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Abstract
As the number of online labor platforms and the diversity of jobs on these platforms increase, ensuring group fairness for 
workers needs to be the focus of job-matching services. Risk of discrimination against workers occurs in two different job-
matching services: when someone is looking for a job (i.e., a job seeker) and when someone wants to deploy jobs (i.e., a 
job provider). To maximize their chances of getting hired, job seekers submit their profiles on different platforms. Similarly, 
job providers publish their job offers on multiple platforms with the goal of reaching a wide and diverse workforce. In this 
paper, we propose a theoretical framework to maximize group fairness for workers 1) when job seekers are looking for jobs 
on multiple platforms, and 2) when jobs are being deployed by job providers on multiple platforms. We formulate each 
goal as different optimization problems with different constraints, prove most of them are computationally hard to solve and 
propose various efficient algorithms to solve all of them in reasonable time. We then design a series of experiments that rely 
on synthetic and semi-synthetic data generated from a real-world online labor platform to evaluate our framework.

Keywords Group fairness · Online labor platforms · Crowdsourcing · Optimization · Job seeker · Job provider

1 Introduction

Online labor marketplaces such as TaskRabbit1 and Upwork2 
are gaining popularity as platforms to hire workers to per-
form certain jobs. On these platforms, people can hire 

temporary workers in the physical world (e.g., someone to 
clean an apartment in New York City), or remote workers 
(e.g., someone to design a website) by submitting a descrip-
tion of the job and receiving a ranked list of potential work-
ers deemed qualified for the job. A job seeker (i.e., a worker 
looking for a job) provides her job interests and skills and 
is matched to certain jobs available on the platform. A job 
provider (i.e., an employer looking for workers to perform a 
certain job) provides a description of the job and is matched 
to potential workers. In the majority of these platforms, such 
job-matching services are algorithmic and most of the time 
opaque. This raises fairness concerns. A ranking of work-
ers will be considered unfair if it is biased toward certain 
groups of people, such as white males. This commonly hap-
pens since ranking usually depends on the social feedback 
received by workers in the form of reviews and ratings, and 
on the number of their past jobs, both of which perpetuate 
bias against certain groups of workers [9, 16, 17, 29]. In this 
paper, we propose the first theoretical framework that can be 
used to assess and compare worker fairness of multiple jobs 
on multiple platforms.

 * Shady Elbassuoni 
 se58@aub.edu.lb

 Anis El Rabaa 
 ase29@mail.aub.edu

 Jihad Hanna 
 jgh20@mail.aub.edu

 Amer E. Mouawad 
 aa368@aub.edu.lb

 Ayham Olleik 
 abo00@mail.aub.edu

 Sihem Amer-Yahia 
 sihem.amer-yahia@univ-grenoble-alpes.fr

1 Computer Science Department, American University 
of Beirut, Beirut, Lebanon

2 Electrical and Computer Engineering Department, American 
University of Beirut, Beirut, Lebanon

3 CNRS, University Grenoble Alpes, Grenoble, France

1 https:// www. taskr abbit. com/.
2 https:// www. upwork. com/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-023-00213-y&domain=pdf
http://orcid.org/0000-0002-3491-6311
https://www.taskrabbit.com/
https://www.upwork.com/


 A. E. Rabaa et al.

1 3

Motivating Examples

We consider the example of Mary, a website developer, who 
is seeking some gigs in the summer (Fig. 1). Mary would 
like to know on which platform (e.g., TaskRabbit, Fiverr) 
and for which jobs (e.g., website design, website portability, 
website translation) she is most likely to land a gig. Today, 
Mary would need to apply to multiple jobs on several plat-
forms. Mary would benefit from a tool that will provide her 
with the (job,platform) pairs where she is most likely to get 
hired. This could be made possible by analyzing how people 
like Mary, in terms of her demographics, skills and other 
characteristics, are treated on existing platforms for website 
development jobs. Moreover, Mary may also wish to make 
at least a certain amount of money for her summer vaca-
tion. This could be achieved by setting a constraint on the 
cumulated reward of the set of (job,platform) pairs she is 
most likely to get. Additional constraints such as the total 
time required to complete all gigs could also be desired and 
incorporated. Therefore, with the proposed tool, a job seeker 
such as Mary will not only save time in her search but also 
be empowered to only target jobs and platforms she is most 
likely to get selected for and for which she wishes to set her 
own conditions.

We now consider the case of Angela who wishes to deploy 
some jobs on several platforms (Fig. 2). Angela wants to treat 
job seekers fairly and at the same time stay within her budget. 
Without a dedicated tool, a job provider like Angela would 

not be able to assess fairness on different platforms and make 
an informed decision on where to deploy which jobs. Such a 
tool would optimize worker fairness and also incorporate her 
constraints. Job providers may have a specific per-platform 
budget. That is the case when platforms operate with differ-
ent currencies or when a job provider already has some jobs 
running on a platform and wants to cap the number of jobs. 
For example, Angela may already have some jobs deployed 
on TaskRabbit and some funds on Prolific Academic. In that 
case, she will deploy her remaining jobs in such a way that 
she maximizes worker fairness and satisfies platform-specific 
budgets. Providing such expressive tools for job seekers and 
job providers is the topic of our work.

We focus on group fairness, which is defined as the fair 
treatment of all groups of people [4, 37], where groups are 
defined using protected attributes such as gender, age and 
ethnicity. For example, the worker groups could be males, 
asians, black females, young white males, etc. Our frame-
work can accommodate multiple group fairness definitions 
as long as they rely on ranking or scoring of workers, i.e., 
fairness of exposure, which directly relates to the chances 
of workers landing jobs [31]. It does so by defining a single 
function f(j, p, g), where j is a job, p is a platform, g is a 
demographic group, and f(j, p, g) is a fairness value of job j 
on platform p for group g. To serve both job seekers and job 
providers, we formulate several optimization problems that 
aim to maximize worker group fairness subject to desired 
constraints such as payment and number of jobs.

Fig. 1  Motivating example: Mary the job seeker
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Optimization Problems for Job Seekers
Our first and second optimization problems aim to maxi-

mize worker fairness for job seekers. Given a set of worker 
groups that the job seeker belongs to, a set of jobs of interest 
and a set of platforms on which these jobs might be avail-
able, our first optimization problem seeks the top-k fairest 
job-platform pairs. The worker can then use those k retrieved 
pairs to focus her efforts on when applying for jobs. We also 
consider the case where jobs are associated with rewards. 
That is, we assume that each job available on a platform is 
associated with a reward. This constitutes the basis for our 
second optimization problem, where the goal is to find the 
top-k fairest job-platform pairs such that their total reward 
is above a certain threshold. In this case, the worker’s goal 
is to find the top-k fairest job-platform pairs that increase 
her chances of landing a job, while guaranteeing a minimum 
reward or payment.

Optimization Problems for Job Providers
Our third and fourth optimization problems aim to maxi-

mize worker fairness when a job provider is deploying a 
set of jobs on different platforms. Each job is associated 
with a cost, e.g., the worker compensation for completing 
that job, and this cost may differ from one platform to the 
other. Given a set of jobs to be deployed on a set of plat-
forms and a budget, the third optimization problem seeks to 
assign each job to at most one platform such that the total 
cost of the jobs assigned does not exceed the budget and the 

total fairness of the assigned jobs is maximized. We impose 
that each job is deployed on at most one platform to reduce 
deployment cost and satisfy as many providers as possible. 
A variation of this optimization problem is: given a set of 
jobs to be deployed on a set of platforms and a budget for 
each platform, our goal is to assign each job to at most one 
platform such that the total cost of the jobs assigned to each 
platform does not exceed its budget, and the total worker 
fairness of the assigned jobs is maximized. The result of 
both optimization problems can be used by the job provider 
to decide on which platforms to deploy her jobs so as to 
maximize worker fairness subject to budget constraint(s) the 
job provider might have.

Computational Solutions
We prove that three of our four optimization problems 

are computationally hard by reductions from well-known 
NP-hard problems such as Knapsack [20] and general 
assignment problems [21], and we propose algorithms to 
efficiently solve them. More precisely, for the first job seeker 
optimization problem, we propose an adaptation of Fagin’s 
top-k algorithm [10]. For the second job seeker problem, we 
propose a dynamic programing (DP) algorithm. Similarly, 
for the first job provider optimization problem, we also pro-
pose a dynamic programming algorithm and finally, for the 
second job provider problem, we explore various exact and 
approximation algorithms from the literature.

Fig. 2  Motivating example: Angela the job provider
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Empirical Validation
We design a series of experiments using synthetic and 

semi-synthetic data generated from TaskRabbit, a real-world 
online labor platform, to evaluate our proposed framework 
and algorithms. We use synthetic data to demonstrate the 
scalability of our algorithms as the number of jobs, the num-
ber of platforms and the number of worker groups increase 
and to compare them to adequate baselines. To compute fair-
ness values, we use the two metrics defined in [1], namely 
Earth Mover Distance (EMD) and Exposure. Our experi-
ments demonstrate that our algorithms scale very well and 
that they consistently outperform their baselines. On the 
other hand, we use semi-synthetic data to conduct case 
studies that highlight the merits of the solutions generated 
by our algorithms from a qualitative perspective. To create 
semi-synthetic data, we propose a data generation protocol 
based on interventions [30] to create multiple worlds, each 
of which simulates a platform. An intervention is a sam-
pling of workers from a snapshot of TaskRabbit such that the 
sampled “world” matches a desired distribution of protected 
attributes (in our case either on gender or ethnicity). We run 
a series of qualitative experiments on different worlds. Our 
results confirm that our framework can indeed increase the 
chances of job seekers landing jobs and can result in maxi-
mizing worker fairness when job providers are deploying 
jobs, subject to various constraints such as reward or budget.

In summary, this paper makes the following contributions: 

1. We formulate four novel optimization problems to maxi-
mize group fairness for workers when job seekers are 
looking for multiple jobs on multiple online labor plat-
forms and when job providers are deploying multiple 
jobs on multiple online labor platforms.

2. We prove that three of our optimization problems are 
computationally hard, and propose algorithms to solve 
the four problems efficiently.

3. We establish a benchmark of synthetic and semi-syn-
thetic data based on interventions to evaluate our algo-
rithms both from a scalability perspective as well as 
from a usability one. Given that there exists no available 
benchmarks to perform such evaluations, our established 
benchmark and proposed experimental framework is 
thus a major contribution of this work.

The rest of the paper is organized as follows. In Sect.  2, we 
review related work that addresses fairness in online labor 
platforms. In Sect.  3, we describe our proposed framework, 
which is composed of four optimization problems and algo-
rithms to solve them efficiently. In Sect.  4, we describe the 
experiments that we used to evaluate our proposed frame-
work and their results. Finally, we conclude and present 
future work directions in Sect.  5.

2  Related Work

Fairness of ranking is an increasingly trending topic in 
research. Many works have already underlined the impor-
tance of fair rankings, and their impact on the actual selec-
tion of ranked items by users. As Singh and Joachims 
explained in [32], the probability of a ranked item being 
selected (e.g., a job candidate being hired) decreases sig-
nificantly with lower ranking positions; a concept referred 
to as exposure. Along the same topic, the experiment in 
[19] studied user behavior when presented with manipu-
lated Google search results, and found that users exhibit 
“partial bias” toward an item’s rank, tending to select 
items at the top of search results. Fairness of ranking is 
thus especially important for online labor platforms, where 
unfair rankings of workers can lead to disparate distribu-
tions of work opportunities or income [3]. In this work, 
we focus only on group fairness, as opposed to individual 
fairness [3, 7, 26], which is the subject of our future work.

Many notable works focused on assessing fairness of 
a worker ranking in online labor platforms. For instance, 
the authors in [16] found evidence of bias in two promi-
nent online labor platforms, TaskRabbit and Fiverr. In both 
platforms, they found that perceived gender and race have 
significant correlations with worker evaluations, and even 
with worker rankings in the case of TaskRabbit. In [6], the 
author examined gender bias in the resume search plat-
forms: Indeed, Monster and CareerBuilder. Two notions 
of fairness issues were considered: a) ranking bias, which 
is the disparity of ranking distributions across genders 
(group unfairness), and b) unfairness, i.e., the gap in rank-
ing between male and female applicants having the same 
qualifications (individual unfairness). The author found 
evidence of both issues on all three platforms.

Notable efforts have also been made to quantify unfair-
ness [8, 9, 13, 14]. In [8, 9, 14], the authors formulated 
an optimization problem to find the partitioning of work-
ers (based on their protected attributes) that exhibits the 
highest unfairness based on a given scoring function. They 
used Earth Mover’s Distance (EMD) between score dis-
tributions as a measure of unfairness. In [1], the authors 
proposed a unified framework to study fairness in online 
jobs. They defined two generic fairness problems: quan-
tification, which is finding the k worker groups, or jobs 
or locations, for which a job search site is most or least 
unfair, and comparison, which is finding the locations at 
which fairness between two groups differs from all loca-
tions, or finding the jobs for which fairness at two loca-
tions differ from all jobs for instance. They adapted Fagin 
top-k algorithms to address their fairness problems and 
case-studied two particular job search sites: Google job 
search and TaskRabbit.
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To address fairness of ranking, various methods have 
been proposed to actively generate fair rankings. Many of 
them are post-processing methods (e.g., [3, 5, 23, 24, 35, 
36]), where given an existing ranking of items, a new order-
ing of the items is generated so as to satisfy certain fair-
ness constraints. On the other hand, in-processing methods 
address ranking bias of an algorithm at the training phase, 
such as the DELTR Learn-to-Rank framework in [34].

Our proposed work differs from all the reviewed related 
work above in that it is, to the best of our knowledge, the first 
to establish a generic framework that can be used to assess 
and compare worker fairness of multiple jobs on multiple 
online labor platforms. Our framework can accommodate 
all definitions of group fairness proposed before. It also has 
multiple use cases from the perspective of both job seekers 
and job providers. It can be deployed as a stand-alone ser-
vice on top of existing online labor platforms to maximize 
fairness of job-matching services on these platforms when 
job seekers are being matched to jobs and when job provid-
ers are deploying jobs on these platforms. Our framework is 
theoretically founded and we propose an extensive and thor-
ough experimental setup to evaluate it using both synthetic 
and real-world generated data.

3  Framework

3.1  Setting

We assume that our framework has access to an unbounded 
number of platform signatures. A platform signature is a list 
of job descriptions available on the platform, and where each 
job is associated with a list of worker profiles that indicate 
the protected attributes of each worker and the score or rank 
of the worker for the job by the platform. We also assume 
that the same job can be available on multiple platforms, and 
for each job-platform pair, we define all worker groups using 
one or more protected attributes of the workers provided by 
the platform signature. For example, if the protected attrib-
utes are gender, ethnicity and age, then the worker groups 
would be males, females, asians, whites, blacks, black 
females, young white males and so on. Finally, we assume 
that each job-platform pair is associated with a fairness value 
for each worker group on each platform. The fairness value 
of a worker group depends on the ranking or scores of the 
workers that belong to that group and thus can be different 
for different platforms.

More precisely, a job j for worker group g on platform 
p is associated with a fairness value f(j, p, g). Without loss 
of generality, we assume that f(j, p, g) is a value between 0 
and 1, and that the higher the value is, the more fair job j is 
considered for group g on platform p. To obtain such fair-
ness values for each job-platform-group tuple, we assume 

the presence of a blackbox that takes as input a job j, a plat-
form p and a group g and returns a fairness value f(j, p, g) 
between 0 and 1. The fairness values are computed using 
the platform signature which indicates for each job, the list 
of worker profiles (i.e., their protected attributes) and their 
scores or ranks for the job by the platform. In our experi-
ments, we make use of the framework in [1], which uses two 
different notions for computing group fairness. However, 
other notions of group fairness can also be used, as long as 
they can be computed using the scores or ranks of workers 
with respect to jobs [2, 28, 31].

Furthermore, we assume the presence of two predicates: 
a(j, p) which is only true if job j is available on platform 
p and e(j, p, g) which is only true if job j is available on 
platform p for group g. This is done to accommodate the 
fact that in practice in online labor platforms not all jobs are 
and not all worker groups are available on every platform. 
Our framework thus operates on an incomplete weighted 
bipartite graph where the first set of nodes represent jobs, 
the second set of nodes represent platforms and there is an 
edge between a job j and a platform p only if a(j, p) = true . 
Moreover, each edge in this bipartite graph is associated 
with a set of weights {f (j, p, g)|g ∈ G ∧ e(j, p, g) = true} that 

Fig. 3  An example bipartite graph with jobs on one side and plat-
forms on the other side. Each edge between a job j and a platform p 
has a set of weights representing the fairness values of job j for the 
different groups g on platform p 

Table 1  Summary of terminology

Variable Meaning

j Job
p Platform
g Group
f(j, p, g) Fairness of job j for group g on platform p
a(j, p) Predicate indicating the availability of job 

j on platform p
e(j, p, g) Predicate indicating the availability of 

group g for job j on platform p
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correspond to the different fairness values for the different 
groups that exist in the platform p for job j. Figure 3 shows 
an example of such a bipartite graph. Table 1 provides a 
summary of the main terminology in this paper.

The main goal of our framework is to assess and com-
pare worker fairness of multiple jobs on multiple platforms, 
which can then be used to maximize fairness of job-match-
ing services on online labor platforms when job seekers are 
being matched to jobs and when job providers are deploying 
jobs on these platforms. To achieve this goal, we define four 
different optimization problems, two for the job seeker case 
and two for the job provider case. We prove that three of 
our optimization problems are at least as hard as NP-hard 
problems and we propose a set of algorithms to solve the 
four of them efficiently.

3.2  Maximizing Fairness for Job Seekers

A job seeker is a person looking for the top-k fairest jobs 
available on different platforms that fits her interests or 
skills. A job seeker belongs to multiple demographic groups. 
For example, a job seeker can be female, white and middle-
aged. We also consider combinations of these values to 
exhaust all the groups the job seeker belongs to. That is, in 
our example, the job seeker would be also a white female, 
a middle-aged white and a middle-aged white female. Our 
first optimization problem for maximizing fairness for job 
seekers is defined below.

Problem 1 (Unconstrained) Job Seeker Problem Given a 
set of demographic groups G that the job seeker belongs to, 
a set of jobs of interest J and a set of platforms P on which 
these jobs might be available, our goal is to find the top-k 

fairest (j, p) pairs, where j ∈ J is a job, p ∈ P is a platform, 
and the pair (j, p) means job j on platform P. Our job seeker 
problem can then be formulated as the following optimiza-
tion problem:

Since each job seeker belongs to different worker groups, 
we need to aggregate the different fairness values for each 
group the job seeker belongs to in order to obtain a single 
fairness value for a job-platform pair. In the optimization 
problem above, we use minimum as an aggregation operator. 
Thus, we take a conservative worst-case approach here to 
quantify the fairness value of a job-platform pair for a given 
job seeker. This is motivated by the large body of literature 
on intersectional fairness [12, 15, 22]. Other aggregation 
methods such as taking the average or the maximum can be 
also applied without any fundamental changes.

The input in the job seeker problem is a set of jobs J, 
a set of platforms P and all the demographic groups G 
that the job seeker belongs to. A naive approach to solve 
the job seeker problem defined above is to loop over all 
jobs, all the platforms and all the groups, and for each job-
platform pair (j, p) such that a(j, p) is true, it computes the 
minimum fairness for that pair overall groups G the job 
seeker belongs to and for which e(j, p, g) is true. It then 
returns the k job-platform pairs with the highest minimum 
fairness over all groups G. The complexity of this naive 
approach is thus O(|J||P||G|).

argmax
S

∑

(j,p)∈S

min
g∈G∧e(j,p,g)=true

f (j, p, g)

subject to: S ⊆ J × P

a(j, p) = true ∀(j, p) ∈ S

|S| = k



A Framework to Maximize Group Fairness for Workers on Online Labor Platforms  

1 3

Algorithm 1 Top-k Job Seeker Algorithm
1: Input: a set of jobs J , a set of platforms P , a set of groups G, k
2: output: the k (j, p) pairs with the highest minimum fairness over all groups G
3: topk ← minHeap() � Initialization
4: cursor ← 0
5: while topk.minV alue() < τ or topk.size() < k do
6: τ ← −∞
7: for g ∈ G do
8: ((j, p), f(j, p, g)) ← Ig.getEntry(cursor) � Read entry at current line

(cursor)
9: if j ∈ J and p ∈ P then

10: if τ < f(j, p, g) then � Update threshold value
11: τ ← f(j, p, g)
12: end if
13: min ← f(j, p, g)
14: for g′ ∈ G and g′ �= g do � Perform random access on all other lists
15: if e(j, p, g′) is true then
16: f(j, p, g′) ← Ig′ .getV alue((j, p))
17: if f(j, p, g′) < min then
18: min ← f(j, p, g′)
19: end if
20: end if
21: end for
22: if topk.size() < k then � Update top-k set (if needed)
23: topk.insert(((j, p),min)
24: else
25: if topk.minV alue() < min then
26: topk.pop()
27: topk.insert((j, p),min)
28: end if
29: end if
30: end if
31: end for
32: cursor ← cursor + 1
33: end while
34: return topk

A more efficient approach can make use of optimal 
aggregation algorithms such as Fagin’s algorithm [10] 
provided we use a monotone aggregation function (such 
as the minimum in our formulation) to compute the fair-
ness value of a job-platform pair over groups. To be able to 
do this, we assume the existence of a set of inverted lists, 
one for each worker group g. The inverted list Ig contains 
an entry for each job-platform pair (j, p) where e(j, p, g) is 
true. The entries in Ig are sorted in descending order based 
on the fairness values f(j, p, g).

Our optimal aggregation algorithm (Algorithm 1) is an 
adaptation of Fagin’s Threshold algorithm to solve our job 
seeker problem. The algorithm operates on |G| inverted 
lists, one for each group, and it uses a threshold value � 
initially set to −∞ , a cursor (line counter) initially set to 0 

Fig. 4  An example bipartite graph for the constrained job seeker 
problem. In addition to the fairness values per group, each edge 
between a job j and a platform p has a weight r(j, p) representing the 
reward of job j on platform p 
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and a min-heap topk that will store the top-k job-platform 
pairs seen so far. The algorithm then reads the inverted 
lists in parallel using sequential access. It starts by read-
ing the first entry ( cursor = 0 , so first line) from each list. 
Each of the entries read corresponds to a job-platform pair, 
and its associated fairness value for the group correspond-
ing to the inverted list that entry belongs to. � is then set 
to the largest of these values, and for each of the pairs, 
we derive its aggregated fairness value by looking up its 
equivalent entries from the other inverted lists (using ran-
dom access). The topk set is updated with the newly read 
pairs (and their aggregated fairness values) if necessary, 
and cursor is incremented by 1 for the next iteration (so 
as to read the next line of the lists). The algorithm keeps 
iterating until topk contains k elements and � becomes 
smaller than the smallest fairness value in topk.

Note that a group g might not be available for a certain 
job-platform pair (j, p) (i.e., e(j, p, g) = 0 ). Hence, this job-
platform pair will not be present in the inverted list Ig . If 
at each iteration, we update the threshold � to be the mini-
mum of the last read fairness values (as custom in the tra-
ditional Fagin’s Threshold algorithm), then the algorithm 
might end up stopping too early and potentially missing 
some job-platform pairs with high minimum fairness that 
are present in some lists but not in others. This explains 
why in our adaptation of the algorithm, the threshold � is 
updated to be the maximum of the last seen values, rather 
than their minimum (lines 10 to 12 in Algorithm 1). Also 
note that Fagin’s Threshold algorithm is known to be 
instance optimal [10].

We also consider a scenario where the job seeker is 
interested in retrieving the top-k fairest job-platform pairs, 
subject to some user-defined constraints. For instance, one 
such constraint could be minimum reward integrated as 
follows. Assume that each job j available on platform p is 
associated with a reward r(j, p), representing the earnings 
the job seeker can make by executing job j on platform 
p. Thus, each edge in our bipartite graph will include an 
additional weight as shown in Fig.  4. In this case, the goal 
of the job seeker can be formulated as the following opti-
mization problem.

Problem 2 Constrained Job Seeker Problem Given a set of 
demographic groups G that the job seeker belongs to, a set 
of jobs of interest J, and a set of platforms P on which these 
jobs might be available, our goal is to find the top-k fairest 
(j, p) pairs, where j ∈ J is a job, p ∈ P is a platform, and the 
pair (j, p) means job j on platform P and such that the total 
reward for the selected job-platform pairs is above a certain 
threshold R. Our constrained job seeker problem can then be 
casted as the following optimization problem:

The same problem can be formulated as an integer linear 
programming (ILP) optimization problem as follows:

Theorem 1 The optimization variant of the knapsack prob-
lem is polynomial-time reducible to the constrained job 
seeker problem, and therefore, the latter problem is at least 
as hard as the former.

Proof Note that by having only one group and one platform, 
the constrained job seeker problem reduces to the following. 
Given a list M of pairs mi = (fi, ri) , where fi is the assigned 
fairness value and ri the reward value, select k pairs such 
that fairness is maximized and the total reward is at least R. 
Using this version of the problem, we give a polynomial-
time reduction from the optimization version of Knapsack. 
Given a list L of pairs ai = (vi,wi) , where vi represents the 
value of the pair and wi its weight and an integer W, the 
Knapsack problem asks for a subset of L of maximum value 
such that the total weight is at most W.

Given an instance of the knapsack problem where |L| = n , 
create a list M of n pairs mi = (fi, ri) where fi = vi and 
ri = W − wi . Moreover, add n additional pairs (0, W) to M. 
Set k = n and R = (n − 1)W  . We prove equivalence of both 
instances in Appendix A. In other words, we prove that L 
contains a subset of total value X, satisfying the Knapsack 
constraints, if and only if M contains a subset of size n with 
total fairness X, satisfying the constrained job seeker prob-
lem constraints.   ◻

Note that since the knapsack optimization problem is 
known to be at least as hard as its decision version, also 
known to be NP-Complete [20], Theorem 1 implies that 
polynomial-time algorithms for the constrained job seeker 
problem are unlikely to exist.

argmax
S

∑

(j,p)∈S

min
g∈G∧e(j,p,g)=true

f (j, p, g)

subject to: S ⊆ J × P

a(j, p) = true ∀(j, p) ∈ S

|S| = k
∑

(j,p)∈S

r(j, p) ≥ R

max
∑

j∈J

∑

p∈P

min
g∈G∧e(j,p,g)=true

f (j, p, g) × x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1 → a(j, p) = true ∀j ∈ J,∀p ∈ P
∑

j∈J

∑

p∈P

x(j, p) = k ∀j ∈ J,∀p ∈ P

∑

j∈J

∑

p∈P

r(j, p) × x(j, p) ≥ R
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Next, we describe how to solve this problem efficiently in 
practice. The similarity with the knapsack problem gives a 
nearly immediate dynamic programming (DP) solution that 

we describe in Algorithms 2 and 3. This solution expects 
fairness values to be integers. For non-integer fairness val-
ues (like in our case), we provide a systematic method of 
converting them into integers in Sect.  4.3.4.

Algorithm 2 Constrained Job Seeker Algorithm
1: Input: A set of jobs J , a set of platforms P , a set of groups G, and two integers

k and R
2: Output: The k (j, p) pairs with the highest minimum fairness over all groups G

having reward at least R

� Step 1: Initialization + aggregation of fairness values

3: minFair[1...len(J)][1...len(P )] ← new 2D array initialized to +∞
4: for j ∈ J and p ∈ P and g ∈ G do
5: if e(j, p, g) = true then
6: minFair[j][p] ← min(minFair[j][p], f(j, p, g))
7: end if
8: end for

9: L ← Empty list
10: for j ∈ J and p ∈ P do
11: (j, p, f, r) ← (j, p,minFair[j][p], r(j, p))
12: L.append((j, p, f, r))
13: end for

� Step 2: Call recursive DP procedure (see Algorithm 3)

14: DP [0...len(L)][0...k][0...R] ← new 3D array initialized to −1
15: choice[0...len(L)][0...k][0...R] ← new 3D array initialized to −1
16: maxFairness ← MaxFairness(1, L, k,R,DP, choice)
17: if maxFairness = −∞ then return φ

� Step 3: Read result (optimal assignment) from the choice matrix and return

18: i ← 0, result ← φ
19: while i �= len(L) do
20: if choice[i][k][R] = 0 then
21: i ← i+ 1
22: continue
23: end if
24: result.add((j, p))
25: k ← k − 1
26: R ← max(0, R− L[i].r)
27: i ← i+ 1
28: end while

29: return result
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Algorithm 3 Recursive Maximum Fairness Algorithm
1: procedure MaxFairness(i, L, k,R,DP, choice)
2: if k = 0 then return R = 0 ? 0 : −∞
3: if i > N then return −∞
4: if DP [i][k][R] �= −1 then return DP [i][k][R]

5: dontTakePair ← MaxFairness(i+ 1, L, k,R,DP, choice)
6: takePair ← MaxFairness(i+ 1, L, k − 1,max(0, R− L[i].r), DP, choice)

7: if dontTakePair = −∞ and takePair = −∞ then return DP [i][k][R] = −∞
8: if dontTakePair �= −∞ and takePair �= −∞ then
9: choice[i][k][R] ← (dontTakePair < L[i].f + takePair)

10: return DP [i][k][R] ← max(dontTakePair, L[i].f + takePair)
11: end if
12: if dontTakePair ≥ 0 then
13: choice[i][k][R] ← 0
14: return DP [i][k][R] ← dontTakePair
15: end if
16: choice[i][k][R] ← 1
17: return DP [i][k][R] ← L[i].f+ takePair
18: end procedure

Algorithm 2 starts by aggregating the fairness values 
for each job-platform of interest over all the groups the job 
seeker belongs to (lines 3 to 8). The algorithm then con-
structs a list L consisting of each job-platform pair of inter-
est, its aggregated fairness values and its reward (lines 9 
to 13). The algorithm then invokes Algorithm 3 (line 16), 
which takes as input a list L of all pairs in J × P , an index 
i corresponding to the pair we are currently considering, 
k representing the number of pairs we need to select and 
R representing the minimum total reward required for the 
selected pairs. In addition, the algorithm takes two addi-
tional arguments: DP and choice, which are both 3D arrays. 
Algorithm 3 is used to find the maximum fairness value that 
can be induced by a list of exactly k pairs in L[i...|L|] such 
that the sum of the reward of the k pairs is at least R.

To find the optimal fairness assignment, we need to make 
a decision about the ith pair in |L|. Let ri be the reward value 
of pair i, and fi its fairness value. From there, we have two 
options: either take the pair into the top-k pairs set, or dis-
card it. Discarding the ith pair means solving the problem for 
pairs (i + 1) till |L| (instead of pairs i to |L| ), which is handled 
by the recursive call in line 5 of Algorithm 3. On the other 
hand, including the pair into the top-k set means solving a 
new subproblem on pairs (i + 1) till L, from which we need 
to select (k − 1) pairs instead of k, with a reward threshold 
of R − ri . This subproblem is solved using the recursive call 
in line 6 of Algorithm 3.

To choose the best action, the algorithm tries both options 
(i.e., both recursive calls), and compares the optimal fairness 
attainable if we take the ith pair ( fi + f (L, i + 1, k − 1,R − ri) ) 

to the optimal value if we leave it ( f (L, i + 1, k,R) ). Since our 
goal is to maximize fairness, then the largest of these two val-
ues is chosen and returned, breaking ties arbitrarily if any. The 
choice made (taking or discarding the pair i) is recorded in 
the array choice,to facilitate reconstructing the final top-k set.

This algorithm is further optimized by the use of DP. The 
algorithm has three main parameters: i, k and R. Since the 
total number of pairs in the list L is at most |J| × |P| , there-
fore, the algorithm has a total of |J||P|kR states. To ensure 
that no state will compute its own value more than once, we 
include the DP array to save the result of a state after first 
computation, so that whenever another recursive call is called 
with the same parameters, all computation is skipped and we 
directly return the pre-computed value (i.e., memoization).

In terms of complexity, this algorithm is composed of two 
stages. First, there is an initialization or preprocessing phase, 
which loops over the |J| × |P| input job-platform pairs, com-
putes their aggregated fairness value over the |G| groups 
and then arranges the pairs into a list of (job, platform, fair-
ness, reward) tuples. This phase’s time complexity is then 
O(|J|P||G|) . Second, comes the recursive phase with DP 
described above, having a time complexity of O(|J||P|kR) 
(as we have |J||P|kR states in total). So overall, this algo-
rithm has a time complexity of O(|J||P||G| + |J||P|kR).

3.3  Maximizing Fairness for Job Providers

A job provider is a person looking to deploy a set of jobs 
on different platforms. In online labor platforms, typically 
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each job j is associated with a cost c(j, p) on every platform 
p it is available on, and this cost differs from one platform 
to another. This extends our bipartite graph in Fig. 3 so that 
each edge is now associated with an additional weight that 
represents the cost of deploying job j on platform p. An 
example of such graph is depicted in Fig. 5. The goal of the 
job provider is thus to deploy the jobs on the platforms such 
that the overall worker group fairness is maximized, while 
satisfying a budget constraint. To reduce deployment cost, 
we impose that each job is deployed on at most one platform. 
This goal can be formulated as the following optimization 
problem.

Problem 3 Job Provider Problem with Global Budget Given 
a set of jobs J to be deployed on a set of platforms P and a 
budget B, our goal is to assign each job j ∈ J to at most one 
platform p ∈ P such that the total cost of the jobs assigned 
does not exceed the budget B and the total fairness of the 
assigned jobs is maximized. Our job provider problem can 
be formulated as the following optimization problem (in 
integer linear programming form):

max
∑

j∈J

∑

p∈P

min
g|e(j,p,g)=true

f (j, p, g) × x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1 → a(j, p) = true ∀j ∈ J,∀p ∈ P
∑

j∈J

∑

p∈P

c(j, p) × x(j, p) ≤ B

∑

p∈P

x(j, p) ≤ 1 ∀j ∈ J

In some cases, a job provider might have a sepa-
rate budget for each platform on which the jobs are to be 
deployed, rather than a global budget over all platforms. This 
could be the case when platforms operate with different cur-
rencies or when a job provider already has some jobs run-
ning on a platform and wants to cap the number of jobs. This 
can be formulated as the following optimization problem.

Problem 4 Job Provider Problem with Local Budget Given 
a set of jobs J to be deployed on a set of platforms P and a 
budget bp for each platform p ∈ P , our goal is to assign each 
job j ∈ J to at most one platform p ∈ P such that the total 
cost of the jobs assigned does not exceed the total budget for 
all platforms for which the jobs are assigned, and the total 
fairness of the assigned jobs is maximized. Our second ver-
sion of the job provider problem can be formulated as the 
following optimization problem:

We next prove that both job provider problems are com-
putationally hard.

Theorem 2 The job provider with global budget and the job 
provider with local budget problems are at least as hard as 
the optimization variant of the knapsack problem.

Proof Constraining both problems to one group and one 
platform is equivalent to solving the optimization version 
of the knapsack problem, known to be at least as hard as the 
decision version, which is known to be NP-Hard. In other 
words, we can reduce an instance of the knapsack problem 
to an instance of either problem having only one group and 
one platform.   ◻

max
∑

j∈J

∑

p∈P

min
g|e(j,p,g)=true

f (j, p, g) × x(j, p)

subject to: x(j, p) ∈ {0, 1} ∀j ∈ J,∀p ∈ P

x(j, p) = 1 → a(j, p) = true ∀j ∈ J,∀p ∈ P
∑

j∈J

c(j, p) × x(j, p) ≤ bp ∀p ∈ P

∑

p∈P

x(j, p) ≤ 1 ∀j ∈ J

Fig. 5  An example bipartite graph for the job provider problem. In 
addition to the fairness values per group, each edge between a job j 
and a platform p has a weight c(j, p) equal to the cost of deploying 
job j on platform p 
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Algorithm 4 Job Provider Problem with Global Budget Algorithm
1: Input: A set of jobs J , a set of platforms P , a set of groups G, and an integer B
2: Output: The maximum size subset of (j, p) pairs with the highest minimum

fairness having cost at most B

� Step 1: Initialization, aggregation of fairness values
3: minFair[1...len(J)][1...len(P )] ← new 2D array initialized to +∞.
4: for j ∈ J and p ∈ P and g ∈ G do
5: if e(j, p, g) = true then
6: minFair[j][p] = min(minFair[j][p], f(j, p, g))
7: end if
8: end for

� Step 2: Iterative DP: For each subproblem containing the first i jobs, DP [i][t]
will store the optimal fairness obtainable from these jobs at budget limit t

9: DP [0...len(J)][0...B] ← new 3D array initialized to 0.
10: for i ∈ [0, len(J)) and t ∈ [0, B] do
11: dp[i+ 1][t] ← max(dp[i+ 1][t], dp[i][t])
12: for j ∈ [1...len(P )] do
13: (f, c) ← (minFair[J [i]][P [j]], c(J [i], P [j]))
14: if c+ t ≤ B then
15: dp[i+ 1][c+ t] ← max(dp[i+ 1][c+ t], f + dp[i][t])
16: end if
17: end for
18: end for

� Step 3: Get total cost of the optimal assignment found
19: maxFairness ← 0
20: b ← 0
21: N ← len(J)
22: for t ∈ [0...B] do
23: if dp[N ][t] > maxFairness then
24: maxFairnes ← dp[N ][t]
25: b ← t
26: end if
27: end for

� Step 4: Read result (optimal assignment) from the DP matrix and return
28: result ← Empty list
29: while N �= 0 do
30: (j) ← J [N ]
31: if dp[N − 1][b] �= dp[N ][b] then
32: for i ∈ [1...len(P )] do
33: if b ≥ c(j, P [i]) and dp[N ][b] = minFair[j][P [i]] + dp[N − 1][b −

c(j, P [i])] then
34: result.append((j, P [i]))
35: b ← b− c(j, P [i])
36: break
37: end if
38: end for
39: end if
40: N ← N − 1
41: end while

42: return result
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Like Problem 2, the similarity between Problem 3 and 
the knapsack problem gives a near-immediate dynamic 
programming algorithm, described in Algorithm 4. This 
approach is essentially an iterative DP method, akin to the 
Knapsack one, where increasingly large subproblems of the 
original problem are solved. Solving these subproblems 
gradually populates a DP matrix called DP, where DP[i]
[t] stores the optimal fairness obtainable when considering 
the first i job-platform pairs, at budget limit t. Using this DP 
matrix to store the subproblems’ optimal values helps in 
reducing computation time, by avoiding repetitive calcula-
tions. Complexity-wise, this algorithm is composed of two 
main parts: a preprocessing phase similar to the one in Algo-
rithm 2, with running time O(|J||P||G|) , and the DP phase 
described above, that iteratively populates a (|J||P|) × B 
matrix, and thus has a running time of O(|J||P|B) . There-
fore, the overall time complexity for this algorithm is 
O(|J||P||G| + |J||P|B)).

As for Problem 4, if the aggregation of fairness values 
for each group is done a priori, then the problem becomes 
equivalent to LEGAP, a variant of the generalized assign-
ment problem (GAP) where each job must be assigned to 
at most one platform instead of exactly one [21]. And since 
LEGAP is proven to be equivalent to the “standard” GAP 
[21, 33], then Problem 4 (with pre-aggregated fairness val-
ues) is equivalent to GAP. This implies that Problem 4 is, 

like GAP, strongly NP-hard and it is therefore unlikely to 
admit pseudo-polynomial-time algorithms.

On the other hand, this equivalence suggests that GAP 
algorithms from the literature can be used to solve Problem 4 
[11, 18, 21, 27]. The only adjustment required to the prob-
lem is to add a dummy platform pdummy , set its associated 
fairness values to zero (so f (j, pdummy, g) = 0 ∀j ∈ J, g ∈ G ), 
cost values to 1 (so c(j, pdummy) = 1 ∀j ∈ J ), and its budget 
limit to |J| . This way, the choice of not assigning a job to 
any platform in the initial problem is now represented as 
assigning the job to the platform pdummy , essentially creating 
a “none of the above” option. This satisfies the GAP con-
straint that all jobs must be assigned to exactly one platform, 
while still giving the option of not actually selecting a job, 
by assigning it to pdummy . This adjustment thus creates an 
instance of GAP that is equivalent to our problem, and hence 
can be directly solved by available GAP algorithms.

For the GAP problem (which is equivalent to our prob-
lem), it is known that: 1) exact pseudo-polynomial-time 
algorithms (such as the DP-based methods) are unlikely 
to exist unless PℑNP ; and 2) polynomial-time approxi-
mation schemes with a mathematically guaranteed solu-
tion quality are also unlikely to exist, unless PℑNP [21]. 
Therefore, when proposing an adequate algorithm to solve 
Problem 4, we are left with two possible choices: either non 

Table 2  Platform statistics for the alternative worlds (in percentages)

World Male Female World Black White Asian

(a) Gender statistics (b) Ethnicity statistics
TaskRabbit 0.75 0.25 TaskRabbit 0.24 0.69 0.07
World1 0.26 0.74 World1 0.27 0.66 0.07
World2 0.50 0.50 World2 0.25 0.68 0.07
World3 0.30 0.70 World3 0.26 0.67 0.07
World4 0.70 0.30 World4 0.24 0.69 0.07
World5 0.74 0.26 World5 0.33 0.33 0.34
World6 0.72 0.28 World6 0.69 0.24 0.07
World7 0.74 0.26 World7 0.24 0.07 0.69
World8 0.75 0.25 World8 0.07 0.69 0.24

 World Male asian Male black Male white Female asian Female black Female white

(c) Group statistics
TaskRabbit 0.05 0.17 0.52 0.02 0.07 0.17
World1 0.02 0.06 0.18 0.05 0.21 0.48
World2 0.04 0.11 0.35 0.03 0.14 0.33
World3 0.02 0.07 0.21 0.05 0.20 0.46
World4 0.05 0.16 0.49 0.02 0.08 0.20
World5 0.26 0.24 0.25 0.08 0.09 0.08
World6 0.05 0.49 0.18 0.02 0.20 0.06
World7 0.52 0.17 0.05 0.16 0.07 0.02
World8 0.18 0.05 0.52 0.06 0.02 0.17



 A. E. Rabaa et al.

1 3

polynomial-time exact algorithms, or more efficient heuris-
tics with no mathematical guarantee on solution accuracy.

With this in mind, we start by first exploring exact GAP 
algorithms from the literature. A common outline for solving 
GAP is the branch-and-bound (BB) method. We examine 
three algorithms from this category: 1) the BB with multi-
plier adjustment method (MAM) by Fisher et al. [11, 21], 
2) the BB with steepest descent MAM by Karabakal et al. 
[18] and 3) the BB with variable fixing by Posta et al. [27]. 
These three algorithms all use the BB technique, the main 
differences between them being the way lower bounds are 
computed, the branching strategies and extra computations 
involved (such as variable fixing in [27]). Assuming that 
fairness values are pre-computed, the worst-case scenario 
for the exact BB algorithms includes visiting all possible 
solutions, plus additional computations depending on the 
algorithm (e.g., computing the initial lower bound, or extra 
computations inside a search node). Therefore, all three 
exact algorithms have an exponential running time in the 
worst case.

For use cases where efficiency is more essential than 
solution accuracy, heuristic algorithms may also be worth 
considering. For this, we explore and test various heuristics 
from the literature that solve GAP, including: 1) MTHG, 
a polynomial-time greedy search with regret measure pro-
posed by Martello and Toth [21]; 2) a Local Search Descent 
method by Osman [25]; and 3) a Tabu Search method by 
Osman [25]. In the next section, we compare all of these 
exact and heuristic algorithms, both in terms of performance 
and solution quality.

4  Experiments

To evaluate our framework, we design two sets of experi-
ments. The first set aims to study the scalability of our algo-
rithms to solve the different job seeker and job provider 
optimization problems as the number of jobs, the number 
of platforms and the number of worker groups increase. 

For such experiments, we rely on purely synthetic data. 
The second set of experiments aim to qualitatively analyze 
the solutions provided by our algorithms. For that, we use 
semi-synthetic data generated from a real-world online labor 
platform.

We divide this section as follows. First, we explain how 
the semi-synthetic dataset (used in qualitative experiments) 
is generated. Following that, we provide a summary of our 
findings. We then describe the different experiments (both 
scalability and qualitative) and their results for the job seeker 
problems. Finally, we describe the experiments and the 
results for the job provider problems.

4.1  Data Generation

To simulate multiple semi-synthetic platforms, we use the 
TaskRabbit dataset from [1], which is composed of 75% 
males and 25% females, and 24% blacks, 69% whites and 
7% asians. We then generate eight different “worlds” from 
it using interventions [30]. An intervention is a sampling 
of workers from the initial dataset such that the sampled 
“world” matches a specific distribution of protected attrib-
utes (in our case either on gender or ethnicity). When gen-
erated, each of the obtained worlds is treated as a separate 
platform. The resulting dataset, consisting of the original 
TaskRabbit data and the eight new worlds, are saved, and we 
refer to these nine platforms collectively as the alternative 
worlds. In the remainder of this section, we will be inter-
changeably using world and platform to refer to platforms.

The worlds world1 to world4 are created based on gender 
interventions from the original world as follows: world1 has 
percentages of males and females switched compared to the 
original; world2 is composed of 50% males and 50% females; 
world3 is composed of 30% males and 70% females; and 
finally world4 is composed of 70% males and 30% females.

The worlds world5 to world8 are created based on ethnic-
ity interventions from the original world as follows: world5 
contains 33% black, 33% white and 34% asian workers. 
Worlds 6 through 8 are created by switching the percentages 

Fig. 6  Naive vs. Top-k runtimes 
for k = 20
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of two of the ethnicities from the original world. So, world6 
is created by swapping the percentages of whites and blacks, 
world7 by swapping those of whites and asians and finally 
world8 by swapping those of blacks and asians. A summary 
of the resulting platforms and their worker distributions can 
be found in Table 2.

4.2  Summary of Results

4.2.1  Scalability Experiments

We first examine our solution to the unconstrained job seeker 
problem. We find that while the number of job-platform pairs 
retrieved (i.e., k) does not affect scalability, increasing the 
number of job-platform pairs and the number of protected 

attributes render the naive algorithm that loops over all jobs, 
platform and groups unusable. The top-k algorithm (Algo-
rithm 1), on the other hand, scales very well. We then exam-
ine our solution to the constrained job seeker problem. We 
find that the DP algorithm (Algorithm 2) is much faster than 
an integer linear programming (ILP) baseline, for all values 
of k. Both algorithms’ runtimes increase with the number of 
job-platform pairs but the observed increase for DP is less 
pronounced than for ILP.

We now turn to the job provider problem with global 
budget. The DP algorithm (Algorithm 4) is faster than an 
ILP baseline for all job-platform pairs, and its runtime is 
less steep than that of the ILP as the number of job-platform 
pairs increases. We also find that DP time increases linearly 
as the budget increases.

Finally, we examine our solution to the job provider prob-
lem with local budget. We compared three exact algorithms 
from the literature: 1) the branch-and-bound (BB) algorithm 
with multiplier adjustment method (MAM) by Fisher et al. 
[11, 21], 2) the BB with steepest descent MAM by Kara-
bakal et al. [18] and 3) the BB with variable fixing by Posta 
et al. [27], to an ILP solver and found that they do not per-
form significantly faster. In fact, the method by Fisher et al. 
was far slower and the algorithm did not provide a solution 
after considerable time. We also considered three heuristic 
algorithms to solve this problem, namely: 1) MTHG by Mar-
tello and Toth [21]; 2) a Local Search Descent method by 
Osman [25]; and 3) a Tabu Search method by Osman [25]. 
Comparing these algorithms to an ILP solver, we found that 
all three heuristic algorithms perform much faster than the 
ILP solver for increasing values of job-platform pairs while 
returning solutions within 2% from optimality on average.

Fig. 7  Top-k algorithm runtime vs. number of protected attributes n 
( k = 20)

Fig. 8  Occurrences of each platform in the seekers’ top-5 retrieved job-platform pairs
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4.2.2  Qualitative Experiments

In our qualitative experiments for the unconstrained job 
seeker problem, we observe that the top-5 fairest job-plat-
form pairs vary across seekers. We also notice that some 
platforms and jobs occur more frequently than others in the 
top-5 retrieved pairs for different seekers. This implies that 
some platforms like world2 and world4 are fairer than others 
across worker groups. Similarly, some jobs like “London UK 
Cleaning,” “Furniture Shopping and Assembly in Columbus, 
OH” and “Pack for a Move in Raleigh, NC” are fairer than 
others across worker groups. Finally, we also observe that 
seeking jobs on multiple platforms yields higher overall fair-
ness value than seeking jobs on any of the platforms alone.

On the other hand, our qualitative experiments for the 
constrained job seeker problem allow us to observe that the 
top-5 job-platform pairs differ from the ones returned by the 
solution to the unconstrained one. This, in turn, indicates 
that the constraints are taking effect and validates the neces-
sity of the constrained version of the problem.

In the qualitative experiments of the job provider problem 
with global budget, we find that the optimal fairness values 
returned are not the same for individual platforms, and that 
considering all platforms together yields a much better fair-
ness value than any of the nine platforms separately. We also 
observe that a higher budget limit implies a better fairness 
value but only up until a certain point. When the algorithm 
reaches an optimal job-platform pairs selection, increasing 
the budget limit further does not improve the overall fair-
ness value.

Finally, for the job provider problem with local budget, 
we first fixed a total overall budget and sought to determine 
what achieves more fairness: fewer platforms with higher 
budgets per platform, or more platforms with smaller budg-
ets each. We find that choosing the right number of platforms 
is a trade-off. While increasing the number of platforms does 
give us more options in terms of job-platform pairs, it also 
divides the budget limit over more platforms, tightening the 
budget constraints. In such scenario, choosing the best “mid-
dle ground” number of platforms of interest should be han-
dled on a case-by-case basis. Our last experiment shows that 
for the same input data and when selecting only one platform 
of interest, the fairness values obtained for the job provider 
problem with local budget are the same as those of the job 
provider problem with global budget, since for the case of 
one platform, the two problems are equivalent. However, 
when selecting multiple platforms of interest, the obtained 
fairness values are lower for the local budget problem vari-
ant. This is because for multiple platforms, the constraints of 
the job provider problem with local budget are tighter than 
just having a global budget constraint. This further justifies 
the problem version with local budget.

4.3  Job Seeker Experiments

4.3.1  Unconstrained Problem Scalability Experiments

We conducted two experiments to demonstrate the scalabil-
ity of the top-k algorithm (Algorithm 1) we proposed to 
solve the unconstrained job seeker problem. Both experi-
ments were run on an Apple MacBook Pro with a 2.3 

Fig. 9  Occurrences of each job in the seekers’ top-5 retrieved job-platform pairs
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GHz dual-core Intel Core i5 processor and 8 GB of RAM. 
When recording runtimes, real (wall-clock) time was used, 
since the top-k algorithm relies on disk reads and memory 
accesses, which should be accounted for.

In the first experiment, we built a fully synthetic dataset 
consisting of 5000 jobs and 70 platforms. Each job in each 
platform was represented as a file, consisting of a ranked 
list of workers. The number of these workers for each job-
platform pair was set to a random value between 0 and 50. 

In addition, each worker was assigned random values for 
two protected attributes. Form this generated data, we then 
built the required inverted lists that the top-k algorithm uses. 
More precisely, we built an inverted list for every possible 
worker group, which consists of job-platform pairs along 
with their fairness values for the corresponding group sorted 
in descending order of fairness. To compute fairness values, 
we used the two metrics defined in [1], namely Earth Mover 

Fig. 10  Sum of fairness values 
for the top-5 job-platform pairs 
per seeker

Fig. 11  Comparing worker counts for the 20 selected jobs in world2 vs. world7
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Distance (EMD) and Exposure. That is, this scalability 
experiment was run using both metrics.

Given the above setup, we then ran both the top-k algo-
rithm and the naive baseline algorithm that loops over all 
jobs, platform and groups, with increasing values of |J| , |P| 
and k3. For each run, we generated 10 job seekers, where 
each seeker’s protected attributes were selected at random. 
We assigned to each of these 10 job seekers |J| jobs and |P| 
platforms of interest at random. We then retrieved the top-k 
job-platform pairs for each seeker using both the naive and 
the top-k algorithms. Each possible (|J|, |P|, k) combination 
was run for all seekers (one run per seeker, so a total of 10 
runs per combination ), and the average running time of each 
algorithm per combination was recorded.

After running the just-described experiment, we observed 
that the results for different values of k showed very simi-
lar trends. Therefore, we only focus on k = 20 to compare 
the naive and the top-k algorithms here, and the results for 
additional values of k are given in Appendix B. For k = 20 , 
Fig. 6 shows that as the number of pairs ( N = |J| × |P| ) 
increases, the naive algorithm becomes much slower, while 
the top-k algorithm becomes slightly faster until its speed 
eventually plateaus, which indicates that the top-k algorithm 
scales much better than the naive one. Moreover, the figure 
shows that the naive algorithm performs better when using 
the Exposure fairness metric (Sub-figure b) compared to 
when using EMD (Sub-figure a), as EMD is more compu-
tationally expensive. In contrast, this behavior is not seen 
for the top-k algorithm, as it makes use of inverted lists to 
store pre-computed fairness values. This makes the top-k 
algorithm’s runtime independent of the fairness “blackbox” 

used. Given this observation and for space limitation, we 
only present the results using EMD as a fairness metric in 
the rest of this section.

Our second scalability experiment aims to analyze how 
well the top-k algorithm scales as the number of protected 
attributes n increases. Before we describe the setup of this 
experiment, it is important to first distinguish between 
a protected attribute and a group. A worker group repre-
sents a combination of one or more protected attributes 
that are assigned a value, e.g., {gender ∶ }}female��} . 
This means that, when n attributes are being considered, 
each worker belongs to all groups that are combinations 
of one or more of their protected attributes’ values. For 
example, an asian male belongs not only to the group 
{gender ∶ }}male��, ethnicity ∶ }}asian��} ,  but also to 
{gender ∶ }}male��} and {ethnicity ∶ }}asian��} . Assuming 
that a worker can only have one value for an attribute at a 
given point in time, the maximum number of groups that 
each worker belongs to is 2n − 1 , which is the size of the 
powerset of the attributes set, minus the empty set.

To conduct our second scalability experiment, we gener-
ated another fully synthetic dataset, again with 5000 jobs and 
70 platforms as in our first dataset. But unlike the former 
dataset, this one makes use of 256 synthetic groups num-
bered group1 to group256 in order to scale up the number 
of groups each seeker can belong to. This new dataset con-
sists of a set of inverted lists, one for each worker group. 
Each such inverted list contains job-platform pairs with 
their fairness values for the group that the inverted list cor-
responds to, again sorted in descending order of fairness. 
The experiment then goes as follows for increasing values 
of |J| , |P| , and n, the number of protected attributes. For each 
(|J|, |P|, n) combination, 10 job seekers are generated and 
assigned |J| jobs and |P| platforms of interest each, selected 
at random. The job seeker problem is then solved for each 

Fig. 12  Performance of the ORTools solver (LP) and the dynamic 
programming algorithm (DP) algorithm

Fig. 13  DP algorithm runtimes wrt. the number of protected attrib-
utes n 

3 |J| is the number of jobs, |P| is the number of platforms, and k is 
the number of job-platform pairs with the maximum fairness to be 
returned by the algorithms.
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seeker using the top-k algorithm, and the average solving 
time over the 10 runs was recorded.

The runtime of the top-k algorithm as we vary the number 
of protected attributes n is shown in Fig. 7. As can be seen 
from the figure, the runtime of the algorithm grows exponen-
tially as the number of protected attributes increases. This 
is intuitive given that when we consider n protected attrib-
utes for each seeker, the top-k algorithm needs to operate on 
2n − 1 inverted lists concurrently that correspond to 2n − 1 
groups the job seeker belongs to, as explained just above.

4.3.2  Unconstrained Problem Qualitative Experiments

We design two experiments to qualitatively demonstrate the 
utility of solving our unconstrained job seeker problem. Both 
experiments utilize our semi-synthetic data that was obtained 
from the real-world online labor platform TaskRabbit and 
where nine additional worlds (i.e., platforms) were generated 
using interventions on protected attributes.

The first experiment focuses on the alternative worlds, 
and how their demographic group distributions affect the 
search results for seekers of different groups. To this end, 
we generated six seekers (one per gender/ethnicity com-
bination), set the same |J| = 20 random jobs of interest to 
all of them, set their platforms to be the nine alternative 
worlds, and retrieved the top-5 fairest job-platform pairs 
for each seeker using our top-k algorithm. For each top-5 
retrieved pairs, the number of occurrences of each platform 
is shown in Fig. 8, and the number of occurrences of each 
job in Fig. 9.

As can be seen in Fig. 8, platforms world2 and world4 
are present in all of the seekers’ top-5 retrieved job-platform 
pairs, suggesting that these worlds are fair to every group for 
the 20 chosen jobs of interest. On the other hand, we see that 
TaskRabbit and world7 do not occur in any of the seekers’ 
top-5 retrieved pairs, which suggests that these platforms 
are the least fair for the chosen jobs. Note that while Task-
Rabbit and world4 have similar group statistics as can be 
seen in Table 2, these statistics for individual jobs can differ. 
For example, the job “Pack for a Move in Raleigh, NC” in 
TaskRabbit consists of 83% male and 17% female workers, 
while the same job in world4 consists of 75% male and 25% 
female workers. Also note that the percentage of workers 
from a particular group does not correlate with how fair the 
platform is with respect to that group. For example, world6 
consists of 49% black males, the highest percentage of black 
males among all platforms (see Table 2). However, world6 
is not considered one of the top-5 fairest platforms for the 
black male seeker since the ranks of black males in this plat-
form are lower on average compared to other platforms for 
all considered jobs.

Finally, as can be seen in Fig. 9, the job “Cleaning in 
London, UK” appears in the top-5 retrieved job-platform 
pairs for all job seekers regardless of their groups, implying 
that this job is fair to all demographic groups in our study. 
Other frequently appearing jobs are “Furniture Shopping and 
Assembly in Columbus, OH,” which appears in the top-5 
for all groups except the black one, and “Pack for a Move 
in Raleigh, NC” which appears for all groups except the 
asian one.

Fig. 14  Finding the optimal number of digits to map fairness values from floats to integers
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The second experiment investigates how the chosen 
worlds of preference affect a seeker’s chances of finding fair 
jobs. For this, we fixed one random set of 20 jobs of interest, 
and assigned it to all six seekers. Then, for each seeker and 
alternative world pi , we retrieved the seeker’s top-5 fairest 
jobs in platform pi . We also retrieved the seeker’s overall 
top-5 fairest jobs considering all of the platforms (i.e., by 
solving our unconstrained job seeker problem). Finally, for 
each top-5 retrieved job-platform pairs, the sum of the pairs’ 
fairness values was computed, which is shown in Fig. 10.

Fig. 15  Occurrences of each platform in the seekers’ top-5 retrieved job-platform pairs

Fig. 16  Occurrences of each job in the seekers’ top-5 retrieved job-platform pairs

Table 3  Sum of fairness values and rewards for the top-5 retrieved 
job-platform pairs

Seeker Sum of fairness values Sum of rewards

Male asian 43434 402
Male black 38456 400
Male white 39750 401
Female asian 43434 402
Female black 38607 402
Female white 38753 401
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As can be seen from the figure, solving our uncon-
strained job seeker problem results in the highest total fair-
ness as compared to retrieving the top-5 fairest jobs from 
any of the platforms alone. This demonstrates the utility 
of considering multiple platforms at the same time when a 
job seeker is looking for a job. Moreover, the figure shows 
that world7 has the lowest sum of fairness values across 
all worker groups, which indicates that world7 is the least 
fair platform for the chosen set of jobs. Recall that world7 
is sampled from the TaskRabbit platform by reversing the 
percentage of asian and white workers. As asians form a 
minority in the original TaskRabbit platform (7% of all 
workers), this world has by far the fewest number of work-
ers in it, which can negatively affect fairness values.

To further understand the reason behind world7’s rela-
tively low fairness for the selected jobs, we compare sta-
tistics between this world and world2, one of the worlds 
that is considered the most fair across all worker groups 
as can be seen in Fig.  10. We first compare the number 
of workers in world2 and world7 for the 20 jobs shown in 
Fig. 11. The plot shows that the 20 jobs in world7 have in 
general very few workers compared to world2, with most 
of these jobs having fewer than 5 workers each. We also 
notice that many of these jobs only have workers from 
very few groups (especially the jobs that have very few 
workers). This leaves many worker groups unrepresented 
for these jobs, and hence there are no fairness values for 
those (job, world, group) combinations. As a result, these 
combinations cannot appear in any seeker’s top retrieved 
job-platform pairs.

4.3.3  Constrained Problem Scalability Experiments

Similar to the case of the unconstrained job seeker prob-
lem, we again conducted two experiments to demonstrate 
the scalability of the DP algorithm we proposed to solve the 
constrained job seeker one. Again, all experiments were run 
on an Apple MacBook Pro with a 2.3 GHz dual-core Intel 
Core i5 processor and 8 GB of RAM. However, unlike the 
experiments for the unconstrained problem, we used CPU 
time here to record runtimes.

Our first experiment here aims to study the scalability 
of the DP algorithm (Algorithm 2) we proposed to solve 
the constrained job seeker problem. For this experiment, 
the number of protected attributes considered is fixed to 2 
(so n = 2 ), meaning each seeker belongs to |G| = 22 − 1 = 3 
groups. For increasing values of N and k, we simulate prob-
lem instances as follows. First, we generate N synthetic 
job-platform pairs, each associated with a set of |G| fairness 
values, one for each of the seeker’s groups (so three integers 
selected at random between 1000 and 9999; integers since 
the DP algorithm operates on integer fairness values) and 
an integer reward value, randomly selected between 10 and 
99. From there, the problem’s objective is to find the top-k 
job-platform pairs that maximize fairness while satisfying a 
reward threshold of 80 × k . The threshold was set as a func-
tion of k as it is intuitive that the higher the number of the 
job-platform retrieved is, the higher the reward threshold of 
the job seeker is expected to be.

For each (N, k) combination considered, we randomly 
generated 10 problem instances as described above, and 
then solved each instance in two ways: 1) using our DP 

Fig. 17  Sums of fairness values 
for the top-5 job-platform pairs 
per seeker
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algorithm, and 2) an off-the-shelf integer linear program-
ming (ILP) solver (Google’s ORTools4). We then recorded 
the average runtimes of each method over the 10 runs as N 
increases, which are shown in Fig.  12. As can be seen in the 
figure, the proposed DP algorithm solves the constrained job 
seeker problem much faster than the general-purpose ILP 
solver, for all values of k. Both algorithm’s runtimes seem 
to increase as N increases, but this observed increase for DP 
is less pronounced and much more linear than for ILP. This 
suggests that the proposed DP algorithm scales much better 
than ILP in terms of N. With respect to k, we observe that the 
DP algorithm’s runtime also increases with k, but the ILP’s 
seems to remain mostly unchanged as k varies, suggesting 
that the ILP’s running time does not depend much on k.

Next, we examine how the DP algorithm performs as 
the number of protected attributes n increases. For this, we 
repeat the experiment above, but instead of setting n = 2 
protected attributes, we run the experiment for increas-
ing values of n. The results are shown in Fig. 13. We can 
see that up until n = 11 , the DP algorithm’s runtime does 
not change much, but then grows exponentially after that 
point. Remember that the DP algorithm consists of two 
main stages: a “preprocessing” stage where the minimum 
fairness of each job-platform pair is computed, with time 
complexity O(|J||P||G|) , followed by a solving phase using 
dynamic programming, with complexity O(|J||P|kR) . As can 
be observed from Fig. 13, the point where the runtime of the 
algorithm starts to increase exponentially is the point where 
the value of |J||P||G| becomes as significant (same order 
of magnitude) as |J||P|kR . From there, we conclude that as 
long as the number of groups |G| = 2n − 1 is of smaller order 
of magnitude than kR, the DP algorithm’s runtime will not 
depend much on n.

4.3.4  Constrained Problem Qualitative Experiments

We conducted two qualitative experiments to demonstrate 
the utility of solving our constrained job seeker problem. 
However, as the DP algorithm expects fairness values to be 
integers, and our fairness blackbox provides fairness values 
as floats between 0 and 1, we first had to convert the fair-
ness values to integers before invoking the algorithm. Note 
that we did not need to do that for the scalability experi-
ments, since these experiments were conducted on fully 
synthetic data and thus fairness values were generated as 
integers rather than floats. To convert fairness values from 
floats to integers for the semi-synthetic data the qualitative 

Fig. 18  Runtimes of the DP algorithm vs. the ILP solver wrt. number 
of job-platform pairs N 

Fig. 19  Runtimes of the DP algorithm vs. ILP solver wrt. budget 
limit B 

Fig. 20  Sum of fairness values for the selected job-platform pairs

4 https:// devel opers. google. com/ optim izati on.

https://developers.google.com/optimization
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experiments are conducted on, we resorted to truncating 
each fairness value to d significant digits, and then multiply-
ing the result by 10d . For example, if d = 2 , then a fairness 
value of 0.831 will be mapped to the integer 83, and the 
range of possible integer values will be between 0 and 99.

However, we need to ensure that d is large enough to 
avoid mapping too many fairness values to the same integer, 
yet small enough that the fairness integers are not too large 
or too granular. An optimal value of d would thus be the 
smallest value that gives us enough precision when truncat-
ing the fairness values, so as to avoid too many collisions 
when mapping to integers. To find the optimal d, we con-
sidered integers from 1 to 8 as candidate values. For each 
candidate value of d, we took all fairness values in our semi-
synthetic dataset, and mapped them to d-digit integers. We 
then binned the resulting values in a histogram, where the 
bins are {0, 1, 2, ..., 10d − 1} , so that we get for each possi-
ble integer value, the frequency of fairness values that were 
actually mapped to it.

Next, we recorded 1) the largest frequency observed (in 
percentage), which gives us the size of the largest collision 
in the histogram; and 2) the entropy of the obtained fairness 
values, which we used as an indicator of how well-distrib-
uted (and not biased toward certain values) the mappings 
are. Comparing these metrics between candidate values of 
d shows us how much “improvement” (fewer collisions), 
there is going from one precision d to the next. The observed 
values are shown in Fig. 14a and c.

As can be seen in Fig. 14a (with a zoomed in view in 
Fig. 14b), the size of the largest collision declines signifi-
cantly from d = 1 to d = 2 , followed by a slower decline at 
d = 3 , before stagnating mostly between d = 4 and d = 6 . 
We then see another marginal decline at d = 7 . This means 

that the biggest precision gains lie between d = 1 and d = 3 , 
with a relative gain starting from d = 7 onwards.

In addition, Fig.  14c reveals that the increase in entropy 
is most noticeable from d = 1 till d = 4 , with much slower 
increases from there till d = 6 , followed by a further increase 
at d = 7 . As entropy is a good indicator of the spread and 
variety of the obtained fairness values, we can then con-
clude that the most impactful decreases in collisions occur 
between d = 1 and d = 4 , with other relative improvements 
seen from d = 7 and on. Therefore, we conclude from the 
three figures that d = 4 is a reasonable precision to use.

We now describe our two qualitative experiments for 
the constrained job seeker problem. Both experiments use 
the exact same setting as the one conducted for the uncon-
strained job seeker problem. That is, we used the same six 
job seekers (one per gender/ethnicity combination) and 
assigned to them the same |J| = 20 random jobs of interest, 
and set the nine alternative worlds as platforms of interest 
P. As the constrained job seeker problem also assumes that 
each job-platform pair is associated with a reward value, 
we assigned each job-platform pair in J × P with a random 
reward value between 1 and 100. We then retrieved the top-5 
fairest job-platform pairs with a total reward of at least 400 
for each seeker using our DP algorithm. The goal of the two 
experiments is to confirm that our reward constraint is actu-
ally affecting the obtained top-k retrieved job-platform pairs, 
which in turn demonstrates the need for the constrained job 
seeker problem formulation, compared to the unconstrained 
one.

In the first experiment, we recorded the number of times 
each world (i.e., platform) and job occurs in every seeker’s 
top-5 job-platform pairs retrieved by the DP algorithm. Fig-
ure 15 shows the number of occurrences of the different 
worlds in each of the top-5 retrieved job-platform pairs per 
job seeker . Similarly, Fig. 16 shows the number of occur-
rences of the different jobs in each of the top-5 retrieved job-
platform pairs per job seeker. In addition, Table  3 shows the 
sum of (four-digit) fairness values and the sum of rewards 
for each top-5 retrieved job-platform pairs.

As can be seen in Figs. 15 and  16, the results are different 
from those of the unconstrained job seeker problem experi-
ment (Sect.  4.3.2), even though both experiments share the 
exact same setting apart from the reward threshold. This 
indicates that the reward threshold is actively affecting the 
choice of which job-platform pairs are being retrieved by 
the DP algorithm. Table 3, on the other hand, shows that 
the reward constraint is indeed met for every retrieved top-5 
job-platform pairs as they all have a reward of at least 400. 
In addition, each of the top-5 retrieved pairs have a satis-
factory total fairness as can be seen from the first column 
of Table 3. That is, in our experiment, the maximum total 
fairness achievable is 50,000 (i.e., 5.0 without the integer 
conversion, since we aim to select five job- platform pairs 

Fig. 21  Sum of fairness values of the selected job-platform pairs vs. 
budget limit
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and the maximum fairness for each pair is 1). Looking at 
the obtained total fairness for each seeker in Table 3, they 
are all around 40,000, so around the higher end of the [0, 
50000] scale.

For the second experiment, we again used the same sets 
of seekers, jobs and platforms as we did in the first experi-
ment. However, in this experiment, we retrieved for each 
job seeker the top-5 jobs in platform pi ∈ P that maximize 
fairness, while satisfying the reward constraint (of at least 
400). We also retrieved each seeker’s top-5 job-platform 
pairs using all platform P (i.e., by solving our constrained 
job seeker problem). Figure 17 shows the sum of fairness 
values for each top-5 retrieved pairs, when each platform 
is considered separately and when all of them are consid-
ered together. As can be seen from the figure, solving our 
constrained job seeker problem results in the highest total 
fairness as compared to retrieving the top-5 fairest jobs from 
any of the platforms alone. This demonstrates the utility of 
considering multiple platforms at the same time when a job 
seeker is looking for a job, even with presence of a reward 

constraint. Comparing the results to the ones of the cor-
responding unconstrained run, we note here again that the 
results of the two experiments differ, which further confirms 
that the reward constraint is taking effect as expected.

4.4  Job Provider Experiments

4.4.1  Global Budget Problem Scalability Experiments

We conducted two experiments to assess the scalability of 
the DP algorithm (Algorithm 4) we proposed to solve the job 
provider problem with global budget. Both experiments were 
run on the same computer, an Apple MacBook Pro with a 
2.3 GHz dual-core Intel Core i5 processor. Runtimes were 
measured in CPU time.

In the first experiment, we generated 100 fully synthetic 
instances of the problem, assuming a fixed number of pro-
tected attributes n = 2 for workers in all of them. Each prob-
lem instance consisted of different N = |P| × |J| job-plat-
form pairs. Each such pair was associated with 2n − 1 = 3 
fairness values, corresponding to the different worker 
groups. These values were all set at random between 1000 
and 9999. Moreover, as the job provider problems assume 
that each job is associated with a cost for each platform it is 
available on, all costs for all job-platform pairs in all prob-
lem instances were set at random between 50 and 150. The 
goal of the experiment was then to assign each job to at most 
one platform so that their total fairness is maximized, while 
respecting a budget limit of 50 × |J| . We set the budget limit 
as a function of the jobs as it is intuitive to assume that the 
more jobs the job provider aims to deploy, the more budget 
she will be willing to spend to deploy these jobs.

Each problem instance was then solved using our DP 
algorithm and the Google ORTools ILP solver. Figure 18 
shows the average runtime of each method over the 100 
instances as the number of job-platform pairs N increases. 
As can be seen in the figure, the DP is significantly 
faster than the ILP solver for all values of N, and the DP 

Fig. 22  Exact algorithms’ runtimes wrt. N (number of job-platform 
pairs)

Fig. 23  Heuristic algorithms’ 
runtimes and optimality gap 
wrt. N (number of pairs)
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algorithm’s runtime increases much slower than the ILP one 
as N increases.

Next, as the budget limit B is part of the DP algorithm’s 
time complexity as explained in Sect.  3, we designed a sec-
ond scalability experiment to see how the runtime of the 
algorithm is affected by the value of B. To this end, we fixed 
the number of jobs and of platforms to |J| = |P| = 50 , and 
generated 100 instances of the problem with random fairness 
and cost values for each job-platform pair. Each problem 
instance was then solved with different values of B, by both 
the DP algorithm and the ILP solver. Figure 19 shows the 
average runtimes of the two methods as B increases. As can 
be seen from the figure, the runtime of the DP algorithm 
increases linearly as B increases, whereas the runtime of the 
ILP solver is hardly affected by the budget limit B.

4.4.2  Global Budget Problem Qualitative Experiments

We conducted two experiments to demonstrate the utility of 
solving our job provider problem with global budget using 
the same semi-synthetic dataset we used in the qualitative 
experiments of the job seeker problems. The first experi-
ment aimed to study to what extent the platforms of interest 
of a job provider affect the fairness of the assigned jobs on 
these platforms. To do this, we created one job provider, and 
fixed her jobs of interest to 20 random jobs. Each of the 20 
jobs were assigned a random cost between 50 and 150 for 
each platform out of the nine we have in our dataset, and 
on which the job is available. We then solved the job pro-
vider with global budget problem assuming a budget limit 
of 1000 using our proposed DP algorithm. In addition, for 
each platform pi , we selected the jobs that maximize sum of 
their fairness and where their total cost on the platform pi 
does not exceed the budget limit of 1000.

Figure 20 shows the sum of the fairness values of the 
selected jobs per platform as well as the sum of the fair-
ness values of the job-platform pairs returned by solving 
our overall optimization problem. Note that unlike the job 
seeker problems, the plot here is two-dimensional, since the 
“group” dimension is not relevant for the job provider prob-
lems. From this figure, we can make two observations. First, 
and as is the case in the job seeker qualitative experiments, 
not all platforms achieve comparable fairness values. That 
is, for the same jobs and same budget limit, some worlds 
like world4 yield noticeably better fairness values than other 
worlds, while others like world7 achieve lower fairness val-
ues. Second, solving our job provider problem with global 
budget using all platforms (indicated by “overall” in Fig.  20 
) results in the maximum total fairness for the selected job-
platform pairs than when selecting the jobs that maximize 
fairness from each platform individually. This highlights the 
importance of solving our job provider problem with global 
budget.

Our second qualitative experiment aimed to answer the 
question: does a higher budget limit necessarily imply select-
ing more fair job-platform pairs? To do this, we again cre-
ated one job provider, with the same 20 jobs of interest as 
the previous experiment, and we assumed the provider’s 
platforms of interest to be all nine alternative worlds. We 
then solved our job provider problem with global budget, 
varying the budget limit between 1000 and 2000. Figure 21 
shows the sum of fairness values of the selected job-platform 
pairs. As shown in the figure, the obtained sum of fairness 
values increases slightly at first as the budget limit becomes 
more permissive, before eventually plateauing when the 
budget limit reaches 1300. This happens because, in this 

Fig. 24  Total fairness obtained vs. number of platforms of interest

Fig. 25  Total fairness obtained per platform(s) of interest
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particular problem instance, the jobs-to-platforms assign-
ment with the maximum fairness possible has a cost of 1204. 
Thus, increasing the budget limit beyond 1204 cannot pro-
duce any better results fairness-wise, and will return this 
same optimum solution.

4.4.3  Local Budget Problem Scalability Experiments

Our scalability experiment for the job provider problem 
with local budget aimed to compare a selection of both 
exact and heuristic algorithms to solve the generalized 
assignment problem (GAP), which we have shown in 
Sect.  3 to be equivalent to the job provider problem with 
local budget, and hence can be used to solve it as well. To 
this end, we generated 100 instances of the problem using 
fully synthetic data, assuming a fixed number of protected 
attributes n = 2 for workers in all of them. Each problem 
instance consisted of different N = |P| × |J| job-platform 
pairs. Each such pair was associated with 2n − 1 = 3 fair-
ness values, corresponding to the different worker groups. 
These values were all set at random between 1000 and 
9999. Moreover, as the job provider problems assume 
that each job is associated with a cost for each platform 
it is available on, all costs for all job-platform pairs in 
all problem instances were set at random between 50 and 
150. Finally, since the local budget problem assumes the 
presence of a local budget bp for each platform of interest 
p ∈ P , this local budget limit was set as follows:

and where � is a random integer between 0 and 49.
The point of the above formula is to roughly even out the 

budget limits across platforms, while still having some fluc-
tuation in the bp values. That is, we start with a total budget 
limit of 100 × |J| (so double that of the global budget vari-
ant), which will now be divided over the platforms. Hence, 
each platform will have 100×|J||P|  budget, plus a random value 
� to add some variations in the budget limits. From there, the 
goal of the experiment is then to solve these problem 
instances using each of the algorithms considered, as well 
as a generic ILP solver (ORTools). This experiment was also 
run on an Apple MacBook Pro with a 2.3 GHz dual-core 
Intel Core i5 processor. Runtimes were measured in CPU 
time.

We explored the following three exact algorithms for 
solving our job provider problem with local budget:

• The BB algorithm by Fisher et al. [11], following the 
pseudo-code in [21];

bp =

⌈
100 × |J|

|P|

⌉
+ �

• The BB algorithm by Karabakal et  al. After param-
eter tuning, we set the root subgradient iteration limit 
(“ROOTSUBITLIM”) to 200, the subgradient limit at 
other nodes to 100 and the maximum branching limit 
to 200,000, with all other parameters being kept at their 
default values.

• The BB algorithm by Posta et al. After parameter tuning, 
we set the subgradient iteration limit to 30, the root bun-
dle iteration count to 25000 and kept all other parameters 
at their default values.

For the three algorithms, the experiment was run on the 
same 100 problem instances we described above. However, 
the Fisher et al. algorithm was extremely slow and did not 
terminate for many instances despite our best efforts at opti-
mizing its code. Thus, this algorithm was not included in the 
rest of the experiment. The runtimes of the rest of the exact 
algorithms as well as an ILP baseline solver (ORTools) are 
shown in Fig.  22. As can be seen from the figure, both Kara-
bakal et al.’s and Posta et al.’s algorithms scale fairly well 
as the number of job-platform N increases, with Karabakal 
et al.’s method having a slight edge. However, neither of the 
two algorithms was significantly faster than the ILP solver, 
as can be seen from Fig.  22.

We also explored the following three heuristic algorithms 
to solve our problem:

• MTHG
• Osman’s LS Descent method (LS) without long-term 

procedure
• Osman’s Tabu Search method (TS) without long-term 

procedure

For the Tabu Search method, the MAXI and tabu list size 
parameters were kept as in [25]; and all other parameters for 
all the algorithms were kept at their default values. The three 
algorithms, as well as an ILP baseline solver (ORTools), 
were then run on the same 100 problem instances we gener-
ated. Since the three algorithms are heuristic (i.e., approxi-
mation) algorithms, they might not return the optimal solu-
tion to our optimization problem. Thus, we also evaluated 
the solution quality of each algorithm, which is computed 
as the gap between the sum of fairness values for the job-
platform pairs selected by a heuristic algorithm zh , and the 
one for the pairs selected by ORTools, zopt (which is an exact 
algorithm, hence providing an optimal solution). More pre-
cisely, this solution quality was computed as follows:

alignedoptimality_gaph =

{ zopt−zh

zopt
amp; if zopt ≠ 0

0 amp; otherwise.
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Figure 23a shows the runtimes of the different heuristic algo-
rithms vs the ILP solver, while Fig.  23b shows the optimal-
ity gap for each algorithm as the number of job-platform 
pairs N increases. As can be seen from the figure, all three 
heuristic algorithms are significantly faster than the ILP 
solver, while returning relatively good solutions within 2% 
from optimality on average. Therefore, if an exact solution 
is not a must, then heuristics can be a good more efficient 
alternative to exact algorithms for solving the job provider 
problem with local budget.

4.4.4  Local Budget Qualitative Experiments

We designed two experiments to demonstrate the utility of 
solving our job provider problem with local budget. The 
first one aimed to study the trade-off between the number 
of platforms of interest for a job provider versus the local 
budget limits for these platforms with respect to the total 
fairness obtained by solving our problem. To this end, we 
again relied on our semi-synthetic data as we did in all previ-
ous qualitative experiments. That is, we created a job pro-
vider and then used the same setting as in the first qualitative 
experiment for the job provider with global budget, which 
is described in Sect.  4.4.2. More precisely, we assumed all 
nine alternative worlds to be potential platforms of interests, 
and we assigned the job provider the same 20 random jobs 
of interest with their fairness values on different platforms 
also generated at random as described in that experiment. 
We then assumed that the job provider has a limited total 
budget she cannot exceed when deploying the jobs on the 
platforms, which we set to 1000 like in the first experiment 
in Sect.  4.4.2. We then varied the number of platforms |P| , 
and divided the budget limit evenly across them (if the total 
limit is not divisible by |P| , the remainder amount is added 
to the last platform). We ran the just-described experiment 
9 times. In the first run, we set P = {taskrabbit} as the plat-
form of interest, in the second run P = {taskrabbit,world1} , 
in the third, P = {taskrabbit,world1,world2} , etc. In each 
run, the job provider with local budget problem was solved 
using the Karabakal et al. algorithm [18], and the total fair-
ness of the optimal jop-platform assignment was recorded.

Figure 24 shows the total fairness obtained when solving 
our problem as the number of platforms increases. As can 
be seen in the figure, there is an apparent trade-off between 
total fairness and number of platforms. At first, total fairness 
generally increases, as we get more options (job-platform 
pairs) to select from. However, as we increase the number 
of platforms further, the budget limits keep getting tighter 
on each platform, and so we start seeing a decrease in the 
total fairness obtained.

Our second qualitative experiment aimed to study how 
the choice of platforms of interest affects the obtained 

total fairness. To do this, we used the same experiment 
setup as the first one, but this time for each run, only one 
platform is considered as a platform of interest rather 
than using subsets of them as in the first experiment. That 
is, for the first run, P = {taskrabbit} , for the second run, 
P = {world1} , the third, P = {world2} , etc., plus one final 
run where all the platforms are considered platforms of 
interest (i.e., thus solving our job provider problem with 
local budget). We assumed the same total budget of 1000 
for the job provider in all of the runs. In the case of a 
single platform of interest, that total budget was then used 
to select the jobs that maximize the sum of their fairness 
values on that platform, while their total cost is within the 
budget limit. For the run that utilizes all platforms, the 
total budget was distributed across the different platforms 
using the same strategy as in the first experiment.

Figure 25 shows the sum of fairness values for the 
selected job-platform pairs, when using each platform 
individually and when using all of them (indicated by 
“overall” in the figure). As can be seen from the figure, 
the total fairness obtained vary between platforms, and 
using all platforms together does not actually achieve the 
maximum fairness possible, but very close to it. This is 
intuitive given that the job provider problem with local 
budget imposes additional constraints on the job-to-plat-
form assignment, based on the available budget for each 
platform. This again shows a clear trade-off between local 
budget limits and fairness of the jobs on these platforms.

Moreover, when comparing these results to those of 
the equivalent experiment for the global budget problem 
(Sect.  4.4.2, which is shown in Fig.  20), we see that they 
are all identical, except for the last run (where all plat-
forms are considered as platforms of interest). This is 
again very intuitive as the job provider problems with local 
budget and global budget are identical when considering 
only one platform at a time. Finally, when considering all 
platforms, the total fairness obtained in the local budget 
experiment is lower than that obtained in the global budget 
experiment. Again, this is attributed to the fact that the 
problem with local budget imposes tighter constraints on 
the selection of jobs in each platform, compared to the 
global budget one. That is, while the total budget of 1000 
is the same in both experiments, the local budget variant 
has additional constraints on how costs should be distrib-
uted over all platforms.

5  Conclusion and Future Work

In this paper, we proposed a framework to assess and 
compare worker group fairness for multiple jobs on mul-
tiple online labor platforms. We based our framework on 
realistic use cases for both job seekers and job providers, 
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which we formulated as four optimization problems. We 
also proved that three of these problems are computation-
ally hard. As shown by our experiments, the algorithms 
we proposed for all four problems are efficient, and answer 
useful fairness-related inquiries.

In our experiments, we used two different notions of 
group fairness, but our framework is able to accommodate 
other notions of fairness as long as they rely on ranking or 
scoring of workers with respect to jobs, including individual 
fairness, which is the subject of our future work. Other pos-
sible future directions include using our framework to con-
duct real-world case studies, where real jobs and platforms 
are examined from a fairness standpoint. Also, it would be 
interesting to adapt our framework to handle fairness issues 
other than ranking, such as bias in worker ratings and evalu-
ations and to deploy our framework as a stand-alone service 
on top of existing online labor platforms.

Appendix A Proof of Theorem 1

Theorem 3 1 The optimization variant of the knapsack 
problem is polynomial-time reducible to the constrained job 
seeker problem, and therefore, the latter problem is at least 
as hard as the former.

Proof Note that by having only one group and one platform, 
the constrained job seeker problem reduces to the following: 
Given a list M of pairs mi = (fi, ri) , where fi is the assigned 
fairness value and ri the reward value, select k pairs such 
that fairness is maximized and the total reward is at least R. 
Using this version of the problem, we give a polynomial-
time reduction from the optimization version of Knapsack. 
Given a list L of pairs ai = (vi,wi) , where vi represents the 
value of the pair and wi its weight, and an integer W, the 
Knapsack problem asks for a subset of L of maximum value 
such that the total weight is at most W.

Given an instance of the knapsack problem where |L| = n , 
create a list M of n pairs mi = (fi, ri) where fi = vi and 
ri = W − wi . Moreover, add n additional pairs (0, W) to M. 
Set k = n and R = (n − 1)W  . We now prove equivalence of 
both instances. In other words, we prove that L contains a 
subset of total value X, satisfying the Knapsack constraints, 

if and only if M contains a subset of size n with total fairness 
X, satisfying the constrained job seeker problem constraints.

Assume L contains a subset A of size s (s ≤ n) of total 
value X and total weight WA ≤ W  . Construct a subset B of 
size n = k of M by taking ∀pi ∈ A its equivalent mi ∈ M , and 
finally add n − s ≤ n pairs of the form (0, W). Let FB denote 
the total fairness of B and RB its total reward.

Therefore,

Assume now that M has a subset B of size k = n of total fair-
ness X and total reward RB ≥ R . Let s denote the number of 
pairs (0, W) in B. By removing those s elements from B, we 
get a new set B′ consisting of elements originating from pairs 
in L, of total fairness X (since all removed pairs had f = 0 ) 
and total reward RB� = RB − sW ≥ (n − s − 1)W  . Construct 
the set A = {pi ∶ mi ∈ B�} ⊆ L . Let VA denote the total value 
of A and WA its total weight.

Therefore, 
∑

pi∈A

wi = WA ≤ W  .   ◻

Appendix B Additional Results

Figure 26 shows the runtimes of the naive algorithm vs. 
the top-k algorithm (Algorithm 1) when solving the uncon-
strained job seeker problem using both fairness metrics 
EMD and Exposure. Figure  27 shows the runtimes of the 
ORTools solver vs. the DP algorithm (Algorithm 2) when 
solving the constrained job seeker problem using the EMD 
fairness metric.

FB =
∑

mi∈B

fi =
∑

pi∈A

vi + (n − s) × 0 = X

RB =
∑

mi∈B

ri = sW −
∑

pi∈A

wi + (n − s)W

RB = nW −WA ≥ nW −W = (n − 1)W = R

VA =
∑

pi∈A

vi =
∑

mi∈B
�

fi = X

RB� =
∑

mi∈B
�

ri = (n − s)W −
∑

pi∈A

wi ≥ (n − s)W −W
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Fig. 26  Unconstrained job 
seeker problem: naive algorithm 
vs. top-k algorithm runtimes for 
different values of k 

Fig. 27  Constrained job seeker 
problem: ORTools solver vs. DP 
algorithm runtimes for different 
values of k 
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