...R] ← new 3D array initialized to −1
16: maxFairness ← MaxFairness(1, L, k,R,DP, choice)
17: if maxFairness = −∞ then return φ

� Step 3: Read result (optimal assignment) from the choice matrix and return

18: i ← 0, result ← φ
19: while i �= len(L) do
20: if choice[i][k][R] = 0 then
21: i ← i+ 1
22: continue
23: end if
24: result.add((j, p))
25: k ← k − 1
26: R ← max(0, R− L[i].r)
27: i ← i+ 1
28: end while

29: return result

 A. E. Rabaa et al.

1 3

Algorithm 3 Recursive Maximum Fairness Algorithm
1: procedure MaxFairness(i, L, k,R,DP, choice)
2: if k = 0 then return R = 0 ? 0 : −∞
3: if i > N then return −∞
4: if DP [i][k][R] �= −1 then return DP [i][k][R]

5: dontTakePair ← MaxFairness(i+ 1, L, k,R,DP, choice)
6: takePair ← MaxFairness(i+ 1, L, k − 1,max(0, R− L[i].r), DP, choice)

7: if dontTakePair = −∞ and takePair = −∞ then return DP [i][k][R] = −∞
8: if dontTakePair �= −∞ and takePair �= −∞ then
9: choice[i][k][R] ← (dontTakePair < L[i].f + takePair)

10: return DP [i][k][R] ← max(dontTakePair, L[i].f + takePair)
11: end if
12: if dontTakePair ≥ 0 then
13: choice[i][k][R] ← 0
14: return DP [i][k][R] ← dontTakePair
15: end if
16: choice[i][k][R] ← 1
17: return DP [i][k][R] ← L[i].f+ takePair
18: end procedure

Algorithm 2 starts by aggregating the fairness values
for each job-platform of interest over all the groups the job
seeker belongs to (lines 3 to 8). The algorithm then con-
structs a list L consisting of each job-platform pair of inter-
est, its aggregated fairness values and its reward (lines 9
to 13). The algorithm then invokes Algorithm 3 (line 16),
which takes as input a list L of all pairs in J × P , an index
i corresponding to the pair we are currently considering,
k representing the number of pairs we need to select and
R representing the minimum total reward required for the
selected pairs. In addition, the algorithm takes two addi-
tional arguments: DP and choice, which are both 3D arrays.
Algorithm 3 is used to find the maximum fairness value that
can be induced by a list of exactly k pairs in L[i...|L|] such
that the sum of the reward of the k pairs is at least R.

To find the optimal fairness assignment, we need to make
a decision about the ith pair in |L|. Let ri be the reward value
of pair i, and fi its fairness value. From there, we have two
options: either take the pair into the top-k pairs set, or dis-
card it. Discarding the ith pair means solving the problem for
pairs (i + 1) till |L| (instead of pairs i to |L|), which is handled
by the recursive call in line 5 of Algorithm 3. On the other
hand, including the pair into the top-k set means solving a
new subproblem on pairs (i + 1) till L, from which we need
to select (k − 1) pairs instead of k, with a reward threshold
of R − ri . This subproblem is solved using the recursive call
in line 6 of Algorithm 3.

To choose the best action, the algorithm tries both options
(i.e., both recursive calls), and compares the optimal fairness
attainable if we take the ith pair (fi + f (L, i + 1, k − 1,R − ri))

to the optimal value if we leave it (f (L, i + 1, k,R)). Since our
goal is to maximize fairness, then the largest of these two val-
ues is chosen and returned, breaking ties arbitrarily if any. The
choice made (taking or discarding the pair i) is recorded in
the array choice,to facilitate reconstructing the final top-k set.

This algorithm is further optimized by the use of DP. The
algorithm has three main parameters: i, k and R. Since the
total number of pairs in the list L is at most |J| × |P| , there-
fore, the algorithm has a total of |J||P|kR states. To ensure
that no state will compute its own value more than once, we
include the DP array to save the result of a state after first
computation, so that whenever another recursive call is called
with the same parameters, all computation is skipped and we
directly return the pre-computed value (i.e., memoization).

In terms of complexity, this algorithm is composed of two
stages. First, there is an initialization or preprocessing phase,
which loops over the |J| × |P| input job-platform pairs, com-
putes their aggregated fairness value over the |G| groups
and then arranges the pairs into a list of (job, platform, fair-
ness, reward) tuples. This phase’s time complexity is then
O(|J|P||G|) . Second, comes the recursive phase with DP
described above, having a time complexity of O(|J||P|kR)
(as we have |J||P|kR states in total). So overall, this algo-
rithm has a time complexity of O(|J||P||G| + |J||P|kR).

3.3 Maximizing Fairness for Job Providers

A job provider is a person looking to deploy a set of jobs
on different platforms. In online labor platforms, typically

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

each job j is associated with a cost c(j, p) on every platform
p it is available on, and this cost differs from one platform
to another. This extends our bipartite graph in Fig. 3 so that
each edge is now associated with an additional weight that
represents the cost of deploying job j on platform p. An
example of such graph is depicted in Fig. 5. The goal of the
job provider is thus to deploy the jobs on the platforms such
that the overall worker group fairness is maximized, while
satisfying a budget constraint. To reduce deployment cost,
we impose that each job is deployed on at most one platform.
This goal can be formulated as the following optimization
problem.

Problem 3 Job Provider Problem with Global Budget Given
a set of jobs J to be deployed on a set of platforms P and a
budget B, our goal is to assign each job j ∈ J to at most one
platform p ∈ P such that the total cost of the jobs assigned
does not exceed the budget B and the total fairness of the
assigned jobs is maximized. Our job provider problem can
be formulated as the following optimization problem (in
integer linear programming form):

max
∑

j∈J

∑

p∈P

min
g|e(j,p,g)=true

f (j, p, g) × x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1 → a(j, p) = true ∀j ∈ J,∀p ∈ P
∑

j∈J

∑

p∈P

c(j, p) × x(j, p) ≤ B

∑

p∈P

x(j, p) ≤ 1 ∀j ∈ J

In some cases, a job provider might have a sepa-
rate budget for each platform on which the jobs are to be
deployed, rather than a global budget over all platforms. This
could be the case when platforms operate with different cur-
rencies or when a job provider already has some jobs run-
ning on a platform and wants to cap the number of jobs. This
can be formulated as the following optimization problem.

Problem 4 Job Provider Problem with Local Budget Given
a set of jobs J to be deployed on a set of platforms P and a
budget bp for each platform p ∈ P , our goal is to assign each
job j ∈ J to at most one platform p ∈ P such that the total
cost of the jobs assigned does not exceed the total budget for
all platforms for which the jobs are assigned, and the total
fairness of the assigned jobs is maximized. Our second ver-
sion of the job provider problem can be formulated as the
following optimization problem:

We next prove that both job provider problems are com-
putationally hard.

Theorem 2 The job provider with global budget and the job
provider with local budget problems are at least as hard as
the optimization variant of the knapsack problem.

Proof Constraining both problems to one group and one
platform is equivalent to solving the optimization version
of the knapsack problem, known to be at least as hard as the
decision version, which is known to be NP-Hard. In other
words, we can reduce an instance of the knapsack problem
to an instance of either problem having only one group and
one platform. ◻

max
∑

j∈J

∑

p∈P

min
g|e(j,p,g)=true

f (j, p, g) × x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1 → a(j, p) = true ∀j ∈ J,∀p ∈ P
∑

j∈J

c(j, p) × x(j, p) ≤ bp ∀p ∈ P

∑

p∈P

x(j, p) ≤ 1 ∀j ∈ J

Fig. 5 An example bipartite graph for the job provider problem. In
addition to the fairness values per group, each edge between a job j
and a platform p has a weight c(j, p) equal to the cost of deploying
job j on platform p

 A. E. Rabaa et al.

1 3

Algorithm 4 Job Provider Problem with Global Budget Algorithm
1: Input: A set of jobs J , a set of platforms P , a set of groups G, and an integer B
2: Output: The maximum size subset of (j, p) pairs with the highest minimum

fairness having cost at most B

� Step 1: Initialization, aggregation of fairness values
3: minFair[1...len(J)][1...len(P)] ← new 2D array initialized to +∞.
4: for j ∈ J and p ∈ P and g ∈ G do
5: if e(j, p, g) = true then
6: minFair[j][p] = min(minFair[j][p], f(j, p, g))
7: end if
8: end for

� Step 2: Iterative DP: For each subproblem containing the first i jobs, DP [i][t]
will store the optimal fairness obtainable from these jobs at budget limit t

9: DP [0...len(J)][0...B] ← new 3D array initialized to 0.
10: for i ∈ [0, len(J)) and t ∈ [0, B] do
11: dp[i+ 1][t] ← max(dp[i+ 1][t], dp[i][t])
12: for j ∈ [1...len(P)] do
13: (f, c) ← (minFair[J [i]][P [j]], c(J [i], P [j]))
14: if c+ t ≤ B then
15: dp[i+ 1][c+ t] ← max(dp[i+ 1][c+ t], f + dp[i][t])
16: end if
17: end for
18: end for

� Step 3: Get total cost of the optimal assignment found
19: maxFairness ← 0
20: b ← 0
21: N ← len(J)
22: for t ∈ [0...B] do
23: if dp[N][t] > maxFairness then
24: maxFairnes ← dp[N][t]
25: b ← t
26: end if
27: end for

� Step 4: Read result (optimal assignment) from the DP matrix and return
28: result ← Empty list
29: while N �= 0 do
30: (j) ← J [N]
31: if dp[N − 1][b] �= dp[N][b] then
32: for i ∈ [1...len(P)] do
33: if b ≥ c(j, P [i]) and dp[N][b] = minFair[j][P [i]] + dp[N − 1][b −

c(j, P [i])] then
34: result.append((j, P [i]))
35: b ← b− c(j, P [i])
36: break
37: end if
38: end for
39: end if
40: N ← N − 1
41: end while

42: return result

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

Like Problem 2, the similarity between Problem 3 and
the knapsack problem gives a near-immediate dynamic
programming algorithm, described in Algorithm 4. This
approach is essentially an iterative DP method, akin to the
Knapsack one, where increasingly large subproblems of the
original problem are solved. Solving these subproblems
gradually populates a DP matrix called DP, where DP[i]
[t] stores the optimal fairness obtainable when considering
the first i job-platform pairs, at budget limit t. Using this DP
matrix to store the subproblems’ optimal values helps in
reducing computation time, by avoiding repetitive calcula-
tions. Complexity-wise, this algorithm is composed of two
main parts: a preprocessing phase similar to the one in Algo-
rithm 2, with running time O(|J||P||G|) , and the DP phase
described above, that iteratively populates a (|J||P|) × B
matrix, and thus has a running time of O(|J||P|B) . There-
fore, the overall time complexity for this algorithm is
O(|J||P||G| + |J||P|B)).

As for Problem 4, if the aggregation of fairness values
for each group is done a priori, then the problem becomes
equivalent to LEGAP, a variant of the generalized assign-
ment problem (GAP) where each job must be assigned to
at most one platform instead of exactly one [21]. And since
LEGAP is proven to be equivalent to the “standard” GAP
[21, 33], then Problem 4 (with pre-aggregated fairness val-
ues) is equivalent to GAP. This implies that Problem 4 is,

like GAP, strongly NP-hard and it is therefore unlikely to
admit pseudo-polynomial-time algorithms.

On the other hand, this equivalence suggests that GAP
algorithms from the literature can be used to solve Problem 4
[11, 18, 21, 27]. The only adjustment required to the prob-
lem is to add a dummy platform pdummy , set its associated
fairness values to zero (so f (j, pdummy, g) = 0 ∀j ∈ J, g ∈ G),
cost values to 1 (so c(j, pdummy) = 1 ∀j ∈ J), and its budget
limit to |J| . This way, the choice of not assigning a job to
any platform in the initial problem is now represented as
assigning the job to the platform pdummy , essentially creating
a “none of the above” option. This satisfies the GAP con-
straint that all jobs must be assigned to exactly one platform,
while still giving the option of not actually selecting a job,
by assigning it to pdummy . This adjustment thus creates an
instance of GAP that is equivalent to our problem, and hence
can be directly solved by available GAP algorithms.

For the GAP problem (which is equivalent to our prob-
lem), it is known that: 1) exact pseudo-polynomial-time
algorithms (such as the DP-based methods) are unlikely
to exist unless PℑNP ; and 2) polynomial-time approxi-
mation schemes with a mathematically guaranteed solu-
tion quality are also unlikely to exist, unless PℑNP [21].
Therefore, when proposing an adequate algorithm to solve
Problem 4, we are left with two possible choices: either non

Table 2 Platform statistics for the alternative worlds (in percentages)

World Male Female World Black White Asian

(a) Gender statistics (b) Ethnicity statistics
TaskRabbit 0.75 0.25 TaskRabbit 0.24 0.69 0.07
World1 0.26 0.74 World1 0.27 0.66 0.07
World2 0.50 0.50 World2 0.25 0.68 0.07
World3 0.30 0.70 World3 0.26 0.67 0.07
World4 0.70 0.30 World4 0.24 0.69 0.07
World5 0.74 0.26 World5 0.33 0.33 0.34
World6 0.72 0.28 World6 0.69 0.24 0.07
World7 0.74 0.26 World7 0.24 0.07 0.69
World8 0.75 0.25 World8 0.07 0.69 0.24

 World Male asian Male black Male white Female asian Female black Female white

(c) Group statistics
TaskRabbit 0.05 0.17 0.52 0.02 0.07 0.17
World1 0.02 0.06 0.18 0.05 0.21 0.48
World2 0.04 0.11 0.35 0.03 0.14 0.33
World3 0.02 0.07 0.21 0.05 0.20 0.46
World4 0.05 0.16 0.49 0.02 0.08 0.20
World5 0.26 0.24 0.25 0.08 0.09 0.08
World6 0.05 0.49 0.18 0.02 0.20 0.06
World7 0.52 0.17 0.05 0.16 0.07 0.02
World8 0.18 0.05 0.52 0.06 0.02 0.17

 A. E. Rabaa et al.

1 3

polynomial-time exact algorithms, or more efficient heuris-
tics with no mathematical guarantee on solution accuracy.

With this in mind, we start by first exploring exact GAP
algorithms from the literature. A common outline for solving
GAP is the branch-and-bound (BB) method. We examine
three algorithms from this category: 1) the BB with multi-
plier adjustment method (MAM) by Fisher et al. [11, 21],
2) the BB with steepest descent MAM by Karabakal et al.
[18] and 3) the BB with variable fixing by Posta et al. [27].
These three algorithms all use the BB technique, the main
differences between them being the way lower bounds are
computed, the branching strategies and extra computations
involved (such as variable fixing in [27]). Assuming that
fairness values are pre-computed, the worst-case scenario
for the exact BB algorithms includes visiting all possible
solutions, plus additional computations depending on the
algorithm (e.g., computing the initial lower bound, or extra
computations inside a search node). Therefore, all three
exact algorithms have an exponential running time in the
worst case.

For use cases where efficiency is more essential than
solution accuracy, heuristic algorithms may also be worth
considering. For this, we explore and test various heuristics
from the literature that solve GAP, including: 1) MTHG,
a polynomial-time greedy search with regret measure pro-
posed by Martello and Toth [21]; 2) a Local Search Descent
method by Osman [25]; and 3) a Tabu Search method by
Osman [25]. In the next section, we compare all of these
exact and heuristic algorithms, both in terms of performance
and solution quality.

4 Experiments

To evaluate our framework, we design two sets of experi-
ments. The first set aims to study the scalability of our algo-
rithms to solve the different job seeker and job provider
optimization problems as the number of jobs, the number
of platforms and the number of worker groups increase.

For such experiments, we rely on purely synthetic data.
The second set of experiments aim to qualitatively analyze
the solutions provided by our algorithms. For that, we use
semi-synthetic data generated from a real-world online labor
platform.

We divide this section as follows. First, we explain how
the semi-synthetic dataset (used in qualitative experiments)
is generated. Following that, we provide a summary of our
findings. We then describe the different experiments (both
scalability and qualitative) and their results for the job seeker
problems. Finally, we describe the experiments and the
results for the job provider problems.

4.1 Data Generation

To simulate multiple semi-synthetic platforms, we use the
TaskRabbit dataset from [1], which is composed of 75%
males and 25% females, and 24% blacks, 69% whites and
7% asians. We then generate eight different “worlds” from
it using interventions [30]. An intervention is a sampling
of workers from the initial dataset such that the sampled
“world” matches a specific distribution of protected attrib-
utes (in our case either on gender or ethnicity). When gen-
erated, each of the obtained worlds is treated as a separate
platform. The resulting dataset, consisting of the original
TaskRabbit data and the eight new worlds, are saved, and we
refer to these nine platforms collectively as the alternative
worlds. In the remainder of this section, we will be inter-
changeably using world and platform to refer to platforms.

The worlds world1 to world4 are created based on gender
interventions from the original world as follows: world1 has
percentages of males and females switched compared to the
original; world2 is composed of 50% males and 50% females;
world3 is composed of 30% males and 70% females; and
finally world4 is composed of 70% males and 30% females.

The worlds world5 to world8 are created based on ethnic-
ity interventions from the original world as follows: world5
contains 33% black, 33% white and 34% asian workers.
Worlds 6 through 8 are created by switching the percentages

Fig. 6 Naive vs. Top-k runtimes
for k = 20

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

of two of the ethnicities from the original world. So, world6
is created by swapping the percentages of whites and blacks,
world7 by swapping those of whites and asians and finally
world8 by swapping those of blacks and asians. A summary
of the resulting platforms and their worker distributions can
be found in Table 2.

4.2 Summary of Results

4.2.1 Scalability Experiments

We first examine our solution to the unconstrained job seeker
problem. We find that while the number of job-platform pairs
retrieved (i.e., k) does not affect scalability, increasing the
number of job-platform pairs and the number of protected

attributes render the naive algorithm that loops over all jobs,
platform and groups unusable. The top-k algorithm (Algo-
rithm 1), on the other hand, scales very well. We then exam-
ine our solution to the constrained job seeker problem. We
find that the DP algorithm (Algorithm 2) is much faster than
an integer linear programming (ILP) baseline, for all values
of k. Both algorithms’ runtimes increase with the number of
job-platform pairs but the observed increase for DP is less
pronounced than for ILP.

We now turn to the job provider problem with global
budget. The DP algorithm (Algorithm 4) is faster than an
ILP baseline for all job-platform pairs, and its runtime is
less steep than that of the ILP as the number of job-platform
pairs increases. We also find that DP time increases linearly
as the budget increases.

Finally, we examine our solution to the job provider prob-
lem with local budget. We compared three exact algorithms
from the literature: 1) the branch-and-bound (BB) algorithm
with multiplier adjustment method (MAM) by Fisher et al.
[11, 21], 2) the BB with steepest descent MAM by Kara-
bakal et al. [18] and 3) the BB with variable fixing by Posta
et al. [27], to an ILP solver and found that they do not per-
form significantly faster. In fact, the method by Fisher et al.
was far slower and the algorithm did not provide a solution
after considerable time. We also considered three heuristic
algorithms to solve this problem, namely: 1) MTHG by Mar-
tello and Toth [21]; 2) a Local Search Descent method by
Osman [25]; and 3) a Tabu Search method by Osman [25].
Comparing these algorithms to an ILP solver, we found that
all three heuristic algorithms perform much faster than the
ILP solver for increasing values of job-platform pairs while
returning solutions within 2% from optimality on average.

Fig. 7 Top-k algorithm runtime vs. number of protected attributes n
(k = 20)

Fig. 8 Occurrences of each platform in the seekers’ top-5 retrieved job-platform pairs

 A. E. Rabaa et al.

1 3

4.2.2 Qualitative Experiments

In our qualitative experiments for the unconstrained job
seeker problem, we observe that the top-5 fairest job-plat-
form pairs vary across seekers. We also notice that some
platforms and jobs occur more frequently than others in the
top-5 retrieved pairs for different seekers. This implies that
some platforms like world2 and world4 are fairer than others
across worker groups. Similarly, some jobs like “London UK
Cleaning,” “Furniture Shopping and Assembly in Columbus,
OH” and “Pack for a Move in Raleigh, NC” are fairer than
others across worker groups. Finally, we also observe that
seeking jobs on multiple platforms yields higher overall fair-
ness value than seeking jobs on any of the platforms alone.

On the other hand, our qualitative experiments for the
constrained job seeker problem allow us to observe that the
top-5 job-platform pairs differ from the ones returned by the
solution to the unconstrained one. This, in turn, indicates
that the constraints are taking effect and validates the neces-
sity of the constrained version of the problem.

In the qualitative experiments of the job provider problem
with global budget, we find that the optimal fairness values
returned are not the same for individual platforms, and that
considering all platforms together yields a much better fair-
ness value than any of the nine platforms separately. We also
observe that a higher budget limit implies a better fairness
value but only up until a certain point. When the algorithm
reaches an optimal job-platform pairs selection, increasing
the budget limit further does not improve the overall fair-
ness value.

Finally, for the job provider problem with local budget,
we first fixed a total overall budget and sought to determine
what achieves more fairness: fewer platforms with higher
budgets per platform, or more platforms with smaller budg-
ets each. We find that choosing the right number of platforms
is a trade-off. While increasing the number of platforms does
give us more options in terms of job-platform pairs, it also
divides the budget limit over more platforms, tightening the
budget constraints. In such scenario, choosing the best “mid-
dle ground” number of platforms of interest should be han-
dled on a case-by-case basis. Our last experiment shows that
for the same input data and when selecting only one platform
of interest, the fairness values obtained for the job provider
problem with local budget are the same as those of the job
provider problem with global budget, since for the case of
one platform, the two problems are equivalent. However,
when selecting multiple platforms of interest, the obtained
fairness values are lower for the local budget problem vari-
ant. This is because for multiple platforms, the constraints of
the job provider problem with local budget are tighter than
just having a global budget constraint. This further justifies
the problem version with local budget.

4.3 Job Seeker Experiments

4.3.1 Unconstrained Problem Scalability Experiments

We conducted two experiments to demonstrate the scalabil-
ity of the top-k algorithm (Algorithm 1) we proposed to
solve the unconstrained job seeker problem. Both experi-
ments were run on an Apple MacBook Pro with a 2.3

Fig. 9 Occurrences of each job in the seekers’ top-5 retrieved job-platform pairs

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

GHz dual-core Intel Core i5 processor and 8 GB of RAM.
When recording runtimes, real (wall-clock) time was used,
since the top-k algorithm relies on disk reads and memory
accesses, which should be accounted for.

In the first experiment, we built a fully synthetic dataset
consisting of 5000 jobs and 70 platforms. Each job in each
platform was represented as a file, consisting of a ranked
list of workers. The number of these workers for each job-
platform pair was set to a random value between 0 and 50.

In addition, each worker was assigned random values for
two protected attributes. Form this generated data, we then
built the required inverted lists that the top-k algorithm uses.
More precisely, we built an inverted list for every possible
worker group, which consists of job-platform pairs along
with their fairness values for the corresponding group sorted
in descending order of fairness. To compute fairness values,
we used the two metrics defined in [1], namely Earth Mover

Fig. 10 Sum of fairness values
for the top-5 job-platform pairs
per seeker

Fig. 11 Comparing worker counts for the 20 selected jobs in world2 vs. world7

 A. E. Rabaa et al.

1 3

Distance (EMD) and Exposure. That is, this scalability
experiment was run using both metrics.

Given the above setup, we then ran both the top-k algo-
rithm and the naive baseline algorithm that loops over all
jobs, platform and groups, with increasing values of |J| , |P|
and k3. For each run, we generated 10 job seekers, where
each seeker’s protected attributes were selected at random.
We assigned to each of these 10 job seekers |J| jobs and |P|
platforms of interest at random. We then retrieved the top-k
job-platform pairs for each seeker using both the naive and
the top-k algorithms. Each possible (|J|, |P|, k) combination
was run for all seekers (one run per seeker, so a total of 10
runs per combination), and the average running time of each
algorithm per combination was recorded.

After running the just-described experiment, we observed
that the results for different values of k showed very simi-
lar trends. Therefore, we only focus on k = 20 to compare
the naive and the top-k algorithms here, and the results for
additional values of k are given in Appendix B. For k = 20 ,
Fig. 6 shows that as the number of pairs (N = |J| × |P|)
increases, the naive algorithm becomes much slower, while
the top-k algorithm becomes slightly faster until its speed
eventually plateaus, which indicates that the top-k algorithm
scales much better than the naive one. Moreover, the figure
shows that the naive algorithm performs better when using
the Exposure fairness metric (Sub-figure b) compared to
when using EMD (Sub-figure a), as EMD is more compu-
tationally expensive. In contrast, this behavior is not seen
for the top-k algorithm, as it makes use of inverted lists to
store pre-computed fairness values. This makes the top-k
algorithm’s runtime independent of the fairness “blackbox”

used. Given this observation and for space limitation, we
only present the results using EMD as a fairness metric in
the rest of this section.

Our second scalability experiment aims to analyze how
well the top-k algorithm scales as the number of protected
attributes n increases. Before we describe the setup of this
experiment, it is important to first distinguish between
a protected attribute and a group. A worker group repre-
sents a combination of one or more protected attributes
that are assigned a value, e.g., {gender ∶ }}female��} .
This means that, when n attributes are being considered,
each worker belongs to all groups that are combinations
of one or more of their protected attributes’ values. For
example, an asian male belongs not only to the group
{gender ∶ }}male��, ethnicity ∶ }}asian��} , but also to
{gender ∶ }}male��} and {ethnicity ∶ }}asian��} . Assuming
that a worker can only have one value for an attribute at a
given point in time, the maximum number of groups that
each worker belongs to is 2n − 1 , which is the size of the
powerset of the attributes set, minus the empty set.

To conduct our second scalability experiment, we gener-
ated another fully synthetic dataset, again with 5000 jobs and
70 platforms as in our first dataset. But unlike the former
dataset, this one makes use of 256 synthetic groups num-
bered group1 to group256 in order to scale up the number
of groups each seeker can belong to. This new dataset con-
sists of a set of inverted lists, one for each worker group.
Each such inverted list contains job-platform pairs with
their fairness values for the group that the inverted list cor-
responds to, again sorted in descending order of fairness.
The experiment then goes as follows for increasing values
of |J| , |P| , and n, the number of protected attributes. For each
(|J|, |P|, n) combination, 10 job seekers are generated and
assigned |J| jobs and |P| platforms of interest each, selected
at random. The job seeker problem is then solved for each

Fig. 12 Performance of the ORTools solver (LP) and the dynamic
programming algorithm (DP) algorithm

Fig. 13 DP algorithm runtimes wrt. the number of protected attrib-
utes n

3 |J| is the number of jobs, |P| is the number of platforms, and k is
the number of job-platform pairs with the maximum fairness to be
returned by the algorithms.

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

seeker using the top-k algorithm, and the average solving
time over the 10 runs was recorded.

The runtime of the top-k algorithm as we vary the number
of protected attributes n is shown in Fig. 7. As can be seen
from the figure, the runtime of the algorithm grows exponen-
tially as the number of protected attributes increases. This
is intuitive given that when we consider n protected attrib-
utes for each seeker, the top-k algorithm needs to operate on
2n − 1 inverted lists concurrently that correspond to 2n − 1
groups the job seeker belongs to, as explained just above.

4.3.2 Unconstrained Problem Qualitative Experiments

We design two experiments to qualitatively demonstrate the
utility of solving our unconstrained job seeker problem. Both
experiments utilize our semi-synthetic data that was obtained
from the real-world online labor platform TaskRabbit and
where nine additional worlds (i.e., platforms) were generated
using interventions on protected attributes.

The first experiment focuses on the alternative worlds,
and how their demographic group distributions affect the
search results for seekers of different groups. To this end,
we generated six seekers (one per gender/ethnicity com-
bination), set the same |J| = 20 random jobs of interest to
all of them, set their platforms to be the nine alternative
worlds, and retrieved the top-5 fairest job-platform pairs
for each seeker using our top-k algorithm. For each top-5
retrieved pairs, the number of occurrences of each platform
is shown in Fig. 8, and the number of occurrences of each
job in Fig. 9.

As can be seen in Fig. 8, platforms world2 and world4
are present in all of the seekers’ top-5 retrieved job-platform
pairs, suggesting that these worlds are fair to every group for
the 20 chosen jobs of interest. On the other hand, we see that
TaskRabbit and world7 do not occur in any of the seekers’
top-5 retrieved pairs, which suggests that these platforms
are the least fair for the chosen jobs. Note that while Task-
Rabbit and world4 have similar group statistics as can be
seen in Table 2, these statistics for individual jobs can differ.
For example, the job “Pack for a Move in Raleigh, NC” in
TaskRabbit consists of 83% male and 17% female workers,
while the same job in world4 consists of 75% male and 25%
female workers. Also note that the percentage of workers
from a particular group does not correlate with how fair the
platform is with respect to that group. For example, world6
consists of 49% black males, the highest percentage of black
males among all platforms (see Table 2). However, world6
is not considered one of the top-5 fairest platforms for the
black male seeker since the ranks of black males in this plat-
form are lower on average compared to other platforms for
all considered jobs.

Finally, as can be seen in Fig. 9, the job “Cleaning in
London, UK” appears in the top-5 retrieved job-platform
pairs for all job seekers regardless of their groups, implying
that this job is fair to all demographic groups in our study.
Other frequently appearing jobs are “Furniture Shopping and
Assembly in Columbus, OH,” which appears in the top-5
for all groups except the black one, and “Pack for a Move
in Raleigh, NC” which appears for all groups except the
asian one.

Fig. 14 Finding the optimal number of digits to map fairness values from floats to integers

 A. E. Rabaa et al.

1 3

The second experiment investigates how the chosen
worlds of preference affect a seeker’s chances of finding fair
jobs. For this, we fixed one random set of 20 jobs of interest,
and assigned it to all six seekers. Then, for each seeker and
alternative world pi , we retrieved the seeker’s top-5 fairest
jobs in platform pi . We also retrieved the seeker’s overall
top-5 fairest jobs considering all of the platforms (i.e., by
solving our unconstrained job seeker problem). Finally, for
each top-5 retrieved job-platform pairs, the sum of the pairs’
fairness values was computed, which is shown in Fig. 10.

Fig. 15 Occurrences of each platform in the seekers’ top-5 retrieved job-platform pairs

Fig. 16 Occurrences of each job in the seekers’ top-5 retrieved job-platform pairs

Table 3 Sum of fairness values and rewards for the top-5 retrieved
job-platform pairs

Seeker Sum of fairness values Sum of rewards

Male asian 43434 402
Male black 38456 400
Male white 39750 401
Female asian 43434 402
Female black 38607 402
Female white 38753 401

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

As can be seen from the figure, solving our uncon-
strained job seeker problem results in the highest total fair-
ness as compared to retrieving the top-5 fairest jobs from
any of the platforms alone. This demonstrates the utility
of considering multiple platforms at the same time when a
job seeker is looking for a job. Moreover, the figure shows
that world7 has the lowest sum of fairness values across
all worker groups, which indicates that world7 is the least
fair platform for the chosen set of jobs. Recall that world7
is sampled from the TaskRabbit platform by reversing the
percentage of asian and white workers. As asians form a
minority in the original TaskRabbit platform (7% of all
workers), this world has by far the fewest number of work-
ers in it, which can negatively affect fairness values.

To further understand the reason behind world7’s rela-
tively low fairness for the selected jobs, we compare sta-
tistics between this world and world2, one of the worlds
that is considered the most fair across all worker groups
as can be seen in Fig. 10. We first compare the number
of workers in world2 and world7 for the 20 jobs shown in
Fig. 11. The plot shows that the 20 jobs in world7 have in
general very few workers compared to world2, with most
of these jobs having fewer than 5 workers each. We also
notice that many of these jobs only have workers from
very few groups (especially the jobs that have very few
workers). This leaves many worker groups unrepresented
for these jobs, and hence there are no fairness values for
those (job, world, group) combinations. As a result, these
combinations cannot appear in any seeker’s top retrieved
job-platform pairs.

4.3.3 Constrained Problem Scalability Experiments

Similar to the case of the unconstrained job seeker prob-
lem, we again conducted two experiments to demonstrate
the scalability of the DP algorithm we proposed to solve the
constrained job seeker one. Again, all experiments were run
on an Apple MacBook Pro with a 2.3 GHz dual-core Intel
Core i5 processor and 8 GB of RAM. However, unlike the
experiments for the unconstrained problem, we used CPU
time here to record runtimes.

Our first experiment here aims to study the scalability
of the DP algorithm (Algorithm 2) we proposed to solve
the constrained job seeker problem. For this experiment,
the number of protected attributes considered is fixed to 2
(so n = 2), meaning each seeker belongs to |G| = 22 − 1 = 3
groups. For increasing values of N and k, we simulate prob-
lem instances as follows. First, we generate N synthetic
job-platform pairs, each associated with a set of |G| fairness
values, one for each of the seeker’s groups (so three integers
selected at random between 1000 and 9999; integers since
the DP algorithm operates on integer fairness values) and
an integer reward value, randomly selected between 10 and
99. From there, the problem’s objective is to find the top-k
job-platform pairs that maximize fairness while satisfying a
reward threshold of 80 × k . The threshold was set as a func-
tion of k as it is intuitive that the higher the number of the
job-platform retrieved is, the higher the reward threshold of
the job seeker is expected to be.

For each (N, k) combination considered, we randomly
generated 10 problem instances as described above, and
then solved each instance in two ways: 1) using our DP

Fig. 17 Sums of fairness values
for the top-5 job-platform pairs
per seeker

 A. E. Rabaa et al.

1 3

algorithm, and 2) an off-the-shelf integer linear program-
ming (ILP) solver (Google’s ORTools4). We then recorded
the average runtimes of each method over the 10 runs as N
increases, which are shown in Fig. 12. As can be seen in the
figure, the proposed DP algorithm solves the constrained job
seeker problem much faster than the general-purpose ILP
solver, for all values of k. Both algorithm’s runtimes seem
to increase as N increases, but this observed increase for DP
is less pronounced and much more linear than for ILP. This
suggests that the proposed DP algorithm scales much better
than ILP in terms of N. With respect to k, we observe that the
DP algorithm’s runtime also increases with k, but the ILP’s
seems to remain mostly unchanged as k varies, suggesting
that the ILP’s running time does not depend much on k.

Next, we examine how the DP algorithm performs as
the number of protected attributes n increases. For this, we
repeat the experiment above, but instead of setting n = 2
protected attributes, we run the experiment for increas-
ing values of n. The results are shown in Fig. 13. We can
see that up until n = 11 , the DP algorithm’s runtime does
not change much, but then grows exponentially after that
point. Remember that the DP algorithm consists of two
main stages: a “preprocessing” stage where the minimum
fairness of each job-platform pair is computed, with time
complexity O(|J||P||G|) , followed by a solving phase using
dynamic programming, with complexity O(|J||P|kR) . As can
be observed from Fig. 13, the point where the runtime of the
algorithm starts to increase exponentially is the point where
the value of |J||P||G| becomes as significant (same order
of magnitude) as |J||P|kR . From there, we conclude that as
long as the number of groups |G| = 2n − 1 is of smaller order
of magnitude than kR, the DP algorithm’s runtime will not
depend much on n.

4.3.4 Constrained Problem Qualitative Experiments

We conducted two qualitative experiments to demonstrate
the utility of solving our constrained job seeker problem.
However, as the DP algorithm expects fairness values to be
integers, and our fairness blackbox provides fairness values
as floats between 0 and 1, we first had to convert the fair-
ness values to integers before invoking the algorithm. Note
that we did not need to do that for the scalability experi-
ments, since these experiments were conducted on fully
synthetic data and thus fairness values were generated as
integers rather than floats. To convert fairness values from
floats to integers for the semi-synthetic data the qualitative

Fig. 18 Runtimes of the DP algorithm vs. the ILP solver wrt. number
of job-platform pairs N

Fig. 19 Runtimes of the DP algorithm vs. ILP solver wrt. budget
limit B

Fig. 20 Sum of fairness values for the selected job-platform pairs

4 https:// devel opers. google. com/ optim izati on.

https://developers.google.com/optimization

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

experiments are conducted on, we resorted to truncating
each fairness value to d significant digits, and then multiply-
ing the result by 10d . For example, if d = 2 , then a fairness
value of 0.831 will be mapped to the integer 83, and the
range of possible integer values will be between 0 and 99.

However, we need to ensure that d is large enough to
avoid mapping too many fairness values to the same integer,
yet small enough that the fairness integers are not too large
or too granular. An optimal value of d would thus be the
smallest value that gives us enough precision when truncat-
ing the fairness values, so as to avoid too many collisions
when mapping to integers. To find the optimal d, we con-
sidered integers from 1 to 8 as candidate values. For each
candidate value of d, we took all fairness values in our semi-
synthetic dataset, and mapped them to d-digit integers. We
then binned the resulting values in a histogram, where the
bins are {0, 1, 2, ..., 10d − 1} , so that we get for each possi-
ble integer value, the frequency of fairness values that were
actually mapped to it.

Next, we recorded 1) the largest frequency observed (in
percentage), which gives us the size of the largest collision
in the histogram; and 2) the entropy of the obtained fairness
values, which we used as an indicator of how well-distrib-
uted (and not biased toward certain values) the mappings
are. Comparing these metrics between candidate values of
d shows us how much “improvement” (fewer collisions),
there is going from one precision d to the next. The observed
values are shown in Fig. 14a and c.

As can be seen in Fig. 14a (with a zoomed in view in
Fig. 14b), the size of the largest collision declines signifi-
cantly from d = 1 to d = 2 , followed by a slower decline at
d = 3 , before stagnating mostly between d = 4 and d = 6 .
We then see another marginal decline at d = 7 . This means

that the biggest precision gains lie between d = 1 and d = 3 ,
with a relative gain starting from d = 7 onwards.

In addition, Fig. 14c reveals that the increase in entropy
is most noticeable from d = 1 till d = 4 , with much slower
increases from there till d = 6 , followed by a further increase
at d = 7 . As entropy is a good indicator of the spread and
variety of the obtained fairness values, we can then con-
clude that the most impactful decreases in collisions occur
between d = 1 and d = 4 , with other relative improvements
seen from d = 7 and on. Therefore, we conclude from the
three figures that d = 4 is a reasonable precision to use.

We now describe our two qualitative experiments for
the constrained job seeker problem. Both experiments use
the exact same setting as the one conducted for the uncon-
strained job seeker problem. That is, we used the same six
job seekers (one per gender/ethnicity combination) and
assigned to them the same |J| = 20 random jobs of interest,
and set the nine alternative worlds as platforms of interest
P. As the constrained job seeker problem also assumes that
each job-platform pair is associated with a reward value,
we assigned each job-platform pair in J × P with a random
reward value between 1 and 100. We then retrieved the top-5
fairest job-platform pairs with a total reward of at least 400
for each seeker using our DP algorithm. The goal of the two
experiments is to confirm that our reward constraint is actu-
ally affecting the obtained top-k retrieved job-platform pairs,
which in turn demonstrates the need for the constrained job
seeker problem formulation, compared to the unconstrained
one.

In the first experiment, we recorded the number of times
each world (i.e., platform) and job occurs in every seeker’s
top-5 job-platform pairs retrieved by the DP algorithm. Fig-
ure 15 shows the number of occurrences of the different
worlds in each of the top-5 retrieved job-platform pairs per
job seeker . Similarly, Fig. 16 shows the number of occur-
rences of the different jobs in each of the top-5 retrieved job-
platform pairs per job seeker. In addition, Table 3 shows the
sum of (four-digit) fairness values and the sum of rewards
for each top-5 retrieved job-platform pairs.

As can be seen in Figs. 15 and 16, the results are different
from those of the unconstrained job seeker problem experi-
ment (Sect. 4.3.2), even though both experiments share the
exact same setting apart from the reward threshold. This
indicates that the reward threshold is actively affecting the
choice of which job-platform pairs are being retrieved by
the DP algorithm. Table 3, on the other hand, shows that
the reward constraint is indeed met for every retrieved top-5
job-platform pairs as they all have a reward of at least 400.
In addition, each of the top-5 retrieved pairs have a satis-
factory total fairness as can be seen from the first column
of Table 3. That is, in our experiment, the maximum total
fairness achievable is 50,000 (i.e., 5.0 without the integer
conversion, since we aim to select five job- platform pairs

Fig. 21 Sum of fairness values of the selected job-platform pairs vs.
budget limit

 A. E. Rabaa et al.

1 3

and the maximum fairness for each pair is 1). Looking at
the obtained total fairness for each seeker in Table 3, they
are all around 40,000, so around the higher end of the [0,
50000] scale.

For the second experiment, we again used the same sets
of seekers, jobs and platforms as we did in the first experi-
ment. However, in this experiment, we retrieved for each
job seeker the top-5 jobs in platform pi ∈ P that maximize
fairness, while satisfying the reward constraint (of at least
400). We also retrieved each seeker’s top-5 job-platform
pairs using all platform P (i.e., by solving our constrained
job seeker problem). Figure 17 shows the sum of fairness
values for each top-5 retrieved pairs, when each platform
is considered separately and when all of them are consid-
ered together. As can be seen from the figure, solving our
constrained job seeker problem results in the highest total
fairness as compared to retrieving the top-5 fairest jobs from
any of the platforms alone. This demonstrates the utility of
considering multiple platforms at the same time when a job
seeker is looking for a job, even with presence of a reward

constraint. Comparing the results to the ones of the cor-
responding unconstrained run, we note here again that the
results of the two experiments differ, which further confirms
that the reward constraint is taking effect as expected.

4.4 Job Provider Experiments

4.4.1 Global Budget Problem Scalability Experiments

We conducted two experiments to assess the scalability of
the DP algorithm (Algorithm 4) we proposed to solve the job
provider problem with global budget. Both experiments were
run on the same computer, an Apple MacBook Pro with a
2.3 GHz dual-core Intel Core i5 processor. Runtimes were
measured in CPU time.

In the first experiment, we generated 100 fully synthetic
instances of the problem, assuming a fixed number of pro-
tected attributes n = 2 for workers in all of them. Each prob-
lem instance consisted of different N = |P| × |J| job-plat-
form pairs. Each such pair was associated with 2n − 1 = 3
fairness values, corresponding to the different worker
groups. These values were all set at random between 1000
and 9999. Moreover, as the job provider problems assume
that each job is associated with a cost for each platform it is
available on, all costs for all job-platform pairs in all prob-
lem instances were set at random between 50 and 150. The
goal of the experiment was then to assign each job to at most
one platform so that their total fairness is maximized, while
respecting a budget limit of 50 × |J| . We set the budget limit
as a function of the jobs as it is intuitive to assume that the
more jobs the job provider aims to deploy, the more budget
she will be willing to spend to deploy these jobs.

Each problem instance was then solved using our DP
algorithm and the Google ORTools ILP solver. Figure 18
shows the average runtime of each method over the 100
instances as the number of job-platform pairs N increases.
As can be seen in the figure, the DP is significantly
faster than the ILP solver for all values of N, and the DP

Fig. 22 Exact algorithms’ runtimes wrt. N (number of job-platform
pairs)

Fig. 23 Heuristic algorithms’
runtimes and optimality gap
wrt. N (number of pairs)

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

algorithm’s runtime increases much slower than the ILP one
as N increases.

Next, as the budget limit B is part of the DP algorithm’s
time complexity as explained in Sect. 3, we designed a sec-
ond scalability experiment to see how the runtime of the
algorithm is affected by the value of B. To this end, we fixed
the number of jobs and of platforms to |J| = |P| = 50 , and
generated 100 instances of the problem with random fairness
and cost values for each job-platform pair. Each problem
instance was then solved with different values of B, by both
the DP algorithm and the ILP solver. Figure 19 shows the
average runtimes of the two methods as B increases. As can
be seen from the figure, the runtime of the DP algorithm
increases linearly as B increases, whereas the runtime of the
ILP solver is hardly affected by the budget limit B.

4.4.2 Global Budget Problem Qualitative Experiments

We conducted two experiments to demonstrate the utility of
solving our job provider problem with global budget using
the same semi-synthetic dataset we used in the qualitative
experiments of the job seeker problems. The first experi-
ment aimed to study to what extent the platforms of interest
of a job provider affect the fairness of the assigned jobs on
these platforms. To do this, we created one job provider, and
fixed her jobs of interest to 20 random jobs. Each of the 20
jobs were assigned a random cost between 50 and 150 for
each platform out of the nine we have in our dataset, and
on which the job is available. We then solved the job pro-
vider with global budget problem assuming a budget limit
of 1000 using our proposed DP algorithm. In addition, for
each platform pi , we selected the jobs that maximize sum of
their fairness and where their total cost on the platform pi
does not exceed the budget limit of 1000.

Figure 20 shows the sum of the fairness values of the
selected jobs per platform as well as the sum of the fair-
ness values of the job-platform pairs returned by solving
our overall optimization problem. Note that unlike the job
seeker problems, the plot here is two-dimensional, since the
“group” dimension is not relevant for the job provider prob-
lems. From this figure, we can make two observations. First,
and as is the case in the job seeker qualitative experiments,
not all platforms achieve comparable fairness values. That
is, for the same jobs and same budget limit, some worlds
like world4 yield noticeably better fairness values than other
worlds, while others like world7 achieve lower fairness val-
ues. Second, solving our job provider problem with global
budget using all platforms (indicated by “overall” in Fig. 20
) results in the maximum total fairness for the selected job-
platform pairs than when selecting the jobs that maximize
fairness from each platform individually. This highlights the
importance of solving our job provider problem with global
budget.

Our second qualitative experiment aimed to answer the
question: does a higher budget limit necessarily imply select-
ing more fair job-platform pairs? To do this, we again cre-
ated one job provider, with the same 20 jobs of interest as
the previous experiment, and we assumed the provider’s
platforms of interest to be all nine alternative worlds. We
then solved our job provider problem with global budget,
varying the budget limit between 1000 and 2000. Figure 21
shows the sum of fairness values of the selected job-platform
pairs. As shown in the figure, the obtained sum of fairness
values increases slightly at first as the budget limit becomes
more permissive, before eventually plateauing when the
budget limit reaches 1300. This happens because, in this

Fig. 24 Total fairness obtained vs. number of platforms of interest

Fig. 25 Total fairness obtained per platform(s) of interest

 A. E. Rabaa et al.

1 3

particular problem instance, the jobs-to-platforms assign-
ment with the maximum fairness possible has a cost of 1204.
Thus, increasing the budget limit beyond 1204 cannot pro-
duce any better results fairness-wise, and will return this
same optimum solution.

4.4.3 Local Budget Problem Scalability Experiments

Our scalability experiment for the job provider problem
with local budget aimed to compare a selection of both
exact and heuristic algorithms to solve the generalized
assignment problem (GAP), which we have shown in
Sect. 3 to be equivalent to the job provider problem with
local budget, and hence can be used to solve it as well. To
this end, we generated 100 instances of the problem using
fully synthetic data, assuming a fixed number of protected
attributes n = 2 for workers in all of them. Each problem
instance consisted of different N = |P| × |J| job-platform
pairs. Each such pair was associated with 2n − 1 = 3 fair-
ness values, corresponding to the different worker groups.
These values were all set at random between 1000 and
9999. Moreover, as the job provider problems assume
that each job is associated with a cost for each platform
it is available on, all costs for all job-platform pairs in
all problem instances were set at random between 50 and
150. Finally, since the local budget problem assumes the
presence of a local budget bp for each platform of interest
p ∈ P , this local budget limit was set as follows:

and where � is a random integer between 0 and 49.
The point of the above formula is to roughly even out the

budget limits across platforms, while still having some fluc-
tuation in the bp values. That is, we start with a total budget
limit of 100 × |J| (so double that of the global budget vari-
ant), which will now be divided over the platforms. Hence,
each platform will have 100×|J||P| budget, plus a random value
� to add some variations in the budget limits. From there, the
goal of the experiment is then to solve these problem
instances using each of the algorithms considered, as well
as a generic ILP solver (ORTools). This experiment was also
run on an Apple MacBook Pro with a 2.3 GHz dual-core
Intel Core i5 processor. Runtimes were measured in CPU
time.

We explored the following three exact algorithms for
solving our job provider problem with local budget:

• The BB algorithm by Fisher et al. [11], following the
pseudo-code in [21];

bp =

⌈
100 × |J|

|P|

⌉
+ �

• The BB algorithm by Karabakal et al. After param-
eter tuning, we set the root subgradient iteration limit
(“ROOTSUBITLIM”) to 200, the subgradient limit at
other nodes to 100 and the maximum branching limit
to 200,000, with all other parameters being kept at their
default values.

• The BB algorithm by Posta et al. After parameter tuning,
we set the subgradient iteration limit to 30, the root bun-
dle iteration count to 25000 and kept all other parameters
at their default values.

For the three algorithms, the experiment was run on the
same 100 problem instances we described above. However,
the Fisher et al. algorithm was extremely slow and did not
terminate for many instances despite our best efforts at opti-
mizing its code. Thus, this algorithm was not included in the
rest of the experiment. The runtimes of the rest of the exact
algorithms as well as an ILP baseline solver (ORTools) are
shown in Fig. 22. As can be seen from the figure, both Kara-
bakal et al.’s and Posta et al.’s algorithms scale fairly well
as the number of job-platform N increases, with Karabakal
et al.’s method having a slight edge. However, neither of the
two algorithms was significantly faster than the ILP solver,
as can be seen from Fig. 22.

We also explored the following three heuristic algorithms
to solve our problem:

• MTHG
• Osman’s LS Descent method (LS) without long-term

procedure
• Osman’s Tabu Search method (TS) without long-term

procedure

For the Tabu Search method, the MAXI and tabu list size
parameters were kept as in [25]; and all other parameters for
all the algorithms were kept at their default values. The three
algorithms, as well as an ILP baseline solver (ORTools),
were then run on the same 100 problem instances we gener-
ated. Since the three algorithms are heuristic (i.e., approxi-
mation) algorithms, they might not return the optimal solu-
tion to our optimization problem. Thus, we also evaluated
the solution quality of each algorithm, which is computed
as the gap between the sum of fairness values for the job-
platform pairs selected by a heuristic algorithm zh , and the
one for the pairs selected by ORTools, zopt (which is an exact
algorithm, hence providing an optimal solution). More pre-
cisely, this solution quality was computed as follows:

alignedoptimality_gaph =

{ zopt−zh

zopt
amp; if zopt ≠ 0

0 amp; otherwise.

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

Figure 23a shows the runtimes of the different heuristic algo-
rithms vs the ILP solver, while Fig. 23b shows the optimal-
ity gap for each algorithm as the number of job-platform
pairs N increases. As can be seen from the figure, all three
heuristic algorithms are significantly faster than the ILP
solver, while returning relatively good solutions within 2%
from optimality on average. Therefore, if an exact solution
is not a must, then heuristics can be a good more efficient
alternative to exact algorithms for solving the job provider
problem with local budget.

4.4.4 Local Budget Qualitative Experiments

We designed two experiments to demonstrate the utility of
solving our job provider problem with local budget. The
first one aimed to study the trade-off between the number
of platforms of interest for a job provider versus the local
budget limits for these platforms with respect to the total
fairness obtained by solving our problem. To this end, we
again relied on our semi-synthetic data as we did in all previ-
ous qualitative experiments. That is, we created a job pro-
vider and then used the same setting as in the first qualitative
experiment for the job provider with global budget, which
is described in Sect. 4.4.2. More precisely, we assumed all
nine alternative worlds to be potential platforms of interests,
and we assigned the job provider the same 20 random jobs
of interest with their fairness values on different platforms
also generated at random as described in that experiment.
We then assumed that the job provider has a limited total
budget she cannot exceed when deploying the jobs on the
platforms, which we set to 1000 like in the first experiment
in Sect. 4.4.2. We then varied the number of platforms |P| ,
and divided the budget limit evenly across them (if the total
limit is not divisible by |P| , the remainder amount is added
to the last platform). We ran the just-described experiment
9 times. In the first run, we set P = {taskrabbit} as the plat-
form of interest, in the second run P = {taskrabbit,world1} ,
in the third, P = {taskrabbit,world1,world2} , etc. In each
run, the job provider with local budget problem was solved
using the Karabakal et al. algorithm [18], and the total fair-
ness of the optimal jop-platform assignment was recorded.

Figure 24 shows the total fairness obtained when solving
our problem as the number of platforms increases. As can
be seen in the figure, there is an apparent trade-off between
total fairness and number of platforms. At first, total fairness
generally increases, as we get more options (job-platform
pairs) to select from. However, as we increase the number
of platforms further, the budget limits keep getting tighter
on each platform, and so we start seeing a decrease in the
total fairness obtained.

Our second qualitative experiment aimed to study how
the choice of platforms of interest affects the obtained

total fairness. To do this, we used the same experiment
setup as the first one, but this time for each run, only one
platform is considered as a platform of interest rather
than using subsets of them as in the first experiment. That
is, for the first run, P = {taskrabbit} , for the second run,
P = {world1} , the third, P = {world2} , etc., plus one final
run where all the platforms are considered platforms of
interest (i.e., thus solving our job provider problem with
local budget). We assumed the same total budget of 1000
for the job provider in all of the runs. In the case of a
single platform of interest, that total budget was then used
to select the jobs that maximize the sum of their fairness
values on that platform, while their total cost is within the
budget limit. For the run that utilizes all platforms, the
total budget was distributed across the different platforms
using the same strategy as in the first experiment.

Figure 25 shows the sum of fairness values for the
selected job-platform pairs, when using each platform
individually and when using all of them (indicated by
“overall” in the figure). As can be seen from the figure,
the total fairness obtained vary between platforms, and
using all platforms together does not actually achieve the
maximum fairness possible, but very close to it. This is
intuitive given that the job provider problem with local
budget imposes additional constraints on the job-to-plat-
form assignment, based on the available budget for each
platform. This again shows a clear trade-off between local
budget limits and fairness of the jobs on these platforms.

Moreover, when comparing these results to those of
the equivalent experiment for the global budget problem
(Sect. 4.4.2, which is shown in Fig. 20), we see that they
are all identical, except for the last run (where all plat-
forms are considered as platforms of interest). This is
again very intuitive as the job provider problems with local
budget and global budget are identical when considering
only one platform at a time. Finally, when considering all
platforms, the total fairness obtained in the local budget
experiment is lower than that obtained in the global budget
experiment. Again, this is attributed to the fact that the
problem with local budget imposes tighter constraints on
the selection of jobs in each platform, compared to the
global budget one. That is, while the total budget of 1000
is the same in both experiments, the local budget variant
has additional constraints on how costs should be distrib-
uted over all platforms.

5 Conclusion and Future Work

In this paper, we proposed a framework to assess and
compare worker group fairness for multiple jobs on mul-
tiple online labor platforms. We based our framework on
realistic use cases for both job seekers and job providers,

 A. E. Rabaa et al.

1 3

which we formulated as four optimization problems. We
also proved that three of these problems are computation-
ally hard. As shown by our experiments, the algorithms
we proposed for all four problems are efficient, and answer
useful fairness-related inquiries.

In our experiments, we used two different notions of
group fairness, but our framework is able to accommodate
other notions of fairness as long as they rely on ranking or
scoring of workers with respect to jobs, including individual
fairness, which is the subject of our future work. Other pos-
sible future directions include using our framework to con-
duct real-world case studies, where real jobs and platforms
are examined from a fairness standpoint. Also, it would be
interesting to adapt our framework to handle fairness issues
other than ranking, such as bias in worker ratings and evalu-
ations and to deploy our framework as a stand-alone service
on top of existing online labor platforms.

Appendix A Proof of Theorem 1

Theorem 3 1 The optimization variant of the knapsack
problem is polynomial-time reducible to the constrained job
seeker problem, and therefore, the latter problem is at least
as hard as the former.

Proof Note that by having only one group and one platform,
the constrained job seeker problem reduces to the following:
Given a list M of pairs mi = (fi, ri) , where fi is the assigned
fairness value and ri the reward value, select k pairs such
that fairness is maximized and the total reward is at least R.
Using this version of the problem, we give a polynomial-
time reduction from the optimization version of Knapsack.
Given a list L of pairs ai = (vi,wi) , where vi represents the
value of the pair and wi its weight, and an integer W, the
Knapsack problem asks for a subset of L of maximum value
such that the total weight is at most W.

Given an instance of the knapsack problem where |L| = n ,
create a list M of n pairs mi = (fi, ri) where fi = vi and
ri = W − wi . Moreover, add n additional pairs (0, W) to M.
Set k = n and R = (n − 1)W . We now prove equivalence of
both instances. In other words, we prove that L contains a
subset of total value X, satisfying the Knapsack constraints,

if and only if M contains a subset of size n with total fairness
X, satisfying the constrained job seeker problem constraints.

Assume L contains a subset A of size s (s ≤ n) of total
value X and total weight WA ≤ W . Construct a subset B of
size n = k of M by taking ∀pi ∈ A its equivalent mi ∈ M , and
finally add n − s ≤ n pairs of the form (0, W). Let FB denote
the total fairness of B and RB its total reward.

Therefore,

Assume now that M has a subset B of size k = n of total fair-
ness X and total reward RB ≥ R . Let s denote the number of
pairs (0, W) in B. By removing those s elements from B, we
get a new set B′ consisting of elements originating from pairs
in L, of total fairness X (since all removed pairs had f = 0)
and total reward RB� = RB − sW ≥ (n − s − 1)W . Construct
the set A = {pi ∶ mi ∈ B�} ⊆ L . Let VA denote the total value
of A and WA its total weight.

Therefore,
∑

pi∈A

wi = WA ≤ W . ◻

Appendix B Additional Results

Figure 26 shows the runtimes of the naive algorithm vs.
the top-k algorithm (Algorithm 1) when solving the uncon-
strained job seeker problem using both fairness metrics
EMD and Exposure. Figure 27 shows the runtimes of the
ORTools solver vs. the DP algorithm (Algorithm 2) when
solving the constrained job seeker problem using the EMD
fairness metric.

FB =
∑

mi∈B

fi =
∑

pi∈A

vi + (n − s) × 0 = X

RB =
∑

mi∈B

ri = sW −
∑

pi∈A

wi + (n − s)W

RB = nW −WA ≥ nW −W = (n − 1)W = R

VA =
∑

pi∈A

vi =
∑

mi∈B
�

fi = X

RB� =
∑

mi∈B
�

ri = (n − s)W −
∑

pi∈A

wi ≥ (n − s)W −W

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

Fig. 26 Unconstrained job
seeker problem: naive algorithm
vs. top-k algorithm runtimes for
different values of k

Fig. 27 Constrained job seeker
problem: ORTools solver vs. DP
algorithm runtimes for different
values of k

 A. E. Rabaa et al.

1 3

Acknowledgements This work is supported by the Ford Foundation
and the American University of Beirut Research Board (URB).

Author contributions Authors 1, 3 and 5 were students who helped
with developing the algorithms and the code, preparing the data and
running experiments. Authors 1 and 3 also helped with the drafting of
the manuscript. Authors 2, 4 and 6 are senior authors who drove the
work and the writing of the manuscript.

Funding This work is supported by the Ford Foundation and the Amer-
ican University of Beirut Research Board (URB).

Data availability Data will be made available upon request for research
purposes.

Code availability Code will be made available upon request for
research purposes.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Consent to participate N/A.

Consent for publication N/A.

Ethics approval N/A.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Amer-Yahia S, Elbassuoni S, Ghizzawi A, et al (2020) Fairness in
online jobs:{A} case study on taskrabbit and google. In: Int Conf
Ext Database Technol (EDBT)

 2. Beutel A, Chen J, Doshi T, et al (2019) Fairness in recommenda-
tion ranking through pairwise comparisons. In: Proc 25th ACM
SIGKDD Int Conf Knowl Discov & Data Min, pp 2212–2220

 3. Biega AJ, Gummadi KP, Weikum G (2018) Equity of attention:
amortizing individual fairness in rankings. In: The 41st Int acm
sigir Conf Res & Develop Inf Retr, pp 405–414

 4. Calders T, Verwer S (2010) Three naive bayes approaches for dis-
crimination-free classification. Data Min Knowl Disc 21(2):277–
292. https:// doi. org/ 10. 1007/ s10618- 010- 0190-x

 5. Celis LE, Straszak D, Vishnoi NK (2017) Ranking with fairness
constraints. arXiv preprint arXiv: 1704. 06840

 6. Chen L, Ma R, Hannák A, et al (2018) Investigating the impact of
gender on rank in resume search engines. In: Proc 2018 chi Conf
Hum Fact Comput Syst, pp 1–14

 7. Dong Y, Kang J, Tong H, et al (2021) Individual fairness for graph
neural networks: a ranking based approach. In: Proc 27th ACM
SIGKDD Conf Knowl Discov & Data Min, pp 300–310

 8. Elbassuoni S, Amer-Yahia S, Ghizzawi A, et al (2019) Exploring
fairness of ranking in online job marketplaces. In: 22nd Int Conf
Ext Database Technol (EDBT)

 9. Elbassuoni S, Amer-Yahia S, Ghizzawi A (2020) Fairness of scor-
ing in online job marketplaces. ACM Trans Data Sci 1(4):1–30

 10. Fagin R, Lotem A, Naor M (2003) Optimal aggregation algo-
rithms for middleware. J Comput Syst Sci 66(4):614–656

 11. Fisher ML, Jaikumar R, Van Wassenhove LN (1986) A multiplier
adjustment method for the generalized assignment problem. Man-
age Sci 32(9):1095–1103

 12. Foulds JR, Islam R, Keya KN, et al (2020) An intersectional defi-
nition of fairness. In: 2020 IEEE 36th Int Conf Data Eng (ICDE),
IEEE, pp 1918–1921

 13. Geyik SC, Ambler S, Kenthapadi K (2019) Fairness-aware rank-
ing in search & recommendation systems with application to
linkedin talent search. In: Proce 25th acm sigkdd Int Conf Knowl
Discov & Data Min, pp 2221–2231

 14. Ghizzawi A, Marinescu J, Elbassuoni S, et al (2019) Fairank: an
interactive system to explore fairness of ranking in online job
marketplaces. In: 22nd Int Conf Ext Database Technol (EDBT)

 15. Ghosh A, Genuit L, Reagan M (2021) Characterizing intersec-
tional group fairness with worst-case comparisons. In: Artif Intell
Divers, Belong, Equity, and Incl, PMLR, pp 22–34

 16. Hannak A, Wagner C, Garcia D, et al (2017) Bias in online free-
lance marketplaces: evidence from taskrabbit and fiverr. In: Proc
2017 ACM Conf Comput Support Coop Work Soc Comput,
CSCW 2017, Portland, OR, USA, February 25 - March 1, 2017,
pp 1914–1933

 17. Jahanbakhsh F, Cranshaw J, Counts S, et al (2020) An experi-
mental study of bias in platform worker ratings: the role of per-
formance quality and gender. In: Proc 2020 CHI Conf Hum Fact
Comput Syst, pp 1–13

 18. Karabakal N, Bean JC, Lohmann JR (1993) A steepest decent
[sic] multiplier adjustment method for the generalized assignment
problem. Tech rep

 19. Keane MT, O’Brien M, Smyth B (2008) Are people biased in their
use of search engines? Commun ACM 51(2):49–52

 20. Lagoudakis MG (1996) The 0-1 knapsack problem–an introduc-
tory survey

 21. Martello S, Toth P (1990) Knapsack Problems: Algorithms and
Computer Implementations. John Wiley & Sons Inc, USA

 22. Morina G, Oliinyk V, Waton J, et al (2019) Auditing and achieving
intersectional fairness in classification problems. arXiv preprint
arXiv: 1911. 01468

 23. Naghiaei M, Rahmani HA, Deldjoo Y (2022) Cpfair: personal-
ized consumer and producer fairness re-ranking for recommender
systems. In: Proc 45th Int ACM SIGIR Conf Res Develop Inf Retr,
pp 770–779

 24. Oosterhuis H (2021) Computationally efficient optimization of
plackett-luce ranking models for relevance and fairness. In: Proc
44th Int ACM SIGIR Conf Res Develop Inf Retr, pp 1023–1032

 25. Osman IH (1995) Heuristics for the generalised assignment prob-
lem: simulated annealing and tabu search approaches. Oper Res
Spektrum 17(4):211–225

 26. Patro GK, Biswas A, Ganguly N et al (2020) Fairrec: two-sided
fairness for personalized recommendations in two-sided plat-
forms. Proc Web Conf 2020:1194–1204

 27. Posta M, Ferland JA, Michelon P (2012) An exact method with
variable fixing for solving the generalized assignment problem.
Comput Optim Appl 52(3):629–644

 28. Raj A, Ekstrand MD (2022) Measuring fairness in ranked results:
an analytical and empirical comparison. In: Proc 45th Int ACM
SIGIR Conf Res Develop Inf Retr, pp 726–736

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10618-010-0190-x
http://arxiv.org/abs/1704.06840
http://arxiv.org/abs/1911.01468

A Framework to Maximize Group Fairness for Workers on Online Labor Platforms

1 3

 29. Rosenblat A, Levy KE, Barocas S et al (2017) Discriminating
tastes: uber’s customer ratings as vehicles for workplace discrimi-
nation. Policy Internet 9(3):256–279

 30. Salimi B, Rodriguez L, Howe B, et al (2019) Interventional fair-
ness: causal database repair for algorithmic fairness. In: Proc 2019
Int Conf Manag Data, pp 793–810

 31. Singh A, Joachims T (2018a) Fairness of exposure in rankings. In:
Proc 24th ACM SIGKDD Int Conf Knowl Discov & Data Min,
KDD 2018, London, UK, August 19-23, 2018, pp 2219–2228

 32. Singh A, Joachims T (2018b) Fairness of exposure in rankings. In:
Proc 24th ACM SIGKDD Int Conf Knowl Discov & Data Min,
pp 2219–2228

 33. Yagiura M, Ibaraki T (2007) Generalized assignment problem. In:
Gonzalez TF (ed) Handbook of Approximation Algorithms and

Metaheuristics (Chapman & Hall/Crc Computer & Information
Science Series). Chapman & Hall/CRC

 34. Zehlike M, Castillo C (2020) Reducing disparate exposure in rank-
ing: a learning to rank approach. Proc Web Conf 2020:2849–2855

 35. Zehlike M, Bonchi F, Castillo C, et al (2017) Fa* ir: A fair top-k
ranking algorithm. In: Proc 2017 ACM Conf Inf Knowl Manag,
pp 1569–1578

 36. Zehlike M, Sühr T, Baeza-Yates R et al (2022) Fair top-k ranking
with multiple protected groups. Inf Process Manag 59(1):102,707

 37. Zliobaite I (2015) A survey on measuring indirect discrimination
in machine learning. CoRR abs/1511.00148. http:// arxiv. org/ abs/
1511. 00148

http://arxiv.org/abs/1511.00148
http://arxiv.org/abs/1511.00148

	A Framework to Maximize Group Fairness for Workers on Online Labor Platforms
	Abstract
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Setting
	3.2 Maximizing Fairness for Job Seekers
	3.3 Maximizing Fairness for Job Providers

	4 Experiments
	4.1 Data Generation
	4.2 Summary of Results
	4.2.1 Scalability Experiments
	4.2.2 Qualitative Experiments

	4.3 Job Seeker Experiments
	4.3.1 Unconstrained Problem Scalability Experiments
	4.3.2 Unconstrained Problem Qualitative Experiments
	4.3.3 Constrained Problem Scalability Experiments
	4.3.4 Constrained Problem Qualitative Experiments

	4.4 Job Provider Experiments
	4.4.1 Global Budget Problem Scalability Experiments
	4.4.2 Global Budget Problem Qualitative Experiments
	4.4.3 Local Budget Problem Scalability Experiments
	4.4.4 Local Budget Qualitative Experiments

	5 Conclusion and Future Work
	Appendix A Proof of Theorem 1
	Appendix B Additional Results
	Acknowledgements
	References

