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Abstract
Parametric timed automata (PTA) have been introduced by Alur, Henzinger, and
Vardi as an extension of timed automata in which clocks can be compared against
parameters. The reachability problem asks for the existence of an assignment of the
parameters to the non-negative integers such that reachability holds in the underlying
timed automaton. The reachability problem for PTA is long known to be undecidable,
already over three parametric clocks. A few years ago, Bundala and Ouaknine proved
that for PTA over two parametric clocks and one parameter the reachability problem
is decidable and also showed a lower bound for the complexity class PSPACENEXP.
Our main result is that the reachability problem for two-parametric timed automata
with one parameter is EXPSPACE-complete. Our contribution is two-fold. For the
EXPSPACE lower bound, inspired by [13, 14], we make use of deep results from
complexity theory, namely a serializability characterization of EXPSPACE (in turn
based on Barrington’s Theorem) and a logspace translation of numbers in Chinese
remainder representation to binary representation due to Chiu, Davida, and Litow.
It is shown that with small PTA over two parametric clocks and one parameter one
can simulate serializability computations. For the EXPSPACE upper bound, we first
give a careful exponential time reduction from PTA over two parametric clocks and
one parameter to a (slight subclass of) parametric one-counter automata over one
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parameter based on a minor adjustment of a construction due to Bundala and Ouak-
nine. For solving the reachability problem for parametric one-counter automata with
one parameter, we provide a series of techniques to partition a fictitious run into
several carefully chosen subruns that allow us to prove that it is sufficient to con-
sider a parameter value of exponential magnitude only. This allows us to show a
doubly-exponential upper bound on the value of the only parameter of a PTA over
two parametric clocks and one parameter. We hope that extensions of our techniques
lead to finally establishing decidability of the long-standing open problem of reach-
ability in parametric timed automata with two parametric clocks (and arbitrarily
many parameters) and, if decidability holds, determinining its precise computational
complexity.

Keywords Parametric timed automata · Computational complexity · Reachability ·
EXPSPACE-complete

1 Introduction

Background In the 1990’s timed automata have been introduced by Alur and Dill
[2]. They extend finite automata by clocks that can be compared against integer con-
stants and provide a popular formalism to reason about the behavior of real-time
systems with desirable algorithmic properties; for instance the reachability/emptiness
problem is decidable and in fact PSPACE-complete [1].

For a more general means to specify the behavior of under-specified systems, such
as embedded systems, Alur, Henzinger and Vardi [3] have introduced parametric
timed automata (PTA) only a few years later. By a PTA we mean a parametric timed
automaton over discrete time whose guards are of the form x �� p and x �� k, where
x is a clock, p is a parameter ranging over unspecified non-negative integers and k

is a constant ranging over the non-negative integers. A clock x is parametric if it
appears in at least one guard of the form x �� p and non-parametric otherwise.

Towards the verification of safety properties, or loosely speaking ruling out the
existence of an execution to a bad state, the reachability problem for PTA in turn asks
for the existence of an assignment of the parameters to the non-negative integers such
that reachability holds in the resulting timed automaton.

On the negative side, it has been shown in [3] that already for PTA that contain
three parametric clocks reachability is undecidable — even in the presence of a single
parameter [8].

On the positive side however, Alur, Henzinger and Vardi have shown in [3] that
reachability is decidable for PTA that contain only one parametric clock but allowing
arbitrarily many non-parametric clocks, yet by an algorithm whose running time is
non-elementary.

For PTA over one parametric clock (and arbitrarily many non-parametric clocks),
Bundala and Ouaknine have shown a first elementary complexity upper bound for the
reachability problem; it is shown to be NEXP-hard and in 2NEXP [10]. The matching
NEXP upper bound has been proven by Beneš et al. in [8] (also in the continuous
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time setting), we refer to [9] for an alternative proof by Bollig, Quaas and Sangnier
using alternating 2-way automata.

Bundala and Ouaknine [10] have recently advanced the decidability and com-
plexity status of the reachability problem for PTA over two parametric clocks [10]
(and arbitrarily many non-parametric clocks): it is shown that in the presence of one
parameter the reachability problem is decidable and hard for the complexity class
PSPACENEXP. To the best of our knowledge, this is in fact the largest subclass of PTA
for which reachability is known to be decidable. For showing the above-mentioned
decidability result [10] provides a reduction from PTA over two parametric clocks
to a suitable formalism of parametric one-counter automata. Such an approach via
parametric one-counter automata has already successfully been applied to model
checking freeze-LTL as shown by Demri and Sangnier [12] and Lechner et al. [21],
yet notably over a weaker model of parametric one-counter automata than the one
introduced in [10]. On this note, it is worth mentioning that inter-reductions between
the reachability problem of (non-parametric) timed automata involving two clocks
and one-counter automata have already been established by Haase et al. [16, 17].

Decidability of reachability in PTA over two parametric clocks (with arbitarily
many non-parametric clocks and arbitarily many parameters) is still considered to be
a challenging open problem to the best of our knowledge. For instance, as already
remarked in [3], there is an easy reduction from the existential fragment of Presburger
Arithmetic with divisibility to reachability in PTA over two parametric clocks.

Our contribution Our main result (Theorem 5) states that reachability in parametric
timed automata over two parametric clocks, arbitrarily many non-parametric clocks,
and one integer-valued parameter, is EXPSPACE-complete. Our contribution is
two-fold.

Inspired by [13, 14], for the EXPSPACE lower bound we make use of deep results
from complexity theory, namely a serializability characterization of EXPSPACE (in
turn originally based on Barrington’s Theorem [7]) and a logspace translation of
numbers in Chinese remainder representation to binary representation due to Chiu,
Davida, and Litow [11]. It is shown that with small PTA over two parametric clocks
and one parameter one can simulate serializability computations.

For the EXPSPACE upper bound, we first give a careful exponential time reduc-
tion from PTA over two parametric clocks and one parameter to a (slight subclass of)
parametric one-counter automata over one parameter based on a minor adjustment of
a construction due to Bundala and Ouaknine [10]. In solving the reachability prob-
lem for parametric one-counter automata with one parameter, we provide a series
of techniques to partition a fictitious run into several carefully chosen subruns that
allow us to prove that it is sufficient to consider a parameter value of exponential
magnitude. This allows us to show a doubly-exponential upper bound on the value
of the only parameter of PTA with two parametric clocks and one parameter. We
hope that extensions of our techniques lead to finally establishing decidability of
the long-standing open problem of reachability in parametric timed automata with
two parametric clocks (and arbitrarily many parameters) and, if decidability holds,
determinining its precise computational complexity.
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As the results in [3], our results hold for PTA over discrete time, where it is worth
mentioning that in [3] parameters can both be integer-valued and rational-valued.
Indeed, for PTA with closed (i.e. non-strict) clock constraints and parameters ranging
over integers, techniques [19, 23] exist that allow to reduce the reachability problem
over continuous time to discrete time. There is a plethora of variants of PTA that have
recently been studied, we refer to [4] for an extensive overview by André.

Overview of this paper In Section 2 we introduce general notations and state our
main result. Our EXPSPACE lower bound can be found in Section 3. Section 4
introduces parametric one-counter automata and states an exponential time reduction
from reachability in parametric timed automata with two parametric clocks and one
parameter to reachability in parametric one-counter automata. Section 5 states the
EXPSPACE upper bound and the central Small Parameter Theorem (Theorem 18).
It also gives an overview of the proof of the Small Parameter Theorem, which itself
stretches over Sections 6,7,8, and 9.

2 Preliminaries

We assume the reader is familiar with Turing machines and standard complexity
classes such as LOGSPACE, PSPACE and EXPSPACE. We refer to [5, 24] for further
details on complexity. We also assume the reader is familiar with (deterministic)
finite automata and regular languages, we refer to [18] for more details on this.

By Z we denote the integers and by N = {0, 1, . . .} we denote the non-negative
integers. For every a, b ∈ Z with a ≤ b we define [a, b] = {k ∈ Z | a ≤ k ≤ b}.
For every n ≥ 1 we define nZ = {n · z | z ∈ Z}. For every number n ∈ N we define
log(n) = min{i + 1 | i ∈ N, n ≤ 2i}, which is the smallest number of bits necessary
to write down n in binary. For every finite alphabet A we denote by A∗ the set of finite
words over A and denote the empty word by ε. For all a ∈ A and all w ∈ A∗ let |w|a
denote the number of occurrences of the letter a in w. For every finite set M ⊂ N\{0}
let LCM(M) = min{n ≥ 1 | ∀m ∈ M \ {0} : m|n} denote the least common multiple
of the elements in M . For any j ∈ N let LCM(j) = LCM([1, j ]) denote the least
common multiple of the numbers {1, . . . , j}. For any two sets X and S, let XS denote
the set of all functions from S to X. For any set S let P(S) = {X | X ⊆ S} denote
the power set of S.

A guard over a finite set of clocks � and a finite set of parameters P is a compar-
ison of the form g = ω �� e, where ω ∈ �, e ∈ P ∪ N, and ��∈ {<, ≤, =, ≥, >};
in case e ∈ P we call g parametric, and non-parametric otherwise. We denote by
G(�, P ) the set of guardsover the set of clocks � and the set of parameters P . The
size |g| of a guard g = ω �� e is defined as

|g| =
{

log(e) if e ∈ N

1 otherwise.

A clock valuation is a function from � to N; we write �0 to denote the clock valuation
ω → 0. For each clock valuation v and each t ∈ N we denote by v + t the clock
valuation ω → v(ω) + t . A parameter valuation is a function μ from P to N. For
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every guard g = ω �� p with p ∈ P (resp. g = ω �� k with k ∈ N) we write v |=μ g

if v(ω) �� μ(p) (resp. v(ω) �� k; in this case we may also simply write v |= g). We
define an empty guard gε over a non-empty finite set of clocks � and a finite set of
parameters P to be of the form ω ≥ 0 for some ω ∈ �. In particular, we define gε

such that for all v ∈ N
� and all μ ∈ N

P we have v |=μ gε , hence gε can be used as
a guard that is always true.

A parametric timed automaton as introduced in [3] is a finite automaton extended
with a finite set of parameters P and a finite set of clocks � that all progress at
the same rate and that can be individually reset to zero. Moreover, every transition
is labeled by a guard over � and P and by a set of clocks to be reset. Formally, a
parametric timed automaton (PTA for short) is a tuple A = (Q, �, P, R, qinit , F ),
where

• Q is a non-empty finite set of control states,
• � is a non-empty finite set of clocks,
• P is a finite set of parameters,
• R ⊆ Q × G(�, P ) × P(�) × Q is a finite set of rules,
• qinit ∈ Q is an initial control state, and
• F ⊆ Q is a set of final control states.

A clock ω ∈ � is called parametric if there exists some (q, g, U, q ′) ∈ R such
that the guard g is of the form ω �� p, with ��∈ {<, ≤, =, ≥, >} and p ∈ P . We
also refer to A as a (m, n)-PTA if m = |{ω ∈ � | ω is parametric}| is the number of
parametric clocks and n = |P | is the number of parameters of A — sometimes we
also just write (m, ∗)-PTA (resp. (∗, n)-PTA) when n (resp. m) is a priori not fixed.

The size of A is defined as

|A| = |Q| + |�| + |P | + |R| +
∑

(q,g,U,q ′)∈R

|g|.

Let Consts(A) = {c ∈ N | ∃(q, g, U, q ′) ∈ R, ∃ω ∈ � : g = ω �� c} denote the set
of constants that appear in the guards of the rules of A.

By Conf(A) = Q × N
� we denote the set of configurations of A. We prefer

however to denote a configuration by q(v) instead of (q, v).

Definition 1 For each parameter valuation μ : P → N and each (δ, t) ∈ R × N

with δ = (q, g, U, q ′) ∈ R, let
δ,t,μ−−−→ denote the binary relation Conf(A), where

q(v)
δ,t,μ−−−→ q ′(v′) if v + t |=μ g, v′(u) = 0 for all u ∈ U and v′(ω) = v(ω) + t for

all ω ∈ � \ U .

A μ-run from q0(v0) to qn(vn) is a sequence q0(v0)
δ1,t1,μ−−−−→ q1(v1) · · · δn,tn,μ−−−−→

qn(vn); it is called reset-free if the set appearing in the third component is empty

for all δi . We sometimes use the abbreviation q(v)
μ−→∗

q ′(v′) to denote a μ-run of
arbitrary length from q(v) to q ′(v′).



Theory of Computing Systems

Fig. 1 An example of a PTA. The automaton consists of three states, the set of clocks is {x, y}, the set
of parameters is {p}. The edges are represented by arrows labeled with the corresponding guard and the
set of clocks U to be reset. A parameter valuation μ witnesses that reachability holds for this PTA if, and
only, if and only if, μ(p) ∈ 3Z

In case P = {p} is a singleton and μ(p) = N we prefer to say N-run instead
of μ-run. We say reachability holds for A if there is a μ-run from qinit (�0) to some
configuration q(v) for some q ∈ F , some v ∈ N

�, and some μ ∈ N
P . We refer to

Fig. 1 for an instance of a PTA for which reachability holds.
In the particular case where P = {p} is a singleton for some parameter p and

μ(p) = N we prefer to write q(v)
N−→ q ′(v′) (resp. q(v)

N−→
∗

q ′(v′))) to denote

q(v)
μ−→ q ′(v′) (resp. q(v)

μ−→∗
q ′(v′))) and prefer to write |=N to denote |=μ.

It is worth mentioning that there are further modes of time valuations and guards
which exist in the literature, we refer to [4] for a recent overview.

We are interested in the following decision problem.
(m, n)-PTA-REACHABILITY

INPUT: A (m, n)-PTA A.
QUESTION: Does reachability hold for A?

Alur et al. have already shown in their seminal paper that PTA-REACHABILITY

is in general undecidable, already in presence of only three parametric clocks [3],
Beneš et al. strengthened this when only one parameter is present [8].

Theorem 2 ([8]) (3, 1)-PTA-REACHABILITY is undecidable.

To the contrary, (1, ∗)-PTA-REACHABILITY has recently been shown to be com-
plete for NEXP, where a non-elementary upper bound was initially given by Alur
et al. [3].

Theorem 3 ([8–10]) (1, ∗)-PTA-REACHABILITY is NEXP-complete.

On the other end, decidability of (2, ∗)-PTA-REACHABILITY is still open to the
best of our knowledge. In presence of one parameter the following is known.

Theorem 4 ([10]) (2, 1)-PTA-REACHABILITY is decidable and PSPACENEXP-hard.

The following theorem states our main result.
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Theorem 5 (2, 1)-PTA-REACHABILITY is EXPSPACE-complete.

3 Lower Bounds

In this section we show an EXPSPACE lower bound for (2, 1)-PTA-REACHABILITY.
Section 3.1 introduces some auxiliary gadgets that show that on small (2, 1)-PTA
with two parametric clocks x and y and one parameter p one can perform both (i)
PSPACE computations and (ii) compute x − y mod p modulo numbers that are
dynamically given in binary. Section 3.2 builds upon these auxiliary gadgets and
shows how to implement serializability computations in a leaf language character-
ization of EXPSPACE [13], which is a simple padded variant of the leaf language
characterization of PSPACE due to Hertrampf et al. [20].

3.1 PSPACE andModulo Computations

For each i, n ∈ N let BITi (n) denote the i-th least significant bit of the binary presen-
tation of n, where the least significant bit is on the left, i.e. n = ∑

i∈N 2i · BITi (n).
For each m ≥ 1, by BINm(n) = BIT0(n) · · · BITm−1(n) we denote the sequence
of the first m least significant bits of the binary representation of n. Conversely,
given a binary string w = w0 · · · wm−1 ∈ {0, 1}m of length m we denote by
VAL(w) = ∑m−1

i=0 2i · wi ∈ [0, 2m − 1] the value of w interpreted as a non-negative
integer.

Let A be a parametric timed automaton over a set of clocks � with two parametric
clocks x and y. We say a valuation v : � → N is bit-compatible if v(ζ ) ∈ {0, 1}
for all non-parametric clocks ζ ∈ � of A. Assume moreover that � contains non-
parametric clocks �+ ∪ �−, where � is some set and �+ = {ϑ+ | ϑ ∈ �} and
�− = {ϑ− | ϑ ∈ �} are two disjoint corresponding copies of �; in this case, for
any valuation v : � → N we define the mapping v̂ : � → {0, 1} as

v̂(ϑ) =
{

0 if v(ϑ+) = v(ϑ−)

1 otherwise.

In the following we call such non-parametric clocks {ϑ+, ϑ− | ϑ ∈ �}, appearing as
implicit pairs, bit clocks since they are used to encode bits. The following definition
expresses when a parametric timed automaton over two parametric clocks and one
parameter computes a function from N × {0, 1}n to {0, 1}m. Notably, both before
execution it assumes, and after execution it guarantees, a bit-compatible valuation
that assigns its two parametric clocks values in the interval [0, N − 1], where N

denotes the assigned value of its only parameter. In the following definition, it is
important to note that the involved clocks are not (and in fact must not) assumed to
be initially set to zero.

Definition 6 A (2, 1)-PTA A = (Q, �, {p}, R, qinit , {qf in}) whose parametric
clocks are x and y and whose one parameter is p computes a function f : N ×
{0, 1}n → {0, 1}m if its set of clocks � contains two disjoint sets of
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• non-parametric “input” bit clocks {in0
+, in0

−, . . . , in+
n−1, in

−
n−1},

• non-parametric “output” bit clocks {out0
+, out0

−, . . . , outm−1
+, outm−1

−},
such that for all N ∈ N and all bit-compatible v0 : � → [0, N − 1] we have

1. qinit (v0)
N−→

∗
qf in(v

′) for some bit-compatible v′ : � → [0, N − 1] and

2. for all v′ : � → N for which qinit (v0)
N−→

∗
qf in(v

′) we have

• v′ ∈ [0, N − 1]� is bit-compatible,
• v̂′(ini) = v̂0(ini) for all i ∈ [0, n − 1],
• v′(x) − v′(y) ≡ v0(x) − v0(y) mod N , and
• ∏m−1

j=0 v̂′(outj ) = f (v0(x) − v0(y) mod N,
∏n−1

i=0 v̂0(ini)), where
∏

denotes concatenation.

Importantly, the execution of any N-run qinit (v0)
N−→ qf in(v

′) does not have any
side effects on the binary interpretation of the “input” bit clocks, i.e. the string∏n−1

i=0 v̂0(ini) equals
∏n−1

i=0 v̂′(ini).
The following lemma essentially has its roots in the PSPACE-hardness proof for

the emptiness problem for timed automata (without parameters) introduced by Alur
and Dill [2], however constructed to satisfy the carefully chosen interface given by
Definition 6.

Lemma 7 For every PSPACE-computable function g : {0, 1}n → {0, 1}m one can
compute in polynomial time in n + m a (2, 1)-PTA computing the function f : N ×
{0, 1}n → {0, 1}m, where f (k, w) = g(w) for all (k, w) ∈ N × {0, 1}n.

Proof Let us fix some PSPACE-computable function g : {0, 1}n → {0, 1}m. Let us
moreover fix some t (n)-space bounded deterministic Turing machine M computing
g, where t is some fixed polynomial.

We explicitly store the value of our input by making use of our non-
parametric “input” bit clocks {in0

+, in0
−, . . . , in+

n−1, in
−
n−1}. Similarly, we explic-

itly store the value of our output with the non-parametric “output” bit clocks
{out0

+, out0
−, . . . , outm−1

+, outm−1
−}. Since f (k, w) = g(w) we need to provide

a computation that presents g(w) ∈ {0, 1}m using the “output” bit clocks. Let �

denote the set of clocks of the (2, 1)-PTA A whose construction we discuss next.
For every non-parametric clock in A we reset it once it has value 2; this is achieved

by suitable self-loops in every state of the construction except for the final control
state qf in. Similarly, we establish that both of the parametric clocks x and y are being
reset once they have reached value N . This way the difference between the values
of x and y will stay unchanged modulo the valuation N of the only parameter p.
Importantly, other than that neither x nor y will be modified during the following
construction.

We will enforce that finally the values of all non-parametric clocks remain in {0, 1}
and that the two parametric clocks have a value in [0, N − 1] as follows. A final
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control state qf in is preceded by a final gadget in which no time elapses that verifies
via a sequence of suitable guards that the parametric and non-parametric clocks are
as required.

Let us consider now any pair of bit clocks ϑ+ and ϑ− and any current bit-
compatible valuation v : � → N. We have v̂(ϑ) = 1 if, and only if, either v(ϑ+) = 0
and v(ϑ−) = 1 or conversely v(ϑ+) = 1 and v(ϑ−) = 0. Similarly, when we want
to set the value v̂(ϑ) to 0, we reset both clocks ϑ+ and ϑ− at the same time, and
when we want to set the value v̂(ϑ) to 1, we reset ϑ− when v(ϑ+) = 1 without
resetting ϑ+.

For simulating M our (2, 1)-PTA A will also use suitable O(t(n)) bit clocks, to
store in binary the working tape of M.

Given the current bit-compatible valuation v : � → N, it is thus possible
to inspect the input bit string

∏n−1
i=0 v̂(ini), read and write the polynomially sized

working tape, and to write the output
∏m−1

j=0 v̂(outj ). Let us discuss this in more
detail.

For simulating M, we choose the control states of our (2, 1)-PTA A as

S × {0, . . . , n − 1} × {0, . . . , m − 1} × {0, . . . , t (n) − 1} × {0, 1} × {0, 1},

where S is the set of states of M. We then simulate any step of M from a state q,
current position i on the input tape, current position j on the output tape, current posi-
tion h on the working tape, reading letter a on the input tape, reading letter b on the
working tape, changing to a new state q ′, new input head position i′, new output head
position j ′, and new working head position h′. To do that, we add to A sequences of
suitable rules from control state (q, i, j, h, a, b) to control state (q ′, i′, j ′, h′, a′, b′)
for all a′, b′ ∈ {0, 1}, by using suitable guards and reset operations that serve two
purposes: first, checking whether a′ and b′ are indeed the values of the i′-th (resp.
h′-th) cell of the input (resp. working) tape and second, writing on the j -th (resp.
h-th) cell of the output (resp. working) tape.

Letting qinit denote some suitable initial state one can thus achieve that for all bit-

compatible v0 : � → [0, N − 1] and all v′ : � → N, if q0(v0)
N−→

∗
qf in(v

′) then v′
is again a bit-compatible valuation from � to [0, N − 1].

Remark 8 The proof of Lemma 7 shows that if g : N × {0, 1}n → {0, 1}m is com-
putable by a (2, 1)-PTA, then so is the function f : N × {0, 1}n+
 → {0, 1}m, where
f (k, w) = g(k, w1 · · · wn) for all k ∈ N and all w = w1 · · · wn+
 ∈ {0, 1}n+
:
indeed, one can manipulate the 2
 additional input bit clocks by repeatedly resetting
them once they have value 2, enforcing that the associated v̂-values stay throughout
unchanged and that their value is finally strictly smaller than 2.

The following lemma shows that (2, 1)-PTA can compute modulo dynamically
given numbers in binary.
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Lemma 9 One can compute in polynomial time in n+m a (2, 1)-PTA that computes
the function f : N × {0, 1}n → {0, 1}m, where f (k, w) = BINm(k mod VAL(w)).

Proof We need to show that in time polynomial in n + m one can construct a (2, 1)-
PTA A whose set of clocks � contains the “input” bit clocks {in0

+, in0
−, . . . ,

in+
n−1, in

−
n−1} and “output” bit clocks {out0

+, out0
−, . . . , outm−1

+, outm−1
−} that

computes f . Let us assume some parameter value N ∈ N and some bit-compatible
valuation v0 : � → [0, N − 1] satisfying w = ∏n−1

i=0 v̂0(ini).
Again, we establish here also that the parametric clocks x and y are being reset

once they have reached value N — however we sometimes explicitly disallow x to
reach value N in certain gadgets mentioned below. This will be the only modification
of x and y. In the following, reading and writing the v̂(ϑ)-value for every pair of bit
clocks ϑ+, ϑ−, guaranteeing that v(ϑ+), v(ϑ−) ∈ {0, 1}, and guaranteeing that the
parametric clocks finally have values in [0, N − 1] can be done as in the proof of
Lemma 7.

We need the eventual output bit string
∏m−1

j=0 v̂′(outj ) to be equal to

f (v0(x) − v0(y) mod N, w) = BINm((v0(x) − v0(y) mod N) mod VAL(w)).

Our automaton starts in some initial control state qinit . From qinit we introduce
a gadget that nondeterministically writes some value u ∈ {0, 1}m in our “output”
bit clocks that satisfies VAL(u) < VAL(w). From the end of the latter gadget we
have a rule that checks if our parametric clock x has value 0 (just after being reset
with value N), leading to a control state qwait . Assume our current valuation then
is v : � → N. From qwait we have a rule to a state qsub letting no time elapse
from which we claim there is a gadget that allows us to loop in qsub for precisely
VAL(w) = VAL(

∏n−1
i=0 v̂(ini))) time units. One constructs the latter gadget as fol-

lows. Subsequently for every i ∈ [0, n − 1] one reads v̂(ini) and in case v̂(ini) = 1
lets precisely 2i time units elapse via a suitable auxiliary clock and in case v̂(ini) = 0
lets 0 time units elapse. The gadget ends with a sequence of rules leading back to
qsub by letting 0 time units elapse that verify that the parametric clock x has a value
strictly smaller than N . Importantly, the parametric clock x is exceptionally not reset
inside this gadget.

Finally, we add a rule from qsub to a suitable gadget that lets precisely
VAL(

∏m−1
j=0 v̂(outj )) time units elapse (analogously as done above), followed by a

test that verifies that the value of y equals 0 (after just being reset at value N). In
addition, we append this latter gadget with a final sequence of rules (again letting no
time elapse) to our final control state qf in that test if both x and y have a value strictly
smaller than N and test if all non-parametric clocks have a value strictly smaller than

2. Thus, every valuation v′ : � → N for which qinit (v0)
N−→

∗
qf in(v

′) holds is a
bit-compatible valuation from � to [0, N − 1].

It is worth noting that by construction precisely v0(x) − v0(y) mod N time units
have passed in any computation qwait to qf in. Since we have repeatedly waited
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VAL(w) time units and finally verified that the remaining time is the guessed value
initially nondeterministically written to our “output” bit clocks, we have

m−1∏
j=0

v̂′(outj ) = BINm((v0(x) − v0(y) mod N) mod
n−1∏
i=0

v̂0(ini)))

= f (v0(x) − v0(y) mod N,

n−1∏
i=0

v̂0(ini))

for any valuation v′ : � → N with qinit (v0)
N−→

∗
qf in(v

′), as required.

3.2 An EXPSPACE Lower Bound via serializability

This section is devoted to showing the following lower bound.

Theorem 10 (2, 1)-PTA-REACHABILITY is EXPSPACE-hard.

For each language L ⊆ A∗ let χL : A∗ → {0, 1} denote its characteristic function.
By �n we denote the lexicographic order on n-bit strings, thus w �n v if VAL(w) ≤
VAL(v), e.g. 0101 �4 0011.

Our EXPSPACE lower bound proof makes use of the following leaf language
view of EXPSPACE from [13], which is a padded adjustment of the leaf-language
characterization of PSPACE from [20], which in turn has its roots in Barrington’s
Theorem [7].

Theorem 11 (Theorem 2 in [13]) For every language L ⊆ {0, 1}∗ in EXPSPACE
there exists a polynomial s : N → N, a regular language � ⊆ {0, 1}∗, and a
language K ∈ LOGSPACE such that for all w ∈ {0, 1}n we have

w ∈ L ⇐⇒
22s(n)−1∏

m=0

χK(w · BIN2s(n) (m)) ∈ �, (1)

where · and ∏
denote string concatenation.

Let us fix any language L in EXPSPACE and assume L ⊆ {0, 1}∗ without loss
of generality. Applying Theorem 11, let us fix the regular language � ⊆ {0, 1}∗
along with some fixed deterministic finite automaton D = (QD, {0, 1}, q0, δD, FD)

with L(D) = �, the fixed polynomial s and the fixed language K ∈ LOGSPACE.
Let us moreover fix an input w ∈ {0, 1}n of length n for L. Figure 2 rephrases
characterization (1) in Theorem 11 in terms of an execution of a program that returns
1 if, and only if, w ∈ L.

Making use of D, s and K we will translate our input w ∈ {0, 1}n in polynomial
time (in |w| = n) to some (2, 1)-PTA A = (Q, �, P, R, qinit , F ) such that

• � will contain precisely two parametric clocks x and y and further clocks that
are non-parametric,
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Fig. 2 A program returning 1 if, and only if, w ∈ L (using the characterization in Theorem 11), where
D = (QD, {0, 1}, q0, δD, FD) is some deterministic finite automaton such that L(D) = �

• P = {p} is a singleton, and
• w ∈ L if, and only, if reachability holds for A.

The following lemma gives us a gadget (2, 1)-PTA that allows us to enforce that the
parameter p can only be evaluated to numbers that are larger than 22s(n)

.

Lemma 12 One can compute in polynomial time in n some parametric timed
automaton Abig = (Qbig, �big, {p}, Rbig, qbig,init , {qbig,f in}) with two parametric
clocks x, y ∈ �big and one parameter p such that

1. qbig,init (�0)
N−→

∗
qbig,f in(v

′) for some v′ : �big → N for some N ∈ N, and

2. for all N ∈ N and all v′ : �big → N we have qbig,init (�0)
N−→

∗
qbig,f in(v

′)
implies N > 22s(n)

.

Proof Without loss of generality we may assume 2s(n)+1 ≥ 10. Letting N denote
the parameter value of its only parameter p, our (2, 1)-PTA Abig will test whether
N − 1 is divisible by all numbers in the interval [1, 2s(n)+1 − 1]. This will be suf-
ficient since LCM([1, k]) ≥ 2k for all k ≥ 9 by [22], thus implying N > N − 1 ≥
LCM([1, 2s(n)+1 − 1]) ≥ 22s(n)+1−1 > 22s(n)

. Consider the following program which
returns 1 if, and only if, all numbers in [1, 2s(n)+1 − 1] divide N − 1.
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It remains to show that the program can be implemented by a (2, 1)-PTA Abig

with a suitable final control state qbig,f in.
It is straightforward to initialize our two parametric clocks x and y in such a way

that one can enforce valuations v that satisfy v(x) − v(y) = N − 1 mod N : indeed,
starting from the valuation �0, we can wait one unit of time after which we reset x but
not y.

We will use O(s(n)) suitable bit clocks for storing the variables I and J

respectively.
Lines (3), (4) and (7) can easily directly be achieved by reading and writing the

O(s(n)) many bits clocks reserved for storing I and J . Line (5) boils down to incre-
menting I when viewed as s(n) + 1 bit integer and is thus obviously a polynomial
space computable function from N × {0, 1}s(n) to {0, 1}s(n) and hence computable
using a suitable PTA based on Lemma 7. Line (6) is a function from N× {0, 1}s(n)+1

to {0, 1}s(n)+1 that can be implemented using a suitable PTA based on Lemma 9.
As in the proofs of Lemmas 7 and 9 we reset the two parametric clocks x and y

once they have reached value N but only in case we are outside any of the gadget
PTA corresponding to line (5) and line (6), respectively. Similarly we realize the
implementation of the bit clocks for I and J by resetting them once they have reached
value 2.

Recall that we aim at implementing the program in Fig. 2 by a (2, 1)-PTA A. The
initial part of A will consist of the gadget PTA Abig which will allow us to enforce

an assignment of p to some value N > 22s(n)
. We first explain how to encode its

variables and then discuss how to implement the different lines of the program.

Encoding the Variables of the Program in Fig. 2 Our PTA A will store in its con-
trol states the current state q of D and the boolean variable b. We cannot easily
“explicitly” store the value of our variable B in binary as in the proof of Lemma 7
via polynomially many bit clocks in such a way that, given the current valuation
v : � → N, it suffices to simply inspect their v̂-value: indeed, there are only singly-
exponentially many different combinations of such v̂-values, yet B is a number in
[0, 22s(n)] and thus of doubly-exponential magnitude. We will rather store the value
B ∈ N as the difference v(x)−v(y) mod N between our only two parametric clocks
x and y: this is possible since N > 22s(n)

by our initial gadget PTA Abig . However,
when inspecting line (7) of Fig. 2 we need to access certain bits of the exponentially
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long bit string w · BIN2s(n) (B). For this, we access B in a different representation,
namely in Chinese Remainder Representation that we introduce next.

Definition 13 (Chinese Remainder Representation) Let pi denote the i-th prime
number and assume

∏m
i=1 pi > B for some m ∈ N. Then CRRm(B) denotes the bit

tuple (bi,r )i∈[1,m],r∈[0,pi−1], where bi,r = 1 if B mod pi = r and bi,r = 0 otherwise.

Since B will need to take values in [0, 22s(n)] and for every k ∈ N we have∏k
i=1 pi >2k there exists some m ∈ O(log(22s(n)

))=2poly(n) such that
∏m

i=1 pi > B.
In other words, one can present B as

CRRm(B) = (bi,r )i∈[1,m],r∈[0,pi−1] for some m ∈ 2poly(n) . (2)

Since by the Prime Number Theorem the i-th prime pi is bounded by O(i log i)

there exists some 
 ∈ O(log(m log m)) = O(log(2poly(s(n)))) = poly(n) such that 


bits are sufficient to store in binary precisely one of the primes pi . Thus, similarly
O(
) = poly(n) bits are sufficient to store in binary precisely one of the pairs of the
form (i, r), where i ∈ [1, m] and r ∈ [0, pi − 1]. Moreover we have |CRR(B)| ∈
O(m2 log m) = 2poly(s(n)) = 2poly(n).

Observe that in line (7) of our program in Fig. 2 we need to carry out LOGSPACE
computations on our exponentially long string w · BIN2s(n) (B). Yet, if at all, we only
have an on-the-fly mechanism for accessing the Chinese Remainder Representation
of B, notably still of exponential size in n. To have a chance to access concrete bits
of B, we apply the following theorem that states that, given a number in Chinese
Remainder Representation, one can compute in LOGSPACE its binary representation.

Theorem 14 (Theorem 3.3. in [11]) The following problem is computable in
DLOGTIME-uniform NC1 (and thus in LOGSPACE):

INPUT: CRRm(B) and j ∈ [1, m]
OUTPUT: BITj (B mod 2m)

Realization of line (7) in the Program in Fig. 2 Let us assume that we have B < 22s(n)

and recall that we have stored B as the difference v(x) − v(y) mod N of our two
parametric clocks x and y, assuming v to be our current clock valuation. Let us
show how to compute χK(w · BIN2s(n) (B)), where we recall that K is a language
in LOGSPACE. Let us fix some logarithmically space bounded deterministic Turing
machine M for K .

For simulating M our PTA A will use O(log(n + 2s(n))) = poly(n) auxiliary bit
clocks J to store in binary the position of the input head of M and further O(log(n+
2s(n))) = poly(n) auxiliary bit clocks W in order to store the working tape M.
Reading and writing on the working tape as well as updating the position of the input
head can done analogously as in the proof of Lemma 7. It only remains to show how
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to access the cell content BITj (w · BIN2s(n) (B)) of the input head of M, where we
recall that j itself is stored inside the above-mentioned bit clocks J .

To compute BITj (w · BIN2s(n) (B)) we apply Theorem 14 and simulate in turn a
LOGSPACE machine M′ whose input is assumed to be

CRR(B) = (bi,r )i∈[1,m],r∈[0,pi−1] and j ∈ [1, m],
where we already have direct access to j via the bit clocks J but need a special treat-
ment in order to access the bi,r of CRR(B). Importantly, during the to-be discussed
simulation of M′ we never modify the v̂-values associated with the bit clocks in J
and W that are being used in the (outermost) simulation of M. Before discussing the
access to the bi,r let us first discuss the simulation of the working tape of M′: this
can be achieved by using O(log(|CRR(B)| + s(n))) = O(log(m2 · log m + s(n))) =
poly(n) many auxiliary bit clocks W ′, say, where reading and writing the working
tape is done again as in Lemma 7. It remains to discuss how to implement the input
head in the simulation of M′. As mentioned repeatedly above, input j can directly be
accessed by the bit clocks J . However, accessing CRR(B) = (bi,r )i∈[1,m],r∈[0,pi−1]
cannot be done explicitly but on-the-fly: for this we reserve O(
) = O(s(n)) =
poly(n) additional auxiliary bit clocks J ′, say, to store in binary a pair of indices
(i, r), where i ∈ [1, m] and r ∈ [0, pi − 1]. Given the binary access to (i, r) via the
bit clocks J ′, one can compute via further suitable poly(
) = O(s(n)) = poly(n) bit
clocks H, say, the binary representation of the i-th prime number pi in space poly-
nomial in 
 (and thus in n) by Lemma 7: indeed, given i ∈ [1, m] in binary, i.e. using

 = poly(n) bits, it is straightforward to compute the i-th prime in space polynomial
in 
. Having a binary resentation of pi via the bit clocks H one can finally com-
pute (v(x) − v(y) mod N) mod pi via a gadget by Lemma 9. Our (2, 1)-PTA A
can thus indeed compute B mod pi and thus decide if r equals the latter, which in
turn is nothing but computing the to-be-computed input bit bi,r of CRR(B) for the
simulation of M′.

Concerning the implementation details of the simulation of M′ it is important to
remark (recalling Remark 8) that both during the sub-computation computing the i-
th prime pi (using Lemma 7) as well as during the sub-computation computing B

mod pi (using Lemma 9) one can guarantee that the v̂-values associated with the bit
clocks in J ,W,J ′ and W ′ are never being modified.

Realization of the Remaining Lines of the Program in Fig. 2 Lines (4), (8) and (11)
can be done directly by the control states of A. Line (5) boils down to resetting both
x and y simultaneously. Line (6) will be done by checking if for the second time
ever (the first time was when v(x) = v(y) = 0) we have that BIN2s(n) (B) = 02s(n)

,
which in turn can be done analogously (but in fact simpler) as our above-mentioned
implementation of line (7). Line (9) is letting time elapse till the parametric clock
y has value 1 (i.e. one time unit after it had value N and was reset), and then
resetting it. The latter implementation indeed correctly implements incrementation
modulo N .
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4 From Two-Parametric Timed Automata with one Parameter
to Parametric One-Counter Automata

Being introduced by Bundala and Ouaknine in [10], we define parametric one-
counter automata. These are automata that can manipulate a counter that can be
incremented or decremented, parametrically or not, compared against constants or
parameters, and with divisibility tests modulo constants. It is worth mentioning that
the notion of parametric one-counter automata from [10] is slightly more expressive
than ours, as we shall discuss further below.

After introducing parametric one-counter automata we state a theorem (Theo-
rem 16), proven essentially already in [10] — again, however for a slightly more
expressive model of parametric one-counter automata — that states that (2, 1)-PTA-
REACHABILITY can be reduced in exponential time to the reachability problem of
parametric one-counter automata over one parameter. Since the actual proof of The-
orem 16 follows the approach of Bundala and Ouaknine from [10], it can be found in
the Appendix.

4.1 Parametric One-Counter Automata

Given a set of parameters P we denote by Op(P ) the set of operations over the set of
parameters P , being of the form Op(P ) = Op± ∪Op±P ∪Op mod N∪Op��N∪Op��P ,
where

• Op± = {−1, 0, +1},
• Op±P = {+p, −p | p ∈ P },
• Op mod N = { mod c | c ∈ N},
• Op��N = {�� c |��∈ {<, ≤, =, ≥, >}, c ∈ N}, and
• Op��P = {�� p |��∈ {<, ≤, =, ≥, >}, p ∈ P }.

The size |op| of an operation op is defined as

|op| =
{

log(c) if op = mod c or op =�� c with c ∈ N

1 otherwise.

We denote by updates those operations that lie in Op± ∪ Op±P and by tests those
operations that lie in Op mod N ∪ Op��N ∪ Op��P . Previously, such as in [10] or [16],
slightly different sets of operations have been used, such as operations to increment
the counter by a constant represented in binary. Moreover, Bundala and Ouaknine
[10] include for the purpose of their construction some operations of the form +[0, p]
that allow to nondeterministically add to the counter a value that lies in [0, μ(p)],
where μ(p) is the parameter valuation of parameter p. As we shall show in this
section, when reducing the reachability problem for parametric timed automata with
two parametric clocks and one parameter to parametric one-counter automata one
does not require these +[0, p]-transitions.

A parametric one-counter automaton(POCA for short) is a tuple

C = (Q, P, R, qinit , F ),
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where

• Q is a non-empty finite set of control states,
• P is a non-empty finite set of parameters that can take non-negative integer

values,
• R ⊆ Q × Op(P ) × Q is a finite set of rules,
• qinit is an initial control state, and
• F ⊆ Q is a set of final control states.

The size of C is defined as

|C| = |Q| + |P | + |R| +
∑

(q,op,q ′)∈R

|op|.

Let Consts(C) denote the constants that appear in the operations op ∈ Op mod N ∪
Op��N for some operation (q, op, q ′) in R. By Conf(C) = Q × Z we denote the set
of configurations of C. We prefer however to denote a configuration of Conf(C) by
q(z) instead of (q, z).

Being slightly non-standard we define configurations to take counter values over
Z rather than over N for notational convenience. This does not cause any loss of
generality as we allow guards that enable us to test if the value of the counter is
greater or equal to zero.

Definition 15 (transition) For every op ∈ Op(P ), for every parameter valuation
μ : P → N, for every POCA C, and for every two configurations q(z) and q ′(z′) in

Conf(C) we define the transition q(z)
op,μ−−→ q ′(z′) if there exists some (q, op, q ′) ∈

R such that either of the following holds

1. op = c ∈ Op± and z′ = z + c,
2. op ∈ Op±P , and either

• op = +p and z′ = z + μ(p), or
• op = −p and z′ = z − μ(p).

3. op = mod c ∈ Op mod N, z = z′ and z′ ≡ 0 mod c,
4. op =�� c ∈ Op��N, z = z′ and z′ �� c, and
5. op =�� p ∈ Op��P , z = z′ and z′ �� μ(p).

Let μ : P → N be a parameter valuation. A μ-run in C (from q0(z0) to qn(zn)) is
a sequence, possibly empty (i.e. n = 0), of the form

π = q0(z0)
op0,μ−−−→ q1(z1) · · · opn−1,μ−−−−→ qn(zn) .

We sometimes use the abbreviation q(z)
μ−→∗

q ′(z′) to denote a μ-run of arbitrary
length from q(z) to q ′(z′).

We say π is accepting if q0 = qinit , z0 = 0, and qn ∈ F . We say reachability
holds for the POCA C if there exists an accepting μ-run for some μ ∈ N

P . We refer
to Fig. 3 for an instance of a POCA for which reachability holds. For any two c, d ∈
[0, n] we define the subrun π [c, d] from qc(zc) to qd(zd) as the μ-run qc(zc)

πc,μ−−→
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Fig. 3 An example of a POCA. The automaton consists of four states and the set of parameters is {p}.
The edges are represented by arrows labeled with the corresponding operations. A parameter valuation
μ : {p} → N witnesses that reachability holds for the above POCA if, and only, if μ(p) ≡ 5 mod 6

qc+1(zc+1) · · · πd−1,μ−−−−→ qd(zd). As expected, a prefix (resp. suffix) of π is a μ-run
of the form π [0, c] (resp. π [d, n]).

We define the concatenation π1π2 of two μ-runs π1 and π2 when the source
configuration of π2 is equal to the target configuration of π1 as expected.

We define �(π) = zn − z0 as the counter effect of the run π and for each i ∈
[0, n−1] let �(π, i) = �(π [i, i+1]) to denote the counter effect of the i-th transition
of π . Its length is defined as |π | = n.

In the particular case where P = {p} is a singleton for some parameter p and

μ(p) = N , we prefer to write q(z)
op,N−−−→ q ′(z′) (resp. q(z)

op,N−−−→
∗

q ′(z′)) to denote

q(z)
op,μ−−→ q ′(z′) (resp. q(z)

op,μ−−→∗
q ′(z′)) and prefer to call a μ-run an N-run.

We define VALUES(π) = {zi | i ∈ [0, n]} to denote the set of counter values of the
configurations of π . We define a run π ’s maximum as max(π) = max(VALUES(π))

and the minimum as min(π) = min(VALUES(π)).
The following theorem states an exponential time reduction from (2, 1)-PTA-

REACHABILITY to the reachability problem of particular parametric one-counter
automata over one parameter.

Theorem 16 The following is computable in exponential time:
INPUT: A (2, 1)-PTA A.
OUTPUT: A POCA C over one parameter

such that

1. for all N ∈ N all accepting N-runs π in C satisfy VALUES(π) ⊆ [0, 4 ·
max(N, |C|)], and

2. reachability holds for A if, and only if, reachability holds for C.

The proof of Theorem 16 can be found in Appendix A.

5 Upper Bounds

In this section we state the Small Parameter Theorem (Theorem 18) which tells us
that for every POCA over one parameter and every sufficiently large parameter value
N , accepting N-runs with counter values all in [0, 4N] can be turned into accepting
N ′-runs for some smaller N ′. After having stated the theorem we will show that
together with Theorem 16 it implies an EXPSPACE upper bound for (2, 1)-PTA-
REACHABILITY.
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We provide an overview of the proof of the Small Parameter Theorem in
Section 5.1, whose actual proof will stretch over Sections 6, 7, 8, and 9.

For each POCA C = (Q, P, R, qinit , F ) we define the following constants:

Since for every non-empty finite set U ⊆ N \ {0} we have LCM(U) ≤ max(U)|U |,
the following lemma is straightforward.

Lemma 17 The above constants are asymptotically bounded by 2poly(|C|).

The main result of this section is the following theorem.

Theorem 18 (Small Parameter Theorem) Let C = (Q, {p}, R, qinit , F ) be a POCA
with one parameter p. If there exists an accepting N-run in C with values all in
[0, 4N] for some N > MC , then there exists an accepting (N − �C)-run in C.

Let us first establish that this theorem is enough to prove the desired EXPSPACE
upper bound.

Corollary 19 (2, 1)-PTA-REACHABILITY is in EXPSPACE.

Proof Given a (2, 1)-PTA A, we apply Theorem 16 and translate A in exponential
time into a POCA C = (Q, P, R, q0, F ) with P = {p}, such that

1. all accepting N-runs π in C satisfy VALUES(π) ⊆ [0, 4 · max(N, |C|)], and
2. reachability holds for A if, and only if, reachability holds for C.

We first claim that if there exists an accepting N-run π for C, then there exists
one satisfying N ∈ [0, max{MC, |C|}] and VAL(π) ⊆ [0, 4 · max{MC, |C|}]. All
accepting N-runs π of C satisfy VAL(π) ⊆ [0, 4 · max{N, |C|}] by Point 1, so if
N > max{MC, |C|}, then 4N = 4·max{N, |C|} and hence there exists some accepting
(N − �C)-run for C by Theorem 18. Remarking that in case N > max{MC, |C|} we
have N − �C > MC − �C > 0, one can repeat the above argument for N − �C and
possibly for N − 2�C and so on, thus implying the desired existence.

Thus by Point 2 it suffices to check in exponential space in |A| whether there
exists some accepting N-run π for C satisfying VALUES(π) ⊆ [0, 4N] for some
N ∈ [0, max{MC, |C|}]. Since MC ∈ 2poly(|C|) = 22poly(|A|)

, the latter is simply a
reachability question in a doubly-exponentially large finite graph all of whose ver-
tices and edges can be represented using exponentially many bits, and thus decidable
in exponential space.
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5.1 Overview of the Proof of the Small Parameter Theorem

For the proof of the Small Parameter Theorem (Theorem 18) we proceed as follows.

• In Section 6 we introduce the notion of N-semiruns. These generalize N-runs
in that only modulo tests need to hold, not however comparison tests. We define
some natural operations on them, like shifting them by some value or cutting out
certain infixes. In Section 6.2 we prove two important lemmas on semiruns that
will serve as base tools for subsequent steps in the proof:

– The Depumping Lemma (Lemma 22) will be our main tool to depump
certains semiruns, in the following sense: in case the difference between
the number of +p-transitions and −p-transitions is bounded for all
infixes and equal to 0 for the whole semirun and furthermore the abso-
lute counter effect of the semirun is sufficiently large, then one can
build — by applying the above-mentioned operations — a new semirun
whose absolute counter effect is slightly smaller.

– The Bracket Lemma (Lemma 23) states that in case the counter effect
is sufficiently large and the counter values are all in [0, 4N], then one
can find an infix where the counter effect is also large and moreover the
difference between the number of +p-transitions and −p-transitions is
bounded for all infixes and equal to 0 for the whole semirun.

• In Section 7 we introduce the notion of hills and valleys. Hills are N-semiruns
that start and end in configurations with low counter values but where all
intermediate configurations have counter values above the source and target con-
figuration. We introduce the dual notion of valleys. The main contribution of the
section is the following.

– The Hill and Valley Lemma (Lemma 28) allows to transform N-
semiruns that are hills (resp. valleys) into (N − �C)-semiruns with the
same source and target configuration.

• Making use of all of the above lemmas, we introduce in Section 8 the following
lemma, which is a main technical ingredient in the proof of Theorem 18.

– The 5/6-Lemma (Lemma 39) states that N-semiruns with counter effect
smaller than 5/6 · N can be turned in into (N − �C)-semiruns.

• Finally, in Section 9 we prove the Small Parameter Theorem (Theorem 18) by
carefully factorizing a potential N-run into subsemiruns that can be treated by
the above lemmas.

In Fig. 4 we give an overview of the dependencies of the above-mentioned
lemmas.
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Fig. 4 Illustration of the dependencies between the lemmas. The presence of an arrow going from a lemma
to another means that the lemma in question is used inside the proof of the lemma the arrow points to

6 Semiruns, Their Bracket Projection, and Embeddings

In this section we motivate and introduce the notion of semiruns by loosening the con-
ditions on runs, and define basic operations on them. These basic operations possibly
change their counter values, length, or counter effect.

The formalism of an N-run is a little bit too restrictive to define operations on
them. For instance, subtracting ZC from all counter values of an N-run produces
an object, where conditions (1),(2), and (3) of Definition 15 indeed hold — as
ZC = LCM(Consts(C)) — but where conditions (4) and (5) might not hold any-
more, as comparison guards may be violated. Rather than certifying each time that
the application of an operation preserves the property of being an N-run we prefer
to loosen the definition in order to avoid tedious case distinctions. This motivates the
notion of semitransitions (resp. semiruns), which are a generalization of transitions
(resp. runs), in which the comparison tests need not hold.

We introduce semiruns and operations on them in Section 6.1. Section 6.2 intro-
duces the bracket projection of semiruns, the Depumping Lemma (Lemma 22) and
the Bracket Lemma (Lemma 23). Section 6.3 introduces the notion of embeddings,
which provide a formal means to express when a semirun can structurally be found
as a subsequence of another.

6.1 Semiruns and Operations on Them

Definition 20 (semitransition) Let C = (Q, P, R, qinit , F ) be a POCA. For every
operation op ∈ Op(P ), for every parameter valuation μ : P → N, and for every two
configurations q(z) and q ′(z′) in Conf(C) we define the semitransition

if there exists some (q, op, q ′) ∈ R such that conditions (1),(2),
and (3) of Definition 15 hold but where conditions (4) and (5) are loosened by the
following conditions (4’) and (5’) respectively

(1) op = c ∈ Op±, and z′ = z + c,
(2) op ∈ Op±P and either

• op = +p and z′ = z + μ(p), or
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• op = −p and z′ = z − μ(p).

(3) op = mod c ∈ Op mod N, z = z′ and z′ ≡ 0 mod c,

(4’) op =�� c ∈ textsf Op��N and z = z′, and
(5’) op =�� p ∈ Op��P , and z = z′.

Thus, in a nutshell, when writing we do not require that the
comparison tests against parameters or against constants hold; however the updates
and the modulo tests against constants must be respected. This naturally gives rise
to the definition of μ-semiruns as expected. Note that in particular every μ-run is

a μ-semirun. The abbreviation N-semirun, , the counter effect �,
VALUES, min, max, subsemirun, prefix, suffix are defined as for runs.

Note that in particular every N-run is an N-semirun. Importantly, note also that
semitransitions involving comparison tests are still syntactically present in semiruns.
By a careful analysis, one can therefore possibly perform operations on N-semiruns
in order to show that they are in fact N-runs.

Example 21 The 2-semirun

is not a 2-run, as, in , condition (4) of Definition 15 does not
hold, however condition (4’) of Definition 20 does.

Shifting and Gluing of Semiruns

Let us fix a POCA C and some N-semirun

We define the following operations, where we recall that ZC = LCM(Consts(C)):

• For D ∈ ZCZ, we define the shifting of π by D as

Since there are no effective comparison tests and D is an integer that is divisi-
ble by all constants appearing in modulo tests in C, it is clear that π + D is again
an N-semirun.

• For two configurations qi(zi) and qj (zj ) with 0 ≤ i < j ≤ n and where D =
zj − zi ∈ ZCZ is a multiple of ZC and qi = qj , we define the gluing of the
configurations as

When gluing the leftmost and rightmost configurations of pairwise non-
intersecting intervals I1 = [a1, b1], . . . , Ik = [ak, bk] ⊆ [0, n], assuming bi < ai+1



Theory of Computing Systems

for all 1 ≤ i < k, and qai
= qbi

and zbi
− zai

∈ ZCZ for all 1 ≤ i ≤ k, we will use
π − I1 − I2 · · ·− Ik to denote the result corresponding to gluing each interval succes-
sively while shifting the others accordingly, instead of writing the more tedious π(k),
where

π(1) = π − [a1, b1],
π(2) = π(1) − [a2 − (|I1| − 1), b2 − (|I1| − 1)],

· · ·
π(k) = π(k−1) − [ak −

∑
1≤j<k

(|Ij | − 1), bk −
∑

1≤j<k

(|Ij | − 1)] .

6.2 The Bracket Projection of Semiruns

In this section we define a projection φ of semitransitions to
a word over the binary alphabet {[, ]}, where transitions with op = +p are mapped
to [, transitions with op = −p are mapped to ], and all other transitions are mapped
to the empty word ε. The projection φ is naturally extended to a morphism from
semiruns to {[, ]}∗. In this section we will show the following lemmas.

• The Depumping Lemma (Lemma 22) states that for each N-semirun whose φ-
projection has bounded bracketing properties and that has a counter effect whose
absolute value is sufficiently large there exists another N-semirun with a counter
effect whose absolute value is slightly smaller. This latter resulting N-semirun
has a particular form in that it can be obtained from the original N-semirun by
applying the above-mentioned operations of shifting and gluing: notably, the sub-
semiruns that are being glued themselves have a φ-projection that has bounded
bracketing properties.

• The Bracket Lemma (Lemma 23) states that if an N-semirun has all its counter
values in [0, 4N], has an absolute counter effect that is sufficiently large and has
a φ-projection satisfies a suitable threshold condition on the number of occur-
rences of [ and ], that there is a subsemirun where the absolute counter effect is
also large and whose φ-projection has bounded bracketing properties.

Formally, we define a mapping φ such that for every semitransition

,

φ(τ) =
⎧⎨
⎩

[ if op = +p

] if op = −p

ε otherwise.

Note that an N-semirun π can contain several +p-transitions and −p transitions.
We introduce the notation φ(π, i) = φ(π [i, i + 1]) to denote the φ-projection of
the i-th transition of π for all i ∈ [0, |π | − 1]. The mapping φ is naturally extended
to a morphism on semiruns to words over the binary alphabet {[, ]} as expected:
φ(π) = φ(π, 0)φ(π, 1) · · · φ(π, |π | − 1).

We are particularly interested in N-semiruns whose projection by φ contains as
many opening as closing brackets and only a few pending ones (when read from left
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to right). To make this formal, for all k ∈ N we define the regular language

�k = {
w∈{[, ]}∗ : |w|[ = |w|], ∀u, v ∈ {[, ]}∗. uv=w =⇒ |u|[ − |u|] ∈ [−k, k]} .

We are interested in analyzing N-semiruns with counter values in [0, 4N]. Bound-
ing the counter values like this limits the number of +p (resp. −p) that can appear
in a row. This will be the basis in the Bracket Lemma which amounts to showing the
existence of subsemiruns whose φ-projection is in �8.

The now following Depumping Lemma will enable us to reduce the counter effect
of N-semiruns whose φ-projection is in �8. It is worth remarking that �C � ϒC ,
recalling the definition of our constants on page 18.

Lemma 22 (Depumping Lemma) For all N-semiruns π satisfying φ(π) ∈ �8 and
|�(π)| > ϒC there exists an N-semirun π ′ such that either

• �(π) > ϒC and �(π ′) = �(π) − �C , or
• �(π) < −ϒC and �(π ′) = �(π) + �C .

Moreover, π ′ = π − I1 − I2 · · · − Ik for pairwise disjoint intervals I1, . . . , Ik ⊆
[0, |π |] such that we have φ(π [Ii]) ∈ �16 for all i ∈ [1, k], and either �(π [Ii]) > 0
for all i ∈ [1, k] or �(π [Ii]) < 0 for all i ∈ [1, k].

Proof be an N-
semirun such that φ(π) ∈ �8. We will assume without loss of generality that
�(π) > ϒC . The dual case when �(π) < −ϒC can be proven analogously.

For every position i ∈ [0, n] let us define

λ(i) = |φ(π [0, i])|[ − |φ(π [0, i])|] and pot(i) = zi − z0 − λ(i) · N .

Note that since φ(π) ∈ �8 we have for all i ∈ [0, n],
λ(i) ∈ [−8, 8], (3)

and moreover
φ(π [0, i]) ∈ �8 ⇐⇒ λ(i) = 0. (4)

We note the following important properties of pot,

1. |pot(i − 1) − pot(i)| ≤ 1 for all i ∈ [1, n],
2. pot(0) = 0,
3. for all 0 ≤ i < j ≤ n, if λ(i) = λ(j), then pot(j) − pot(i) = zj − zi , and
4. pot(n) = zn − z0 = �(π) since λ(0) = λ(n) = 0.

The following claim states that if in a subsemirun the pot increases sufficiently
large, then one can find a subsemirun therein that can potentially be glued.

Claim 1 For each subsemirun π [a, b] that satisfies pot(b) − pot(a) > 17 · |Q| · ZC
there exist positions a ≤ s < t ≤ b, such that

• qs = qt ,
• λ(s) = λ(t), and



Theory of Computing Systems

• zt − zs = dZC for some d ∈ [1, 17 · |Q|].

Proof of the Claim. Since by assumption pot(b) − pot(a) > 17 · |Q| · ZC , by the
pigeonhole principle and Point 1 above, there exist two indices a ≤ s < t ≤ b such
that qs = qt , λ(s) ∈ [−8, 8] and λ(t) ∈ [−8, 8] are equal, and pot(t)−pot(s) = dZC
for some d ∈ [1, 17 · |Q|]. By Point 3 above, from λ(t) = λ(s), it follows zt − zs =
pot(t) − pot(s) = dZC .
(End of the proof of the Claim)

Since pot(i) − pot(i − 1) ≤ 1 for all i ∈ [1, n] by Point 1 above and

pot(n) − pot(0) = zn − z0

= �(π)

> ϒC
page 15= 17 · |Q| · LCM(17 · |Q|) · (17 · |Q| · ZC + 2) ,

by the pigeonhole principle, there exist at least

17 · |Q| · LCM(17 · |Q|)
pairwise disjoint subsemiruns π [a, b] satisfying pot(b) − pot(a) > 17 · |Q| · ZC . Let

L = LCM(17 · |Q|),
and let π [a1, b1], . . . , π [a17·|Q|·L, b17·|Q|·L] be an enumeration of these latter sub-
semiruns. We apply the above Claim to all of these π [ai, bi]: there exist positions
ai ≤ si ≤ ti ≤ bi such that λ(si) = λ(ti), qsi = qti , and zti = zsi + diZC for
some di ∈ [1, 17 · |Q|]. From λ(si) = λ(ti) and (3) it follows φ(π [si, ti]) ∈ �16.
Recall that �C = LCM(17 · |Q|) · ZC = L · ZC , cf. page 18. By the pigeonhole prin-
ciple, among these 17 · |Q| · L pairwise disjoint subsemiruns π [ai, bi], there exists
some d ∈ [1, 17 · |Q|] such that there are L/d many different π [ai, bi] all satis-
fying di = d . Let π [ai1 , bi1], . . . , π [aiL/d

, biL/d
] be an enumeration of these latter

π [ai, bi]. Note that for all of these π [ai, bi] we have �(π [sij , tij ]) = d · ZC . Since
moreover qsij

= qtij
we know that, for all j ∈ [1, L/d], the gluing π −[sij , tij ] is an

N-semirun with �(π − [sij , tij ]) = �(π) − dZC . Thus,

π ′ = π − [si1 , ti1] − . . . − [siL/d
, tiL/d

]
is an N-semirun satisfying �(π ′) = �(π) − d · (L/d) · ZC = �(π) − �C as
required.

Let us now introduce the Bracket Lemma, which states that in case the absolute
value of the counter effect of an N-semirun is sufficiently large, the counter values
are all in [0, 4N] and a majority condition holds on the number of occurrences of [
and ] in its φ-projection, that there is a subsemirun where the counter effect is also
large and that moreover has good bracketing properties (in the sense of the Depump-
ing Lemma). Roughly speaking, it is based on the idea that if the values of a semirun
are all in [0, 4N], there cannot be five +p-transitions in a row. Technically speaking,
the Bracket Lemma can be applied to (N − �C)-semiruns, where N is sufficiently
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large: the reason is that the Bracket Lemma will later be applied to N-semiruns in
which some of the +p/ − p-transitions have already been modified (“by hand”) to
have an effect (N − �C)/ − (N − �C) instead of N/ − N .

Lemma 23 (Bracket Lemma) For all N > MC , all (N − �C)-semiruns π satisfying
VALUES(π) ⊆ [0, 4N], �(π) < −ϒC (resp. �(π) > ϒC) and where φ(π) con-
tains at least as many occurrences of [ as occurrences of ] (resp. at least as many
occurrences of ] as occurrences of [) there exists a subsemirun π [c, d] satisfying
φ(π [c, d]) ∈ �8 and �(π [c, d]) < −ϒC (resp. �(π [c, d]) > ϒC).

Proof We only prove the case where �(π) < −ϒC and φ(π) contains at least as
many occurrences of [ as of ]. The dual case when �(π) > ϒC and φ(π) contains at
least as many ] as of [ can be proven analogously.

As in the proof of Lemma 22, for any word u ∈ {[, ]}∗ let λ(u) = |u|[ − |u|].
For the rest of the proof assume by contradiction that there is no such subsemirun
π [c, d] satisfying �(π [c, d]) < −ϒC and φ(π [c, d]) ∈ �8, or, equivalently, that
every subsemirun π [c, d] with φ(π [c, d]) ∈ �8 satisfies �(π [c, d]) ≥ −ϒC .

For all k ≥ 0 let

�k = {w ∈ {[, ]}∗ | ∀uv = w : λ(u) ∈ [−k, k]}
denote the set of all words over the alphabet {[, ]}, where for each prefix the absolute
difference between the number of occurrences of [ and of ] is at most k. Note that

�k = �k ∩ λ−1(0). (5)

Under the above assumptions on π , for the sake of contradiction, we have three
claims on properties on the image of φ applied to π and subsemiruns thereof.

Claim 1. φ(π) ∈ �4.

Proof of Claim 1. Let us write π = π [0, n]. Assume by contradiction that φ(π) �∈
�4. Let u be a shortest prefix of φ(π) such that λ(u) �∈ [−4, 4]. Let us first consider
the case when λ(u) > 4.

By definition of u we have λ(u) = 4+1 = 5 and there are indices 0 ≤ t1 < · · · <

t5 < n such that

• φ(π, t1) = . . . = φ(π, t5) = [, and
• φ(π [ti + 1, ti+1]) ∈ �4 for all i ∈ [1, 4].

Recall that by our assumption every subsemirun π [c, d] of π with φ(π [c, d]) ∈
�8 satisfies �(π [c, d]) ≥ −ϒC . Since

⋃
i∈[1,8] �i = �8 it follows �(π [ti +

1, ti+1]) ≥ −ϒC for all i ∈ [1, 4]. Moreover, bearing in mind that π is an (N − �C)-
semirun, we obtain �(π, ti) = N − �C . Altogether, as N > MC by assumption, we
obtain

�(π [t1, t5 + 1]) ≥ −4 · ϒC + 5 · (N − �C)

> 4N + N − 5 · (ϒC + �C)

> 4N + MC − 5 · (ϒC + �C)

> 4N,
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where the last inequality follows from MC’s definition on page 18, hence contradict-
ing VALUES(π) ⊆ [0, 4N].

Let us now consider the case when λ(u) < −4. Again, by definition of u, we have
λ(u) = −5. There are hence indices 0 ≤ t1 < . . . < t5 < n such that

φ(π, t1) = . . . = φ(π, t5) = ],
and moreover φ(π [0, t1]) ∈ �4 and φ(π [ti + 1, ti+1]) ∈ �4 for all i ∈ [1, 4]. By
assumption φ(π) contains at least as many [ as ]. Therefore there must exist 5 further
positions t ′1, . . . , t ′5 in π satisfying 0 ≤ t1 < . . . < t5 < t ′1 < t ′2 < . . . < t ′5 < n such
that

φ(π, t ′1) = . . . = φ(π, t ′5) = [
and φ(π [t ′i + 1, t ′i+1]) ∈ �4 for all i ∈ [1, 4]. Again taking into account our assump-
tion that �(π [c, d]) ≥ −ϒC for all subsemiruns π [c, d] with φ(π [c, d]) ∈ �8,
it follows as above, that �(π [t ′1, t ′5 + 1]) > 4N , contradicting VALUES(π) ⊆
[0, 4N].

Claim 2. φ(π [a, b]) ∈ �8 for all subsemiruns π [a, b] of π .

Proof of Claim 2. This is an immediate consequence of Claim 1. Indeed, any sub-
semirun π [a, b] of π satisfying φ(π [a, b]) �∈ �8 gives rise to a prefix u of φ(π)

such that u �∈ �4 and hence φ(π) �∈ �4.

Claim 3. For all subsemiruns π [a, b] of π , if λ(φ(π [a, b])) > 0, then
�(π [a, b]) > ϒC .

Proof of Claim 3. We prove the statement by induction on λ(φ(π [a, b])).
For the induction base, assume λ(φ([a, b])) = 1. Thus, there exists a position

t ∈ [a, b] such that φ(π, t) = [ and λ(π [a, t]) = λ(φ(π [t + 1, b])) = 0. By Claim 2
and (5) we have φ(π [a, t]), φ(π [t +1, b]) ∈ �8. Thus, �(π [a, t]), �(π [t +1, b]) >

−ϒC by our assumption. Hence, we obtain

�(π [a, b]) = �(π [a, t]) + �(π, t) + �(π [t + 1, b])
≥ −ϒC + (N − �C) − ϒC
> MC − 2ϒC − �C
> ϒC,

where the last strict inequality follows from definition of MC on page 18.
Assume λ(φ(π [a, b])) > 1. Consider the smallest position t ∈ [a, b] such that

λ(φ(π [a, t])) = 0 and φ(π, t) = [. By Claim 2 and (5) it follows that φ(π [a, t]) ∈
�8 and hence �(π [a, t]) ≥ −ϒC by our assumption. Moreover, λ(φ(π [t +1, b])) =
λ(φ(π [a, b])) − 1. We can thus apply induction hypothesis to π [t + 1, b] and obtain

�(π [a, b]) = �(π [a, t]) + �(π, t) + �(π [t + 1, b])
> �(π [a, t]) + �(π, t) + ϒC
≥ −ϒC + (N − �C) + ϒC
> MC − �C,

> ϒC,
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where the first strict inequality follows from induction hypothesis on π [t + 1, b]
and the last strict inequality follows from definition of MC on page 18 constant
definitions.

We will now contradict our initial assumption that there is no subsemirun π [c, d]
satisfying φ(π [c, d]) ∈ �8 and �(π [c, d]) < −ϒC by making use of the above
claims.

Since π itself satisfies �(π) < −ϒC , it follows φ(π) �∈ �8 = �8 ∩ λ−1(0) by
our assumption and (5). But since φ(π) ∈ �8 by Claim 2, it follows λ(φ(π)) �= 0 .

As φ(π) contains at least as many occurrences of [ as occurrences of ] by assump-
tion, φ(π) must contain strictly more occurrences of [ than of ], i.e. λ(φ(π)) > 0. By
Claim 3 it follows �(π) > ϒC , contradicting our assumption that �(π) < −ϒC .

6.3 Embeddings of Semiruns

The Small Parameter Theorem (Theorem 18) turns N-runs with values in [0, 4N] into
(N −�C)-runs. In proving this, we prefer to view N-runs as N-semiruns. Indeed, we
first view any N-run as an N-semirun and then apply certain of the above-mentioned
operations on them to obtain some (N − �C)-semirun. However, we would then like
to claim that the resulting (N −�C)-semirun is in fact an (N −�C)-run as desired, in
particular the comparison tests need to hold. To do so, we introduce a notion when an
N-semirun can be embedded into an M-semirun (possibly N �= M) in the sense that
operations are being preserved, source and target control states are being preserved,
and that with respect to some line 
 ∈ Z the counter value of each configuration of
the embedding has the same orientation with respect to 
 as the counter value of the
configuration it corresponds to.

Definition 24 (
-embedding) Let 
 ∈ Z. An N-semirun

is an 
-embedding of an M-semirun

if s0 = q0, sn = qm and there exists an order-preserving injective mapping ψ :
[0, n] → [0, m] such that

• σi = πψ(i) for all i ∈ [0, n − 1], and
• 
 �� yi if, and only if, 
 �� zψ(i) for all ��∈ {<, =, >} and all i ∈ [0, n].
Moreover we say σ is

• max-falling (w.r.t π ) if max(σ ) ≤ max(π), and
• min-rising (w.r.t. π ) if min(σ ) ≥ min(π).

Example 25 Consider the semiruns π, σ and τ in Fig. 5, where neither concrete
counter values nor the control states of σ and τ are mentioned. The semirun σ can
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Fig. 5 Example of a semirun σ that could possibly be an embedding of the semirun π and a semirun τ

that cannot

possibly be a 7-embedding of π (if its source control control is q0 and its target
control state is q6). However, τ cannot be a 7-embedding of π . Indeed, for every
possible ψ such that τ2 = +p = πψ(2), the counter value of τ at position 2 is strictly
larger than 7, whereas the counter value of π at position ψ(2) is strictly below 7.

The following remark is implictly being used in subsequent sections.

Remark 26 Embeddings possess some useful properties that all follow immediately
from definition.

• Transitivity. Let π , ρ and σ be semiruns such that π is an 
-embedding of ρ and
ρ is an 
-embedding of σ . Then π is an 
-embedding of σ . Moreover, if π was
max-falling (resp. min-rising) w.r.t. ρ and ρ was max-falling (resp. min-rising)
w.r.t. σ , then π is max-falling (resp. min-rising) w.r.t. σ .

• Closure under concatenation.
Let π be an N-semirun from q(x) to r(y) and let ρ be N-semirun from r(y)

to s(z). Moreover, let π ′ be an N ′-semirun from q(x′) to r(y′) that is an 
-
embedding of π and let ρ′ be an N ′-semirun from r(y′) to s(z′) that is an 
-
embedding of ρ. Then π ′ρ′ is an 
-embedding of πρ. If furthermore, π ′ was
max-falling (resp. min-rising) w.r.t. π and ρ′ was max-falling (resp. min-rising)
w.r.t. ρ, then π ′ρ′ is max-falling (resp. min-rising) w.r.t. πρ.

• Shifting distant embeddings. Let D ∈ ZCZ be a multiple of ZC , let π be a
semirun and let ρ be an 
-embedding of π such that for all configurations q(z)

in ρ we have |z − 
| > |D|. Then both ρ +D and ρ −D are 
-embeddings of π .

7 On Hills and Valleys

In this section we introduce the notions of hills and valleys. Hills are semiruns that
start and end in configurations with low counter values but where all intermediate
configurations have counter values above these source and target configurations, and
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Fig. 6 Illustration of a B-hill

where moreover +p-transitions (resp. −p-transitions) are followed (resp. preceded)
by semiruns with absolute counter effect larger than ϒC (we refer to Fig. 6 for an
illustration of the concept). We also introduce the dual notion of valleys. We then
prove that an N-semirun that is either a hill or a valley can be turned into an (N −
�C)-semirun with the same source and target configuration that is an embedding.
This lowering process serves as a building block in the proof of the 5/6-Lemma
(Lemma 39).

Definition 27 (Hills and Valleys) An N-semirun

is a

• B-hill if

– z0, zn < B,
– zi ≥ B for all i ∈ [1, n − 1],
– πi = −p implies zi > z0 + ϒC for all i ∈ [0, n − 1], and
– πi = +p implies zi+1 > zn + ϒC for all i ∈ [0, n − 1].

• B-valley if

– z0, zn > B,
– zi ≤ B for all i ∈ [1, n − 1],
– πi = −p implies zi+1 < zn − ϒC for all i ∈ [0, n − 1], and
– πi = +p implies zi < z0 − ϒC for all i ∈ [0, n − 1].

The Hill and Valley Lemma states that an N-semirun π that is either a B-hill or
a B-valley can be turned into an (N − �C)-semirun with the same source and target
configuration that is moreover both a min-rising and max-falling B ′-embedding of
π , where B ′ is close to B.
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Lemma 28 (Hill and Valley Lemma) For all N, B ∈ N, all N-semiruns π from
q0(z0) to qn(zn) with N > MC and VALUES(π) ⊆ [0, 4N] such that moreover π is
either a B-hill or a B-valley, there exists an (N −�C)-semirun from q0(z0) to qn(zn)

that is both a min-rising and max-falling (B −ϒC −�C −1)-embedding of π (in case
π is a B-hill), or both a min-rising and max-falling (B + ϒC + �C + 1)-embedding
of π (in case π is a B-valley).

We remark that the resulting (N−�C)-semirun satisfies further properties — these
are being discussed in Section 7.2.

Before proving the Hill and Valley Lemma let us explain why the finding of the
resulting embedding is delicate. Let us fix any N-semirun

from q0(z0) to qn(zn) with VALUES(π) ⊆ [0, 4N] and N > MC . Let us moreover
assume that π is a B-hill for some B ∈ N. We need to show the existence of some
(N − �C)-semirun from q0(z0) to qn(zn) that is moreover both a min-rising and
max-falling (B − ϒC − �C − 1)-embedding of π .

We are particularly interested in those transitions τ with absolute counter effect
|�(τ)| = N , i.e. transitions with operation +p or −p that we will denote as unlow-
ered +p-transitions and −p-transitions respectively. Note that if there is no such
transition in π , then π is already an (N − �C)-semirun. Let us therefore assume
there is at least one transition with absolute counter effect N in π . For obtaining
only an (N − �C)-semirun it would simply suffice to lower the absolute counter

effect of these transitions by �C . Indeed, if the transition

is an N-semirun, then the lowered transition is

an (N − �C)-semirun. Dually, if is an N-semirun, then

is an (N − �C)-semirun.
Thus, applying such a lowering to all transitions of π whose absolute counter

effect is N yields an (N−�C)-semirun with target configuration shifted by a multiple
of �C , according to the operations seen in Section 6. However, the Hill and Valley
Lemma not only requires the resulting semirun to be an (N −�C)-semirun but also to
have same source and target configurations as the original semirun (and to be a min-
rising and max-falling (B − ϒC − �C − 1)-embedding). Hence, simply lowering all
transitions with a large counter effect as described above is not enough to prove the
result as the following example illustrates. Let us assume an N-semirun π containing
precisely one transition τ whose absolute counter effect is N , say πj = +p for some
position j . That is,
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If we replace directly this j -th transition by a transition with �(τ ′) = N − �C ,
and, starting with the (j + 1)-th configuration, shift all following counter values by
−�C , we indeed obtain an (N − �C)-semirun

However, this (N −�C)-semirun does not have the same source and target config-
uration as the original semirun, as the target configuration’s counter value has been
shifted by −�C . Worse yet, if our initial N-semirun π were to possess several +p-
transitions, then the accumuluated counter value shifts could potentially yield that
the resulting (N −�C)-semirun is not a (B −ϒC −�C −1)-embedding of π : indeed,
such a shifted semirun could contain intermediate configurations with counter values
less than B − ϒC − �C − 1.

In order to account for those transitions whose absolute counter effect is N that
have already been lowered or not we will introduce the notion of hybrid semiruns,
which can be seen as sequences of N-semiruns and (N −�C)-semiruns whose source
and target configurations are suitably connected.

Definition 29 A hybrid semirun is a sequence η = α(0)β(1)α(1) · · · β(k)α(k), where

• each α(i) is an (N − �C)-semirun (possibly empty) of the form

• each β(i) is a single transition with |�(β(i))| = N ,
• the target configuration of α(i−1) is the source configuration of β(i) for all i ∈

[1, k], and
• the source configuration of α(i) is the target configuration of β(i) for all i ∈

[1, k].
We call k the breadth of η.

Remark 30 In case our initial N-semirun π contains k transitions of absolute counter
effect N , we observe that π can naturally be viewed as an initial hybrid semirun of
breadth k.

Several of the notions (such as counter effect, length and maximum)
that we have defined for runs and semiruns can naturally be extended to
hybrid semiruns. As expected, the projection φ(η) is defined as φ(η) =
φ(α(0))φ(β(1))φ(α(1)) · · · φ(β(k))φ(α(k)). We moreover introduce the particular pro-
jection φ� of φ restricted to the α(i), i.e. φ�(η) = φ(α(0))φ(α(1)) · · · φ(α(k)).

Moreover, we view the α(i) themselves as sequences (not as atomic objects) of
length mi and the β(i) as sequences of length one. Using this convention, the notions
of prefixes, infixes and suffixes are as expected. More importantly, we extend natu-
rally the notion of (max-falling and min-rising) 
-embedding to hybrid semiruns as
in Definition 24 when treating them as such sequences.

We prove the Hill and Valley Lemma (Lemma 28) in Section 7.1. We summarize
important further consequences of the proof in Section 7.2.
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7.1 Proof of the Hill and Valley Lemma

Let us fix any N-semirun

from q0(z0) to qn(zn) with VALUES(π) ⊆ [0, 4N] and N > MC . Let us moreover
assume that π is a B-hill for some B ∈ N. The case when π is a B-valley can be
proven analogously.

For reasons of simplicity we separate the proof into two cases, namely if there is a
+p-transition or −p-transition whose source and target configurations have counter
values that are both at most B + ϒC + �C or not. Section 7.1.1 deals with the latter
case, Section 7.1.2 with the former. It is worth mentioning that Section 7.1.2 depends
on Section 7.1.1.

7.1.1 π Does not Contain any±p-TransitionWhose Source and Target
Configuration Both Have Counter Value at Most B + ϒC + �C

In the following let us denote by L the critical level, i.e. the constant

L = B + �C .

Moreover, for a hybrid semirun η = α(0)β(1)α(1) · · · β(k)α(k), for every β(j) that
is an unlowered +p-transition, we define the critical descending infix with respect
to β(j) as the shortest prefix (when viewed as a sequence, as mentioned above)
of α(j)β(j+1)α(j+1) · · · β(k)α(k) that ends in a configuration with counter value at
most L. In particular, this critical descending infix could possibly end in a configu-
ration inside some (strict prefix of) α(i), where i ∈ [j, k]. Dually, for every β(j) that
is an unlowered −p-transition, we define the critical ascending infix with respect to
β(j) as the shortest suffix of α(0)β(1) · · · α(j−1) that starts in a configuration with
counter value at most L. The following remark is central.

Remark 31 For a hybrid semirun η = α(0)β(1)α(1) · · · β(k)α(k), if some unlowered
−p-transition (resp. +p-transition) β(j) appears in the critical descending infix (resp.
critical ascending infix) of some unlowered +p-transition (resp. −p-transition) β(i),
then so does β(i) appear in the critical ascending infix (resp. critical descending infix)
of β(j).

Viewing our initial semirun π as a hybrid semirun, we will now introduce
two phases that successively lower unlowered +p-transitions and unlowered −p-
transitions yielding hybrid semiruns that retain an approximation invariant (Defini-
tion 32).

In phase one, we are interested in unlowered +p-transitions. We want to pro-
gressively lower these, going from right to left. Moreover, we want to inspect the
critical descending infix in order to obtain successive min-rising and max-falling
embeddings with the same source and target configuration. In case the rightmost
unlowered +p-transition has the property that its critical descending infix contains
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some unlowered −p-transition we lower the leftmost such directly, together with the
+p-transition. Otherwise, we want to make use of the Bracket Lemma (Lemma 23)
and the Depumping Lemma (Lemma 22) in order to retain some nice bracketing
properties.

Having successively lowered all unlowered +p-transitions in phase one, we
finally lower the remaining unlowered −p-transitions in phase two. For these we
take their critical ascending infix and their ϕ�-projection into account, again yielding
some carefully chosen bracketing property.

The following definition formalizes the above-mentioned bracketing property.

Definition 32 A hybrid semirun η approximates π with respect to level 
 ∈ Z if

1. η = α(0)β(1)α(1) · · · β(k)α(k) is a hybrid semirun of some breadth k,
2. π can be factorized as π = χ(0)ζ (1)χ(1) · · · ζ (k)χ(k), where the ζ (i) are

transitions with operation either +p or −p,
3. η is a min-rising and max-falling 
-embedding of π ,
4. α(i) is a max-falling 
-embedding of χ(i) for all i ∈ [0, k] with the same source

and target configuration as χ(i),
5. every prefix of φ�(γ (i)) contains at least as many occurrences of [ as of ], where

γ (i) is the critical descending infix of β(i) for all i ∈ [1, k] for which β(i) has
operation +p, and

6. every suffix of φ�(γ (i)) contains at least as many occurrences of ] as of [, where
γ (i) is the critical ascending infix of β(i) for all i ∈ [1, k] for which β(i) has
operation −p.

By completing phase one and then phase two we will show the existence of a
hybrid semirun that approximates π with respect to level B and does not contain
any unlowered +p-transition nor any unlowered −p-transition (and is hence an
(N − �C)-semirun). Observe first that by Point 4 any such hybrid semirun η has the
same source and target configuration as π . Second, any such η is in particular a min-
rising and max-falling (N −ϒC −�C − 1)-embedding of π since π is assumed to be
a B-hill. Thus, the lemma follows. We will obtain the desired (N − �C)-semirun and
variants thereof by first systematically lowering +p-transitions from the rightmost to
the leftmost in phase one and secondly systematically lowering the possibly remain-
ing −p-transitions from the leftmost to the rightmost in phase two. We denote such
a process — whose details are given below — by the so-called (+p, −p)-lowering
process. As mentioned in Remark 35 we will also define a dual variant, namely the
(−p, +p)-lowering process: here phase one will consist of systematically lowering
the −p-transitions from the leftmost to the rightmost, whereas phase two will sys-
tematically lower the possibly remaining +p-transitions from the rightmost to the
leftmost.

Remark 35 finally discusses a variant of a (+p, −p)-lowering process (resp.
(−p, +p)-process) which ends in a hybrid semirun that contains precisely one
unlowered transition.

Let us discuss the (+p, −p)-lowering process in detail.
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Phase one of the (+p,−p)-Lowering Process: Lowering+p-Transitions We can view
our initial N-semirun π as a hybrid semirun η(0) of breadth k0, i.e.

η(0) = α(0,0)β(0,1)α(0,1) · · · β(0,k0)α(0,k0) .

In phase one we will inductively show the existence of a sequence of hybrid semiruns
η(0), η(1), . . . , η(r), where each η(i) has breadth ki and approximates π with respect
to level B, η(r) does not contain any unlowered +p-transition, and ki−1 > ki for
all i ∈ [1, r]. Let us assume that we have inductively already defined the sequence
η(0), . . . , η(i−1) of hybrid semiruns for some i ≥ 1 and where η(i−1) has breadth
ki−1 > 0 and approximates π with respect to level B and contains at least one unlow-
ered +p-transition. Towards extending the sequence we need to show the existence
of some hybrid semirun η(i) of breadth ki < ki−1 that approximates π with respect
to level B.

Let η(i−1) = α(i−1,0)β(i−1,1)α(i−1,1) · · · β(i−1,ki−1)α(i−1,ki−1). Let j ∈ [1, ki−1]
be maximal such that β(i−1,j) is an unlowered +p-transition. For defining η(i) we
make the following case distinction.

1. The critical descending infix with respect to the +p-transition β(i−1,j) contains
at least one unlowered −p-transition. That is, the critical descending infix is of
the form

α(i−1,j)β(i−1,j+1)α(i−1,j+1) · · · β(i−1,h)ξ,

where ξ is a prefix (possibly empty) of α(i−1,h), β(i−1,j+1) is an unlowered −p-
transition and where h ≥ j +1. We refer to Fig. 7 for an illustration. Our desired
hybrid semirun η(i) is obtained from η(i−1) by simply lowering both β(i−1,j) and

β(i−1,j+1), i.e. replacing β(i−1,j) by ̂β(i−1,j) satisfying �( ̂β(i−1,j)) = N − �C
and replacing β(i−1,j+1) by a suitable ̂β(i−1,j+1) satisfying �( ̂β(i−1,j+1)) =
−N + �C and moreover suitably shifting the part after ̂β(i−1,j) and until

Fig. 7 Illustration of phase one case 1, i.e. the unlowered +p-transition β(i−1,j) can be lowered by
lowering it with the leftmost unlowered −p-transition on its critical descending infix, i.e. β(i−1,j+1)
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(including) ̂β(i−1,j+1) by −�C . More precisely, the part α(i,j−1) in η(i) is chosen
to be of the form

α(i,j−1) = α(i−1,j−1) ̂β(i−1,j)
(
α(i−1,j) − �C

) (
̂β(i−1,j+1) − �C

)
α(i−1,j+1).

Moreover, observe that α(i,j−1) and the infix
α(i−1,j−1)β(i−1,j)α(i−1,j)β(i−1,j+1)α(i−1,j+1) of η(i−1) connect the same
source and target configurations. Thus, it easily follows that η(i) also approxi-
mates π with respect to level B. Finally, observe that the breadth of η(i) equals
ki−1 − 2.

2. The critical descending infix with respect to the +p-transition β(i−1,j) does not
contain any unlowered −p-transition. It follows that the critical descending infix
with respect to β(i−1,j) is a non-empty prefix ξ of α(i−1,j). We refer to Fig. 8 for
an illustration. Recall that η(i−1) approximates π with respect to level B. Firstly,
since by assumption VALUES(π) ⊆ [0, 4N], it follows from Point 3 of Defi-
nition 32 that VALUES(ξ) ⊆ [0, 4N]. Secondly, from Point 5 of Definition 32
every prefix of φ(α(i−1,j)) contains at least as many occurrences of [ as of ].
Hence, the latter must also hold for every prefix of φ(ξ). Thirdly, since by the
case of this subsection the target configuration of every transition with operation
+p in π has counter value strictly larger than B + ϒC + �C , it follows from
Points 2 and 4 of Definition 32 that the target configuration of β(i−1,j) ends in a
configuration with counter value strictly larger than B +ϒC +�C . Since ξ is the
critical descending infix with respect to β(i−1,j) (in particular ending in a con-
figuration with counter value at most B + �C), it follows �(ξ) < −ϒC . Hence
one can apply Lemma 23 to the (N −�C)-semirun ξ yielding an infix ξ [c, d] sat-
isfying φ(ξ [c, d]) ∈ �8 and �(ξ [c, d]) < −ϒC . Applying Lemma 22 to ξ [c, d]
implies the existence of an (N − �C)-semirun ξ ′ = ξ [c, d] − I1 − I2 · · · − Is

satisfying �(ξ ′) = �(ξ [c, d]) + �C and where I1, . . . , Is are pairwise disjoint
intervals of positions in ξ [c, d] such that moreover φ(ξ [c, d][It ]) ∈ �16 and
�(ξ [c, d][It ]) < 0 for all t ∈ [1, s]. Assume that ξ = ξ [0, m] consisted of m

transitions; thus in particular c, d ∈ [0, m]. By combining the above properties
it immediately follows that

ξ ′′ = ξ [0, c]ξ ′ (ξ [d, m] + �C)

is an (N − �C)-semirun with �(ξ ′′) = �(ξ) + �C and that ξ ′′ − �C is a max-
falling B-embedding of ξ . We define the desired η(i) to be obtained from η(i−1)

by lowering β(i−1,j) to ̂β(i−1,j) satisfying �( ̂β(i−1,j)) = �(β(i−1,j)) − �C and
moreover replacing ξ by ξ ′′ − �C . Observe that η(i) and η(i−1) only differ in the
infix α(i,j−1) of η(i). The latter is hence of the form

α(i,j−1) = α(i−1,j−1) ̂β(i−1,j)
(
ξ ′′ − �C

)
α(i−1,j)[m, |α(i−1,j)|].

By construction η(i−1)’s infix

α(i−1,j−1)β(i−1,j)α(i−1,j)
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Fig. 8 Illustration of phase one case 2, i.e. the suffix of the to be lowered +p transition β(i−1,j) does
not contain any unlowered −p-transition, i.e. any transition with counter effect −N , inside its critical
descending infix

has the same source and target configuration as the part α(i,j−1) of η(i). Since
moreover

• φ(ξ [c, d][It ]) ∈ �16 contains precisely as many occurrences of [ as of ] and
�(ξ [c, d][It ]) < 0 for each t ∈ [1, s] and

• �(ξ ′′) = �(ξ) + �C

it follows that indeed η(i) approximates π with respect to level B. Finally,
observe that the breadth of η(i) is ki−1 − 1.

Recall that in phase one we have repeatedly lowered unlowered +p-transitions
from right to left. In doing so we have hereby possibly lowered certain −p-
transitions. The final hybrid semirun η(r) of phase one notably does not contain any
unlowered +p-transition. However, η(r) may still contain unlowered −p-transitions.
Lowering these will be subject of phase two. Yet, these unlowered −p-transitions will
be lowered rather from leftmost to rightmost (instead of from rightmost to leftmost
as in phase one).

Phase two of the (+p,−p)-Lowering Process: Lowering−p-Transitions That Remain
After Phase one Recall that L = B + �C denotes our critical level. Also recall
that η(r) is the final hybrid semirun in the sequence η(0), . . . , η(r) of phase one
and approximates π with respect to level B. Note that by construction η(r) does
not contain any unlowered +p-transition. That is, all unlowered transitions of η(r)

have operation −p and there are as many of them as the breadth of η(r). Setting
η(0)′ = η(r), phase two consists in showing the existence of a sequence of hybrid
semiruns η(1)′ , . . . , η(t)′ all of which do not contain any unlowered +p-transition and
in which each η(i)′ has breadth k′

i satisfying k′
i < k′

i−1, where each η(i)′ approximates

π with respect to level B, and finally η(t)′ is of breadth 0 (and is therefore already an
(N − �C)-semirun).
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Let us inductively assume that we have already defined the sequence
η(0)′ , . . . , η(i−1)′ for some i ≥ 1 and that the breadth k′

i−1 of η(i−1)′ satisfies
k′
i−1 > 0.

Let η(i−1)′ = α(i−1,0)′β(i−1,1)′α(i−1,1)′ · · · β(i−1,ki−1)
′
α(i−1,ki−1)

′
. There is only

one possible case for this phase since the critical ascending infix with respect to
the leftmost unlowered −p-transition β(i−1,1)′ does not contain any unlowered +p-
transition since η(i−1)′ does not. The construction of η(i)′ , as well as the proof that
η(i)′ approximates π with respect to level B, is completely dual to the proof of the
second case of phase one and therefore omitted.

Example 33 Figure 9 illustrates an example of an application of the (+p, −p)-
lowering process. The topmost figure on the left is the starting hybrid semirun π .
We begin the process by lowering the two unlowered +p-transitions each by com-
pensating them with a −p-transition, then we enter phase two with one unlowered
−p-transition remaining, which we lower and compensate by shifting and cutting out
portions inside the critical ascending infix by applying the Depumping Lemma.

Remark 34 In case π is a B-valley instead of a B-hill there is a dual variant of the
(+p, −p)-lowering process. The critical level would be adjusted to L = B − �C ,
for unlowered +p-transitions one would define the critical descending infix to be
the shortest suffix of α(0)β(1) · · · α(j−1) that starts in a configuration with counter

Fig. 9 Illustration of the (+p,−p)-lowering process from Example 33 to be read from upper left to lower
right
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value at least L, whereas for unlowered −p-transitions one would define the critical
ascending infix to be the shortest prefix of α(j)β(j+1)α(j+1) · · · β(k)α(k) that ends in
a configuration with counter value at least L. The definition when a hybrid semirun
approximates π with respect to level B would be defined analogously as in Defini-
tion 32, but where in Point 4 α(i) is rather required to be a min-rising B-embedding
of χ(i) with the same source and target configuration as χ(i), Point 5 (resp. Point 6)
of Definition 32def approximates would rather require that every suffix (resp. every
prefix) of φ�(γ (i)) contains at least as many occurrences of [ (resp. ]) as of ] (resp. [).

Remark 35 Consider the following variants of the (+p, −p)-lowering process for
our B-hill π (dual variants can be formulated in the case when π is B-valley):

1. Consider the dual (−p, +p)-lowering process: In phase one we lower the −p-
transitions from the leftmost to the rightmost and in phase two lower the +p-
transitions from the rightmost to the leftmost. That is, such a (−p, +p)-lowering
process produces a sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)′ , η(1)′ , . . . , η(t)′ ,

that all approximate π with respect to level B where η(0) = π , η(i) is obtained
from η(i−1) by lowering the leftmost unlowered −p-transition of η(i), η(0)′ =
η(s), η(i+1)′ is obtained from η(i)′ by lowering the rightmost unlowered +p-
transition, and finally η(t)′ has breadth 0.

2. Consider again the sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)′ , η(1)′ , . . . , η(t)′ ,

of the (+p, −p)-process (dually (−p, +p)-process):

(a) If t > 0, then observe that η(t−1)′ and breadth 1 and contains precisely
one unlowered transition, namely an unlowered −p-transition (dually +p-
transition).

(b) If however t = 0, then we claim that every prefix (dually suffix) of
φ(η(0)′) = φ(η(s)) contains at least as many occurrences of [ (dually occur-
rences of ]) as occurrences of ] (dually occurrences of [). Indeed, it follows
immediately from the fact that each η(i) is obtained from η(i−1) by lower-
ing a +p-transition (dually a −p-transition) either by shifting infixes and
cutting out certain infixes ζ ′ for which φ(ζ ′) contains as many occurrences
of [ as of ], or by lowering a +p-transition (dually −p-transition) together
with an unlowered −p-transition (dually +p-transition) to the right (dually
to the left).

(c) If φ(π) a priori contains strictly more occurrences of ] than of [ one can —
by applying the (+p, −p)-lowering process — obtain a sequence of hybrid
semiruns

η(0), η(1), . . . , η(s), η(0)′ , η(1)′, . . . , η(t)′,
where t > 0, all η(i) and η(j)′ approximate π with respect to level B (and
are therefore, as remarked above by bearing in mind that π is B-hill, in
particular both min-rising and max-falling (B − ϒC − �C − 1)-embeddings
of π with the same source and target configuration as π ) and where the
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breadth of η(t−1)′ is 1. Dually, if φ(π) contains strictly more occurrences of
[ than of ] one can — by applying the (−p, +p)-lowering process — obtain
a sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)′ , η(1)′, . . . , η(t)′,

where t > 0, all η(i) and η(j)′ approximate π with respect to level B (and are
therefore both min-rising and max-falling (B−ϒC−�C−1)-embeddings of
π with the same source and target configuration as π ) and where the breadth
of η(t−1)′ is 1.

7.1.2 π Contains a±p-TransitionWhose Source and Target Configuration Both
Have Counter Value at Most B + ϒC + �C

The presence of a +p-transition (resp. −p-transition) for
which we have max{zi, zi+1} ≤ B + ϒC + �C implies

zi+1 − (B + �C) ≤ ϒC (resp. zi − (B + �C) ≤ ϒC), so the core problem is that in
both cases it is not possible to apply the Bracket Lemma (Lemma 23) in the critical
descending (resp. ascending) infix of such an unlowered transition. We thus have to
find another way to compensate for lowering such transitions.

We next claim that firstly, any +p-transition whose configurations both have a
counter value at most B + ϒC + �C must be the first transition of π and secondly,
any −p-transition with the same property must be the last transition of π . Indeed,

every +p-transition that is not the first transition (i.e. i > 0)
satisfies zi ≥ B as π is a B-hill. As a consequence, we have zi+1 ≥ B + N >

B + MC > B + �C + ϒC , where the last inequality follows from MC’s definition on

page 15. Dually, if there exists a −p-transition with zi ≤
B + ϒC + �C it must be the last transition .

To finalize the proof it thus suffices to distinguish whether both the first transition
of π is a +p-transition with counter values at most (B + ϒC + �C) and the last
transition of π is a −p-transition with counter values at most (B + ϒC + �C), or
this holds for precisely one of them. We thus distinguish these two cases, however in
opposite order.

Case 1. The first transition is a +p-transition with counter

values at most (B+ϒC+�C) and the last transition
is not a −p-transition with counter values at most (B + ϒC + �C), or the first tran-

sition is not a +p-transition with counter values at most (B +
ϒC +�C) and the last transition is a −p-transition
with counter values at most (B + ϒC + �C).

We only treat the case when the first transition is a +p-
transition with counter values at most (B + ϒC + �C) and the last transition
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is not a −p-transition with counter values at most
(B + ϒC + �C), since the opposite case can be proven analogously.

Starting with η(0) = π we apply phase one of the (+p, −p)-lowering process to
π yielding a sequence of hybrid semiruns that all approximate π with respect to level
B (and thus in particular — bearing in mind that π is B-hill — approximates π with
respect to level B − �C − 1)

η(0), η(1), . . . , η(s−1)

in which (as above) η(i) is obtained from η(i−1) by lowering the rightmost unlowered
+p of η(i−1) however only until reaching the hybrid semirun η(s−1) that contains
precisely one unlowered +p-transition, namely the first transition

of π , which has counter values at most (B + ϒC + �C) by
assumption. It is important but straightforward to verify that despite the case we are
in, it holds that η(i) approximates π with respect to level B (and also — bearing in
mind that π is a B-hill — with respect to level B − �C − 1) for all i ∈ [1, s − 1].

Next, we will define a sequence of hybrid semiruns η(s) = η(0)′ , η(1)′ , . . . , η(t)′ in
which η(t)′ will be the desired (N − �C)-semirun as required by the lemma. For first
defining η(s) = η(0)′ we make a case distinction for lowering the only +p-transition

of η(s−1), which happens to have counter values at
most (B + ϒC + �C) by assumption. For this assume η(s−1) has the following form

η(s−1) = α(s−1,0)β(s−1,1)α(s−1,1) · · · β(s−1,ks−1)α(s−1,ks−1),

where we recall that β(s−1,1) equals . Observe that the critical
descending infix of β(s−1,1) could possibly be empty, for instance if z1 ≤ B + �C .
We now make the following case distinction.

• In case the critical descending infix of β(s−1,1) contains an unlowered −p-
transition we define η(s) to be obtained from η(s−1) by lowering β(s−1,1) with
the leftmost unlowered −p-transition inside the critical descending infix as
above. Thus, η(s) no longer contains any unlowered +p-transition. It is again
straightforward to verify that η(s) approximates π with respect to level B. Set-
ting η(0)′ = η(s) we then construct the sequence η(s) = η(0)′ , η(1)′ , . . . , η(t)′ as
usual, i.e. each η(i)′ approximates π with respect to level B and is obtained from
η(i−1)′ by lowering the leftmost unlowered −p-transition and where eventually
the breadth of η(t)′ is 0. Thus, as desired, the final η(t)′ is an (N − �C)-
semirun that is a min-rising and max-falling B-embedding of π that has the same
source and target configuration as π . Since η(t)′ has the same source and tar-
get configuration as π it follows that η(t)′ is also a min-rising and max-falling
(B − ϒC − �C − 1)-embedding of π as required by the lemma.

• In case the critical descending infix of β(s−1,1) does not contain any unlowered
−p-transition, we consider the shortest prefix ζ of the remaining suffix

α(s−1,1) · · · β(s−1,ks−1)α(s−1,ks−1)
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that ends in a configuration with counter value at most

L′ = z1 − ϒC − 1

(where we recall that as above each α(i,j) is viewed as a sequence of transitions).
Indeed, we claim that ζ exists and moreover satisfies �(ζ) < −ϒC . Firstly,
as π is a B-hill by assumption, we have that z1 − zn > ϒC . Secondly, since
η(s−1) approximates π with respect to level B we have that η(s−1) ends in a con-
figuration with counter value zn. Thus, �(α(s−1,1) · · · β(s−1,ks−1)α(s−1,ks−1)) =
zn−z1 < −ϒC which implies that the prefix ζ exists and satisfies �(ζ) < −ϒC .
We make the following final case distinction.

– In case ζ contains an unlowered −p-transition, it must contain the
leftmost unlowered −p-transition, namely β(s−1,2). Similar as for the
critical descending infix, we define η(s) to be obtained from η(s−1) by
lowering β(s−1,1) together with β(s−1,2). Here it is important to note
that η(s) is not necessarily a (B − �C)-embedding of π since we can-
not rule out the existence of configurations appearing in α(s−1,1) that
have counter value B. Since η(s−1) was a B-embedding of the B-hill π

with the same source and target configuration it follows however that
η(s) is a (B − �C − 1)-embedding of π . Hence, η(s) approximates π

with respect to level B − �C − 1. Thus, η(s) no longer contains any
unlowered +p-transitions, however, possibly contains unlowered −p-
transitions. Recalling that η(0)′ = η(s) we define each of the remaining
η(i)′ to be obtained from η(i−1)′ as usual but by retaining that each η(i)′

approximates π with respect to level B − �C − 1 (instead of level B).
By construction, η(0)′ has breadth 0 and thus is an (N − �C)-semirun
that is a min-rising and max-falling (B −�C −1)-embedding and hence
— bearing in mind that π is a B-hill — in particular a min-rising and
max-falling (B − ϒC − �C − 1)-embedding of π with the same source
and target configuration as π .

– In case ζ does not contain any unlowered −p-transition it follows that
ζ is a prefix of α(s−1,1), thus contains neither unlowered +p-transitions
nor unlowered −p-transitions but possibly lowered ones. By an analo-
gous reasoning as Point 2 of Remark 35 every occurrence of a lowered
−p-transition in α(s−1,1) is preceded by a unique corresponding low-
ered +p-transition again in α(s−1,1). Thus, every prefix of φ(ζ ) contains
at least as many occurrences of [ as of ]. Recalling that �(ζ) < −ϒC
we can hence apply the Bracket Lemma (Lemma 23) and the Depump-
ing Lemma (Lemma 22) to ζ as in phase one. The final η(s) is obtained
from η(s−1) by suitably shifting subsemiruns and cutting out certain sub-
semiruns whose φ-projection contains the same number of occurrences
of [ as of ]. Similar as argued in the previous point it follows that η(s)

approximates π with respect to level B − �C − 1. Setting again η(0)′ =
η(s) we define the sequence of hybrid semiruns η(0)′ , η(1)′ , . . . , η(t)′ that
all approximate π with respect to level B −�C − 1 analogously as done
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in the previous point. Again η(t)′ is an (N − �C)-semirun that is a min-
rising and max-falling (B−�C −1)-embedding (and hence in particular
a min-rising and max-falling (B − ϒC − �C − 1)-embedding of π with
the same source and target configuration as π .

Remark 36 Our case (where the first transition of our B-hill is a +p-transition with
counter values at most B + ϒC + �C and the last transition is not a −p-transition
with counter values at most (B + ϒC + �C)) allows the following “penultimate”
process variants for our B-hill π (dual variants can be formulated in the case when π

is B-valley):

1. The adjusted process here in Case 1 bears similar properties to those of the
(+p, −p)-lowering process seen in Remark 35. Specifically, if φ(π) contains
strictly more occurrences of ] than of [ one can obtain a sequence of hybrid
semiruns

η(0), η(1), . . . , η(s), η(0)′ , η(1)′ , . . . , η(t−1)′,

where all η(i) and η(j)′ approximate π with respect to level B − �C − 1 (and are
therefore — bearing in mind that π is a B-hill — in particular min-rising and
max-falling (B−ϒC−�C−1)-embeddings of π with the same source and target
configuration as π ) and where η(t−1)′ has breadth 1 and contains precisely one
unlowered −p-transition.

2. Dually, the (−p, +p)-lowering process mentioned in Remark 35, when applied
to Case 1, is such that if φ(π) contains strictly more occurrences of [ than of ]
one can obtain a sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)′ , η(1)′ , . . . , η(t−1)′,

where all η(i) and η(j)′ approximate π with respect to level B − �C − 1 (and are
therefore — bearing in mind that π is a B-hill — in particular min-rising and
max-falling (B−ϒC−�C−1)-embeddings of π with the same source and target
configuration as π ) and where η(t−1)′ has breadth 1 and contains precisely one
unlowered +p-transition.

Case 2. The first transition is a +p-transition with counter

values at most (B+ϒC+�C) and the last transition
is a −p-transition with counter values at most (B + ϒC + �C).

By our case we have that z0, zn ≤ B + ϒC + �C − N ≤ B + ϒC + �C − MC <

B − ϒC − �C − 1, where the last inequality follows the definition of our constants
on page 15.

Since π is a B-hill π is also a (B − ϒC − �C − 1)-hill. Moreover, obvi-
ously there are no +p-transitions nor −p-transitions in π whose source and target
configuration both have counter value at most B − 1. Phrased differently, setting
B ′ = B − ϒC − �C − 1, we view π as a B ′-hill that does not contain any +p-
transitions nor −p-transitions whose source and target configuration have a counter
value at most (B ′ + ϒC + �C). We can hence apply the (+p, −p)-lowering pro-
cess to π as described in the case of in Section 7.1.1 for B ′ instead of B, thus
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yielding the sequence η(0), η(1), . . . , η(s) and η(0)′ , η(1)′ , . . . η(t)′ of hybrid semiruns
that approximate π with respect to level B ′ and are therefore min-rising and max-
falling B ′-embeddings of π : note that we use the fact that they are are indeed
B ′-embeddings as the construction in Section 7.1.1 guarantees rather than that they
are (B ′ − ϒC − �C − 1)-embeddings. The final η(t)′ is of breadth 0 and is hence a
min-rising and max-falling (N −�C)-semirun that is a (B−ϒC−�C−1)-embedding
of π with the same source and target configuration as π , as required by the lemma.

7.2 The Hill and Valley Lemma, Dependent on the Number of Occurrences
+p-Transitions as of−p-Transitions

A closer look at the proof of Lemma 28 reveals that majority of occurrences of +p-
transitions (resp. −p-transitions) implies the respective majority is preserved in the
resulting (N − �C)-semirun.

Remark 37 The resulting η(t)′ obtained from the B-hill (resp. B-valley) π satisfies
the following:

• If φ(π) contains at least as many occurrences of [ as of ], then so does the
resulting (N − �C)-semirun φ(η(t)′) satisfying Lemma 28.

• If φ(π) contains at least as many occurrences of ] as of [, then so does the
resulting (N − �C)-semirun φ(η(t)′) satisfying Lemma 28.

The following final remark stresses the fact that when our B-hill (resp. B-valley)
π contains a number of occurrences of +p-transitions different from the number
of −p-transitions, the lowering processes described in the previous section yield a
penultimate hybrid semirun all but one of whose +p-transitions and −p-transitions
are lowered. It is an immediate consequence of Point 2.c in Remarks 35 and 36.

Remark 38 Let π be an N-semirun that is a B-hill (dually a B-valley).

1. If φ(π) contains strictly more occurrences of ] than of [ one can obtain a
sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)′ , η(1)′ , . . . , η(t−1)′,

in which η(t−1)′ is a min-rising and max-falling (B − ϒC − �C − 1)-embedding
(dually (B + ϒC + �C + 1)-embedding) of π with the same source and target
configuration as π and where η(t−1)′ has breadth 1 and contains precisely one
unlowered −p-transition.

2. Analogously, if φ(π) contains strictly more occurrences of [ than of ] one can
obtain a sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0′), η(1)′ , . . . , η(t−1)′,

in which η(t−1)′ is a min-rising and max-falling (B − ϒC − �C − 1)-embedding
(dually (B + ϒC + �C + 1)-embedding) of π with the same source and target
configuration as π and where η(t−1)′ has breadth 1 and contains precisely one
unlowered +p-transition.
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8 The 5/6-Lemma

In this section, we introduce the 5/6-Lemma (Lemma 39), stating that any N-semirun
with counter effect smaller than 5/6 ·N can be turned into an (N −�C)-semirun that
is moreover an 
-embedding for all 
 that are in distance at most 5/6 · N from the
counter values of the source and target configuration. It will be the main technical
ingredient in the proof of the Small Parameter Theorem (Theorem 18). This section
is devoted to proving the lemma, hereby making extensive use of the Hill and Valley
Lemma (Lemma 28), the Depumping Lemma (Lemma 22), and the Bracket Lemma
(Lemma 23) introduced in previous sections.

Recall that we have fixed a POCA C = (Q, P, R, qinit , F ) with P = {p} along
with the constants ZC, �C, ϒC, MC on page 15.

Let us first introduce the 5/6-Lemma.

Lemma 39 (5/6-Lemma) For all N > MC and all 
 ∈ Z and all N-semiruns
π from q0(z0) to qn(zn) with VALUES(π) ⊆ [0, 4N] satisfying max(z0, zn, 
) −
min(z0, zn, 
) ≤ 5/6 · N there exists an (N − �C)-semirun π ′ from q0(z0) to qn(zn)

that is an 
-embedding of π such that VALUES(π ′) ⊆ [min(π)−�C, max(π)+�C].

Towards proving Lemma 39 let us fix

• some N > MC ,
• some 
 ∈ Z,
• some N-semirun

from q0(z0) to qn(zn) satisfying VALUES(π) ⊆ [0, 4N] and max(z0, zn, 
) −
min(z0, zn, 
) ≤ 5/6 · N .

In order to prove the 5/6-Lemma we need to show the existence of some
(N − �C)-semirun π ′ from q0(z0) to qn(zn) that is both an 
-embedding of π with
VALUES(π ′) ⊆ [min(π) − �C, max(π) + �C].

For this, let us define following two constants

and observe that

Bmax − Bmin = max(z0, zn, 
) − min(z0, zn, 
) + 2ϒC + 4�C + 2

≤ 5/6 · N + 2ϒC + 4�C + 2

≤ 5/6 · N + MC/6 (6)

< N, (7)

where the penultimate inequality follows from the definitions of our constants on
page15.

We are particularly interested in subsemiruns of π that start and end in configura-
tions with counter values in [Bmin+1, Bmax−1]. To categorize such subsemiruns into
different types, we introduce the notion of crossing and doubly-crossing transitions.
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Definition 40 A transition is called crossing if either

• πi = +p and we have zi < Bmax ≤ zi+1 or zi ≤ Bmin < zi+1, or
• πi = −p and we have zi > Bmin ≥ zi+1 or zi ≥ Bmax > zi+1.

If even moreover zi ≤ Bmin ≤ Bmax ≤ zi+1 or zi ≥ Bmax ≥ Bmin ≥ zi+1 we call πi

doubly-crossing.

We already refer to Fig. 10, where subsemiruns of a certain type (to be defined
below) are depicted, some of whose transitions crossing transitions, some of whose
are even doubly-crossing transitions.

Next, we introduce three particular types of subsemiruns of π starting and ending
in configurations with counter values in [Bmin + 1, Bmax − 1].

Definition 41 (Type I, II and III subsemiruns of π ) A subsemirun π [a, b] of π with
source and target configuration in Q × [Bmin + 1, Bmax − 1] is

• of Type I if VALUES(π [a, b]) ⊆ [Bmin + 1, Bmax − 1],
• of Type II if

– VALUES(π [a + 1, b − 1]) ∩ [Bmin + 1, Bmax − 1] = ∅, and
– π [a, b] does not contain any doubly-crossing transitions,

• of Type III if

– VALUES(π [a + 1, b − 1]) ∩ [Bmin + 1, Bmax − 1] = ∅, and
– π [a, b] contains at least one doubly-crossing transition.

Remark 42 All crossing transitions in a Type III semirun, except possibly the first or
the last transition, are doubly-crossing.

Figure 10 shows an example of a Type II and of a Type III subsemirun.

Fig. 10 On the left, an example of a Type II subsemirun. On the right, an example of a Type III subsemirun.
Bold transitions are crossing, and the first two bold transitions of the figure on the right are moreover
doubly crossing
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The following lemma factorizes π into Type I, Type II and Type III subsemiruns,
bearing in mind that both the source and target configuration of π have a counter
value in [Bmin + 1, Bmax − 1].

Lemma 43 The N-semirun π can be factorized into Type I, Type II and Type III
subsemiruns.

Proof Let us first factorize π as

π = π [c1, d1]π [d1, c2]π [c2, d2]π [d2, c3] · · · π [ct , dt ], (8)

where

• π [ci, di] are Type I and maximal (possibly empty), i.e. π [ci, di] is of Type I but
neither π [ci − 1, di] nor π [ci, di + 1] is of Type I for all i ∈ [1, t], and

• VALUES(π [di + 1, ci+1 − 1]) ∩ [Bmin + 1, Bmax − 1] = ∅ for all i ∈ [1, t − 1].
Now it suffices to show that each subsemirun π [di, ci+1] is either of Type II or of
Type III. For this, let us make a case distincton on whether π [di, ci+1] contains a
doubly-crossing transition or not.

For the first case, namely that π [di, ci+1] does contain a doubly-crossing transi-
tion, since VALUES(π [di + 1, ci+1 − 1]) ∩ [Bmin + 1, Bmax − 1] = ∅, we have that
π [di, ci+1] is of Type III by definition.

For the second case, namely that π [di, ci+1] does not contain any doubly-crossing
transition, since VALUES(π [di + 1, ci+1 − 1]) ∩ [Bmin + 1, Bmax − 1] = ∅ we have
that π [di, ci+1] is of Type II by definition (Fig. 11).

By Remark 26 in order to prove the existence of the desired (N − �C)-semirun it
suffices to show it for Type I, Type II and Type III subsemiruns of π .

Fig. 11 In this figure, we provide an example factorization of a semirun π . A semirun π is divided into
five subsemiruns, separated by vertical lines. The third and fifth subsemiruns are of Type I, the first and
fourth subsemiruns are of Type II, and the second one is of Type III
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Since Type I subsemiruns neither contain any +p-transition nor any −p-transition
by (7), they are already (N − �C)-semiruns.

Let us now discuss the situation for Type II subsemiruns of π . If a Type II sub-
semirun is already a Type I subsemirun we are done as above. In case a Type II
subsemirun ρ is not of Type I we first claim that ρ is either a Bmin-valley or a
Bmax-hill. Indeed, if ρ is of Type II but not of Type I one can factorize ρ as

where

1. m ≥ 2,
2. x0, xm ∈ [Bmin + 1, Bmax − 1], and
3. either xi ∈ [0, Bmin] for all i ∈ [1, m − 1] or xi ∈ [Bmax, 4N] for all i ∈

[1, m − 1],
where Point 3 follows from the absence of doubly-crossing transitions.

First assume that xi ∈ [Bmax, 4N] for all i ∈ [1, m − 1]. In this case any +p-
transition (resp. −p-transition) ends (resp. starts) in a configuration with counter
value strictly larger than Bmin + N . Due to the definition of our constants on page 15
we have

x0 + ϒC, xn + ϒC < Bmax + ϒC
= Bmin + (Bmax − Bmin) + ϒC
≤ Bmin + 5/6 · N + 3ϒC + 4�C + 2

< Bmin + 5/6 · N + MC/6

< Bmin + N,

hence ρ is a Bmax-hill.
Secondly, in case xi ∈ [0, Bmin] for all i ∈ [1, m− 1] it can analogously be shown

that ρ is Bmin-valley.
The existence of the desired (N − �C)-semirun ρ′ that is an 
-embedding of the

Type II semirun ρ with the same source and target configuration as ρ follows imme-
diately from the following claim, which itself (with a short justificaton below) is a
consequence of the Hill and Valley Lemma (Lemma 28); thanks to the fact that the
Hill and Valley Lemma guarantees the resulting (N − �C)-semiruns to be min-rising
and max-falling, we can even guarantee VALUES(ρ′) ⊆ [min(ρ), max(ρ)].

Claim 2 For every N-semirun ρ that is either a B-hill with B ≥ 
 + ϒC + �C + 1
or a B-valley with B ≤ 
 − ϒC − �C − 1, there exists an (N − �C)-semirun that
is both a min-rising and max-falling 
-embedding of ρ with same source and target
configuration as ρ.

That the Hill and Valley Lemma produces an 
-embedding that has the same
source and target configuration is important here. Indeed, generally speaking if ρ is
any B-hill and ρ′ is any k-embedding of ρ with the same source and target config-
uration as ρ and where k < B, then ρ′ is also a k′-embedding of ρ for all k′ < k.
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Dually, if ρ is any B-valley and ρ′ is a k-embedding of ρ with with the same source
and target configuration as ρ and where k > B, then ρ′ is also an k′-embedding of ρ

for all k′ > k.
For the rest of this section it now suffices to prove that for every Type III sub-

semirun ρ of π there exists an (N − �C)-semirun ρ′ that is an 
-embedding of
ρ with the same source and target configuration as ρ and that moreover satisfies
VALUES(ρ′) ⊆ [min(ρ) − �C, max(ρ) + �C].

8.1 Lowering Type III Subsemiruns

For the rest of the section let us fix a Type III subsemirun ρ of π . Let us factorize ρ

by its crossing semitransitions, i.e. as

ρ = α(0)β(1)α(1) · · · β(n)α(n),

where β(1), . . . , β(n) is an enumeration of the crossing semitransitions of ρ and each
α(i) is a (possibly empty) N-subsemirun of ρ. It is worth mentioning that, indeed
abusing notation, for the rest of this section we refer to n as the number of crossing
semitransitions of ρ, rather than the number of transitions of our original N-run π .

An example factorization is shown in Fig. 10, where the crossing transitions are
depicted in bold. We remark that the only crossing transitions of ρ that are not doubly-
crossing can possibly only be the first or the last one (or both).

We intend to now factorize ρ, if possible, into hills and valleys. In order to do this
let us first introduce the notions of B-hill candidate and B-valley candidate.

Definition 44 Let

be an N-semirun. We say χ is a B-hill candidate if x0, xm < B and xi ≥ B for all
i ∈ [1, m − 1], respectively a B-valley candidate if x0, xm > B and xi ≤ B for all
i ∈ [1, m − 1].

Note that every B-hill is a B-hill candidate but not vice versa, since being a B-
hill moreover requires +p-transitions to end at a configuration with counter value
strictly larger than xn+ϒC and −p-transitions to start at a configuration with counter
value strictly larger than x0 +ϒC . A similar remark applies to B-valleys and B-valley
candidates.

For the rest of this section we assume without loss of generality that the crossing
transition β1 is a +p-transition. The case when β1 is −p-transition can be proven
analogously.

It follows that if the number n of crossing transitions is even, then there is a unique
factorization

ρ = α(0)σ (1)α(2)σ (2)α(4)σ (3)α(6) · · · σ (n/2)α(n), (9)

where σ (i) = β(2i−1)α(2i−1)β(2i) is a Bmax-hill candidate, β(2i−1) is a +p-transition
and β(2i) is a −p-transition for all i ∈ [1, n/2]. Indeed, this immediately follows
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from the definition of crossing transitions and the fact that α(2i−1) does not contain
any configuration with counter value strictly less than Bmax.

Therefore our proof makes first a case distinction on the parity of the number n of
crossing transitions.

Case A: The number of crossing transitions n is even.
Our proof next makes a case distinction on the number of Bmax-hill candidates

σ (i) in the factorization (9) that are in fact Bmax-hills.
Case A.1: All of the Bmax-hill candidates σ (i) in (9) are in fact Bmax-hills.

Since each σ (i) = β(2i−1)α(2i−1)β(2i) from (9) is a Bmax-hill, to each σ (i) we
can apply Claim 2 claim embedding and obtain an (N − �C)-semirun σ̂ (i) that is
both a min-rising and max-falling 
-embedding of σ (i) with the same source and
target configuration as σ (i). Thus, it remains to show the same for α(2i) for each
i ∈ [0, n/2]. We do this separately for α(0), α(n) and finally for those α(2i), where
i ∈ [1, n/2 − 1].

Let us first show it for α(0). The proof for α(n) is completely analogous. If α(0)

is empty (which would imply that β(1) is crossing but not doubly-crossing), there
is nothing to show. Let us therefore assume that α(0) is not empty. It follows that
β(1) must be a doubly-crossing +p-transition by Remark 42. Since β(1) is the first
crossing transition (even doubly-crossing) and a +p-transition and moreover ρ is of
Type III one can factorize α(0) as

α(0) = α(0,0)σ (0,1)α(0,1) · · · σ (0,k),

where α(0,j) satisfies VALUES(α(0,j)) ⊆ [Bmax − N, Bmin + 1] for all j ∈ [0, k] and
σ (0,j) is a (Bmax − N − 1)-valley candidate for all j ∈ [1, k]. It immediately follows
that each α(0,j) does not contain any +p-transition nor any −p-transition, and is
hence already an (N − �C)-semirun. Finally we claim that each σ (0,j) is in fact a
(Bmax − N − 1)-valley. Indeed, firstly the target configuration of each +p-transition
in σ (0,j) has a counter value at most Bmin and hence a source configuration with
counter value at most Bmin −N < Bmax −N − 1 −ϒC , where the inequality follows
from definition of Bmin and Bmax from page 37. Secondly and analogously, the source
configuration of each −p-transition in σ (0,j) has a counter value of at most Bmin and
hence a target configuration with counter value at most Bmin −N < Bmax −N − 1 −
ϒC . Thus, to each σ (0,j) we can apply Claim 2 to obtain an (N − �C)-semirun ̂σ (0,j)

that is a min-rising and max-falling 
-embedding of σ (0,j) with the same source and
target configuration as σ (0,j). Hence, by appropriately concatenationg the α(0,j) with

the ̂σ (0,j) we obtain the desired (N − �C)-semirun that is an 
-embedding of α(0).
It now only remains and suffices to show that for each α(2i) with i ∈ [1, n/2 − 1],

that there exists an (N − �C)-semirun that is a min-rising and max-falling 
-
embedding of α(2i) with same source and target configuration as α(2i). Again by
Remark 42 any such α(2i) succeeds σ (i) = β(2i−1)α(2i−1)β(2i) and thus suc-
ceeds the doubly-crossing transition β(2i) and analogously preceeds σ (i+1) =
β(2i+1)α(2i+1)β(2i+2) and thus precedes the doubly-crossing β(2i+1). Therefore,
analogously as done for α(0), one can factorize α(2i) as

α(2i) = α(2i,0)σ (2i,1)α(2i,1) · · · σ (2i,k)α(2i,k)
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for some k ≥ 0, where α(2i,j) satisfies VALUES(α(2i,j)) ⊆ [Bmax − N, Bmin] (and is
thus already an (N − �C)-semirun) for all j ∈ [0, k] and σ (2i,j) is a (Bmax − N −
1)-valley candidate that is in fact a (Bmax − N − 1)-valley for all j ∈ [1, k].

Case A.2: All but one of the Bmax-hill candidates σ (i) in (9) are in fact Bmax-hills.
Recall the factorization

ρ = α(0)σ (1)α(2)σ (2)α(4)σ (3)α(6) · · · σ (n/2)α(n)

from (9) where each σ (i) = β(2i−1)α(2i−1)β(2i) is a Bmax-hill candidate for all i ∈
[1, n/2].

First let us show that, in case one such Bmax-hill candidate is not a Bmax-hill, then it
must be either σ (1) or σ (n/2). For every of the remaining j ∈ [2, n/2−1] we have that
σ (j) = β(2j−1)α(2j−1)β(2j) is such that β(2j−1) and β(2j) are both doubly-crossing,
implying that σ (j) is a Bmax-hill: indeed, both the source and target configuration of
σ (j) have a counter value at most Bmin < Bmax − ϒC , which is sufficient since every
+p-transition (resp. −p-transition) of σ (j) ends (resp. starts) in a configuration with
counter value at least Bmax.

Let us assume without loss of generality that σ (1) = β(1)α(1)β(2) is the only Bmax-
hill candidate that is not a Bmax-hill, the case when σ (n/2) is not a Bmax-hill can be
treated analogously.

Clearly, by the above reasoning, either β(1) or β(2) must not be doubly-crossing.
Without loss of generality let us assume that the first crossing transition β(1) is not
doubly-crossing (for β(2) not doubly-crossing implies n = 2 by definition of Type III
and Remark 42; this case is thus included in the dual case when σ (n/2) is not a Bmax-
hill and the last crossing transition β(n) is not doubly-crossing).

Remarking that α(0) must be empty by our case, one can now factorize our N-
semirun ρ as

ρ =
(
β(1)α(1)

)
β(2)

(
α(2)σ (2)α(4) · · · σ (n/2)α(n)

)
,

where β(2) is a −p-transition. For finishing this case we will proceed as follows.

1. Firstly we show the existence of an (N − �C)-semirun that is both a min-
rising and max-falling 
-embedding of β(1)α(1) with the same source and target
configuration as β(1)α(1).

2. Secondly, let us assume that β(2) is an N-semirun from q(x) to q ′(y), say, and
moreover that α(2)σ (2)α(4) · · · σ (n/2)α(n) is an N-semirun from q ′(y) to q ′′(z),

say. Noting that , we explicitly lower β(2) into the

(N − �C)-semirun , which is — since β(2) is doubly-
crossing — obviously both a min-rising and max-falling 
-embedding of β(2)

from q(x) to q ′(y +�C). Finally, we show the existence of an (N −�C)-semirun
that is an 
-embedding of α(2)σ (2)α(4) · · · σ (n/2)α(n) from q ′(y + �C) to q ′′(z)
all of whose counter values lie in [min(ρ) − �C, max(ρ) + �C].

Let us first show Point 1. Since β(1) is not doubly-crossing and σ (1) =
β(1)α(1)β(2) is a Bmax-hill candidate that is not a Bmax-hill, the only reason for
the latter is the existence of a −p-transition τ such that the counter values of the
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source configuration of τ and σ (1) have an absolute difference at most ϒC . Such
a transition τ must have a source configuration with counter value in the interval
[Bmax, Bmax + ϒC − 1] and σ (1) must then necessarily have a source configuration
with a counter value in the interval [Bmax −ϒC, Bmax − 1]. Such a violation can only
happen for τ = β(2). As a consequence, the target configuration q(x) of α(1) has a
counter value inside [Bmax, Bmax+ϒC−1]. Recalling that β(1) is not doubly-crossing
one can (analogously as has been done in Case A.1) factorize β(1)α(1) as

β(1)α(1) = χ(1)ξ (1) · · · χ(k)ξ (k),

for some k ≥ 0, where each χ(i) is a (Bmin + N + 1)-hill and each ξ (i) satisfies
VALUES(ξ (i)) ⊆ [Bmax, Bmin+N]. Again, analogously as has been done in Case A.1,
to each of the χ(i) we can apply Claim 2 to turn them into a suitable min-rising
and max-falling (N − �C)-semirun that is an 
-embedding of χ(i) with the same
source and target configuration as χ(i), whereas each of the ξ (i) are already (N −
�C)-semiruns since they do not contain any +p-transitions nor −p-transitions.

Let us finally show Point 2. Consider the remaining factorization

γ = α(2)σ (2)α(4) · · · σ (n/2)α(n) (10)

from q ′(y) to q ′′(z). We need prove the existence of an (N − �C)-semirun from
q ′(y + �C) to q ′′(z) that is an 
-embedding of γ and whose counter values lie in
[min(γ ) − �C, max(γ ) + �C].

We first claim that �(γ ) > ϒC . Since x ∈ [Bmax, Bmax + ϒC − 1] it follows that
the counter value y of γ ’s source configuration q ′(y) satisfies y ∈ [Bmax−N, Bmax+
ϒC−1−N]. Moreover, the target configuration q ′′(z) of γ is the target configuration
of our Type III N-semirun ρ, thus z ∈ [Bmin + 1, Bmax − 1]. Hence by the definition
of our constants on page 15 we have

�(γ ) ≥ Bmin + 1 − (Bmax + ϒC − 1 − N)

> N − (Bmax − Bmin) − ϒC
(6)≥ N − (5/6 · N + 2ϒC + 4�C + 2) − ϒC
= N/6 − 2ϒC − 4�C − 2 − ϒC
> MC/6 − 2ϒC − 4�C − 2 − ϒC
= MC/6 − 4ϒC − 4�C − 2 + ϒC
> (MC/6 − 4(ϒC + �C + 1)) + ϒC
> ϒC .

Recall that each σ (i) is a Bmax-hill for all i ∈ [2, n/2] by our case. Analogously,
as has been done in Case A.1, for each i ∈ [1, n/2] one can factorize α(2i) as

α(2i) = α(2i,0)σ (2i,1) · · · σ (2i,ki )α(2i,ki ),

where α(2i,j) satisfies VALUES(α(2i,j)) ⊆ [Bmax − N, Bmin + 1] for each j ∈ [0, ki]
and σ (2i,j) is a (Bmax−N −1)-valley for each j ∈ [1, ki]: more precisely for the final
α(n) we have VALUES(α(n)) ⊆ [Bmax −N, Bmin +1], however for all i ∈ [1, n/2−1]
we have α(2i) ⊆ [Bmax − N, Bmin].
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It is important to remark that each α(2i,j) is already an (N − �C)-semirun since
it does not contain any +p-transition nor any −p-transition. The following remark
summarizes the factorization of γ .

Remark 45 Our N-semirun γ from q ′(y) to q ′′(z) can be written as

γ = α(2)σ (2)α(4) · · · σ (n/2)α(n) = α(2)

⎛
⎝n/2∏

i=2

σ (i) α(2i,0)

⎛
⎝ ki∏

j=1

σ (2i,j)α(2i,j)

⎞
⎠

⎞
⎠ ,

(11)

where

1. each σ (i) is a Bmax-hill,
2. each σ (2i,j) is a (Bmax − N − 1)-valley,
3. each α(2i,j) is already an (N − �C)-semirun,
4. �(γ ) > ϒC , and
5. every configuration in γ (except for possibly the target configuration q ′′(z)) has

a counter value in [0, Bmin] ∪ [Bmax, 4N] whose absolute difference with 
 is
thus strictly larger than �C (recall the definition of Bmin and Bmax of page 37).

We can now obtain suitable (N − �C)-semiruns with the same source and target
configuration for any of the above hills and valleys by applying the Hill and Valley
Lemma.

Remark 46 By applying the Hill and Valley Lemma (Lemma 28) we obtain the
following.

1. For each of the Bmax-hills σ (i) there exists an (N − �C)-semirun σ̂ (i) that is
both a min-rising and max-falling (Bmax − ϒC − �C − 1)-embedding of σ (i)

from the same source and target configuration as σ (i). In particular, since σ (i) is
a Bmax-hill and Bmax − ϒC − �C − 1 > 
 + �C it follows that σ̂ (i) is in fact
an 
-embedding of σ (i) all of whose configurations have a counter value whose
absolute difference with 
 is strictly larger than �C (except for the exotic case
when i = n/2 and γ in fact ends with σ (i), and hence the last configuration of
σ (i) happens to be the last configuration q ′′(z) of γ ; recalling that z ∈ [Bmin +
1, Bmax − 1]).

2. For each of the (Bmax −N − 1)-valleys σ (2i,j) there exists an (N −�C)-semirun
̂σ (2i,j) that is both a min-rising and max-falling (Bmax −N − 1 +ϒC +�C + 1)-
embedding of σ (2i,j) with the same source and target configuration as σ (2i,j). In
particular, since σ (2i,j) is a (Bmax − N − 1)-valley and

Bmax − N + ϒC + �C
(7)
< Bmin + ϒC + �C ≤ 
 − �C

(where the last inequality follows from the definition of Bmin on page 37), it fol-

lows that ̂σ (2i,j) is in fact an 
-embedding of σ (2i,j) all of whose configurations
have a counter value whose absolute difference with 
 is is strictly larger than
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�C (except, similar as above, for the exotic case when i = n/2, j = ki and γ in
fact ends with σ (2i,j), and hence the last configuration σ (2i,j) happens to be the
last configuration q ′′(z) of γ ).

It is worth pointing out that applying the remark immediately would only yield
the existence of an (N − �C)-semirun γ ′ that is both a min-rising and max-falling

-embedding of γ with the same source configuration q ′(y) and the same target
configuration q ′′(z) as γ such that VALUES(γ ′) ⊆ [min(γ ) − �C, max(γ ) + �C].
However we need to show the existence of such an 
-embedding rather from
q ′(y + ϒC) to q ′′(z). For this, we make a final case distinction on whether among
the Bmax-hills σ (i) and the (Bmax − N − 1)-valleys σ (2i,j) there exists one whose
φ-projection contains strictly more occurrences of [ as occurrences of ].
• Case A.2.i: Among the Bmax-hills σ (i) and the (Bmax − N − 1)-valleys σ (2i,j)

there exists one whose φ-projection contains strictly more occurrences of [ as
occurrences of ].

Without loss of generality let us assume that there exists some s ∈ [2, n/2]
such that σ (s) = β(2s−1)α(2s−1)β(2s) is a Bmax-hill for which φ(σ (s)) contains
strictly more occurrences of [ as occurrences of ] — the case when there is a
(Bmax − N − 1)-valley σ (2s,j) for which φ(σ (2s,j)) has the above property can
be proven analogously.

Assume σ (s) = β(2s−1)α(2s−1)β(2s) has source configuration r1(x1) and target
configuration r2(x2), say. Since β(2s−1) was surely neither the first nor the last
crossing transition of ρ (recall that s ≥ 2), it follows that β(2s−1) is doubly-
crossing by Remark 42, and therefore x1 ≤ Bmin. Recalling the notion of hybrid
semirun (Definition 29) we now apply Point 2 of Remark 38 to our Bmax-hill
σ (s) and obtain a hybrid semirun η

– whose source configuration is r1(x1) and whose target configuration is
r2(x2),

– that is both a min-rising and max-falling (Bmax − ϒC − �C − 1)-
embedding of σ (s), and

– that has breadth 1 and contains precisely one unlowered +p-transition.

From the above and the fact that σ (s) is a Bmax-hill the following remark follows.

Remark 47 All configurations of η (except possibly the target configuration
r2(x2) in the exotic case when γ ends with σ (s)) have a counter value whose
absolute difference with 
 is strictly larger than �C . Moreover on can write η

as η = αβα′, where for some intermediate configurations r ′
1(x

′
1) and r ′

2(x
′
2) we

have that

– α is an (N − �C)-semirun from r1(x1) to r ′
1(x

′
1),

– β is an N-semirun that is a +p-transition,
i.e. x′

2 = x′
1 + N , and

– α′ is an (N − �C)-semirun from r ′
2(x

′
2) to r2(x2).
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Let β̂ denote the lowering of β, i.e. β̂ is the (N − �C)-semirun

. By Remark 47 it follows that the (N − �C)-
semirun

θ = ((
αβ̂

) + �C
)
α′

from r ′
1(x1 + �C) to r2(x2) is an 
-embedding of η. Bearing in mind our fac-

torization of γ from Remark 11 and taking into account Remark 46 we obtain
that

γ̃ (1) =
⎛
⎝

⎛
⎝α̂(2)

⎛
⎝s−1∏

i=2

σ̂ (i) α(2i,0)

⎛
⎝ ki∏

j=1

̂σ (2i,j) α(2i,j)

⎞
⎠

⎞
⎠

⎞
⎠ + �C

⎞
⎠ θ

is an (N − �C)-semirun from q ′(y + �C) to r ′
2(x

′
2) that is an 
-embedding of γ ’s

prefix N-semirun

γ (1) = α(2)

⎛
⎝s−1∏

i=2

σ (i) α(2i,0)

⎛
⎝ ki∏

j=1

σ (2i,j) α(2i,j)

⎞
⎠

⎞
⎠ σ (s)

from q ′(y) to r ′
2(x

′
2) satisfying VALUES(γ̃ (1)) ⊆ [min(γ (1)), max(γ (1)) + �C].

Moreover we have by Remark 46 that

γ̂ (2) = α(2s,0)

⎛
⎝ ks∏

j=1

̂σ (2i,j)α(2i,j)

⎞
⎠

⎛
⎝ n/2∏

i=s+1

σ̂ (i) α(2i,0)

⎛
⎝ ki∏

j=1

̂σ (2i,j) α(2i,j)

⎞
⎠

⎞
⎠

is an (N − �C)-semirun from r ′
2(x

′
2) to q ′′(z) that is both a min-rising and max-

falling 
-embedding of γ ’s remaining suffix N-semirun

γ (2) = α(2s,0)

⎛
⎝ ks∏

j=1

σ (2i,j)α(2i,j)

⎞
⎠

⎛
⎝ n/2∏

i=s+1

σ (i) α(2i,0)

⎛
⎝ ki∏

j=1

σ (2i,j) α(2i,j)

⎞
⎠

⎞
⎠

from r ′
2(x

′
2) to q ′′(z). Altogether γ ′ = γ̃ (1)γ̂ (2) is the desired (N − �C)-

semirun from q ′(y + �C) to q ′′(z) that is an 
-embedding of γ = γ (1)γ (2) with
VALUES(γ ′) ⊆ [min(γ ) − �C, max(γ ) + �C].

• Case A.2.ii: Among the Bmax-hills σ (i) and the (Bmax − N − 1)-valleys σ (2i,j)

all have a φ-projection that contains at least as many occurrences of ] as
occurrences of [.

Observe that by Remark 46 the (N − �C)-semirun

γ̂ = α(2)

⎛
⎝n/2∏

i=2

σ̂ (i) α(2i,0)

⎛
⎝ ki∏

j=1

̂σ (2i,j) α(2i,j)

⎞
⎠

⎞
⎠

from q ′(y) to q ′′(z) is both a min-rising and max-falling 
-embedding of γ

all of whose configurations (except for possibly the target configuration q ′′(z))
have a counter value whose absolute difference with 
 is strictly larger than
�C . Yet we need to show the existence of some (N − �C)-semirun γ that is
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an 
-embedding of γ from q ′(y + �C) to q ′′(z) that satisfies VALUES(γ ′) ⊆
[min(γ ) − �C, max(γ ) + �C].

By Remark 37 all of the lowered (N − �C)-semiruns σ̂ (i) and ̂σ (2i,j) men-
tioned in Remark 46 contain at least as many occurrences of [ as of ] or, vice
versa, at least as many occurrences of ] as of [, if σ (i) does, respectively if σ (2i,j)

does.
Thus, by our case we obtain that every φ(σ̂ (i)) and φ(̂σ (2i,j)) contains at least

as many occurrences of ] as occurrences of [.
Recalling that neither α(2) nor any of the α(2i,j) contain any +p-transitions

nor −p-transitions (and thus have all a φ-projection ε) it follows that φ(γ̂ )

contains at least as many occurrences of ] as occurrences of [.
Since �(γ ) > ϒC by Point 4 of Remark 11, and thus �(γ̂ ) > ϒC , there

exists a subsemirun γ̂ [c, d] satisfying �(γ̂ [c, d]) > ϒC and φ(γ̂ [c, d]) ∈ �8
by Lemma 23. By now applying Lemma 22 there exists an (N − �C)-semirun χ

satisfying

– �(χ) = �(γ̂ [c, d]) − �C and
– χ = γ̂ [c, d]−I1−I2 · · ·−Ih for pairwise disjoint intervals I1, . . . , Ih ⊆

[c, d] such that φ(γ̂ [Ii]) ∈ �16 and �(γ̂ [Ii]) > 0 for all i ∈ [1, h].
Note that from the definition of χ and the fact that all intermediate configurations
of γ̂ have counter values whose absolute difference with 
 is strictly larger than
�C it follows that χ + �C is an 
-embedding of γ̂ [c, d] that has the same target
configuration as γ̂ [c, d] and that satisfies VALUES(χ + �C) ⊆ [min(γ̂ [c, d]) −
�C, max(γ̂ [c, d]) + �C]. Analogously, it follows that δ = (γ̂ [0, c] + �C) (χ +
�C) is an (N − �C)-semirun from q ′(y + �C) to the same target configuration
as γ̂ [0, d] that is an 
-embedding of γ̂ [0, d] and that satisfies VALUES(δ) ⊆
[min(γ [0, d]) − �C, max(γ [0, d]) + �C].

Finally it follows that

γ ′ = (γ̂ [0, c] + �C) (χ + �C) γ̂ [d, |γ̂ |]

is the desired (N −�C)-semirun from q ′(y+�C) to q ′′(z) that is an 
-embedding
of γ̂ and hence of γ that satisfies VALUES(γ ′) ⊆ [min(γ ) − �C, max(γ ) + �C].

Case A.3: All but at least two of the Bmax-hill candidates σ (i) in (9) are in fact
Bmax-hills.

Recall the factorization

ρ = α(0)σ (1)α(2)σ (2)α(4)σ (3)α(6) · · · σ (n/2)α(n)

from (9) where each σ (i) = β(2i−1)α(2i−1)β(2i) is a Bmax-hill candidate for all i ∈
[1, n/2]. By our case we must have n ≥ 4.

By a similar reasoning as in Case A.2 one can show that the Bmax-hill candidate
that are not Bmax-hills must be precisely the two subsemiruns σ (1) and σ (n/2). In
particular there cannot be strictly more than two Bmax-hill candidates in (9) that are
not in fact Bmax-hills. Moreover, as already reasoned in Case A.2, neither β(1) nor
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β(n) is doubly-crossing. Thus α(0) and α(n) are empty. Hence, one can now factorize
our N-semirun ρ as

ρ =
(
β(1)α(1)

)
β(2)α(2)β(3)α(3) · · · β(n−1)

(
α(n−1)β(n)

)
.

For finishing this case we will show the existence

1. of an (N−�C)-semirun that is both a min-rising and max-falling 
-embedding of
the semirun β(1)α(1) with the same source and target configuration as β(1)α(1),

2. of an (N − �C)-semirun that is both a min-rising and max-falling 
-embedding
of the semirun α(n−1)β(n) with the same source and target configuration as
α(n−1)β(n), and

3. of an (N − �C)-semirun that is both a min-rising and max-falling 
-embedding
of the semirun β(2)α(2)β(3)α(3) · · · β(n−1) with same source and target
configuration.

Points 1 and 2 are proven analogously as Point 1 from Case A.2. For proving
Point 3, we consider a different factorization

β(2)α(2)β(3)α(3) · · · β(n−1) = τ (1)α(3)τ (2)α(5) · · · τ ((n−2)/2),

where τ (i) = β(2i)α(2i)β(2i+1) is a Bmin-valley candidate for all i ∈ [1, (n − 2)/2].
Since β(2i) and β(2i+1) have to be doubly crossing for all i ∈ [1, (n− 2)/2], τ (i) is in
fact a Bmin-valley for all i ∈ [1, (n−2)/2] by a similar reasoning as used in Case A.2
to show that the Bmax-hill candidate that is not a Bmax-hill must be σ (1) or σ (n/2).

We can apply Claim 2 to each τ (i) and obtain an (N − �C)-semirun τ̂ (i) that is
both a min-rising and max-falling 
-embedding of τ (i) with the same source and
target configuration. Thus, it only remains to show the same for α(2i+1) for each
i ∈ [1, (n − 2)/2]. This is done analogously as in Case A.1 when proving the same
for each α(2i) for each i ∈ [0, n/2].

Case B: The number of crossing transitions n is odd.
Recall that we had assumed without loss of generality that β(1) is a +p-transition.

Since n is odd one can consider the following first factorization

ρ = α(0)σ (1)α(2)σ (2)α(4)σ (3)α(6) · · · σ (�n/2�)α(n−1)β(n)α(n), (12)

where σ (i) = β(2i−1)α(2i−1)β(2i) is a Bmax-hill candidate, β(2i−1) is a +p-transition,
β(2i) is a −p-transition for all i ∈ [1, �n/2�] , and β(n) is a +p-transition; as well as
the following second factorization

ρ = α(0)β(1)α(1)τ (1)α(3)τ (2)α(5)τ (3) · · · τ (�n/2�)α(n), (13)

where β1 is a +p-transition, τ (i) = β(2i)α(2i)β(2i+1) is a Bmin-valley candidate,
β(2i) is a −p-transition and β(2i+1) is a +p-transition for all i ∈ [1, �n/2�]. Indeed,
this— as for the Case A factorization (9)— immediately follows from the definition
of crossing transitions and the fact that neither α(2i−1) (resp. α(2i)) contains any con-
figuration with counter value strictly less than Bmax (resp. strictly larger than Bmin)
for all i ∈ [1, �n/2�].

Our proof next will make a case distinction on the number of Bmax-hill candidates
σ (i) in the factorization (12) that are in fact Bmax-hills and on the number of Bmin-
valley candidates τ (i) in the factorization (13) that are in fact Bmin-valleys.
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Case B.1: All of the Bmax-hill candidates σ (i) in (12) are in fact Bmax-hills or all
of the Bmin-valley candidates τ (i) in (13) are in fact Bmin-valleys.

Let us assume without loss of generality that all of the Bmax-hill candidates in (12)
are in fact Bmax-hills. The case when all Bmin-valley candidates in (13) are in fact
Bmin-valleys can be proven analogously. Each N-semirun σ (i) can hence be turned
into an (N −�C)-semirun σ̂ (i) that is both a min-rising and max-falling 
-embedding
of σ (i) with same source and target configuration as σ (i) according to Claim 2. More-
over, the same holds for α(2i) for all i ∈ [0, �n/2� − 1], as seen in Case A.1. Thus it
remains to deal with the subsemiruns α(n−1), β(n) and α(n).

We make a final case distinction on the target configuration of the dangling +p-
transition β(n).

• Case B.1.i: β(n) has a target configuration with a counter value strictly larger
than Bmax + ϒC .

Then clearly β(n)α(n) is a Bmax-hill as well since α(n) contains no config-
urations with counter value strictly less than Bmax besides its last one. The
N-semirun β(n)α(n) can hence be turned into an (N − �C)-semirun that is
both a min-rising and max-falling 
-embedding with the same source and tar-
get configuration according to Claim 2. Moreover, the same holds for α(n−1), as
analogously proven for α(2i) for all i ∈ [0, �n/2�] in Case A.1. The concatena-
tion of these two 
-embeddings yields an (N − �C)-semirun that is a min-rising
and max-falling 
-embedding of α(n−1)β(n)α(n) with the same source and target
configuration.

• Case B.1.ii: β(n) has a target configuration with a counter value strictly less than
Bmax.

It immediately follows that β(n) is crossing but not doubly-crossing, thus α(n)

is empty. The remaining α(n−1)β(n) can thus be factorized as

α(n−1)β(n) = ξ (1)χ(1) · · · ξ (k)χ(k),

where each χ(i) is a (Bmax−N−1)-valley and each ξ (i) satisfies VALUES(ξ (i)) ⊆
[Bmax − N, Bmin + 1], using a similar factorization as for proving Point 1 in
Case A.2. The N-semirun α(n−1)β(n) can hence be turned into an (N − �C)-
semirun that is both a min-rising and max-falling 
-embedding with same source
and target configuration. Recalling that α(n) is empty, the above embedding is
an (N − �C)-semirun that is both a min-rising and max-falling 
-embedding of
α(n−1)β(n)α(n) with same source and target configuration.

• Case B.1.iii: β(n) has a target configuration with counter value in [Bmax, Bmax +
ϒC].

Thus, the source configuration of β(n) has a counter value in [Bmax −
N, Bmax + ϒC − N]. One finishes this case analogously as Points 1 and 2 in
Case A.2:

1. Firstly, one shows the existence of an (N − �C)-semirun that is both a min-
rising and max-falling 
-embedding of α(n) with the same source and target
configuration as α(n) as follows: one factorizes α(n) into (N −�C)-semiruns
that have all counter values in [Bmax − 1, Bmin + N] and into (Bmin + N +
1)-hills.
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2. Secondly, let us assume that β(n) is an N-semirun from q ′(y) to q ′′(z) and
that moreover α(0)σ (1)α(2) · · · σ (�n/2�)α(n−1) is an N-semirun from q(x) to

q ′(y). Stipulating that , we explicitly lower β(n)

into the (N − �C)-semirun , which is — since
β(n) is doubly-crossing — obviously both a min-rising and max-falling 
-
embedding of β(n) from q ′(y+�C) to q ′′(z). Then one shows the existence of
an (N −�C)-semirun that is an 
-embedding of α(0)σ (1)α(2) · · · σ (�n/2�)α(n)

from q(x) to q ′(y+�C) with configurations all of whose counter values lie in
the interval [min(ρ) − �C, max(ρ) + �C] as follows: one subfactorizes each
of the α(2i) into (N − �C)-semiruns that have a counter values in [Bmax −
N, Bmin] and into (Bmax − N − 1)-valleys and by recalling that σ (i) is a
Bmax-hill for all i ∈ [1, �n/2�].

Case B.2: Not all of the Bmax-hill candidates σ (i) in (12) are in fact Bmax-hills and
not all of the Bmin-valley candidates τ (i) in (13) are in fact Bmin-valleys.

Since they all start and end with a doubly-crossing transition we remark that σ (i)

is in fact a Bmax-hill for all i ∈ [2, �n/2�] and τ (i) is in fact a Bmin-valley for all
i ∈ [1, �n/2� − 1]. Hence our case implies that σ (1) is in fact not a Bmax-hill and
that τ (�n/2�) is in fact not a Bmin-valley. As in Case A.2, β(1) and β(n) are hence not
doubly-crossing, and hence α(0) and α(n) are empty.

By definition of a Type III semirun, ρ contains at least one doubly-crossing tran-
sition and thus n ≥ 3. Since the +p-transition β(1) is not doubly-crossing (and
therefore ends at a counter value strictly larger than Bmin + N) but β(2) is, it follows
that the only reason for σ (1) = β(1)α(1)β(2) not to be a Bmax-hill is that the −p-
transition β(2) has a source configuration with a counter value in [Bmax, Bmax + ϒC]
and hence a target configuration with counter value in [Bmax − N, Bmax + ϒC −
N], similarly as seen in Case A.2. Analogously, the only reason for τ (�n/2�) =
β(n−1)α(n−1)β(n) not to be a Bmin-valley is that the doubly-crossing −p-transition
β(n−1) has a target configuration with counter value in [Bmin − ϒC, Bmin].

Recalling that σ (�n/2�) = β(n−2)α(n−2)β(n−1), for finishing this case we will apply
an analogous reasoning as in Case A.2:

1. Firstly, one shows the existence of an (N − �C)-semirun that is both a min-
rising and max-falling 
-embedding of β(1)α(1) with the same source and target
configuration as β(1)α(1).

2. Secondly, let us assume that β(2) is an N-semirun from q(x) to q ′(y) and that
moreover α(2)σ (2)α(4) · · · σ (�n/2�) is an N-semirun from q ′(y) to q ′′(z), with
y ∈ [Bmax − N, Bmax + ϒC − N] and z ∈ [Bmin − ϒC, Bmin]. Noting that

, we explicitly lower β(2) into the (N − �C)-semirun

, which is — since β(2) is doubly-crossing — obvi-
ously both a min-rising and max-falling 
-embedding of β(2) from q(x) to
q ′(y +�C). Then one shows, as done in Case 2.A, the existence of an (N −�C)-
semirun that is an 
-embedding of α(2)σ (2)α(4) · · · σ (�n/2�) all of whose counter
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values lie in [min(ρ) − �C, max(ρ) + �C] from q ′(y + �C) to q ′′(z) by sub-
factorizing each of the α(2i) into (N − �C)-semiruns that have counter values in
[Bmax − N, Bmin] and into (Bmax − N − 1)-valleys, by recalling that σ (i) is a
Bmax-hill for all i ∈ [2, �n/2�], and that

z − y ≥ N − (Bmax − Bmin) − 2ϒC
(6)
> N − (5/6 · N + 2ϒC + 4�C + 2) − 2ϒC
= N/6 − (5ϒC − 4�C − 2) + ϒC
> MC/6 − (5ϒC − 4�C − 2) + ϒC
> ϒC .

3. Finally (analogously as Point 1) one shows the existence of an (N −�C)-semirun
that is both a min-rising and max-falling 
-embedding of α(n−1)β(n) with the
same source and target configuration as α(n−1)β(n).

9 Proof of the Small Parameter Theorem

This section is devoted to proving the Small Parameter Theorem (Theorem 18).
For proving this let us fix some N > MC and some accepting N-run π in C with

VALUES(π) ⊆ [0, 4N] of the form

π = r0(x0)
π0,N−−−→ r1(x1) · · · πn−1,N−−−−→ rn(xn)

with rn ∈ F . We will assume that accepting runs in C end with counter value 0 and
hence, that xn = x0 = 0. We do not lose generality by making this assumption.
Indeed, from every POCA C, one can build a POCA C′ with all its accepting runs
ending in configuration with counter value 0 such that, for all N ∈ N, there exists an
accepting N-run in C with values in [0, 4N] if, and only if, there exists an accepting
N-run in C′ with values in [0, 4N]. This is clear when one considers the construction
C′ obtained from C by adding two control states r− and rf such that every final
control state of C has a ≥ 0 rule leading to r−, r− has a −1 rule that is a loop, and
finally a = 0 rule to rf , the only final state of C′.

Starting from the accepting N-run π , we need to prove the existence of an accept-
ing (N − �C)-run in C. For every a, b ∈ Q with a < b we define [a, b) = {c ∈ Q |
a ≤ c < b} and (a, b] = {c ∈ Q | a < c ≤ b}.

Since N
3 < N −�C , as �C <

2MC
3 < 2N

3 by definition of the constants on page 15,
the following claim is clear.

Claim 3 Every subrun ρ of π with VALUES(ρ) ⊆ [0, N
3 ) is already an (N−�C)-run.

We can therefore uniquely factorize π as

π = ρ(0)σ (1)ρ(1) · · · σ (m)ρ(m), (14)



Theory of Computing Systems

where each ρ(j) satisfies VALUES(ρ(j)) ⊆ [0, N
3 ) and each σ (j) is some subrun

π [c, d] with xc < N
3 , xd < N

3 and xk ≥ N
3 for all k ∈ [c + 1, d − 1], where

[c + 1, d − 1] �= ∅.
To finish the proof of the Small Parameter Theorem (Theorem 18), by Claim 3 it

thus suffices to prove the following statement for the rest of this section.

Let σ be such an N-run. Let us first assume that zi ≥ N for some i ∈ [1, m − 1]
; the case zi < N for all i ∈ [1, m − 1] will be treated later. By this asumption, one
can uniquely factorize σ — as seen in Fig. 12 — as

σ = α σ [a, a + 1] β σ [b, b + 1] γ, (15)

where, for some a, b ∈ [0, m − 1],
• α = σ [0, a] is the maximal prefix of σ satisfying VALUES(α) ⊆ [0, N), in

particular the transition qa(za)
σa,N−−−→ qa+1(za+1) satisfies za ∈ [0, N) and

za+1 ∈ [N, 4N],
• γ = σ [b + 1, m] is the maximal suffix of σ satisfying VALUES(γ ) ⊆ [0, N),

i.e. the transition qb(zb)
σb,N−−−→ qb+1(zb+1) satisfies zb ∈ [N, 4N] and zb+1 ∈

[0, N), and

Fig. 12 Illustration of the factorization (15)
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• β = σ [a + 1, b] is the remaining infix of σ (note that a + 1 = b is possible).

We will apply the 5/6-Lemma (Lemma 39) to one of the subruns

β, σ [a, a + 1] β, β σ [b, b + 1], or σ [a, a + 1] β σ [b, b + 1],

hereby showing the existence of a suitable (N − �C)-semirun with same source
and target configuration, respectively. We then shift this (N − �C)-semirun by
−�C to obtain a suitable (N − �C)-run. To which of the subruns we will choose
to apply the 5/6-Lemma will depend on the counter values za, za+1, zb and zb+1.
For deciding this, we make a case distinction on which of the five intervals{[

iN
3 ,

(i+1)N
3

)
: i ∈ [1, 5]

}
they lie in, respectively.

Before the above-mentioned distinction on za , za+1, zb and zb+1 we first claim
that one can turn the possible resulting prefixes α and ασ [a, a + 1] and possible
suffixes σ [b, b + 1]γ and γ into (N −�C)-runs separately. The following claim tells
us when these latter prefixes (resp. suffixes) can be turned into (N −�C)-runs whose
target (resp. source) configuration has been shifted down by �C .

Claim 4 (Possible lowering of the prefixes and suffixes)

1. If za+1 ∈ [N, 5N
3 ), then there exists an (N −�C)-run from q0(z0) to qa+1(za+1 −

�C).
2. If za ∈ [N

3 + ϒC, N), then there exists an (N − �C)-run from q0(z0) to qa(za −
�C).

3. If zb ∈ [N, 5N
3 ), then there exists an (N − �C)-run from qb(zb − �C) to qm(zm).

4. If zb+1 ∈ [N
3 + ϒC, N), then there exists an (N −�C)-run from qb+1(zb+1 −�C)

to qm(zm).

We postpone the proof of Claim 4 to the end of this section but refer to Fig. 16 for
an illustration of Points 1 and 2.

We can use Point (1) or Point (2) of the claim to turn the possible resulting prefixes
ασ [a, a + 1] or α respectively into (N − �C)-runs with target configuration shifted
down by �C . Symmetrically, we can use Point (3) or Point (4) of the claim to turn
the possible resulting suffixes σ [b, b + 1]γ or γ respectively into (N − �C)-runs
with source configuration shifted down by �C . The claim will rely on the Depumping
Lemma (Lemma 22) and on the fact that a transition with operation +p or −p has
an absolute counter effect of N in an N-run but N − �C in an (N − �C)-run.

Let us for the moment assume zi ≥ N for some i ∈ [1, m − 1] along with the
factorization (15) of σ and Claim 4.

Assuming Claim 4 we conclude the proof by treating the following exhaustive
cases on the positions of za+1 and zb separately.

Case 1. za+1, zb ∈ [N, 5N
3 ), cf. Figure 13.
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Fig. 13 Illustration of Case 1, i.e. za+1, zb ∈ [N, 5N
3 ), on the left, and Case 2, i.e. za+1, zb ∈ [ 5N

3 , 2N),
on the right

Recall that β = σ [a + 1, b] as defined in (15) is an N-run from qa+1(za+1) to
qb(zb) satisfying VALUES(β) ⊆ [N

3 , 4N]. We view β as an N-semirun. We consider

 = N and observe that

max(za+1, zb, 
) − min(za+1, zb, 
) <
5N

3
− N = 2N

3
≤ 5N

6
.

Hence we can apply the 5/6-Lemma (Lemma 39) to β: there exists an
(N − �C)-semirun β̂ from qa+1(za+1) to qb(zb) that is an N-embedding
of β with VALUES(β̂) ⊆ [min(β) − �C, max(β) + �C]. Since moreover
N
3 − 2�C > max(Consts(C)), from MC’s definition on page 15, and because

min(β) ≥ N/3, it follows that β̂ − �C , the shifting of β̂ by −�C , is in fact an
(N − �C)-run from p(za+1 − �C) to qb(zb − �C). It thus remains to show the exis-
tence of an (N −�C)-run from q0(z0) to qa+1(za+1 −�C) and one from qb(zb −�C)

to qm(zm): the former follows from Point (1) of Claim 4, and the latter follows from
Point (3) of Claim 4.

Case 2. za+1, zb ∈ [ 5N
3 , 2N), cf. Figure 13.

It follows that za, zb+1 ∈ [ 2N
3 , N), and that σa and σb must be a +p and −p

respectively. We apply the 5/6-Lemma (Lemma 39) to

σ [a, a + 1] β σ [b, b + 1]
with 
 = N , then shift the output by −�C . Then we apply Point (2) of Claim 4claim
fix and Point (4) of Claim 4.

Case 3. za+1 ∈ [N, 4N
3 ) and zb ∈ [ 5N

3 , 2N), cf. Figure 14.

It follows that zb+1 ∈ [ 2N
3 , N). We apply the 5/6-Lemma (Lemma 39) to

β σ [b, b + 1]
with 
 = N , then shift the output by −�C . Then we apply Point (1) of Claim 4 and
Point (4) of Claim 4.

Case 4. za+1 ∈ [ 5N
3 , 2N) and zb ∈ [N, 4N

3 ), cf. Figure 14.
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Fig. 14 Illustration of Case 3, i.e. za+1 ∈ [N, 4N
3 ) and zb ∈ [ 5N

3 , 2N), on the left, and Case 4, i.e. za+1 ∈
[ 5N

3 , 2N) and zb ∈ [N, 4N
3 ), on the right

It follows that za ∈ [ 2N
3 , N). We apply the 5/6-Lemma (Lemma 39) to

σ [a, a + 1] β

with 
 = N , then shift the output by −�C . Then we apply Point (2) of Claim 4 and
Point (3) of Claim 4.

Case 5. za+1 ∈ [ 4N
3 , 5N

3 ) and zb ∈ [ 5N
3 , 2N), cf. Figure 15.

It follows zb+1 ∈ [ 2N
3 , N), and that σa and σb must be a +p and −p respectively.

We distinguish whether za ∈ [N
3 , N

2 ) or not.
Case 5.A. za �∈ [N

3 , N
2 ).

It follows za ∈ [N
2 , N). We apply the 5/6-Lemma (Lemma 39) to

σ [a, a + 1] β σ [b, b + 1]
with 
 = N , then shift the output by −�C . Then we apply Point (2) of Claim 4 and
Point (4) of Claim 4.

Case 5.B. za ∈ [N
3 , N

2 ).

Fig. 15 Illustration of Case 5, i.e. za+1 ∈ [ 4N
3 , 5N

3 ) and zb ∈ [ 5N
3 , 2N), on the left (with moreover

za /∈ [ N
3 , N

2 )), and Case 6, i.e. za+1 ∈ [ 5N
3 , 2N) and zb ∈ [ 4N

3 , 5N
3 ), on the right (with moreover

zb+1 ∈ [ N
3 , N

2 ) )
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It follows za+1 ∈ [ 4N
3 , 3N

2 ). We apply the 5/6-Lemma (Lemma 39) to

β σ [b, b + 1]
with 
 = N , then shift the output by −�C . Then we apply Point (1) of Claim 4 and
Point (4) of Claim 4.

Case 6. za+1 ∈ [ 5N
3 , 2N) and zb ∈ [ 4N

3 , 5N
3 ), cf. Figure 15.

It follows za ∈ [ 2N
3 , N), and that σa and σb must be a +p and −p respectively.

We distinguish whether zb+1 ∈ [N
3 , N

2 ) or not.
Case 6.A. zb+1 �∈ [N

3 , N
2 ).

It follows zb+1 ∈ [N
2 , 2N

3 ). We apply the 5/6-Lemma (Lemma 39) to

σ [a, a + 1] β σ [b, b + 1]
with 
 = N , then shift the output by −�C . Then we apply Point (2) of Claim 4 and
Point (4) of Claim 4.

Case 6.B. zb+1 ∈ [N
3 , N

2 ).

It follows zb ∈ [ 4N
3 , 3N

2 ). We apply the 5/6-Lemma (Lemma 39) to

σ [a, a + 1] β

with 
 = N , then shift the output by −�C . Then we apply Point (2) of Claim 4 and
Point (3) of Claim 4.

It remains to provide the proof of the Claim 4 before discussing the remaining
case when zi < N for all i ∈ [1, m − 1]

Proof of Claim 4 Let us only prove Points (1) and (2). Points (3) and (4) can be
proven in a symmetrical manner as Points (1) and (2). Let us first prove Point (1),
so let us assume that za+1 ∈ [N, 5N

3 ). We refer to Fig. 16 for an example of such a
situation. Recall that α = σ [0, a], z0 < N

3 and zi ∈ [N
3 , N) for all i ∈ [1, a].

We first factorize α, as seen in Fig. 17, as

α =
(

t∏
i=1

χi

)
ζ,

where

• each χi is a subrun of α that either

a) starts in a configuration with counter value strictly less than N − �C − ϒC
and ends in the first next configuration with counter value at least N − �C ,
or conversely

b) starts in a configuration with counter value at least N − �C and ends in the
first next configuration with counter value strictly less than N − �C − ϒC ,
and
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Fig. 16 Claim 4: Examples for Point 1 (above) and Point 2 (below)

• the (possibly empty) suffix ζ ’s prefixes are neither of form a) nor b),
i.e. VALUES(ζ ) ⊆ [0, N − �C) or VALUES(ζ ) ⊆ [N − �C − ϒC, N).

First observe that α and hence in particular χ1, . . . , χt , ζ all do not contain any
+p-transition nor any −p-transition, and that |�(χi)| > ϒh for all i ∈ [1, t] by
definition.

Next observe that t = 0 is possible; in this case we have α = ζ and VALUES(α) ⊆
[0, N − �C).

Fig. 17 Illustration of the factors χ1, χ2, χ3, χ4 and ζ of α
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We will however first treat the case t > 0, the case t = 0 will be treated later.
It follows from z0 < N

3 that χ1 must be of type a); more generally, χi is of type a)
for all odd i ∈ [1, t] and of type b) for all even i ∈ [1, t]. Since z0 < N

3 , observe
that if for α’s last counter value za we have za ∈ [N − �C, N), then t must be
odd, and, similarly (but not entirely dually), if for α’s last counter value za we have
za ∈ [N

3 , N − �C − ϒC), then t must be even.
In the following we prefer to write α as α = α[0, a] rather than σ [0, a]. It is

important to recall that z0 < N
3 and zs ∈ [N

3 , N) for all s ∈ [1, a].
Let

q0(z0) = qj1 (zj1 )
χ1−→ qj2 (zj2 )

χ2−→ qj3 (zj3 ) · · · χt−1−−→ qjt (zjt )
χt−→ qjt+1 (zjt+1 )

ζ−→ qjt+2 (zjt+2 ).

Note that jt+1 = jt+2 is possible if ζ is empty. In the following, we will first
show how to turn any χi of type a) (resp. b)) into an (N − �C)-run with target (resp.
source) configuration shifted down by �C , and then we make a case distinction on
how to end the proof based on the parity of t .

Subclaim 1 Let i ∈ [1, t] be odd. Then there exists an (N −�C)-run χ̂i from qji
(zji

)

to qji+1(zji+1 − �C).

Proof of Subclaim 1 Indeed, φ(χi) = ε ∈ �8, as α contains neither +p-transitions
nor −p-transitions. Since moreover �(χi) > ϒC we can now apply Lemma 22 to χi

(viewed as an N-semirun) and obtain an N-semirun χ̂i with �(χ̂i) = �(χi) − �C
that is such that χ̂i = α[ji, ji+1] − I1 − I2 · · · − Ik for pairwise disjoint intervals
I1, . . . , Ik ⊆ [ji, ji+1] such that

• φ(α[Ih]) ∈ �16,
• �(α[Ih]) ∈ ZCZ and �(α[Ih]) > 0 for all h ∈ [1, k].

Recall VALUES(α[1, a]) ⊆ [N
3 , N) and N

3 − �C >
MC

3 − �C > �C >

max(Consts(C)), where the inequalities follows from MC’s and �C’s definition on
page 15. It follows that χ̂i has all its counter values (except for the first one) in
[N

3 − �C, N − �C). Moreover, the first transition’s operation must be a +1 update
and therefore cannot be a test, and hence χ̂i is an (N − �C)-run from qji

(zji
) to

qji+1(zji+1 − �C).

Subclaim 2 Let i ∈ [1, t] be even. Then there exists an (N − �C)-run χ̂i from
qji

(zji
− �C) to qji+1(zji+1).

Proof of Subclaim 2. Analogously, by use of Lemma 22, for i ∈ [1, t] even, there
exists an (N − �C)-semirun χ ′ from qji

(zji
) to qji+1(zji+1 + �C), from which we

obtain an (N − �C)-semirun χ̂i = χ ′ − �C from qji
(zji

− �C) to qji+1(zji+1) by
shifting χ ′ by −�C . Moreover, as VALUES(α[1, a]) ⊆ [N

3 , N) and N
3 − �C > �C >

max(Consts(C)) as seen in the proof of Subclaim 1, χ̂i is an (N−�C)-run as required.
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To finish the proof of the existence of an (N−�C)-run from q0(z0) to qa+1(za+1−
�C) we make a case distinction on the parity of t .

Assume first that the parity of t is odd. By applying Subclaims 1 and 2 to the runs
χ1, . . . , χt appropriately we obtain the (N − �C)-run

χ̂1 · · · χ̂t

from qj1(zj1) to qjt+1(zjt+1 −�C). Since t is odd we have that χt is of type a), zjt+1 ∈
[N − �C, N) and VALUES(ζ ) ⊆ [N − �C − ϒC, N). As (N − �C − ϒC) − �C >

(MC − �C − ϒC) − �C > max(Consts(C)), following from MC’s, �C’s and ϒC’s
definition on page 15, and φ(α) = ε, it follows that

χ̂1 · · · χ̂t (ζ − �C)

is an (N −�C)-run from qj1(zj1) to qjt+2(zjt+2 −�C). Recall that za+1 < 5N
3 by case

assumption and also recall that N > MC . Since VALUES(ζ ) ⊆ [N − �C − ϒC, N)

we have za = zjt+2 ≥ N−�C−ϒC and hence 0 < �(σ, a) < 5N
3 −(N−�C−ϒC) ≤

2N
3 + �C + ϒC < 2N

3 + MC
3 < N , where the penultimate inequality follows from the

definition of MC on page 15. Hence, as σa is not a test nor a +p-transition we have
that

χ̂1 · · · χ̂t (ζ − �C) (σ [a, a + 1] − �C)

is an (N − �C)-run from qj1(zj1) = q0(z0) to qjt+2(zjt+2 − �C) = qa+1(za+1 − �C)

as required.
Let us now treat the case when t is even. It follows VALUES(ζ ) ⊆ [0, N − �C), in

particular za ∈ [0, N − �C). Again,

χ̂1 · · · χ̂t

is an (N − �C)-run from qj1(zj1) = q0(z0) to qjt+1(zjt+1). Since za+1 ≥ N and
za < N − �C it follows that σa is a +p-transition, in particular �(σ, a) > �C . Thus,

χ̂1 · · · χ̂t ζ τ,

where τ = qa(za)
σa,N−�C−−−−−→ qa+1(za+1 −�C) with �(τ) = �(σ, a)−�C = N −�C ,

is an (N − �C)-run from qj1(zj1) = q0(z0) to qjt+2(zjt+2 − �C) = qa+1(za+1 − �C),
as required.

It remains to discuss the case when t = 0. This case can be proven analo-
gously. Indeed, from t = 0 it follows immediately that α = ζ and VALUES(ζ ) ⊆
[0, N − �C) and the proof is analogous as the case when t > 0 and when t is even.

Let us now sketch the proof of Point (2) of Claim 4. Let us assume za ∈
[N

3 + ϒC, N). Similarly as in Point (1) we can factorize α as α = (∏t
i=1 χi

)
ζ and

Subclaims 1 and 2 hold again.
If t is odd, then by Subclaims 1 and 2 we have that the run

(∏t
i=1 χ̂i

)
(ζ − �C),

stipulating that χ̂i is the of Subclaims 1 and 2 respectively (depending on the parity
of i), is the desired (N − �C)-run from q0(z0) to qa(za − �C).

If t is even, then again by Subclaims 1 and 2 we have that ξ = (∏t
i=1 χ̂i

)
ζ is

an (N − �C)-run from q0(z0) to qa(za), where again χ̂i is defined as above. By
definition the run ξ does not contain any +p-transitions nor −p-transitions, thus
φ(ξ) = ε ∈ �8. By construction also the run ξ has all counter values, besides the
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first, above N
3 −�C > �C+max(Consts(C)). Moreover, as za ≥ N

3 +ϒC and z0 < N
3 ,

we have �(ξ) > ϒC . We can thus apply Lemma 22 to ξ , obtaining an (N − �C)-run
ξ ′ from q0(z0) to qa(za − �C), as required.

We now conclude the proof of our statement by treating the only remaining case,
the case when σ is such that zi < N for all i ∈ [1, m − 1]. In this case we can
factorize σ as σ = ∏t

i=1 χiζ similarly as done in the proof of Point (1) of Claim 4,
where t is even, and analogously prove that

∏t
i=1 χ̂iζ is an (N −�C)-run from q0(z0)

to qm(zm), where χ̂i is the output of Subclaim 1 and 2 respectively (depending on the
parity of i).

10 Conclusion

In this paper we have shown that the reachability problem for parameteric timed
automata with two parametric clocks and one parameter is complete for exponential
space.

For the lower bound proof, inspired by [13, 14], we made use of two results
from complexity theory. First, we made use of a serializability characterization of
EXPSPACE from [13] which is a padded version of the serializability characteriza-
tion of PSPACE from [20], which in turn has its roots in Barrington’s Theorem [7].
Second, we made use of a result of Chiu, Davida, Litow that states that numbers in
Chinese remainder representation can be translated into binary representation in NC1

(and thus in logarithmic space). We are convinced that it is worthwhile to develop
a suitable programming language that serves as a unifying framework in that it pro-
vides an interface for proving lower bounds for various problems involving automata.
In a sense, we have developed the corresponding interface “by hand” when defining
how parametric timed automata can compute functions (Definition 6).

For the EXPSPACE upper bound we first followed the approach of Bundala
and Ouaknine [10] by providing an exponential time translation from reachabil-
ity in parametric timed automata with two parametric clocks and one parameter
(i.e. (2, 1)-PTA) to reachability in parametric one-counter automata (POCA) over
one parameter, yet on a slightly less expressive POCA model as introduced in [10].
We then studied the reachability in POCA with one parameter p. Our main result, the
Small Parameter Theorem (Theorem 18), states that such a parametric one-counter
automaton (POCA) has an accepting run all of whose counter values lie in [0, 4 · p]
if, and only if, there exists such an accepting run for some p that is at most expo-
nential in the size of the POCA. Since the translation from (2, 1)-PTA to POCA is
computable in exponential time, this gives a doubly exponential upper bound on the
parameter value of the original (2, 1)-PTA and hence an EXPSPACE upper bound for
reachability in (2, 1)-PTA (Corollary 19).

In proving the Small Parameter Theorem we introduced the notion of semiruns
and gave several techniques for manipulating them. The Depumping Lemma 22
allowed us to construct from semiruns with large absolute counter effect new
semiruns with a smaller absolute counter effect. The Bracket Lemma 23 allowed us
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to find in semiruns having a sufficiently large absolute counter effect and satisfy-
ing some majority condition on the number of occurrences of +p-transitions and
−p-transitions some subsemirun that has again a large absolute counter effect and
moreover some equal bracketing properties. Our Hill and Valley Lemma (Lemma 28)
allowed to turn for sufficiently large N any N-semirun that is either a hill or a valley
into an N ′-semirun for some N ′ < N . Our 5/6-Lemma (Lemma 39) allowed to turn
for sufficiently large N any N-semirun with an absolute counter effect of at most
5/6N into an N ′-semirun for some N ′ < N .

We hope that extensions of our techniques provide a line of attack for finally
showing decidability (and the precise complexity) of reachability in parametric
timed automata with two parametric clocks over an arbitrary number of parameters
(i.e. (2, ∗)-PTA). For these however, it seems that the reduction to POCA indeed
requires the presence of the above-mentioned +[0, p]-transitions. When analyzing
runs in the corresponding more general POCA model that in turn also involves an
arbitrary number of parameters, it will become necessary to “de-scale” semiruns in
the following sense. Already in the presence of two parameters one can see that it
becomes necessary to decrease the value of both parameters simultaneously propor-
tionally: for instance one can build a (2, 2)-PTA for which reachability holds only if
the first parameter is a multiple of the second parameter.

Appendix A Proof of the Reduction (Theorem 16)

In this appendix, we concern ourselves with proving the reduction from paramet-
ric timed automata with two parametric clocks and one parameter to parametric
one-counter automata with one parameter, which was stated in the main theorem of
Section 4, Theorem 16.

A.1 Overview of the Proof of the Reduction

In this section, we recall the main theorem of Section 4, and provide its proof
overview.

Let us first recall Theorem 16.

Theorem 48 (Theorem 16) The following is computable in exponential time:
INPUT: A (2, 1)-PTA A.
OUTPUT: A POCA C over one parameter

such that

1. for all N ∈ N all accepting N-runs π in C satisfy VALUES(π) ⊆ [0, 4 ·
max(N, |C|)], and

2. reachability holds for A if, and only if, reachability holds for C.

A more general (but strictly speaking incomparable) result involving two paramet-
ric clocks but an arbitrary number of parameters instead of only one has already been
proven in [10], however with a different POCA formalism: Bundala and Ouaknine’s
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model for POCA differs in that it contains operations that allow to nondeterministi-
cally add to the counter a value that lies in [0, p]. By restricting ourselves to the case
of only one parameter p, we will prove in a thorough analysis that we no longer need
such operations in the construction.

As in [10] we follow the following proof strategy:

• In Section A, we reduce the reachability problem of a parametric timed automa-
ton A = (QA, �A, P , RA, qA, FA) — in our setting later with two parametric
clocks — to the reachability problem of a so-called parametric 0/1 timed
automaton B = (QB, �B, P , RB,0, RB,1, qB, FB), where �B ⊆ �A contains
only the non-parametric clocks of �A, and Consts(B) = {0}.

• In Section A we present the region abstraction technique introduced by Alur and
Dill in [2] to mimic region-restricted runs (runs inside a region) of parametric
0/1 timed automata with one parameter by arithmetic progressions.

• Finally, we present the final step of the reduction in Section A, where it is shown
how to use the above-mentioned technique to mimic reset-free region-restricted
runs in B, and furthermore how to provide a construction in order to mimic resets
in B. The precise construction itself mainly deviates from [10] in the gadget
construction for resets.

A.2 How to Remove Non-Parametric Clocks and Non-Parametric Guards

In this subsection we show how non-parametric guards and non-parametric clocks
can be eliminated from parametric timed automata. Initially introduced in [3] we
define the notion of parametric 0/1 timed automata: these are essentially parametric
timed automata in which each rule dictates whether a unit of time passes or not. Alur,
Henzinger and Vardi have already shown in [3] how the reachability problem for
parametric timed automata can be reduced to the reachability problem for parametric
0/1 timed automata that do not contain any non-parametric clocks. We will provide in
Lemma 50 below an analogous reduction by not only eliminating all non-parametric
clocks, but also all non-parametric guards (except for empty guards).

A parametric 0/1 timed automaton (0/1-PTA for short) is a tuple

B = (Q, �, P, R0, R1, qinit , F ),

where Bi = (Q, �, P, Ri, qinit , F ) is a PTA for all i ∈ {0, 1}. For simplicity we
define its size as |B| = |B0| + |B1|. Analogously, a clock ω ∈ � is parametric if it is
parametric in B0 or in B1. We analogously denote the constants of B by Consts(B)

and its configurations by Conf(B).

Definition 49 For each i ∈ {0, 1}, each parameter valuation μ : P → N and each

(δ, t) ∈ Ri × N with δ = (q, g, U, q ′) ∈ Ri , we define the binary relation
δ,i,μ−−→

over Conf(B) as q(v)
δ,i,μ−−→ q ′(v′) if v + i |=μ g, v′(u) = 0 for all u ∈ U and

v′(ω) = v(ω) + i for all ω ∈ � \ U .
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As expected, we write q(v)
μ−→ q ′(v′) if q(v)

δ,i,μ−−→ q ′(v′) for some i ∈ {0, 1}, and
some δ ∈ Ri . The notions of a (reset-free) μ-run (resp. N-run) and when reachability
holds for B are also defined as expected.

The convention used in this and the following subsections is that parametric 0/1
timed automata are denoted by B. The main result of this subsection is the fol-
lowing lemma, stated slightly less general in [3] in that there is no requirement
Consts(B) = {0}.

Lemma 50 ([3]) The following is computable in exponential time:

INPUT: A PTA A = (QA, �A, P , RA, qA, FA).
OUTPUT: A 0/1-PTA B = (QB, �B, P , RB,0, RB,1, qB, FB), where �B ⊆ �A

contains precisely the parametric clocks of �A, Consts(B) = {0}, and such that
reachability holds for A, if, and only if, reachability holds for B.

We adjust the proof from [3]. While the idea of the construction remains the same,
ours slightly deviates in that we explicitly have Consts(B) = {0}, i.e. we remove all
non-parametric guards of the form ω �� c with c �= 0 as well as all non-parametric
clocks.

Proof Let us assume without loss of generality that A contains at least one parametric
clock and let us fix one such clock x. We define the empty guard gε as gε = x ≥ 0
and observe that this guard is always satisfied. Let cmax = max(Consts(A)) denote
the largest constant appearing in A. Note that once the value assigned to a clock
ω by a valuation v is strictly above cmax, the precise value v(ω) is no longer of
importance, merely the fact that v(ω) exceeds cmax is relevant. Since we work with
discrete time configurations, the value assigned to ω is always a non-negative integer.
We will eliminate all non-parametric clocks of �A by storing in the state space of B
the values of clocks up to cmax + 1, where cmax + 1 will stand for any value greater
cmax. Moreover we eliminate all non-empty non-parametric guards by also storing in
the state space of B the values of parametric clocks in the same fashion. Formally,
we define �B = {ω ∈ �A |ω is parametric}, QB = QA × [0, cmax + 1]�A , P is
the same in both automata, FB = FA × [0, cmax + 1]�A , and qB = (qA, v0), where
v0(ω) = 0 for all ω ∈ �A.

We ensure that the stored clocks progress simultaneously with the remaining para-
metric clocks by exploiting the fact that the rules dictate whether or not time elapses,
and build the rules of B such that the +1 rules correspond to the progress of time in
A whereas the +0 rules correspond to using a rule in A. Formally,

• for every q ∈ QA, v ∈ [0, cmax + 1]�A , we introduce a rule of the form
((q, v), gε, ∅, (q, v′)) in RB,1, where v′(ω) = min{v(ω) + 1, cmax + 1} for all
ω ∈ �A,
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• for every (q, g, U, q ′) ∈ RA with g ∈ G(�B, P ) a parametric guard, every v ∈
[0, cmax +1]�A we introduce a rule ((q, v), +0, g, U ′, (q ′, v′)) ∈ RB,0, where v′
is obtained from v except for assigning 0 to every clock in U and U ′ = U ∩ �B
is the subset of parametric clocks of U , and

• for every (q, g, U, q ′) ∈ RA with g ∈ G(�A, P ) a non-parametric guard,
every v ∈ [0, cmax + 1]�A such that v |= g, we introduce a rule
((q, v), +0, gε, U

′, (q ′, v′)) ∈ RB,0, where v′ is obtained from v except for
assigning 0 to every clock in U and U ′ = U ∩ �B is the subset of parametric
clocks of U .

For the remaining subsections, let us fix a PTA A = (QA, �A, P , RA, qA, FA)

with two parametric clocks x and y, and with P = {p}. Let us also fix the 0/1-PTA
B = (QB, �B, P , RB,0, RB,1, qB, FB) produced by Theorem 50 applied to PTA A,
and recall that B satisfies

• P = {p},
• �B = {x, y}, where x and y are parametric,
• Consts(B) = {0}, and
• reachability holds for A if, and only if, reachability holds for B.

A.3 Capturing Reset-Free Runs via the Region Abstraction Technique

In this section we perform another preliminary construction before providing the
proof of Theorem 16. We build parametric one-counter automata without tests and
with updates only in {+0, +1} that can mimic the behavior of parametric 0/1 timed
automata with two parametric clocks and one parameter inside a reset-free run hav-
ing only clocks valuations in a certain set. We first simply remove rules resetting
at least one clock. We then show how to remove non-empty guards from paramet-
ric 0/1 timed automata taking inspiration from the region abstraction technique for
timed automata first introduced in [2]. The technique appears already in the proofs of
reduction from parametric timed automata with two clocks to parametric one-counter
automata given in [16, 17] (for empty sets of parameters) and in [10]. We refer to [6]
for further discussions on the region abstraction technique.

Recall that our fixed 0/1-PTA B satisfies P = {p}, �B = {x, y}, where x and y

are parametric, and Consts(B) = {0}.
Let us now explain the set of regions. For any valuation μ that assigns to our only

paramter p the value N we prefer to write |=N instead of |=μ. Moreover, we prefer to
view clock valuations v : {x, y} → N as pairs (v(x), v(y)). Sets of clock valuations
will correspondingly be denoted as subsets of N × N. The regions are essentially,
when assigning N to the one parameter p, maximal subsets of N × N equivalent
with regards to the sets of guards of B their valuations satisfy. In other words, the
regions we define are equivalence classes for the relation ∼N , where v ∼N v′ if for
all possible guards g of B we have v |=N g if, and only if, v′ |=N g. Since the latter
guards can only compare (using comparisons <, ≤, =, ≥, >) the clock valuations
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against values from the set {0, N}, it follows that ∼N has at most the following 16
equivalence classes, each of which we call region in the following:

(0, 0), (0, N), (N, 0), (N, N)

to respectively denote the singleton sets {(0, 0)}, {(0, N)}, {(N, 0)}, {(N, N)},
(0, 0) ↔ (0, N), (N, 0) ↔ (N, N), (0, N) ↔ (0, +∞), (N, N) ↔ (N, +∞),

to respectively denote the sets

{(0, i) | 0 < i < N}, {(N, i) | 0 < i < N}, {(0, i) | i > N}, {(N, i) | i > N},

(0, 0) ↔ (N, 0), (0, N) ↔ (N, N), (N, 0) ↔ (+∞, 0), (N, N) ↔ (+∞, N),

to respectively denote the sets

{(i, 0) | 0 < i < N}, {(i, N) | 0 < i < N}, {(i, 0) | i > N}, {(i, N) | i > N},

LOWER-LEFT, UPPER-LEFT, LOWER-RIGHT, UPPER-RIGHT

to respectively denote the sets

{(i, j) | 0 < i, j < N}, {(i, j) | 0 < i < N, j > N}, {(i, j) | i > N, 0 < j < N}, {(i, j) | i, j > N}.

We refer to Fig. 18 for an illustration of the different regions.
As expected, for every guard g of B and every region R we write R |=N g if v |=N

g for all v ∈ R. For each region R we say a run q0(v0)
δ1,i1,μ−−−−→ q1(v1) · · · δn,in,μ−−−−→

qn(vn) of B is R-restricted if vj ∈ R for all j ∈ [0, n].
We remark that, in any R-restricted run in B, the set of guards being satisfied or

not are the same for all configurations appearing in it. Thus, the set of guards that

Fig. 18 An illustration of the different regions
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are satisfied only depend on the region and not the particular configurations of the
R-restricted run. We simply write R |= g when a region R satisfies guard g.

We use this property to remove guards from the parametric 0/1 timed automaton
B while still mimicking reset-free R-restricted runs.

For each region R we introduce the region automaton BR obtained from B instan-
tiating all comparisons appropriately and by removing all rules that reset some clock.
We fix gε to be the empty guard x ≥ 0. Formally, the automaton BR is the 0/1-PTA
obtained from B by

• removing all rules (q, g, U, q ′) with U �= ∅,
• removing all rules (q, g, ∅, q ′) for which , and
• replacing all rules (q, g, ∅, q ′) for which R |= g by (q, gε, ∅, q ′).

The following lemma is immediate.

Lemma 51 From the 0/1-PTA B = (QB, {x, y}, {p}, RB,0, RB,1, qB, FB) with
Consts(B) = {0} one can compute in polynomial time (in |B|) the sixteen 0/1-PTA
{BR| R is a region} such that for all N ∈ N, all regions R, and all configurations
q(v) and q ′(v′) for which v, v′ ∈ R the following are equivalent:

• There exists anR-restricted reset-free N-run from q(v) to q ′(v′) in B.
• There exists an N-run from q(v) to q ′(v′) in BR.

A.3.1 Capturing Reset-Free Runs via Arithmetic Progressions

A one-counter automaton is a POCA C = (Q, P, R, qinit , F ) with P = ∅, and
with only > 0, ≥ 0, and = 0 tests. As P = ∅, we write q(z) −→ q ′(z′) instead of

q(z)
μ−→ q ′(z′) for one-counter automata.

Given a one-counter automaton C and two of its control states q and q ′ we define
the set �(C, q, q ′) of counter values that configurations in control state q ′ can have
from runs starting in q(0):

�(C, q, q ′) = {v ∈ N | q(0) →∗ q ′(v)}.
For all a ≥ 0 and b ≥ 1 we define the arithmetic progression a + bN as a + bN =

{a + b · n | n ∈ N}. The following theorem in an immediate consequence of a
result by To analyzing the succinctness between unary finite automata and arithmetic
progressions [25].

Theorem 52 (Theorem 2 in [25]) Let C = (Q, ∅, R, qinit , F ) be a one-counter
automaton with +0, +1 updates only. Then for every two control states q, q ′ ∈ Q

one can compute in polynomial time a set {(aj , bj ) ∈ N
2 | j ∈ [1, r]} such that

�(C, q, q ′) = ⋃
1≤j≤r aj + bjN, where moreover r ∈ O(|Q|2), aj ∈ O(|Q|2), and

bj ∈ O(|Q|) for all j ∈ [1, r].

We remark that Theorem 52 also holds in the presence of transitions that
decrement the counter, cf. Lemma 6 in [15].
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Remark 53 Let R be a region and let BR =
(QBR , {x, y}, {p}, RBR,0, RBR,1, qBR,init , FBR) be the 0/1-PTA for R.
Then all rules in RBR,0 ∪ RBR,1 have as guard the empty guard gε. Let
B̂R = (QBR , ∅, R, qBR,init , FBR) be the one-counter automaton, where

R = {(q, +i, q ′) | (q, gε, ∅, q ′) ∈ RBR,i , i ∈ {0, 1}}

only contains +0 and +1 updates and does not contain any = 0-tests, Then for all
(k, 
) ∈ N × N, all q, q ′ ∈ Q, and all n ∈ N the following are equivalent:

• There is a run from q(k, 
) to q ′(k + n, 
 + n) in BR.
• There is a run from q(0) to q ′(n) in B̂R.

Notably, every run from q(k, 
) to q ′(k′, 
′) in BR satisfies k′ = k+n and 
′ = 
+n

for some n ∈ N.

We apply Theorem 52 to all one-counter automata B̂R from Remark 5. This yields
the following characterization.

Lemma 54 From the 0/1-PTA B = (QB, {x, y}, {p}, RB,0, RB,1, qB, FB) for every
two control states q, q ′ ∈ QB, for all regions R one can compute in polynomial
time (in |B|) a set {(aj , bj ) ∈ N

2| j ∈ [1, r]} such that for all N, t ∈ N and all
v, v + t ∈ R the following are equivalent:

• There exists a reset-free R-restricted N-run from q(v) to q ′(v + t) in B.
• t ∈ ⋃

1≤j≤r aj + bjN.

Moreover, r ∈ O(|QB|2), aj ∈ O(|QB|2), and bj ∈ O(|QB|) for all j ∈ [1, r].

A.4 Proof of Theorem 16: Construction of C

Let us recall the fixed 0/1-PTA B = (QB, �B, {p}, RB, qB, FB) the 0/1-PTA
obtained from A by Theorem 50, and recall that B satisfies

• P = {p},
• �B = {x, y} and x and y are parametric, and
• Consts(B) = {0}.
Recall also the set of regions of B defined in Section A. We want to construct some
POCA C = (QC, {p}, RC, qc, FC) such that reachability holds for B if, and only if,
reachability holds for C and moreover for all N ∈ N, every accepting N-run π in C
satisfies VALUES(π) ⊆ [0, 4 · max(N, |C|)].

The to be constructed POCA C (again over one parameter that will be evaluated to
the same value as the only parameter of B) will test whether an accepting N-run exists
in B by using the definitions of regions and Lemma 54 from the last subsection, but
also using additional gadgets to mimic the reset of a clock inside a particular region.
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In what follows we denote the current value of the counter of C by z. For the time
being in our construction z can be negative: we will later show how to obtain non-
negativity and the required restriction that all N-runs π of C satisfy VALUES(π) ⊆
[0, 4N].

The idea of the reduction is to factorize any possible accepting N-run into maxi-
mal reset-free subruns. We will use the current counter value z of C to store the clock
valuation difference v(x) − v(y), thus initially 0. We remark that between two con-
secutive resets, the difference v(x) − v(y) stays the same throughout, but after some
clock of �B (either x or y) is reset, this particular reset clock will be equal to zero
but not necessarily the other one. The counter of C therefore needs to be modified
accordingly. As expected, we construct C in such a way that after a reset of y, the
counter value z equals v(x), and after a reset of x the counter value z equals −v(y).
See Fig. 19 for an idea of the relationship between v(x), v(y) and z along the curve
of the clock values.

Notice that once the value of a clock becomes strictly larger than N , its exact
value is irrelevant to any future parametric comparison in B, hence one only needs to
remember that its value is strictly larger than N . Thus, our counter z will only track
the values v(x) and v(y) up to N and possibly remember which of the two clock
values exceeds N . Therefore, when a reset occurs and we store the value of the other
clock in the counter, if it exceeds this N we can and will replace it by N + 1, and if it
is strictly below −N , we can and will replace it by −N − 1. Let us therefore assume
for now that the value of the counter z following the last reset is in this interval
[−N − 1, N + 1]. Initially this is surely true as initially the value of the counter is 0.
We will show how to provide this invariant on the next reset assuming it holds on the
last reset.

Fig. 19 Curve of the clock values after a reset of clock y. Initially the difference z between the values of
x and y is equal to the value of x
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Recall the definition of regions from Section A. Let us assume a subrun q(v)
N−→

q ′(v′) N−→
∗

q ′′(v′′) N−→ q ′′′(v′′′) starting and ending by a reset of at least one of the

two clocks {x, y} and where q ′(v′) N−→
∗

q ′′(v′′) is reset-free. We want C to be able to
check whether such a run can exist.

The POCA C guesses

• the regions R0, R1, . . ., Rl visited and the order in which they are visited, where
here by convention Rk denotes the region assumed to be the k-th visited region,

• the control states s0, . . ., sl when each region is visited for the first time,
• the control states q0, . . ., ql when each region is visited for the last time,
• the control state q ′′ in which the next reset of B occurs, and
• which clock is going to be reset next (either x or y).

Note that there are only a finite number of regions. Our POCA C then checks that
the sequence R0, R1, . . . Rl is valid, retaining the counter value z.

First C checks that (z, 0) lies in R0 i.e. that z is equal to 0 if R0 = (0, 0), strictly
between 0 and N if R0 = (0, 0) ↔ (N, 0), equal to N if R0 = (N, 0) and strictly
above N if R0 = (N, 0) ↔ (+∞, 0). and moreover checks that the guessed regions
are adjacent, and that the regions can be visited in the guessed order.

Then C checks reachability within each individual region using Lemma 54 as fol-
lows. To each region Rk one can associate a set {(ak,j , bk,j ) ∈ N

2 | j ∈ [1, rk]}
obtained by Lemma 54. This allows C to check, for every k < l, for every v ∈ Rk ,
v + t ∈ Rk , reachability of qk(v + t) from sk(v) in the region Rk by checking
whether or not t ∈ ⋃

1≤j≤r aj + bjN. In order to check reachability inside a region
Rk of the form (α, β) or (α, β) ↔ (γ, η) for α, β ∈ {0, N}, and γ, η ∈ {0, N, +∞},
it suffices to check that

⋃
1≤j≤r ak,j + bk,jN contains 0, as the clock values can-

not both increment and remain inside these regions, i.e. for any such Rk , for all
v ∈ Rk , v + t ∈ Rk implies that t = 0. Indeed, one can check easily check whether
0 ∈ ⋃

1≤j≤r ak,j + bk,jN by computing {(ak,j , bk,j ) ∈ N
2 | j ∈ [1, rk]}, which can

be done in polynomial time in |B|.
Now, to check that an N-run exists in B in a given region Rk of the form

LOWER-LEFT, LOWER-RIGHT, UPPER-LEFT or UPPER-RIGHT, the automaton C
furthermore distinguishes whether the computation in the region Rk starts on the left
side or on the bottom side, and whether the computation in the region Rk ends on
the right side or on the top side, and uses the semilinearity property to check that
the value added to the clocks is indeed in

⋃
1≤j≤r ak,j + bk,jN. Note that the first

configuration of LOWER-LEFT is necessarily of the form sk(z + 1, 1) as y has been
assumed to be the last clock to be reset, the first configuration of LOWER-RIGHT is
of the form sk(z + 1, 1) or sk(N + 1, N + 1 − z), depending on whether it has been
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reached from the bottom or from the left corner (or possibly both), and finally note
that UPPER-LEFT cannot be reached if y was the last clock to be reset.

Thus, to check reachability inside Rk , our POCA C guesses an offset a = ak,j and
a period b = bk,j among the generators of {(ak,j , bk,j ) ∈ N

2 | j ∈ [1, rk]} that it will
use to reach qk . Secondly we define four gadgets in order to handle the three regions
possibly traversed, namely LOWER-LEFT, LOWER-RIGHT, and UPPER-RIGHT.

Case 1. Checking reachability in the LOWER-LEFT region.

Here the region is necessarily reached from bottom side as y was the last clock
to be reset. Moreover, as clocks progress at the same rate, the region is necessarily
exited in the right corner (or both in the right and upper corner). Here C checks that
qk(N−1, N−1−z) is reachable from sk(z+1, 1), i.e. C checks that (N−1)−(z+1) ∈
a + bN which in turn is equivalent to checking if z + 2 − N + a = −n · b for some
n ∈ N. Figure 19 for an illustration of the trajectories of the counter values. In order
to restore the value z the POCA C does this by a carefully chosen gadget shown in
Fig. 20. Since (z + 1, 1) ∈ LOWER-LEFT it follows z ∈ [0, N − 2], thus the counter
value along the gadget stays inside the interval [−(N − 2), max(N, a)].

Case 2. Checking reachability in the LOWER-RIGHT region when reached from
the bottom side.

Here the region is necessarily exited in the top side, and we will show how C can
check that qk(N + z − 1, N − 1) is reachable from sk(z + 1, 1) and then restore z.
Indeed, since y was the last clock that was reset, due our convention z ∈ [−(N +
1), N + 1] and by our case we must have z + 1 ∈ {N + 1, N + 2}, and therefore
z ∈ {N, N + 1}. Our POCA distinguishes the two cases z = N and z = N + 1
explicitly as follows. To check that that qk(N + z − 1, N − 1) is reachable from
sk(z + 1, 1) we need to test if N − 2 ∈ a + bN. Our POCA C first tests if z equals N

or if z equals N + 1, then does the test by a carefully chosen sequence of operations
that allow to restore the counter value z ∈ {N, N + 1} as can be seen in the gadget in
Fig. 21. Since (z + 1, 1) ∈ LOWER-RIGHT the counter value along the gadget stays
inside the interval [−(a + 2), N + 1].

Case 3. Checking reachability in the LOWER-RIGHT region when reached from
the left side.

Here the region is necessarily exited in the top side, and C checks that qk(N +
z − 1, N − 1) is reachable from sk(N + 1, N + 1 − z) , i.e. C checks that (z + N −
1) − (N + 1) ∈ a + bN or equivalently if z − 2 ∈ a + bN. Since (N + 1, N + 1 −
z) ∈ LOWER-RIGHT it follows z ∈ [0, N]. Again by a carefully chosen sequence of
operations that allow to restore the counter value z ∈ [0, N] we can realize this test
as seen in the gadget in Fig. 22. Since (N + 1, N + 1 − z) ∈ LOWER-RIGHT the
counter value along the gadget stays inside the interval [−(a + 2), N].

Fig. 20 Gadget testing reachability for Case 1
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Fig. 21 Gadget testing reachability for Case 2

No other region is reachable from UPPER-RIGHT. Moreover, if y was among the
last clocks to be reset, as the clocks valuations increment at the same rate, region
UPPER-LEFT is not reachable. Thus the three treated above cases conclude the ques-
tion of reachability inside a region. Next, in order to test whether or not it is possible
to reach Rk+1 in state sk+1 from Rk and state qk , we check whether or not in B there
exists some +1 rule of the form (qk, g, ∅, sk+1) such that Rk |= g (and there is hence
a corresponding rule in BRk

).
To finish the construction our POCA C needs to be able to simulate clock resets in

an N-run in B. The process will depend on the guessed region Rl in which the reset
is assumed to occur. For Rl of the form (α, β) with α, β ∈ {0, N}, the precise value
of each clock is known: if x is the next clock to be reset, then the new counter value
should be −v(y), i.e. −β, and if y is the next clock to be reset, then the new counter
value should be v(x), i.e. α. For Rl of the form (α, β) ↔ (γ, β), with α, β ∈ {0, N},
and with γ ∈ {0, N, +∞}, the precise value of each clock again is known: if x is the
next clock to be reset, then the new counter value should be −v(y), i.e. −β. If y is
the next clock to be reset, then the new counter value should be v(x), which, when z

is the value of x when y was last reset, is equal to z plus the value of y, i.e. z + β. If
z has has absolute value at most N , then z + N has absolute value at most 2 · N . We
thus test whether or not the absolute value of z + β’s exceeds N + 1 or not, and, if it
is the case, we set it to N + 1 before performing any other operation.

The case when Rl is of the form (α, β) ↔ (α, δ) with α, β ∈ {0, N}, and with
δ ∈ {0, N, +∞} is only possible if α = δ = N (we refer to Fig. 19) and is done
as follows. The case when y is the next clock to be reset is again easy, we set the
new counter value to N . If x is the next clock to be reset, then the new counter value
should be −v(y). To do so, observe that v(y), when z was the value of x when y was
last reset, is equal to N −z, thus the new counter value should be −(N −z) = z−N .
If already z = −(N + 1), we do not add anything. Since z ∈ [0, N + 1] by our case
the new counter value has absolute value at most N .

Observe that since we have assumed without loss of generality that y was the
last clock to be reset, we cannot have a reset inside the region UPPER-LEFT. Thus,
it remains to simulate resets in the regions LOWER-LEFT, LOWER-RIGHT, and
UPPER-RIGHT. For this observe that the precise value of each clock is not known,
but it is feasible to nondeterministically guess the value of the clocks when the reset

Fig. 22 Gadget testing reachability for Case 3
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Fig. 23 A gadget implementing
a reset of clock y in the Case 1

occurs, based on the region and whether it was reached from the bottom side or
the left side. This case distinction allows us to know the exact starting clock valua-
tion vl of the Rl-restricted run preceding the reset. From this, we guess an element
t of

⋃
1≤j≤rl

al,j + bl,jN to increment the clock valuation by t in such a way that
vl + t ∈ Rl . We will distinguish which of the two clocks x and y will be reset next.

Case 1. Simulating resets in the LOWER-LEFT region.

Let us first discuss the case when y (and only y) is the next clock to be reset. In
this case C nondeterministically guesses a configuration q(z + 1 + δ, 1 + δ) with
z + 1 + δ ≤ N − 1 reachable from sl(z + 1, 1), i.e. δ ∈ ⋃

1≤j≤rl
al,j + bl,jN. To

do that C adds a number of the form 1 + a + b · n for some n ∈ N to the counter
and checks that it is at most N − 1, as seen in Fig. 23. We remark that counter values
along this gadget stay inside [0, N − 1].

Let us now discuss the case when x (and only x) is the next clock to be reset. In
this case C nondeterministically establishes a counter value of the form −δ − 1 such
that −(δ + 1) ≥ z − N + 1, where δ = a + b · n for some n ∈ N, as seen in Fig. 24
We remark that the counter values along this gadget stay inside [−(N − 1), N − 1].

The case when x and y are next to be reset simultaneously can be done analogously
by setting the new counter to 0 and is not discussed in detail here.

Case 2. Simulating resets in the LOWER-RIGHT region when reached from the left
side.

Let us first discuss the case when y (and only y) is the next clock to be reset. In
this case our POCA C nondeterministically guesses a configuration q(N +1+δ, N +
1+δ−z) with N +1+δ−z ≤ N −1 reachable from sl(N +1, N +1−z), i.e. where
δ ∈ ⋃

1≤j≤rl
al,j + bl,jN is of the form a + b · n with a, b, n ∈ N. Then C will have

counter value N + 1 + δ > N , and thus C sets the counter value to N + 1. To do that,
C works as seen in Fig. 25. We remark that the counter values along this gadget stay
inside [−1, 2N].

Let us now discuss the case when x (and only x) is the next clock to be reset. In
this case our POCA C establishes the new counter value z − δ − N − 1, realized by
the gadget seen in Fig. 26. We remark that the counter values along this gadget stay
inside [−(N − 1), N + 1].

Fig. 24 A gadget implementing a reset of clock x in the Case 1
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Fig. 25 A gadget implementing a reset of clock y in the Case 2

The case when x and y are next to be reset simultaneously can be done analogously
by setting the new counter to 0 and is not discussed in detail here.

Case 3. Simulating resets in the LOWER-RIGHT region when reached from the
bottom side.

Let us first discuss the case when y (and only y) is the next clock to be reset. In
this case our POCA C nondeterministically guesses a configuration sl(z+1+δ, 1+δ)

with 1 + δ ≤ N − 1 reachable from sl(z + 1, 1). We need to check that there exists
δ ∈ ⋃

1≤j≤rl
al,j + bl,jN which moreover satisfies the inequality 1 + δ ≤ N − 1, or

equivalently z + 1 + δ ≤ N − 1 + z . Moreover, as by assumption z ≤ N + 1, and
moreover (z + 1, 1) ∈ LOWER-RIGHT, we must have z ∈ {N, N + 1}. Our POCA
distinguishes the two cases z = N and z = N + 1 explicitly similarly as checking
reachability in the LOWER-RIGHT region when reached from the bottom side. The
gadget can be found in Fig. 27. We remark that the counter values along this gadget
stay inside [1, 2N].

Let us now discuss the case when x (and only x) is the next clock to be reset. The
gadget can be found in Fig. 28. We remark that the counter values along this gadget
stay inside [−(N − 1), N + 1].

The case when x and y are next to be reset simultaneously can be done analogously
by setting the new counter to 0 and is not discussed in detail here.

Case 4. Simulating resets in the UPPER-RIGHT region.

Here by definition of the region the values of the clocks are above N +1 and hence
again their precise value is not relevant, only the existence of a way to reach the
configuration when the reset occurs. Here we precompute in our reduction whether⋃

1≤j≤rl
al,j + bl,jN is not empty, and then set the counter to N + 1 (if y is to next

to be reset) and to −(N + 1) (if x is next to be reset) and to 0 if both are to be reset.
We notice that for each gadget implementation for testing reachability inside a

region and for implementing the resets of clock x, clock y or both simultaneously, the
value of the counter stays inside the interval [−2 ·max(a +2, N), 2 ·max(a +2, N)],
where a is the value of the offset used in the gadget.

Checking reachability and simulating resets when x was the last clock to be reset,
instead of y, works again in a symmetrical way and can be dually shown to be such
that the value of the counter stays inside the same interval. Testing reachability of

Fig. 26 A gadget implementing a reset of clock x in the Case 2
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Fig. 27 A gadget implementing a reset of clock y in the Case 3 with details for the case z = N . The · · ·
corresponds to the case z = N + 1 and works the same way

a guessed final state inside a region works the same way as the implementation of
a reset in the region, with C guessing a final control state in which the computation
ends instead of a control state in which the next reset occurs.

Finally we show how to achieve non-negativity. First, our final automaton checks
whether or not the value N is greater than (2 + cmax), where cmax is the maximal of
all offsets ak,j and all periods bk,j used in any gadget. Then, fixing u = max(cmax +
2, N), we transition into a new POCA obtained from the POCA described above (the
construction where we allowed the counter to take negative values) by first adding
two +u gadgets before entering the initial state, as seen in Fig. 29. Furthermore, any
comparison operation ≤ p (resp. ≤ c) is replaced by a gadget as seen in Fig. 29,
using an appropriate adjusted gadget for ≤ (2 · u) comparison. Comparisons of the
form > p, = p, < p, and ≤ p (resp. > c, = c, < c, and ≤ c) are performed in an
analogous manner.

Finally, for any modulo test, to simulate a mod b rule, we have two parallel
branches,

• firstly a ≥ (2 · u) comparison followed by determining the residual modulo b

of the current counter value, say r1, using the state space (by repeatedly sub-
stractiong at most b from the counter, performing mod b, then adding the same
amount as substracted), then subtracting u, then determining the new residual
modulo b, say r2, keeping track of it using the state space too (by repeatedly sub-
tracting at most b to the counter, then performing mod b, and then adding the
same amount as substracted),

• secondly a ≤ (2 · u) comparison, followed by a similar gadget but where instead
of using a −u operation, we use a +u operation and instead of subtracting at
most b, adding at most b.

We then compare the two residual r1 and r2 stored in the state space, and check
whether or not r1−2·(r1−r2), the residual the counter value would have had without
the 2 · u offset, is equal to 0 (in the state space), before restoring the counter value to

Fig. 28 A gadget implementing
a reset of clock x in the Case 3



Theory of Computing Systems

Fig. 29 A gadget for adjusting a ≤ p-test when intially offsetting the counter by 2 · u

the value it had before entering the gadget. Notice that this enforces that the value of
the counters stays between 0 and 4 ·(max(N, (2+cmax)), and by observing that |C| ≥
2 + cmax, this enforces that the counter value stays between 0 and 4 · (max(N, |C|)).

Nomenclature A, Alphabet; A∗, Set of words over alphabet A; A, Parametric timed automaton; B,
Binary word variable; B, 0/1-Parametric timed automaton; C, Parametric one-counter automaton; D,
Deterministic finite automaton; F , Set of final control states; f, g, Functions; G, Set of guards; g, Guard;
I, J , Binary word variables; i, j , Integers; K , Language in LOGSPACE; L, Language; m, n, Inte-
gers; M, Turing machine; N , Value assigned to a parameter; op, Operation in a parametric one-counter
automaton; P , Set of parameters; p, Parameter; Q, Set of control states; q, s, Control states; R, Rules
(for transitions in PTA/POCA); t , Integer (time duration); v, Clock valuation; w, Word; x, y, Parametric
clocks; z, Counter value; ZC , Constant defined on page 15; �C , Constant defined on page 15; ϒC , Constant
defined on page 15; MC , Constant defined on page 15; ϑ , Non-parametric clock; α, β, γ , (Sub)semiruns;
χL, Characteristic function of a language; δ, Transition function (of a DFA) or transition-rule of a PTA; η,
Hybrid semirun; �, Regular language; μ, Parameter valuation; �, Set of clocks; ω, Clock; φ, Projection
of semiruns; π , Run; σ, ρ, (Sub)semiruns; τ, χ , (Sub)semiruns; ε, Empty word.
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