
Cryptography and Communications
https://doi.org/10.1007/s12095-023-00639-1

Differential and linear properties of vectorial boolean
functions based on chi

Silvia Mella1 · Alireza Mehrdad1 · Joan Daemen1

Received: 20 October 2022 / Accepted: 7 March 2023
© The Author(s) 2023

Abstract
To evaluate the security of a cryptographic primitive, investigating its resistance against differ-
ential and linear cryptanalysis is required. Many modern cryptographic primitives repeatedly
apply similar round functions alternated with the addition of round keys or constants. A
round function usually consists of a non-linear mapping and a number of linear mappings.
The non-linear mapping χ is used in different cryptographic primitives such as Keccak and
Subterranean. An alternative version of χ is used in Ascon and the non-linear layer of
Simon has the same differential and linear properties of χ . The mapping χ can be applied to
strings with different lengths. For instance, it can be parallelly applied to small-length strings
as in Keccak, where it works on 5-bit strings, or it can be applied to big-length strings as in
Subterranean, where it works on a string of length 257. Investigating the differential and
linear properties of χ working on alternative lengths of strings, provides useful information
to designers to make a better choice for the non-linear layer. Some differential properties of
χ have been analyzed in [8] and in this work we provide a revised presentation of them. We
then extend this study and we analyze linear propagation properties of χ . Thanks to these
additional results, we extend the comparison between the application of parallel instances of
χ on small-length strings and the application of a single instance of χ on a big-length string.
We show how we can apply the results of this study also to the non-linear layers of Ascon
and Simon thanks to their affine-equivalence with χ .

Keywords Chi mapping · Differential cryptanalysis · Differential probability ·
Linear cryptanalysis · Linear approximation · correlation

Mathematical subject classification (2010) 94A60 · 06E30

B Silvia Mella
silvia.mella@ru.nl

Alireza Mehrdad
alireza.mehrdad@ru.nl

Joan Daemen
joan@cs.ru.nl

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-023-00639-1&domain=pdf

Cryptography and Communications

1 Introduction

Modern ciphers and cryptographic permutations consist of the repeated application of a round
function alternated with the addition of round keys or constants. A round function can usually
be divided into a non-linear layer and a linear layer. The non-linear layer provides confusion,
while the linear layer mixes different parts of the state and provides diffusion.

The design of modern cryptographic primitives like AES [10] and Keccak- f permuta-
tion [2] is motivated by the wide trail strategy, that underlies the design of round functions
with good resistance against differential and linear cryptanalysis. In a nutshell, it requires the
absence of high-probability differential propagation patterns, called differential trails, and
high-correlation propagation patterns, called linear trails.

When analyzing differential and linear trails, the differential and linear propagation prop-
erties of the non-linear layer play an important role. In particular, one is interested in the
probability of the propagation of a difference b at the input of the non-linear layer to a differ-
ence a at its output. The same holds for linear cryptanalysis where one exploits the probability
of the propagation of an input mask u to an output mask v. An ordered pair of input-output
differences (b, a) is called a differential and an ordered pair of input-output masks (u, v) is
called a linear approximation.

For a non-linear map f : Fn
2 → F

n
2 there exist 22n differentials and 22n linear approx-

imations. The number of input pairs satisfying each differential and linear approximation
are usually arranged in a 2n by 2n array, called the difference distribution table (DDT) and
linear approximation table (LAT), respectively. For small domains the DDT and LAT have
manageable sizes so one can build them by brute-force, but it is not the case when the map
works on a large dimension.

Keccak- f and some other cryptographic primitives, like Xoodoo [6] and Subter-
ranean [7], make use of the non-linear mapping χ . In the case of χ , one can compute the
probability of a differential or a linear approximation, without forming the DDT and LAT
but using the method introduced in [5]. It means that even if χ works on a big-length string,
computing the probability of a differential or linear approximation is still practical.

In addition to the computation of the probability of differentials and linear approximations,
determining the number of differentials and linear approximations with a given probability
gives useful information about how a non-linear layer may perform in the wide trail strategy:
fewer differentials (resp. linear approximations) with high probability results in less oppor-
tunity to form differential (resp. linear) trails with high probability over multiple rounds.
Therefore, when designing a cipher, it is useful to have the histograms with the number of
high probability differentials and linear approximations for the alternative choices of the
non-linear layer. While one can easily generate this histogram for the case where χ is applied
to small-length strings in parallel, it is challenging when χ is applied to a big-length string.

In [8], we presented a method to compute the number of differentials over χ with a given
probability and for arbitrary string lengths. In this work, we complement these results with
an analysis of the linear propagation properties through χ and we investigate the differential
properties ofχ given a specific output difference and the linear properties ofχ given a specific
input mask. For the sake of completeness, we include in this work a revised explanation of
the method and results presented in [8], since we will use them to compare the differential
and linear propagation properties of χ .

Our contribution In this work, we first present a method to compute the number of linear
approximations over χ with a given correlation and for arbitrary string lengths. Using this
method and the method in [8], we provide a comparison between the distribution of differen-

123

Cryptography and Communications

tials and linear approximations in some well known permutations whose non-linear layer is
based on χ . For the permutations based on the parallel application of χ on short strings, we
provide a comparison with χ applied on a single string whose length is the state size. Then,
we provide a comparison between the number of 2-round differential and linear trail cores
in Ascon and in Xoodoo and discuss how the results on differentials and linear approxi-
mations reflect also on 2-round trail cores. Finally, we study the propagation of 1-bit output
differences to input differences and the propagation of 1-bit input masks to output masks. We
discuss how this study can be applied to the non-linear layers of Simon [1] and Ascon [12],
due to their similarity with the mapping χ .

Organization of the paper In Section 2, we first provide our terminology and recall the spec-
ification of the mapping χ and the non-linear layers of Simon and Ascon. We then recall
the main concepts of differential and linear cryptanalysis and explain why we can examine
the properties of the non-linear layers of Simon and Ascon in the same way as we do for
χ . In Section 4, we give a revised explanation of the results presented in [8] on how to
compute distribution of differentials over χ . In Section 5, we investigate the distribution of
linear approximations over χ . In Section 6, we first present a comparison between differen-
tial and linear properties of χ and the number of 2-round differential and linear trail cores.
Then we investigate the propagation of 1-bit output differences and input masks. Finally, in
Section 7, we provide some final remarks.

2 Preliminaries

In this section, we first briefly introduce the terminologies that we use in this paper. Then,
we recall the specification of the non-linear mapping χ , the round function and non-linear
layer of Simon, and the non-linear layer of Ascon.

2.1 Terminology

Let s be a binary string, we denote its i-th bit by si , where we start indexing from 0. Therefore,
i ∈ {0, 1, . . . , |s| − 1} when |s| denotes the length of s.

Indexing of bits in a string outside the range [0, |s| − 1] is allowed by reducing the index
modulo |s|. This allows us to consider circular strings, that means the first bit s0 and last bit
s|s|−1 are neighbors. We call such strings circles. A string s′ is a sub-string of circular string
s if |s′| ≤ |s| and ∃i ∈ [0, |s|−1] such that s′

j = s j+i for all j ∈ [0, |s′|−1]. As an example,
we say s′ = 100011 is a sub-string of circular string s = 0111100 since s′

j = s j+4 for all
j ∈ [0, 5].

We use s ≪ t to indicate the circular rotation of a string s that moves bit in position i
to position i + t . This notation is commonly used when s is seen as a CPU word where the
bit at index 0 is the right-most bit. Notice that in our figures, we depict bits as disposed on a
Cartesian axis with the origin on the left. Therefore, in our figures bit 0 is on the left, unless
otherwise specified.

We write s‖s′ for the concatenation of two strings s and s′, and we use (s)m for the
concatenation of m copies of s: s‖s‖ . . . ‖s. Hence, the notation (1)m represents an all-one
string of lengthm that we call a 1-run. A 1-run in a string should be preceded and followed by
a 0-bit, except when there is no zero in the string. In this case, we say that the string contains
a single 1-run.

123

Cryptography and Communications

Fig. 1 χ� transformation

Let si ∈ F2 be a bit of a string s, then we say si is an active bit if si = 1, and is a passive
bit otherwise. Then, the Hamming weight of a string s ∈ F

n
2, denoted by h, is the number of

active bits in s.

2.2 Specification of �

The mapping χ is used as non-linear layer in different cryptographic ciphers, like Keccak,
Xoodoo, and Subterranean.

The mapping χ can be seen as the application of parallel instances of the mapping χ�

to an n-bit state partitioned in n
�
circles of length �. We refer to such non-linear mapping

as a composite χ mapping when � < n. This is the case for Keccak- f , where � = 5,
and Xoodoo, where � = 3. Otherwise, we refer to it as a single-circle χ mapping, that is
when a single instance of χ� operates on the whole state and � = n. This is the case for
Subterranean, where � = n = 257.

Due to the fact that χ� is translation-invariant [5], it is possible to define it as a local map.

Definition 1 (χ�) The mapping χ� is a transformation of F�
2 with local map

yi = xi + (xi+1 + 1) · xi+2 , (1)

where x denotes the input of χ�, y = χ�(x) its output, and all indices are taken modulo �.

An illustration of χ� is given in Fig. 1.
Equivalently, the mapping χ� can be written as:

χ�(x) = x + (x ≪ −1)(x ≪ −2) = x + ((x + (1)�) ≪ −1)(x ≪ −2)

= x + x ≪ −2 + (x ≪ −1)(x ≪ −2)

= x + x ≪ −2 + (x(x ≪ −1) ≪ −1) .

(2)

2.3 Simon’s non-linear layer

The Simon cipher is a balanced Feistel network operating on a block of length 2n, where
n ∈ {32, 48, 64, 96, 128}. The round function Rk of Simon, illustrated in Fig. 2, operates on
a state consisting of two parts x and w, each of length n, in the following way:

Rk(x, w) = (w + g(x) + k, x) ,

123

Cryptography and Communications

Fig. 2 The round function Rk of Simon

with the function g defined as

g(x) = x ≪ 2 + (x ≪ 1)(x ≪ 8) = x ≪ 2 + (x(x ≪ 7) ≪ 1) . (3)

2.4 Ascon’s non-linear layer

The Ascon permutation [11] is at the basis of all members of the Ascon cipher suite and is
also used in the authenticated encryption scheme Isap.

The non-linear layer of the Ascon permutation is a composite mapping that consists in
the parallel application of a 5-bit S-box S, which is depicted in Fig. 3. The non-linear part of
the S-box S is based on χ5. It has the same expression of χ5 but with opposite bit ordering
compared to what is used in Keccak. In fact, using the Ascon notation, bit x0 denotes the

Fig. 3 Ascon’s S-box S

123

Cryptography and Communications

most significant bit in the 5-tuple of bits. We denote the version of χ� using such opposite
ordering as χ̃�. More in details, we have:

χ̃�(x) = x + (x ≪ 1)(x ≪ 2) = x + x ≪ 2 + (x(x ≪ 1) ≪ 1) .

Therefore, S can be described as χ̃5 preceded and followed by two linear mappings A and
B, both consisting of 3 bitwise additions:

S = B ◦ χ̃5 ◦ A . (4)

3 Propagation through non-linear layers

In this section, we first recall the main concepts used in differential and linear cryptanalysis.
Then, we show that χ� and the non-linear layers of Simon and Ascon are extended-affine
equivalent, which allows us to investigate their differential and linear properties in a similar
way.

In what follows, we make use of the extended-affine equivalence property [3, 17].

Definition 2 (Extended-affine equivalence) Two functions f : Fn
2 → F

m
2 and f ′ : Fn

2 →
F
m
2 are extended-affine equivalent (EA-equivalent) if there exist two affine permutations

A : Fn
2 → F

n
2, B : Fm

2 → F
m
2 and an affine function C : Fn

2 → F
m
2 such that

f ′(x) = (B ◦ f ◦ A)(x) + C(x) .

3.1 Differential propagation

Let x, x∗ ∈ F
n
2 be two inputs to a vectorial boolean function f : Fn

2 → F
n
2, and y, y∗ ∈ F

n
2

be their corresponding outputs, respectively. We call b = x − x∗ an input difference to f
and a = y − y∗ an output difference. A differential over f consists of a couple (b, a). The
number of occurrences of all differentials over a vectorial boolean function f : Fn

2 → F
n
2

are usually arranged in a 2n by 2n array, called the difference distribution table (DDT). For
a differential (b, a), we have

DDT(b, a) = |{x ∈ F
n
2 | f (x − b) − f (x) = a}| .

Differential cryptanalysis exploits the probability of differentials to occur.

Definition 3 (Differential Probability (DP)) The differential probability of a differential
(b, a) over a function f : Fn

2 → F
n
2 is denoted by DP(b, a) and is defined as

DP(b, a) = DDT(b, a)

2n
= |{x ∈ F

n
2 | f (x − b) − f (x) = a}|

2n
. (5)

The differential spectrum over a function f is defined as the number of occurrences of
each number in the DDT, and is denoted by D f . Equivalently, the differential spectrum can
be defined as the graph representing the number of differentials with a given DP for each DP.

Definition 4 (Differential spectrum) The differential spectrum of a function f : Fn
2 → F

n
2

is the set
D f = {(p, n) s.t. n = #{(b, a) : DP f (b, a) = p}} . (6)

Based on [4, 13], the following lemma holds.

Lemma 1 Two EA-equivalent functions have the same differential spectrum.

123

Cryptography and Communications

3.2 Linear propagation

A pair of masks (u, v) with u at the input and v at the output of a vectorial boolean function
f : Fn

2 → F
n
2 is called linear approximation and satisfies the following relation:

uTx + vT f (x) = 0 . (7)

Linear cryptanalysis exploits the correlation of linear approximations.

Definition 5 (Correlation) The correlation of a linear approximation (u, v) over a function
f : Fn

2 → F
n
2 is denoted as C f (u, v) and is defined as

C f (u, v) = {x ∈ F
n
2 | ∑

x (−1)u
Tx+vT f (x)}

2n
. (8)

The correlations of all linear approximations over a vectorial boolean function f are
usually arranged in a 2n by 2n array, called the linear approximation table (LAT). Clearly,
correlation can be a positive or negative number. The extended Walsh spectrum of a function
f is defined as the number of occurrences of the absolute value of each number in the LAT
and is denoted by W f .

Definition 6 (Extended Walsh spectrum) The extended Walsh spectrum of a function
f : Fn

2 → F
m
2 is the set

W f = {(c, n) s.t. n = #{(u, v) : ∣

∣C f (u, v)
∣

∣ = c}} . (9)

Based on [4, 13], the following lemma holds.

Lemma 2 Two EA-equivalent functions have the same extended Walsh spectrum.

3.3 Implications for ��, SIMON andASCON

The mapping χ� is EA-equivalent to the map f (x) = x(x ≪ −1). Using Definition 2, we
can take C(x) = x + x ≪ −2 and B(x) = x ≪ 1.

Similarly, we can show that also the map g of Simon is EA-equivalent to the map f . First,
we can observe that g is EA-equivalent to the map g′(x) = x(x ≪ 7) with C(x) = x ≪ 2
and B(x) = x ≪ −1. We can convert the shift by 7 in g′ to the shift by -1 in f , by taking
for A a multiplicative shift and for B its inverse. This is only possible if the length of the
circular state is not a multiple of 7, which is the case for the state sizes used in Simon.

Based on Eq. 4, the S-box S of Ascon is EA-equivalent to χ̃5. Similarly to what we
observed for χ� and g, we can convert χ̃5 into f .

It follows that for all these maps, it is sufficient to investigate the differential spectrum
and the extended Walsh spectrum of one of them.

4 Distribution of differentials over �

In this section, we report the method presented in [8] to build the differential spectrum of the
mapping χ , which is based on counting the number of differentials with a given weight. To
this end, we first recall the definition of restriction weight of a differential and the method to
compute it over χ� as introduced in [5, Sect. 6.9.1]. Then, we present the method to compute
the number of differentials with a given weight w over χ .

123

Cryptography and Communications

Definition 7 (Restrictionweight) The restriction weight of a differential (b, a) for a boolean
function f : Fn

2 → F
n
2, denoted by wr(b, a), is defined as

wr(b, a) = − log2 DP f (b, a) .

In what follows, we use the term weight instead of restriction weight when it is clear from
the context that we are talking about differentials.

As shown in [5, Sect. 6.9], since the mapping χ has algebraic degree 2, the weight of any
differential (b, a) over χ is fully determined by b. Therefore, we talk about the weight of a
difference at the input ofχ .When themappingχ is composed, the weight of a differential can
be computed as the sum of the weights of the differentials over the mappings χ� composing
χ . A method to compute the weight over χ� is given in the following proposition.

Proposition 1 [5, Sect. 6.9] Let b ∈ F
�
2 be a difference at the input of χ�, and r the number

of sub-strings 001 in b. The restriction weight of b is given by

wr(b) =
{

� − 1 if b = (1)�,

h + r otherwise.
(10)

4.1 Number of differentials over �with a given weight

Clearly, there is only one fully active input difference, and only one fully passive input
difference. Therefore, we only consider h
= � and h
= 0.

We denote the number of �-bit input differences with weight w by N(�,w). The number
of differentials with weight w is 2wN(�,w), as each input difference with weight w leads to
2w differences at the output of χ� [5, Sect. 6.9].

With a composite χ mapping consisting of q > 1 applications of χ�, we can compute the
number of differentials with weight w by q-fold convolution using the following recursion
formula:

N(q × �,w) =
∑

0≤x≤w

N((q − 1) × �, x)N(�,w − x) . (11)

Computing the value of N(�,w) is easy for small or big values of w.

Example 1 For w = � − 1, we have N(�, � − 1) = 2� + 1 and these are:

– the all-1 string (1)�;
– � translated versions of 0(1)�−1;
– � translated versions of 00(1)�−2.

Computing N(�,w) for an arbitrary � and w is not easy. Therefore, we introduce the
function N3(�, h, r) that computes the number of strings of length � with Hamming weight
h and containing r 001 sub-strings. Then, the number of �-bit strings with weight w can be
written as

N(�,w) =
�w/2�
∑

r=0

N3(�,w − r , r) . (12)

Here, r is bounded by �w/2� since w = h + r , and there cannot be more 001 sub-strings
in a string than its Hamming weight, so r ≤ h.

123

Cryptography and Communications

4.2 Computing N3(�, h, r)

In general, N3(�, h, r) is not easy to compute. It is non-zero for a limited range of parameters.
In particular, N3(�, h, r) = 0 if

– h + 2r > �: as any active bit consumes one bit position and every 001 consumes two
more bit positions out of �.

– r > h: as there cannot be more 001 sub-strings than active bits.
– r = 0 and 2h < �: as it is not possible to position less than �/2 active bits without leaving
a gap of two zeroes.

For the other cases, we observe that, since the weight of a string s only depends on its
Hamming weight and the number of 001 sub-strings in it, deleting a number of specific
zeros in s will not affect its weight. If a string exhibits a sub-string 101, shortening it by
removing the zero in the middle leaves the weight intact as it leaves the Hamming weight
and r invariant.

Definition 8 (Hole) We call the zero in 101 a hole and we denote the number of holes in a
string by x .

If a string exhibits a sub-string 000, shortening it by removing the leading zero leaves the
weight intact as it leaves the Hamming weight and r invariant.

Definition 9 (Pause)We call the leading zero in 000 a pause and denote the number of pauses
in a string by y.

Now we can define the minimal difference as follows.

Definition 10 (Minimal difference) An input difference of χ� without pauses and holes is
called a minimal difference. That is, it satisfies x = 0 and y = 0.

A minimal difference can be written either as a single 1-run, or as a sequence of 1-runs
interleaved with sub-strings 00.

Any string s is associated to a unique minimal difference. To prove this, we can observe
that the minimal string can be uniquely determined by removing holes and pauses from s.
First, s is transformed by removing holes with the recursive procedure removeHoles in
Algorithm 1. This procedure scans s and removes the middle 0 from the first 101 sub-string
that is encountered. This procedure stops when the string does not contain any more 101
sub-strings. Then, s is transformed by removing pauses by applying the recursive procedure
removePauses in Algorithm 1. This procedure scans s and removes the leading 0 from the
first sub-string 000 it encounters. This procedure stops when the string does not contain any
000 sub-strings.

Example 2 Let s = 010010101000001000. First, holes are removed.
Since s4s5s6 = 101, then s5 is removed obtaining s = 01001101000001000. Similarly, since
s5s6s7 = 101, then s6 is removed obtaining s = 0100111000001000.
Since no more 101 sub-strings are contained in s, pauses are removed from s.
Since s7s8s9 = 000, then s7 is removed obtaining s = 010011100001000.
Since s7s8s9 = 000 again, then s7 is removed obtaining s = 01001110001000.
Since s7s8s9 = 000 again, then s7 is removed obtaining s = 0100111001000.
Then, since s10s11s12 = 000, then s10 is removed obtaining s = 010011100100.
Finally, since s10s11s0 = 000 again, s10 is removed obtaining s = 01001110010. Since s
does not contain any 000 sub-string, s is a minimal difference.

123

Cryptography and Communications

Algorithm 1 Computing the minimal difference of a string s.
procedure removeHoles(s)

� ← |s|
for i ← 0 to � − 1 do

if si−1si si+1 = 101 then
s ← s0 . . . si−1‖si+1 . . . s�−1 � remove hole in position i
return removeHoles(s)

return
end procedure

procedure removePauses(s)
� ← |s|
for i ← 0 to � − 1 do

if si si+1si+2 = 000 then
s ← s0 . . . si−1‖si+1 . . . s�−1 � remove pause in position i
return removePauses(s)

return
end procedure

Lemma 3 For a string of length �, Hamming weight h, and containing r 001 sub-strings, x
holes and y pauses, the following equivalence holds:

� = h + y + x + 2r .

Proof The length of a string � is the sum of the number of active bits and the number of
passive bits. The former is simply the Hamming weight h of the string. The latter is the
number of passive bits in each 001 sub-string (i.e., 2) plus the number of passive bits that are
removed from the string when reducing it to its minimal difference. Namely, the middle bit of
each 101 sub-string and the leading bit of each 000 sub-string. This gives � = h+ y+ x+2r .

Example 3 Let s = 010010101000001000 with � = 18 as in Example 2. The Hamming
weight of s is h = 5 and the number of 000 sub-strings is 5 so y = 5. The number of
101 sub-strings is 2 so x = 2 and finally the number of 001 sub-strings is 3. Then we have
� = 5 + 5 + 2 + 2 × 3 = 18 that is indeed the length of the string s.

We denote the number of strings with Hamming weight h and containing r 001 strings, y
pauses and x holes by N4(h, r , y, x). Lemma 3 implies that

N3(�, h, r) =
�−h−2r
∑

x=0

N4(h, r , � − (h + x + 2r), x) . (13)

4.3 Computing N4(h, r, y, x)

Since each string can be associated to a unique minimal difference, it follows that the set of
strings can be partitioned in classes, where strings in the same class have the same associated
minimal difference. Strings in the same class can be built by adding holes and pauses to the
corresponding minimal difference in all possible ways. The number of ways to add x holes
and y pauses to a minimal difference depends on its Hamming weight and its number of
001 sub-strings, but also on the value of its leading and trailing bits. Namely, it depends on
whether the minimal string has a 11 sub-string or a 001 sub-string that spans the boundaries.

123

Cryptography and Communications

Example 4 Let s = 1100111001 be a minimal difference of length � = 10 and x = 1.
The hole can be placed between any pair of adjacent active bits. But if we consider the pair
at indexes (� − 1, 0), then the hole can be placed either at the end of the string or at its
beginning. In the former case we obtain the string 11001110010 and in the latter case the
string 01100111001.

Example 5 Let s = 011100110 be a minimal difference of length � = 9 and y = 1. The
unique pause can be placed before any 001 sub-string. If we consider the 001 sub-string at
indexes (� − 1, 0, 1), then the pause can be placed only between positions � − 2 and � − 1
giving the string 0111001100.
Similarly, let s = 111001100 be a minimal difference of length � = 9 and y = 1. If we
consider the 001 sub-string at indexes (� − 2, � − 1, 0), then the pause can be placed only
between positions � − 3 and � − 2 giving the string 1110011000.

Example 6 Let s = 0011111 be a minimal difference of length � = 7 and y = 1. If
we consider the 001 sub-string at indexes (0, 1, 2), then the pause can be placed between
positions � − 1 and 0 in two different ways, giving the strings 00011111 and 00111110.
Similarly, for the same string if y = 2, we can build the strings 000011111, 000111110,
001111100.

We denote the pair (s0, s�−1) formed by the leading bit and the trailing bit of a minimal
difference s by S.

Since s is minimal, S = (0, 0) and S = (1, 0) imply that there is a 001 sub-string that
crosses the boundaries as in Example 5, while S = (0, 1) implies that the string starts with a
001 sub-string as in Example 6. Finally, S = (1, 1) implies that there is a 11 sub-string that
crosses the boundary as in Example 4.

We denote the number of minimal differences with Hamming weight h, r 001 sub-strings
and given S by Nmin(h, r , S).

It holds that:

N4(h, r , y, x) =
∑

S

α(h, r , x, S) × β(h, r , y, S) × Nmin(h, r , S) , (14)

where α(h, r , x, S) denotes the number of ways to add x holes and β(h, r , y, S) the number
of ways to add y pauses to a minimal state of length � with Hamming weight h, r 001
sub-strings, and leading and trailing bits specified by S.

The factors in the right hand side of (Eq. 14) are summarized in Table 1 and we recall
how we derived them in the remaining part of this section as presented in [8].

Case: S
= (1, 1).

Proposition 2 The number of minimal differences with Hamming weight h and containing r
001 sub-strings is

(h−1
r−1

)

when S
= (1, 1).

Table 1 Combinatorial expressions to compute the number of minimal states of length � with Hamming
weight h, r 001 sub-strings and leading and trailing bits specified by S, and the number of ways to add x holes
and y pauses to them

S Nmin(h, r , S) α(h, r , x, S) β(h, r , y, S)

S
= (1, 1)
(h−1
r−1

) (h−r
x

) (y+r
y

) + (y+r−1
y

)

S = (1, 1)
(h−1

r
) (h−r−1

x
) + 2 · (h−r−1

x−1
) (y+r−1

y
)

123

Cryptography and Communications

Proof It is the number of ways of putting r − 1 pairs of passive bits between the h − 1 pairs
of active bits. The position of one 001 sub-string is in fact specified by S.

Proposition 3 The number of ways to add x holes to a minimal difference with Hamming
weight h and containing r 001 sub-strings is

(h−r
x

)

when S
= (1, 1).

Proof It is the number of ways to distribute x holes over h−r positions, where each position
can have at most one hole.

Now, we just need to add pauses to the created strings.

Proposition 4 The number of ways to add y pauses to a string with Hamming weight h and
containing r 001 sub-strings and x holes is

(y+r
y

) + (y+r−1
y

)

when S
= (1, 1).

Proof Here we have two cases:

– S = (0, 1): β(h, r , y, S) is the number of ways to distribute y pauses over r positions,
where there are no restrictions on the number of pauses per position. Since S = (0, 1)
implies that the minimal difference starts with a 001 sub-string, then the pauses that are
put before it can be placed either at the beginning of the string or at its end, as shown
in Example 6. It means that there are actually r + 1 positions to place the y pauses. It
follows that β(h, r , y, S) = (y+r

y

)

.

– S ∈ {(0, 0), (1, 0)}: β(h, r , y, S) = (y+r−1
y

)

, which is the number of ways to distribute
y pauses over r positions, where there are no restrictions on the number of pauses per
position.

Case: S = (1, 1).

Proposition 5 The number of minimal differences with Hamming weight h and containing r
001 sub-strings is

(h−1
r

)

when S = (1, 1).

Proof It is the number of ways of putting r pairs of passive bits between the h − 1 pairs of
active bits remaining after excluding the pair at the boundaries.

Proposition 6 The number of ways to add x holes to a minimal difference with Hamming
weight h and containing r 001 sub-strings is

(h−r−1
x

) + 2 · (h−r−1
x−1

)

when S = (1, 1).

Proof α(h, r , x, S) is the number of ways to distribute x holes over h − r positions, where
each position can have at most one hole. Since the minimal state starts with a 1 and ends with
a 1 then the hole that is placed between these two ones can be placed either at the beginning
of the state or at its end, as shown in Example 4. For any other pair of active bits, there is a
unique way to put the hole. The total count is thus

(h−r−1
x

) + 2 · (h−r−1
x−1

)

, where
(h−r−1
x−K

)

for
K ∈ {0, 1} is the number of ways to distribute x − K holes between the h − r − 1 pairs of
ones remaining after excluding the pair across the boundaries.

Now, we just need to add pauses to the created strings.

Proposition 7 The number of ways to add y pauses to a string with Hamming weight h and
containing r 001 sub-strings and x holes is

(y+r−1
y

)

when S = (1, 1).

Proof It is the number of ways to distribute y pauses over r positions, where there are no
restrictions on the number of pauses per position.

123

Cryptography and Communications

5 Distribution of linear approximations over �

In this section, we first recall the method to compute correlation weight of a linear approx-
imation over χ� as introduced in [5, Sect. 6.9.1]. Then, we provide a method to compute
the number of linear approximations with a given correlation weight w over χ and present a
proof for it.

Definition 11 (Correlation weight) The correlation weight of a linear approximation (u, v)

for a boolean function f : Fn
2 → F

n
2, denoted as wc(u, v), is defined as

wc(u, v) = − log2 C
2(u, v) .

In what follows, when it is clear from the context that we are talking about linear approx-
imation over χ�, we simply use weight instead of correlation weight.

We call 1-runs of odd length odd-runs and denote the number of odd-runs in a string by
o. We also use the term even-run for a 1-run of even length. As shown in [5, Sect. 6.9], since
the algebraic degree of χ� is two, the weight of any linear approximation over χ� is fully
determined by the output mask, and it can be computed using Proposition 8.

Proposition 8 Given an �-bit mask v with Hamming weight h and o odd-runs at the output
of χ� (� ≥ 3), its weight is given by:

wc(v) =
{

h + o − 2 if v = (1)�,

h + o otherwise.
(15)

5.1 Number of linear approximations over �with a given weight

Clearly, there is only one fully active mask (h = �), and only one fully passive mask (h = 0).
In what follows, we only consider cases where h
= � and h
= 0.

We denote the number of output masks of χ� with weightw by L(�,w). Then, the number
of linear approximations with weight w is simply 2wL(�,w), as each output mask with
weight w is correlated to 2w masks at the input of χ� [5, Sect. 6.9].

Similar to the differential case, if the χ mapping is composed by q > 1 applications of
χ�, we efficiently compute the number of linear approximations with weight w by q-fold
convolution using the following recursion:

L(q × �,w) =
∑

0≤x≤w

L((q − 1) × �, x)L(�,w − x) . (16)

To compute L(�,w), we first provide the following propositions.

Proposition 9 Given an output mask with Hamming weight h and containing o odd-runs it
holds that h = o mod 2.

Proof Let us denote by 2e the total number of active bits in even-runs, and by 2d[i] + 1 the
length of the i-th odd-run in an output mask. Then, the Hamming weight of the output mask
is:

h = 2e +
o−1
∑

0

(2d[i] + 1) = 2(e +
o−1
∑

0

d[i]) + o.

Based on Propositions 8 and 9 the following holds.

123

Cryptography and Communications

Corollary 1 The correlation weight is always an even number.

Since each 1-run is preceded and followed by a 0-bit, the number of odd-runs is at most
equal to the number of passive bits in the output mask. The length of a given output mask is
the number of passive bits plus active bits. Hence, h+o ≤ � and the weight is upper bounded
by �.

Corollary 2 For each mask v at the output of χ� the following holds:

2 ≤ wc(v) ≤ 2��/2�
Based on Proposition 8, if v has one active bit, then h + o = 1+ 1 = 2; if v has two or more
active bits, then wc(v) = h + o ≥ h ≥ 2. On the other hand, the weight is an even number
that is upper bounded by �.

Computing the value of L(�,w) is easy for small or big weights w.

Example 7 An output mask with weight w = 2 can be:

– one of the � translated versions of 1(0)�−1; or
– one of the � translated versions of 11(0)�−2.

Therefore, in this case, we have

L(�, 2) = 2� .

Example 8 Output masks with even length and maximum weight w = � have the following
form:

– two translated versions of output masks of the form (1�)�/2, where starred bits � can be
either 0 or 1, with the exception of the fully active mask.

Therefore, for an even �, we have

L(�, �) = 2 · (2(�/2) − 1) .

In general, computing the value of L(�,w) is not easy for arbitrary � and w. To simplify
this, we introduce a new function L3(�, h, o) that computes the number of output masks of
length �with Hamming weight h and containing o odd-runs. Then, the number of �-bit masks
with weight w for w ≤ � can be written as

L(�,w) =
�w/2�
∑

o=0

L3(�,w − o, o) . (17)

Here, o is bounded by �w/2� since w = h + o, and there cannot be more odd-runs than
active bits o ≤ h.

5.2 Computing L3(�, h, o)

In general, L3(�, h, o) is not easy to compute. It is non-zero for a limited range of parameters.
In particular, L3(�, h, o) = 0 if

– h
= o mod 2: see Proposition 9.
– h+o > �+1 and � is an odd number: the weight is upper bounded by � so, for a non-fully
active mask h + o ≤ �, and for a fully active mask in this case h + o = � + 1.

123

Cryptography and Communications

– h + o > � and � is an even number: for a non-fully active mask h + o ≤ �, and for a
fully active mask in this case h + o = �.

– o > h: as there cannot be more odd-runs than active bits.

For the other cases, we use the following procedure to calculate L3(�, h, r). Since the
weight only depends on the Hamming weight and the number of odd-runs, deleting a number
of specific zeros will not affect the weight. To compute L3(�, h, o), we partition the set into
subsets characterized by the specific zeros called gaps and chains.

If a string exhibits two consecutive zeros, shortening it by removing the leading zero leaves
the weight intact since it leaves the Hamming weight and the number of odd-runs invariant.
After shortening all two consecutive zeros by deleting the leading zero, if the obtained string
starts with an even-run and ends with a single zero, e.g. 11010, deleting the rightmost zero
leaves the weight intact.

Definition 12 (Gap)We call the leading zero in two consecutive zeros a gap. Let s be a string
that does not contain two consecutive zeros, then if s starts with an even-run and ends with
0, we also call the ending zero a gap. We denote the number of gaps in a string by g.

We call a string without gaps, a gap-free string. In a gap-free string, there are only even-
runs and odd-runs that are surrounded by single 0s. Deleting the 0 on the left side of an
even-run does not affect the weight since the Hamming weight and the number of odd-runs
remain constant.

Definition 13 (Chain) We call a zero at the left side of an even-run a chain and denote the
number of chains by c.

Definition 14 (Minimal mask) An output mask without gaps and chains is called a minimal
mask.

Any string s is associated to a unique minimal mask. To prove this we can observe that
the minimal mask can be uniquely determined by removing gaps and chains from s. First, s
is transformed by removing gaps by applying the recursive procedure removeGaps given in
Algorithm 2. This procedure scans s and removes the leading 0 from the first sub-string 00 it
encounters. This procedure stops when the string does not contain any 00 sub-strings. Then,
s is transformed by removing chains by applying the recursive procedure removeChains
given in Algorithm 2. This procedure scans s and removes the 0 on the left side of even-runs
from the first such 0 that is encountered. This procedure stops when the string does not
contain any more 0 on the left side of even-runs.

Based on the definition of the minimal mask, the following corollary holds.

Corollary 3 Given an output mask that is not fully active or fully passive, its minimal mask
can be written either as a single even-run, or as odd-runs preceded and followed by a 0-bit.

Example 9 Let s = 0100101111001. First, gaps are removed.
Since s2s3 = 00, then s2 is removed obtaining s = 010101111001.
Similarly, since s9s10 = 00, then s9 is removed obtaining s = 01010111101.
Since no more 00 sub-strings are contained in s, chains are removed in s.
Since s4 = 0 and it is located on the left side of an even-run, then s4 is removed obtaining

s = 0101111101.
Since s = 0101111101 does not contain any chain, it is a minimal mask that contains

only odd-runs preceded and followed by a 0-bit as stated in Corollary 3.

123

Cryptography and Communications

Algorithm 2 Computing the minimal mask of a string s.
procedure removeGaps(s)

� ← |s|
for i ← 0 to � − 1 do

if si si+1 = 00 then
s ← s0 . . . si−1‖si+1 . . . s�−1 � remove gap in position i
return removeGaps(s)

if s�−1 = 0 and the string starts with an even-run then
s ← s0 . . . s�−2 � remove gap in position � − 1

return
end procedure

procedure removeChains(s)
� ← |s|
for i ← 0 to � − 1 do

if si = 0 and it is on the left side of an even-run then
s ← s0 . . . si−1‖si+1 . . . s�−1 � remove chain in position i
return removeChains(s)

return
end procedure

Proposition 10 Given an output mask that is not fully active or fully passive, the number of
passive bits in its minimal mask is o.

Proof Due to Corollary 3, the number of passive bits in a minimal mask equals the number
of odd-runs in it. Given an output mask with o odd-runs, since deleting gaps and chains does
not change the number of odd-runs, the number of odd-runs in its minimal mask is o.

Lemma 4 For a non-fully active mask of length �, Hamming weight h and containing g gaps,
c chains, and o odd-runs we have:

� = h + c + g + o .

Proof The length of a mask � is the sum of the length of its minimal mask and the number
of gaps and chains. The length of the minimal mask is the sum of its Hamming weight and
the number of its passive bits o (see Proposition 10).

Example 10 Let s = 0100101111001 with � = 13 as in Example 9. The Hamming weight
of s is h = 7 and the number of chains is c = 1. The number of gaps is g = 2 and finally the
number of odd-runs is 3. We have � = 7 + 1 + 2 + 3 = 13 that is indeed the length of the
string s.

We denote the number of strings of length � with Hamming weight h and containing o
odd-runs, g gaps and c chains by L4(h, o, g, c). Lemma 4 implies that

L3(�, h, o) =
�−h−o
∑

c=0

L4(h, o, � − (h + c + o), c) . (18)

5.3 Computing L4(h, o, g, c)

Since each string can be associated to a unique minimal mask, it follows that the set of strings
can be partitioned in classes, where strings in the same class have the same associatedminimal

123

Cryptography and Communications

masks. Strings in the same class can be built by adding gaps and chains to the corresponding
minimal mask in all possible ways.

We start by generating all the possible minimal masks of length h + o with Hamming
weight h, o odd-runs and c = g = 0. Then, we add for each minimal mask c chains to build
all possible gap-free strings. Then, we add g gaps to each gap-free string in all possible ways.

Before going on, we need to provide the following definition.

Definition 15 (Even start and odd start masks) Without considering the circularity of
the string, if a mask starts with 0 or an even-run, we call it even-start mask, otherwise an
odd-start mask.

Example 11 A mask s = 110101 is an even-start mask since (without considering the cir-
cularity) it starts with an even-run, namely the 11 sub-string. A mask s′ = 101011 is an
odd-start mask since (without considering the circularity) it starts with an odd-run, namely
the 1 sub-string.

Without considering the circularity of the string, the minimal mask associated to an
even-start mask (odd-start mask) should start with 0 or an even-run (odd-run).

Proposition 11 The number of minimal masks with Hamming weight h, containing o odd-
runs, and that form even-start masks is

(

(h+o)/2
o

)

, which equals the number of minimal masks
with the same h and o that form odd-start masks.

Proof We start with a string of o odd-runs when all odd-runs have length 1 e.g. for o = 4
we have 010101 and 101010. Then we attach 11-strings to each odd-run to get the Hamming
weight h. The number of 11-strings is (h − o)/2. Then, there are two cases:

• even-start mask: then the number of ways to attach (h−o)/2 11-strings to o+1 positions
is

(

((h−o)/2)+(o+1)−1
(o+1)−1

) = (

(h+o)/2
o

)

. We say o+ 1 positions since we have o odd-runs, and
we can also put 11-strings in the beginning of the string that is also attached to the
rightmost odd-run.

• odd-start mask: we have again
(

(h+o)/2
o

)

because the number of 11-strings and positions
equals the even-start mask case, since we have o odd-runs and we can also put 11-strings
in the end of the string that is also attached to the leftmost odd-run.

Now, we compute the number of gap-free strings by adding c chains to minimal masks.

Proposition 12 The number of ways to add c chains to a minimal mask with Hamming weight
h and o odd-runs is

(

(h−o)/2
c

)

for both cases where the minimal mask forms even-start masks
or odd-start masks.

Proof The number of ways to put c single chains at the left side of (h − o)/2 11-strings is
(

(h−o)/2
c

)

.

We only need to add g gaps to gap-free strings to compute L4(h, o, g, c).

Proposition 13 The number of ways to add g gaps to a gap-free string with Hamming weight
h and containing o odd-runs and c chains is

(c+o+g
g

)

for the case of even-start mask, and
(c+o+g−1

g

)

for odd-start mask.

Proof To compute the number of ways to attach g zeros to the passive bits of the gap-free
string we consider two cases

123

Cryptography and Communications

– odd-start mask: the number of ways to attach g zeros to c+o passive bits is
(c+o+g−1

c+o−1

) =
(c+o+g−1

g

)

;
– even-start mask: the number of ways to attach g zeros to c + o + 1 positions is

(c+o+1+g−1
c+o+1−1

) = (c+o+g
g

)

. That is c+ o+ 1 positions since we can attach a 0 to either the
start or end of the even-start mask.

Using Propositions 11 to 13 allows us to compute L4(h, o, g, c) as follows

L4(h, o, g, c) =
(

(h + o)/2

o

)

×
(

(h − o)/2

c

)

×
[(

c + o + g

g

)

+
(

c + o + g − 1

g

)]

.

(19)
We experimentally verified the correctness of Eq. 19 for � ∈ [3, 32] by exhaustively

generating all �-bit states, computing their weight using Proposition 8 and checking that the
number of states with given weight corresponds to the number obtained by applying our
formula.

6 Comparing differential and linear properties of �

In this section, we first investigate the distribution of differentials and linear approximations
for some primitives whose non-linear layer is based on χ . For non-linear layers based on
composite χ , we provide a comparison between their original definition and single-circle χ

mapping, that is when a single χ� operates on the whole n-bit state, so that � = n. Then,
we present a comparison between the number of 2-round differential and linear trail cores in
Xoodoo that uses χ3 and Ascon that uses S that is a variant of χ5. After that, we investigate
the differential properties of χ for a given output difference, and the linear properties of χ

for a given input mask.

6.1 Differentials and linear approximations

We use the results presented in the previous sections to compute the distribution of dif-
ferentials and linear approximations in some well known cryptographic primitives, i.e.,
Subterranean, Simon, Xoodoo, Keccak- f [400], and Ascon, whose non-linear layers
are based on χ .

For Xoodoo, Keccak- f [400], and Ascon, that are based on composite χ , we compare
the obtained results with the distribution of differentials and linear approximations of the
mapping χ� when � has the state size of such permutations. We underline the fact that we
don’t pretend to replace the non-linear layers of such permutations with single-circle χ , as
this implies further analysis, which goes beyond the goal of this work. Our goal is to provide
a metric for the comparison of these two design approaches, i.e. the usage of composite χ vs
single-circle χ . We chose to use the same state size of the aforementioned permutations for
single-circle χ as an example, but we don’t expect the figures to change significantly when
changing the circle size by one or a few more bits.

6.1.1 257-bit state as in SUBTERRANEAN

We applied the methods introduced in this paper to compute the number of differentials and
linear approximations up to a given weight for Subterranean, where χ� operates on the
full state of 257 bits. In Fig. 4a we report the obtained results for w ≤ 257.

123

Cryptography and Communications

Fig. 4 Number of linear approximations and differentials up to a given weight w for the case of χ257

Both curves appear flat on the right side because the curves of the number of differentials
and linear approximations with given weight are monotonically decreasing after w = 187
and w = 214 respectively and their contribution becomes negligible. We can notice that the
number of linear approximations up to a given (even) weight is in general higher than the
number of differentials. To better show this, we zoom on the values up to weight w ≤ 32
in Fig. 4b.

6.1.2 128-bit state as in SIMON

We consider Simon with block length n = 128 and compute the number of differentials and
linear approximations for g using χ128. In Fig. 5a, we report the obtained results forw ≤ 128.
Notice that g acts on only one block of the state, i.e. x . It follows that each differential over
g corresponds to 2128 round differentials, since the difference in w can be freely chosen.

As expected, the trend is similar to the case of χ257. Both curves in Fig. 5a appear flat
on the right side because the curves of the number of differentials and linear approximations
with given weight are monotonically decreasing after w = 93 and w = 108 respectively and
their contribution becomes negligible. The number of linear approximations up to a given
(even) weight is in general higher than the number of differentials. To better show this, we
zoom on the values up to weight w ≤ 32 in Fig. 5b.

123

Cryptography and Communications

Fig. 5 Number of linear approximations and differentials up to a given weight w for the case of χ128

6.1.3 384-bit state as in XOODOO

In the permutation Xoodoo, the state is composed by 384 bits arranged in an array of shape
4 × 3 × 32. The non-linear layer is a composite χ mapping of 128 circles of length � = 3.
To compute the number of differentials and linear approximations in Xoodoo, we can use
Eqs. 11 and 16. However, we can observe that since both the restriction and correlation
weight of any 3-bit circle is 2, then the weight is always even. Therefore, N(128 × 3, w) =
L(128 × 3, w) = 0 for w odd. For w even,

N(128 × 3, w) = L(128 × 3, w) = 7
w
2 ·

(

128
w
2

)

that is the number of ways to choose w/2 columns among the 128 in the state, multiplied by
the possible values of such columns. The number of differentials and linear approximations
with restriction weight w is then 2w · 7w

2 · (128
w
2

)

.
To compute the number of differentials and linear approximations for χ384, we used the

formulas introduced in this paper.
We depict in Fig. 6a the number of differentials and linear approximations with weight

smaller than a given weight w for both composite χ and single-circle χ . Since there are
no differentials and linear approximations with weight bigger than 256 in Xoodoo, the

123

Cryptography and Communications

Fig. 6 Number of linear approximations and differentials up to a given weight w for the case of 128 parallel
χ3 as in Xoodoo, and the case of single-circle χ384

histogram for parallel χ3 becomes flat after w = 256. The histograms corresponding to the
case of single-circle χ384 appear flat toward the end because the curve of the number of
differentials and linear approximations with given weight are monotonically decreasing after
w = 288 and w = 288 respectively and their contribution is negligible. We can notice that
the number of differentials and linear approximations with high probability is always smaller
for the single-circle case. To better show it, we zoom on the values corresponding to weight
up to 32 in Fig. 6b. For instance, the number of differentials and linear approximations with
weight up to w = 32 is ≈ 2143.264 for composite χ . While for single-circle χ , the number of
differentials is ≈ 2130.936 (i.e., around 5,000 times smaller than the composite case) and the
number of linear approximations is ≈ 2139.720 (i.e., only 11.7 times smaller).

Figure 7a depicts the ratio between the number of differentials up to a given weight for
the case of composite χ over the case of single-circle χ384 and the ratio between the number
of linear approximations. Since there are no differentials with odd weight for the case of
composite χ , for all k ∈ {0, 1, . . . 127} the number of differentials with weight smaller than
2k and 2k + 1 is the same and the curve presents a zigzag trend. To better show it, we zoom
on the values up to weight 32 in Fig. 7b. We can also observe that for high probabilities, the
ratio between the number of linear approximations in the two cases is not so large as the ratio
between the number of differentials.

123

Cryptography and Communications

Fig. 7 Ratio between the number of linear approximations and differentials up to weight w for the case of 128
parallel χ3 (as in Xoodoo) over the case of single-circle χ384

6.1.4 400-bit state as inKECCAK-f [400]

In Keccak- f [400], the state is organized as an array of 5×5×16 bits. The non-linear layer
is a composite χ mapping of 80 circles of length 5, i.e., 80 parallel χ5.

In Fig. 8a, we report the number of differentials and linear approximations up to a given
weight for composite χ and single-circle χ400. Compared to the case of χ3 and χ384, we can
observe that now the two curves of differentials and the two curves of linear approximations
are closer to each other, with the curves for the case of 80 parallel χ5 slightly above the others.
This can be better noticed in Fig. 8b, where we focus on the number of differentials and linear
approximations up to weight w ≤ 32. For example, the number of differentials with weight
up to w = 32 is ≈ 2133.064 for composite χ and ≈ 2131.787 for single-circle χ . Namely, the
latter is around 2.4 times smaller than the former. The number of linear approximations is
≈ 2140.764 for composite χ and ≈ 2140.719 for single-circle χ and they almost coincide. The
ratio between the two cases is depicted in Fig. 9a for all w ≤ 400, with a focus on w ≤ 32
in Fig. 9a.

Since the non-linear layer of Ascon is based on χ5, we have similar results when we
compare composite χ consisting of 64 applications of χ5 and χ320.

123

Cryptography and Communications

Fig. 8 Number of linear approximations and differentials up to a given weight w for the case of 80 parallel
χ5 as in Keccak- f [400], and the case of single-circle χ400

Fig. 9 Ratio between the number of linear approximations and differentials up to weight w for the case of 80
parallel χ5 (as in Keccak- f [400]) over the case of single-circle χ400

123

Cryptography and Communications

Fig. 10 Number of 2-round differential and linear trail cores with a given weight in Ascon (64 parallel S)
and Xoodoo (128 parallel χ3)

6.2 Number of 2-round differential and linear trail cores

To perform a dedicated trail search as in [15, 16], the first step is to generate all possible 2-
round trail cores up to a specific weight. Let us denote by λ the linear layer of a cryptographic
scheme. Then, a 2-round differential trail core consists of a difference ai at the input of λ, and

its corresponding difference bi at the output of λ, that we represent as ai
λ−→ bi . The weight

of a given 2-round differential trail core is computed as wrev(ai) + wr(bi) where wrev(ai)
represents the minimum weight over all states bi−1 that are compatible with ai through the
inverse of the non-linear layer. The weight of a 2-round differential trail core thus lower
bounds the weight of all 2-round differential trails with intermediate differences ai and bi .

A 2-round linear trail core is also defined in a similar way as vi
λT−→ ui with vi the input of

λT and ui its output.
In Fig. 10 we report the number of 2-round linear and differential trail cores with weight

w for Xoodoo and Ascon, based on the numbers reported in [9, 14]. We can notice that
these results reflect what we observed in Section 6.1. In fact, in Fig. 6 we saw that the number
of differentials and linear approximations is the same when the scheme uses parallel χ3. In
contrast, as can be seen in Fig. 8, the number of linear approximations is higher than the
number of differentials when parallel χ5 are used. This results in a kind of balance in the
number of linear and differential 2-round trail cores inXoodoo, and a meaningful difference
between these two numbers in Ascon.

6.3 Differential propagation over � given an output difference

Given a difference at the input of χ�, the way to generate all its output differences is given
in [5]. For a given difference at the output of χ , it is possible to build all input differences
by brute-force when χ applies to a short string, but for big strings it is not trivial. To have
a better understanding of the differential properties of χ for a given output difference, we
provide a simple example in this section.

We look into the simplest active string, namely a string with a single active bit at the output
of χ and investigate the differential properties of χ in the backward direction.

A difference b at the input of χ is called compatible with a difference a at the output of χ

if DP(b, a) > 0. For a single active bit difference b, we form a tree of all compatible input

123

Cryptography and Communications

differences a’s where each node of the tree represents an input difference. The children of a
node are generated by adding active bit(s) to that node. Therefore, a specific part of a node
remains unchanged while going to the children and descendant nodes. We call the bits in this
part the set bits. To make our investigation simpler, we assume that the length of the circle
is large enough (� � 1), so that there are always at least two passive bits at the right side of
the active bit(s) of all nodes in the tree.

Figure 11 represents the tree of the set bits of all input differences that are compatible with
a single active bit output difference, up to restriction weight 6. The position of the rightmost
active bit of each node is the same as the position of the single active bit of the output and
there are always two consecutive zeros at the right side of this active bit. For simplicity, we
removed the two zeros at the right side of the set bits in all nodes. For example, the set bits
of the first node are (100) but we only depict a single (1).

Each node in Fig. 11 is built by adding

– a (10) to the left side of its parent’s set bits, or
– a (1) to the left side of its parent’s set bits except for the case where its parent node has
a pattern (101) on its left.

That can be stated formally as in the following proposition.

Proposition 14 Let a be a single active bit output difference and b’s be its compatible input
differences with at least one active bit at the same position as the single active bit in the
output difference followed by two zeros. When generating the tree of all possible b’s, adding
the following patterns to the left side of a parent node is forbidden:

– two active bits at b with at least two zeros in between e.g. (1001), (10001);
– (1101) pattern at b.

Proof Since the difference at a should have only one active bit, we need to find compatible
b’s that add no more active bits to a. Based on [7, Propositions 6 and 7], two active bits at b

Fig. 11 The tree of all input b’s (in black) compatible with a single active bit difference a (in red) up to
weight 6

123

Cryptography and Communications

Fig. 12 Number of input differences compatible with a single active bit output difference and the number of
output masks compatible with a single active bit input mask with given weight

Fig. 13 The tree of all output masks v’s (in black) compatible with a single active bit mask u (in red) up to
weight 6

with at least two zeros in between, e.g. (1001), (10001), result in at least two active bits at
a. Also, the pattern (1101) results in at least two active bits.

The restriction weight of each node in the tree is the restriction weight of its parent node
plus 1. That is because adding (1) or (10) to the left side of a node only adds 1 to theHamming
weight, and hence adds 1 to the restriction weight [5]. Hence, all nodes in the same row have
the same restriction weight.

Figure 12 represents the number of input differences compatible with a single active bit
output difference. We can see that this number grows linearly while increasing the weight.

6.4 Linear propagation over � given an input mask

Given a mask at the output of χ�, the way to generate all its input masks is given in [5]. For
a given mask at the input of χ it is possible to build all output masks by brute-force when χ

applies to short strings, but for long strings it is not trivial. Therefore, we present an example
to study the linear properties of χ for a given input mask with a single active bit.

A linear approximation over χ has correlation different from 0 if and only if it can be
expressed as a sum of product terms plus a constant, as follows:

ck +
∑

(xi + ci) · (xi+1 + ci+1) (20)

where ci , ci+1, and ck are constants, namely ci , ci+1, ck ∈ {0, 1}.

123

Cryptography and Communications

We say an input mask u is compatible with an output mask v if C(u, v)
= 0. Figure 13
represents the tree of the set bits of all output masks compatible with an input mask with a
single active bit, up to correlation weight 6. Here, the position of the leftmost active bit is
the same as the single active bit of the input mask and for simplicity, we removed the two
zeros at the left side of the set bits in all nodes. Each node in Fig. 13 is generated by adding a
mask (10) or (11) to the right side of the set bits of its parent node. Therefore, the following
propositions hold.

Proposition 15 Let u be an input mask with a single active bit in position i and let v be an
output mask compatible with u. Then, v cannot have two active bits in positions j, k with
two or more zeros in between, with i ≤ j < k − 2.

Proof Let us denote a string with a single 1 at index i as ei ∈ F
�
2, then u = ei . Let v have

two active bits in positions j and k with j + 2 < k. Then, v is of the form

v =
∑

�< j

c�e� + e j + ek +
∑

k<m

cmem (21)

with c�, cm ∈ {0, 1}. Then

uTx + vTχ(x) = xi +
∑

�< j

c�(x� + (x�+1 + 1) · x�+2) + x j + (x j+1 + 1) · x j+2

+xk + (xk+1 + 1) · xk+2 +
∑

k<m

cm(xm + (xm+1 + 1) · xm+2)

Since j + 2 < k, then the term xk cannot be simplified and the expression above is not of
the form of Eq. 20.

Proposition 16 Let u be an input mask with a single active bit in position i and v’s be the
compatible output masks with vi−2vi−1vi = 001. When generating the tree of all possible
v’s, adding an active bit proceeded by zero(s), e.g. (01) and (001), to the right side of a
parent node is forbidden.

Proof We denote a string with a single 1 at index i as ei ∈ F
�
2, then u = ei . Based on

Proposition 15, having two active bits with at least two zeros in between is not allowed. We
prove other cases by induction.
Base case:

1. u = ei is compatible with v = ei because

uTx + vTχ(x) = xi + xi + (xi+1 + 1) · xi+2 = (xi+1 + 1) · xi+2

is a product of two terms (xi+1 + 1) and xi+2, so C(u, v)
= 0.
2. u = ei is compatible with v = ei + ei+1 because

uTx + vTχ(x) = xi + xi + (xi+1 + 1) · xi+2 + xi+1 + (xi+2 + 1) · xi+3

= 1 + (xi+1 + 1) · (xi+2 + 1) + (xi+2 + 1) · xi+3

which is the sum of product terms plus a constant, so C(u, v)
= 0.

123

Cryptography and Communications

Induction step:

1. Let us denote a node of the tree that is compatible with u = ei and has a pattern 10 at its
right side by X , namely X j−2X j−1 = 10. Then, the linear approximation over χ can be
represented as Y + x j−1 · x j + x j , where Y is a sum of product terms plus a constant, and
x j−1 · x j and x j are the only terms where x j appears. The reason why we just consider
terms with x j is that these are the only terms that can be affected by adding new bits at
positions { j, j + 1, . . . }. Then:
– u is compatible with v = X + e j because

uTx + vTχ(x) = Y + x j−1 · x j + x j + x j + (x j+1 + 1) · x j+2

= Y + x j−1 · x j + (x j+1 + 1) · x j+2

that is a sum of product terms plus a constant, so C(u, v)
= 0;
– u is compatible with v = X + e j + e j+1 because

uTx + vTχ(x) = Y + x j−1 · x j + x j + x j + (x j+1 + 1) · (x j+2 + 1)

+(x j+2 + 1) · x j+3 + 1

= Y + x j−1 · x j + (x j+1 + 1) · (x j+2 + 1)

+(x j+2 + 1) · x j+3 + 1

that is a sum of product terms plus a constant, so C(u, v)
= 0;
– u is not compatible with v = X + e j+1 because v j−2v j−1v jv j+1 = 1001 that has
two active bits with two zeros in between.

2. Let us denote a node of the tree that is compatible with u = e j and has a pattern 11 at
its right side by Z , namely Z j−2Z j−1 = 11. Then, the linear approximation over χ is of
the form Y + (x j−1 + 1)(x j + 1) + (x j + 1) · x j+1, where Y is a sum over products, and
(x j−1 + 1)(x j + 1) and (x j + 1) · x j+1 are the only terms where x j and x j+1 appear.
The reason why we just consider terms with x j and x j+1 is that these are the only terms
that can be affected by adding new bits at positions { j, j + 1, . . . }. Then:
– u is compatible with v = Z + e j because

uTx + vTχ(x) = Y + (x j−1 + 1)(x j + 1) + (x j + 1) · x j+1

+x j + (x j+1 + 1) · x j+2

= Y + x j−1 · (x j + 1) + (x j + 1) · x j+1 + 1 + (x j+1 + 1) · x j+2

that is a sum of product terms plus a constant, so C(u, v)
= 0;
– u is compatible with v = Z + e j + e j+1 because

uTx + vTχ(x) = Y + (x j−1 + 1)(x j + 1) + (x j + 1) · x j+1

+x j + (x j+1 + 1) · (x j+2 + 1) + (x j+2 + 1) · x j+3 + 1

= Y + (x j−1 + 1) · (x j + 1) + (x j + 1) · (x j+1 + 1)

+(x j+1 + 1) · (x j+2 + 1) + (x j+2 + 1) · x j+3

that is a sum of product terms plus a constant, so C(u, v)
= 0;
– u is not compatible with v = Z + e j+1 because

uTx + vTχ(x) = Y + (x j−1 + 1)(x j + 1) + (x j + 1) · x j+1

+x j+1 + (x j+2 + 1) · x j+3

123

Cryptography and Communications

and the term x j+1 cannot be simplified and the expression above is not of the form
of Eq. 20.

The correlation weight of each node is equal to the correlation weight of its parent node
plus two. This happens because adding (01) to left side of the set bits of each node of the
tree in Fig. 13 adds one to the Hamming weight of that node and one to the number of its
odd-runs. And, adding (11) to each node only adds two to its Hamming weight. Thus, all
nodes in the same row have the same correlation weight.

Figure 12 represents the number of output masks compatible with a single active bit
input mask. We can see that this number grows exponentially while increasing the weight,
in contrast to the number of input differences which grows linearly.

7 Conclusions

We introduced a method to compute the number of linear approximations with a given
correlation weight over the non-linear map χ� for any size of �. Together with the method
introduced in [8] to compute the number of differentials with a given restriction weight,
this provides a useful tool to evaluate and compare composite χ mappings and single-circle
χ mappings. Since the non-linear layer of Ascon and Simon are EA-equivalent to χ , our
methods can be extended to them.

We used our methods to compare the non-linear layers of Xoodoo and Keccak- f [400],
which use composite χ , with instantiations of single-circle χ . We observed that in the case
of Xoodoo, the number of differentials and linear approximations in the case of parallel
instances of χ3 is slightly higher than the single-circle χ . On the contrary, there is no mean-
ingful difference in the case of parallel instances of χ5 and single-circle χ .

By comparing differentials and linear approximations, we see that the number of linear
approximations is the same as differentials in the case of parallel χ3. Hence, we expect
almost the same number of linear and differential trail cores over multiple rounds for the
case of parallel χ3. It confirms the report on the number of 2-round trail cores given in [9]:
“We found 2, 983, 444, 980 differential trail cores and 2, 983, 073, 628 linear trail cores. It is
worth noticing that these numbers are close to each other within 0.05%. This is a consequence
of the choice of χ3 over, for instance, χ5 as in Keccak−p”. The authors of [9] also reported
on the number of 3-round trail cores, that are 201 in the differential case and 204 in the linear
case, that is another confirmation.

Unlike the case of parallel χ3, the number of linear approximations is bigger than the
number of differentials in the case of parallel χ5 or for longer strings. Therefore, we expect
more linear trail cores than differential trail cores over multiple rounds in the case of χ with
a circle length of 5 or greater. The results depicted in Fig. 10 confirm our expectations.

Acknowledgements Joan Daemen and Alireza Mehrdad are supported by the European Research Council
under the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980 ESCADA.
Silvia Mella is supported by the Cryptography Research Center of the Technology Innovation Institute (TII),
Abu Dhabi (UAE), under the TII-Radboud project with title Evaluation and Implementation of Lightweight
Cryptographic Primitives and Protocols.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

123

Cryptography and Communications

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK
families of lightweight block ciphers. IACR Cryptol. ePrint Arch. p. 404 (2013)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The keccak reference (2011)
3. Carlet, C., Charpin, P., Zinoviev, V.A.: Codes, bent functions and permutations suitable for des-like

cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998)
4. Carlet, C., Crama, Y., Hammer, P.L.: Vectorial boolean functions for cryptography. In: Y. Crama, P.L.

Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp.
398–470. Cambridge University Press (2010)

5. Daemen, J.: Cipher and hash function design, strategies based on linear and differential cryptanalysis,
PhD Thesis. K.U.Leuven (1995). http://jda.noekeon.org/

6. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff. IACR Trans.
Symmetric Cryptol. 2018(4), 1–38 (2018)

7. Daemen, J.,Massolino, P.M.C.,Mehrdad, A., Rotella, Y.: The Subterranean 2.0 Cipher Suite. IACRTrans.
Symmetric Cryptol. 2020(S1), 262–294 (2020)

8. Daemen, J., Mehrdad, A., Mella, S.: Computing the distribution of differentials over the non-linear
mapping χ . In: Security, Privacy, andApplied Cryptography Engineering - 11th International Conference,
SPACE 2021, Kolkata, India, December 10-13, 2021, Proceedings, Lecture Notes in Computer Science,
vol. 13162, pp. 3–21. Springer (2021)

9. Daemen, J., Mella, S., Assche, G.V.: Tighter trail bounds for xoodoo. Cryptology ePrint Archive, Paper
2022/1088 (2022). https://eprint.iacr.org/2022/1088

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer,
Information Security and Cryptography (2002)

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2 (2014). https://ascon.iaik.tugraz.at/
12. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight authenticated encryp-

tion and hashing. J. Cryptol. 34(3), 33 (2021)
13. Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun.

3(1), 59–81 (2009)
14. Hirch, S.E.,Mella, S.,Mehrdad, A., Daemen, J.: Improved differential and linear trail bounds for ASCON.

IACR Trans. Symmetric Cryptol. 2022(4), 145–178 (2022). https://doi.org/10.46586/tosc.v2022.i4.145-
178

15. Mehrdad, A., Mella, S., Grassi, L., Daemen, J.: Differential trail search in cryptographic primitives with
big-circle chi: Application to subterranean. IACR Trans. Symmetric Cryptol. 2022(2), 253–288 (2022)

16. Mella, S., Daemen, J., Van Assche, G.: New techniques for trail bounds and application to differential
trails in Keccak. IACR Trans. Symmetric Cryptol. 2017(1), 329–357 (2017)

17. Nyberg, K.: Differentially uniform mappings for cryptography. In: T. Helleseth (ed.) Advances in Cryp-
tology - EUROCRYPT ’93, Workshop on the Theory and Application of Cryptographic Techniques,
Lofthus, Norway, May 23-27, 1993, Proceedings, Lecture Notes in Computer Science, vol. 765, pp.
55–64. Springer (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://jda.noekeon.org/
https://eprint.iacr.org/2022/1088
https://ascon.iaik.tugraz.at/
https://doi.org/10.46586/tosc.v2022.i4.145-178
https://doi.org/10.46586/tosc.v2022.i4.145-178

	Differential and linear properties of vectorial boolean functions based on chi
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Terminology
	2.2 Specification of Chi
	2.3 Simon's non-linear layer
	2.4 Ascon's non-linear layer

	3 Propagation through non-linear layers
	3.1 Differential propagation
	3.2 Linear propagation
	3.3 Implications for χell, Simon and Ascon

	4 Distribution of differentials over Chi
	4.1 Number of differentials over chi with a given weight
	4.2 Computing D3(l,h,r)
	4.3 Computing D4(h,r,y,x)

	5 Distribution of linear approximations over Chi
	5.1 Number of linear approximations over chi with a given weight
	5.2 Computing L3(l,h,o)
	5.3 Computing L4(l,h,o,g,c)

	6 Comparing differential and linear properties of chi
	6.1 Differentials and linear approximations
	6.1.1 257-bit state as in Subterranean
	6.1.2 128-bit state as in Simon
	6.1.3 384-bit state as in Xoodoo
	6.1.4 400-bit state as in Keccak-f[400]

	6.2 Number of 2-round differential and linear trail cores
	6.3 Differential propagation over Chi given an output difference
	6.4 Linear propagation over Chi given an input mask

	7 Conclusions
	Acknowledgements
	References

