
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-023-00212-z

REVIEW/SURVEY PAPERS

A Survey on the Integration of Blockchains and Databases

Changhao Zhu1 · Junzhe Li1 · Ziyue Zhong1 · Cong Yue2 · Meihui Zhang1 

Received: 12 January 2023 / Revised: 28 February 2023 / Accepted: 2 April 2023
© The Author(s) 2023

Abstract
The success of blockchain technology in cryptocurrencies reveals its potential in the data management field. Recently, there
is a trend in the database community to integrate blockchains and traditional databases to obtain security, efficiency, and
privacy from the two distinctive but related systems. In this survey, we discuss the use of blockchain technology in the data
management field and focus on the fusion system of blockchains and databases. We first classify existing blockchain-related
data management technologies by their locations on the blockchain-database spectrum. Based on the taxonomy, we discuss
three types of fusion systems and analyze their design spaces and trade-offs. Then, by further investigating the typical systems
and techniques of each type of fusion system and comparing the solutions, we provide insights of each fusion model. Finally,
we outline the unsolved challenges and promising directions in this field and believe that fusion systems will take a more
important role in data management tasks. We hope this survey can help both academia and industry to better understand the
advantages and limitations of blockchain-related data management systems and develop fusion systems that meet various
requirements in practice.

Keywords  Blockchains · Databases · Data management · Introductory and survey

1  Introduction

Blockchain technology has come into people’s view with the
release of the Bitcoin white paper [1] in 2008. Since then,
more and more cryptocurrencies and decentralized applica-
tions are adopting blockchain technology. Blockchain has
taken the world by storm in the past decades.

The huge success of blockchain technology raises peo-
ple’s interest in applying it to the data management field. A
blockchain is essentially a novel data management system,
which is maintained by multiple participants (or nodes).

Compared to traditional database systems, there may be
some participants behaving unexpectedly, but blockchains
hold some promising properties under such a circumstance
to protect the integrity of data.

•	 Decentralization. There is no central node in a block-
chain system and every node in the network holds a rep-
lica of the data. In this way, the blockchain eliminates
the risks that come with a centralized storage schema
in traditional databases, i.e., malicious or failed central
storage may cause the loss of data.

•	 Immutability. Once data are appended to the blockchain
and confirmed by the majority of the chain’s participants,
it can never be replaced or reversed as the records are
linked one after another with hash values. This marks
blockchains as different from regular databases, in which
information can be easily edited or deleted.

•	 Tamper-Proof. When mining a new block, metadata of
current system states and corresponding proofs are gener-
ated and distributed to the network with the replication of
the block. Since the proof is guaranteed by cryptography
methods, any tiny alteration to the data will lead to a
failure of validation. If there is any conflict during block
validation, the participant can immediately recognize that

 *	 Meihui Zhang
	 meihui_zhang@bit.edu.cn

	 Changhao Zhu
	 zhuchanghao@bit.edu.cn

	 Junzhe Li
	 junzhe_li@bit.edu.cn

	 Ziyue Zhong
	 ziyue_zhong@bit.edu.cn

	 Cong Yue
	 yuecong@comp.nus.edu.sg

1	 Beijing Institute of Technology, Beijing, China
2	 National University of Singapore, Singapore, Singapore

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-023-00212-z&domain=pdf
http://orcid.org/0000-0002-0752-9877

	 C. Zhu et al.

1 3

the block has been tampered with, then he can refuse this
block to protect the security of the data.

•	 Provenance. Since the immutability of blockchain, the
only accepted way to modify what has already been on
the chain is to create a new log and append it to the chain
to declare the invalidity of previous data. This mecha-
nism ensures that every modification of data entry can
be recorded as a trail, from which one can clearly obtain
the history status of the data.

Despite the strong guarantee in data security, blockchain
is still far from an ideal data management system. It suf-
fers from low performance, high resource consumption, and
potential privacy concerns.

•	 Performance. With its underlying chain structure, block-
chain has to process each transaction serially. Moreover,
other participants validate the received block by replay-
ing the transactions in it, which is also a sequential pro-
cess. These two linear transaction processing steps have
a significant impact on the blockchain’s performance. It
is reported that Bitcoin, as a representative blockchain
system, only achieves a throughput of 7 transactions/sec-
ond. In contrast, a commercial database system can easily
process 2000 to 56,000 transactions in one second [2].

•	 Resource Consumption. On one hand, as the transactions
go on, the append-only ledger consumes more and more
storage, which will be a burden for devices with limited
storage capacity such as smartphones or even personal
computers. On the other hand, the mining procedure
requires participants to compete with others to calcu-
late a specific problem, while only one of them wins the
right to append a block, which wastes massive energy and
computing resources.

•	 Privacy Issues. Every participant in a blockchain network
holds the full copy of data due to the verification need.
However, this is at the cost of some privacy concerns. In
real-world business applications, companies will never
want collaborators or customers to access their sensitive
information, while this goal can be easily achieved by
leveraging views in databases.

Apparently, blockchain technology has its superiority and
defect, and neither it nor a database can perfectly undertake
all the requirements of modern data management tasks. For-
tunately, blockchains and databases share so many similar
technical concepts and solutions, making it possible to com-
bine the strengths of security, efficiency, and privacy from
both sides. For example, transactions in both systems result
in state changes and should hold ACID properties to ensure
their reliability. Smart contracts in blockchains are corre-
sponding to stored procedures in databases, as they aggre-
gate transactions. Moreover, both systems adopt indexes to

satisfy various requirements, i.e., tamper-proof and verifi-
ability for blockchains, and efficient query for databases.

We have noticed that there are massive works trying to
integrate blockchain and database technologies to develop
a fusion system that protects data integrity and processes
transactions effectively at the same time. Though the inte-
gration of blockchains and databases has attracted more and
more attention, there are few discussions about it. At present,
most of the surveys about blockchains [3–9] concentrate on
some specific domains, instead of a comprehensive study of
the trend of fusion. We argue that drawing a whole picture is
of vital importance, as it will better guide the database com-
munity to develop systems that fit various real-world needs.

Difference with Existing Works Existing surveys only
focused on some specific aspects of blockchains in the data
management field. For example, Wang et al. [6] investigate
the storage and query techniques of blockchains, while
the authors of [5, 8] focus on the applications in specific
domains. Other aspects including system architecture [3],
query processing [4], and sharding technique [7, 9, 10] have
also been analyzed. There are also surveys [11, 12] trying to
comprehensively analyze blockchains as a data management
system; however, their goal is to dichotomize blockchains
and databases, and to compare the two systems.

The trend of the fusion between blockchains and data-
bases has also been noticed and analyzed in other works.
Based on the comparisons between blockchains and distrib-
uted databases, Ruan et al. [13] discuss the fusion trend and
some representative works. Recently, the authors of [14]
conduct extensive experiments on some hybrid blockchain
database systems and reveal the variety of design choices
of such systems. However, due to the experimental limi-
tations, only a few systems are studied. Thus, some most
recent works are not covered and discussed.

Contributions In this paper, we conduct a comprehensive
survey on the integration of blockchains and databases in the
data management field. To sum up, we made the following
contributions.

•	 We propose the blockchain-database spectrum, a frame-
work to analyze the works about blockchains in the data
management field, and recognize the trend of integrating
blockchains and traditional databases. We further iden-
tify three typical models of the fusion, namely database-
oriented blockchains, blockchain-oriented databases, and
hybrid systems, and conduct a comprehensive compari-
son of the three types of systems in the design spaces and
trade-offs.

•	 We review each of the representative systems of data-
base-oriented blockchains, blockchain-oriented data-
bases, and hybrid systems. Besides, we summarize and
evaluate the techniques used in each model, which pro-
vides insights into each fusion model.

A Survey on the Integration of Blockchains and Databases﻿	

1 3

•	 Based on the exhaustive research and analysis of existing
works, we discuss the limitations of existing methods for
blockchain-related data management systems and pro-
vide future research directions.

The rest of this paper is organized as follows. First, the pre-
liminaries are provided in Sect. 2, including a basic introduc-
tion to blockchains and databases and the blockchain-data-
base spectrum. We also classify existing blockchain-related
data management technologies by their coordinates on the
blockchain-database spectrum and identify their design
spaces in this section. We review the representative systems
and techniques of database-oriented blockchains, block-
chain-oriented databases, and hybrid systems in Sects. 3–5,
respectively. Then, we compare these systems and provide
challenges and opportunities in the blockchain-related data
management field in Sect. 6. Finally, Sect. 7 concludes the
paper.

2 � Preliminaries

2.1 � Backgrounds

We begin this section with some basic information about
blockchains and databases to provide a primary impression
of the two different but relevant technologies.

2.1.1 � Blockchain

Blockchain is an innovative data storage and management
technology that integrates a variety of established tech-
nologies, including high-performance data storage, peer-
to-peer networks, cryptography, consensus protocols, etc.
The concept of blockchain originated from Bitcoin, which
is proposed by Satoshi Nakamoto [1], and most of the

existing blockchain systems also follow the chain structure
in Bitcoin. Taking Bitcoin as an example, the structure of
a typical blockchain is shown in Fig. 1a. Blocks are con-
nected in a linked list and new blocks can only be added at
the end of the chain. Therefore, all nodes in the blockchain
system store the blocks and the transactions in a consistent
order. The block, the basic structural unit of the block-
chain, consists of a block header containing metadata and
a block body containing transaction data. Block header
consists of block height, the previous block’s hash value,
timestamp, nonce, miner signature, and Merkle root, and
block body can be viewed as a collection of transaction
records consisting of multiple transactions. For example,
the block body of the Bitcoin system contains a Merkle
tree consisting of approximately 2,500 transaction records
that have been hashed, each consisting of information such
as transaction hash, inputs, outputs, timestamps, and fees.
Blocks are connected by hash values. The hash value of
each block is obtained by re-hashing the Merkle tree’s
root, the previous block’s hash value, and other informa-
tion. Any change in transaction data in a block will cause
a change in the hash value of this block, which in turn
will change all subsequent blocks along the chain. To sum
up, blockchain incorporates the hash function in the chain
structure, making data tampering infeasible in blockchain
and enhancing data storage security.

For a clear understanding of the blockchain hierarchy,
we abstract the blockchain into 5 layers in Fig. 1b.

•	 Data layer. To efficiently organize various data in the
blockchain, the data layer contains elements such as data
structure, transaction model, index data, state data, and
persistent storage scheme.

•	 Network layer. To meet the communication between
nodes in a decentralized blockchain network, the P2P
protocol plays an important role in the network layer.

Fig. 1   Blockchain overview

Genesis
Block

2nd
Block

3rd
Block

4th
Block

Nth
Block

List of Blocks - Blockchain

· · ·

Prev Block Hash Timestamp

Merkle RootNonce

Block Height

Signature

Block Header

Txn 2 Txn 3 ···Txn 1

Block Body

Txn 4

Block

(a) Chain-like structure of blocks

Peer to Peer (P2P)

Application
Layer DApps Digital Currency ···

Contract
Layer Script Go/JavaSolidity ···

Consensus
Layer PoW PBFTPoS ···

Network
Layer ···

Data
Layer

Merkle Tree

Chain Structure

···

Gossip

Key-Value Model

Merkle Patricia Tree

(b) Architecture of a blockchain system

	 C. Zhu et al.

1 3

The content transmitted between nodes mainly consists
of transaction data and block data.

•	 Consensus layer. Unlike centrally governed databases,
blockchain uses a distributed consensus algorithm to
ensure that nodes in the network that do not trust each
other can agree on the same ledger. The use of consen-
sus algorithms improves the blockchain’s ability to cope
with crash tolerance or Byzantine fault tolerance, giving
the blockchain a higher level of security than traditional
databases.

•	 Contract layer. Containing various scripts, algorithms
and smart contracts, it is the foundation of blockchain
programmability.

•	 Application layer. Users can easily develop new decen-
tralized and cryptographically secure blockchain-based
applications using the APIs provided by the blockchain.

Permissionless and Permissioned Blockchains can be
broadly classified into two categories: permissionless block-
chains and permissioned blockchains.

Permissionless blockchains are a type of blockchain in
which anyone can participate in the network without any
prior approval or authorization. It is often referred to as
a public blockchain as the network is open to the public.
Examples of popular permissionless blockchains include
Bitcoin, Ethereum [15], etc. Ethereum abandons the UTXO
transaction model proposed by Bitcoin in favor of the
account/balance transaction model and extends the Merkle
tree to the Merkle Patricia Trie (MPT) [16]. The Merkle
roots originally stored in the block header are changed to
three Merkle Patricia tree roots in Ethereum, correspond-
ing to the world state tree, transaction tree, and receipt
tree, respectively. Besides, the most important innovation
of Ethereum is that it provides Turing-complete scripting
languages Solidity and Serpent, and provides a sandbox
environment Ethereum Virtual Machine (EVM) for users to
write and run smart contracts. With programmability, built-
in persistent state storage, and Turing completeness, smart
contracts make it easy for developers to create their block-
chain applications on the Ethereum platform, which marks
the birth of the blockchain 2.0 era.

Permissioned blockchain are blockchains that
require permission to join and participate in consensus.
Hyperledger Fabric [17], a permissioned blockchain, has
evolved into an enterprise-accessible distributed ledger
technology platform. Fabric allows users to write smart
contracts (also called chaincodes) in Go or Java. There-
fore, it is the first platform that supports high-level pro-
gramming languages for writing smart contracts. Unlike
permissionless blockchains such as Bitcoin and Ethereum,
Fabric adds an access mechanism where only authorized
nodes can join the network and uses Raft, an efficient
algorithm but cannot resist Byzantine behaviors. Fabric

is innovative in that it uses a loosely coupled design that
modularizes consensus algorithms, authentication, key
management protocols, and cryptographic libraries, further
meeting the diversity of enterprise needs for blockchain.

Innovations on Blockchain Blockchains have achieved
great success and promoted many developments in differ-
ent fields. However, traditional blockchain systems still
suffer from problems of low throughput and high latency.
There are several innovations in consensus algorithms and
transaction concurrency to address these issues.

The consensus algorithm is one of the core technolo-
gies of blockchain, which describes how the peers reach
an agreement on the state of the world. The efficiency of
consensus algorithm impacts the performance of the entire
blockchain system. Here, we introduce some BFT-based
protocols. Castro et al. [18] propose PBFT consensus
algorithm which reduces BFT’s complexity from expo-
nential to polynomial. To further optimize the decentrali-
zation level and performance scalability of blockchains,
SBFT [19] reduces communication to linear with collec-
tors and threshold signatures. FastBFT [20] designed a
novel message aggregation technique, reducing message
complexity from O(n2) to O(n).

The purpose of concurrency control is to optimize
transaction processing, which involves improving the effi-
ciency of transaction validation, execution, and confirma-
tion on blockchains. Take Hyperledger Fabric for instance,
although it parallelly executes the transactions in the
execution phase, the throughput cannot further improve,
especially when there are high contentions among each
transaction. To be more specific, though all the conflict
transactions are simulated in the execution phase, only
one of them can be eventually submitted in the final vali-
dation phase, and others have to be aborted. The solution
is to reduce the abort rate. Fabric++ [21] uses reordering
and early abortion to solve this problem. It obtains the
read/write set of each transaction in the execute phase and
recognizes the conflicting transactions with a dependency
graph between the transactions within the same block.
Then it reorders the transactions and early aborts the
transactions that cannot be serialized. FabricSharp [22]
optimizes the reordering mechanism to support inter-block
transactions, which further promotes the commit rate and
the performance in terms of throughput. FastFabric [23]
extends the concurrency of Fabric by introducing a valida-
tion pipeline, which parallelizes as many validation steps
as possible, including endorsement policy validation and
syntactic verification. Finally, XOX Fabric [24] proposes
a novel hybrid execution model consisting of a pre-order
and a post-order execution step which makes a trade-off
between minimal invalid transactions and maximal con-
current execution.

A Survey on the Integration of Blockchains and Databases﻿	

1 3

2.1.2 � Database

Database technology has been developed for decades.
Unlike blockchain, it supports features like ACID prop-
erties, complex queries, low transaction latency, high
throughput, and scalability. Mainstream databases are
divided into three categories: SQL databases, NoSQL
databases, and NewSQL databases.

•	 SQL databases. As one of the most widely used data-
bases supporting the relational model, SQL database
(e.g., MySQL [25], Oracle [26]) is usually used to store
structured data which is highly-organized and format-
ted. Therefore, SQL databases can comply with atomic-
ity, consistency, isolation and persistence. In addition,
SQL databases also have good support for transaction
concurrency control and data privacy protection.

•	 NoSQL databases. To have better horizontal scalability,
many databases abandon the relational model and sup-
port for SQL statements, replacing them with support
for semi-structured and unstructured data. These data-
bases are called NoSQL databases. Unlike relational
databases, NoSQL databases have multiple types: key-
value databases (e.g., LevelDB [27], BerkeleyDB [28],
Redis [29]), column-oriented databases (e.g., Big-
table [30], Apache HBase [31]), document-oriented
databases (e.g., MongoDB [32]), graph databases (e.g.,
Neo4j [33]), time series databases (e.g., InfluxDB [34])
and so on.

•	 NewSQL databases. A new type of database man-
agement system (DBMS) is designed to provide a
NoSQL system’s high scalability and performance
while retaining the ACID transactional characteris-
tics of a traditional relational database management
system (RDBMS). NewSQL systems can use both
relational and non-relational data models. The main-
stream NewSQL systems include Google Cloud Span-
ner [35], CockroachDB [36], TiDB [37], and Amazon
Aurora [38]. These NewSQL systems are all built with
distributed architectures that provide high scalability
and performance while retaining ACID transaction
features and SQL query language support. Their emer-
gence provides new options for addressing the needs of
large-scale data processing and distributed systems.

In general, blockchains and databases are different data
management technologies with different futures and appli-
cation scenarios. Blockchains have the advantage of secu-
rity for applications requiring security, while databases
have the advantage of performance and usability for large-
scale data processing and high concurrent access.

2.2 � Blockchain‑Database Spectrum

Though blockchains and databases are essentially designed
for different goals, both systems have the capability to manage
data. Along this point of view, we present our blockchain-
database spectrum in Fig. 2 to compare them and find possible
fusion directions.

In this framework, blockchains lie at the security end of the
spectrum, while databases are at the other performance end.
Besides both ends, there are also systems located in the middle
parts of the blockchain-database spectrum. These systems are
fusions of blockchains and databases to varying degrees and
can be further classified into three major types, namely data-
base-oriented blockchains, blockchain-oriented databases,
and hybrid systems. As Fig. 2 depicts, the difference lies in
the design considerations and trade-offs between performance
and data security.

2.3 � Fusion Systems

In this survey, we focus on the fusions systems, i.e., database-
oriented blockchains, blockchain-oriented databases, and
hybrid systems, which occupy the middle parts of the block-
chain-database spectrum in Fig. 2. We will informally define
these systems and briefly describe their design considerations
in this section, while leaving the details to the rest of this sur-
vey. A high-level and coarse-grained comparison between pure
blockchains, pure databases, and three types of fusion systems
based on their locations in the blockchain-database spectrum
is summarized in Table 1.

Database-Oriented Blockchains The database-oriented
blockchains are at the blockchain side of the blockchain-
database spectrum. Same as blockchains, database-oriented
blockchains retain the essential chain-like structure of ledg-
ers, which keeps track of data modifications and ensures data
security. Besides the security, database-oriented blockchains
also pursue features to provide a better experience in real-
world practice just as databases do, such as easy-to-use APIs,
higher throughput, lower resource consumption, and assur-
ance of secret data’s privacy. To sum up, database-oriented
blockchains are a collection of systems that are built on top of
blockchains and integrated with database features.

As it has been revealed in the spectrum, the most straight-
forward and widely-used solution is to equip the systems with
mature techniques from databases, including sharding [7,
53–59], concurrency control [21, 49, 60–64], indexing [41,

Fig. 2   Blockchain-database spectrum

	 C. Zhu et al.

1 3

62, 65–75], views [76, 77], and so on. There is another direc-
tion that modifies existing components in blockchains, such
as consensus protocols [50, 78–81] and data processing lay-
ers [41, 82–85].

Blockchain-Oriented Databases Opposite to the data-
base-oriented blockchains, the blockchain-oriented data-
bases are closer to databases. Such systems pay more atten-
tion to processing performance and usually support more
complicated data models such as relational. Some of them
also support SQL-like interfaces, making them more con-
venient for application developers.

To achieve such a goal while keeping a basic security
guarantee, blockchain-oriented databases are built upon an
existing database instance, while learning lessons of hash
chain from blockchains. That is, they usually contain a
blockchain layer [50] or a middleware [48, 49] with block-
chain features, and the chain-like relationships are either
revealed by the internal fields or stored in a specific table.
We regard such systems as general blockchain-oriented
databases and introduce the technical details in Sect. 4.

We also notice that there is another way to build a data-
base system that supports verifiable data processing, which
results in the so-called ledger databases [86–89]. However,
such systems adopt a different trust assumption with block-
chains, i.e., there is usually a centralized service provider
and require a trusted auditor to replay the log of transactions
to detect if the server has tampered with the data. Hence, we
exclude the ledger databases from the blockchain-oriented
databases, and ignore them in the following of this paper.

Hybrid Systems Such systems locate around the very
center of the spectrum, which means they reach a balance

between security and performance. Note that this can be
interpreted into two situations. The ideal one is to achieve
decentralized data security as blockchains and high through-
put as commercial databases at the same time. However,
this is an unreachable target at present and no one has been
recognized to provide a perfect solution to this problem.
On the other hand, equally combining blockchains and
databases into a single system is also a way to reach the
balance [44–46]. This usually results in a middleware that
connects a blockchain of metadata or logs, and a database of
various forms of data. In this way, such systems ensure the
security of metadata and the performance of data process-
ing, which is at the cost of inheriting some defects from both
sides. For example, the system may be redundant to include
both instances, and the actual data stored in the database
are usually not protected by the blockchain. We use hybrid
systems to refer to the latter systems in the rest of this survey.

3 � Database‑Oriented Blockchains

The efforts to explore the data management possibility of
blockchains have taken a long way. At the early stage of
the exploration, many researchers try to adopt blockchains
to real application scenarios, which leads to the earliest
database-oriented blockchains. For example, MedRec [90]
is an Ethereum-based decentralized system to process elec-
tronic medical records (EMR) and can be integrated with
the existing EMR management systems. It utilized the data
management ability of underlying Ethereum by proposing
three dedicated smart contracts to contain metadata about

Table 1   A high-level comparison of inherent features between data management technologies

a No privacy for the on-chain metadata

System Security Performance and usability

Decentralization Data security Auditability Performance Ease of Use Data Model Privacy Resource
requirement

Blockchains High Very high Every partici-
pant

Very low Low KV No Very high

Database-
oriented
Blockchains

High Very high Every partici-
pant

Low Medium KV [39, 40],
Relational [41,
42], Docu-
ment [43]

Low High

Hybrid Systems Partial High Every partici-
pant

Low High Relational [44],
Docu-
ment [45],
Graph [46]

Lowa High

Blockchain-
oriented
databases

Partial High Authorized
users

High High Relational
[47–51], Col-
umn [52]

High Normal

Databases No Basic Authorized
users

Very high High KV, Relational,
Graph, Docu-
ment

High Normal

A Survey on the Integration of Blockchains and Databases﻿	

1 3

the record ownership, permissions, and data integrity. Other
works attempt to apply blockchain to other fields and man-
age corresponding data with the help of smart contracts,
such as vehicles [91], cognitive radio (CRs) [92], IoT [40],
cloud computing and services [93–96], decentralized pri-
vacy-preserving search [97], MOOC [98], and COVID-19
contact tracing [99].

However, the aforementioned systems just take exigu-
ous steps toward databases in the spectrum. The successors
propose prototype systems or protocols to manage general
data with integrated database systems, which mainly focus
on data integrity. Gaetani et al. [100] design a two-layer
blockchain-based system in cloud computing environment.
The first layer uses a lightweight distributed consensus pro-
tocol that ensures low latency and high throughput, and the
second one is a PoW blockchain to ensure data integrity.
Sui et al. [101] propose an encrypted data management sys-
tem with mandatory access control, in which blockchain
provides the integrity guarantee. Konashevych proposes
a protocol [39] to design a cross-blockchain database that
manages data on different chains and solves problems of
immutability, as well as duplication of tokens as the result
of hard forks.

Recently, researchers of database-oriented blockchains
aim to equip pure blockchain systems with the ability to
manage general data and reach the goal of high throughput,
low resource consumption, easy-to-use APIs, and privacy
of secret data. Such systems usually modify several compo-
nents of blockchains, including: (1) index, (2) protocol, e.g.,
sharding and consensus, (3) API and data models, and (4)
ledger arrangement, as Fig. 3 shows. Note that these techni-
cal routes do not necessarily correspond to the goals. They
can either be combined to solve a single problem, or improve
the system in various aspects individually. Moreover, many
researchers try to improve multiple aspects in their single
system and adopt many techniques. Thus, we review exist-
ing studies from the technical routes rather than the goals
in this section.

3.1 � Index

In databases, an index is a structure that sorts the speci-
fied values which aim to boost query processing and data
updates. However, indexes in blockchains usually take an
additional task to prove the integrity of data as an authen-
ticated data structure (ADS) does. For example, Ethereum
uses MPT to index the states of each account and protect
the data. However, such an index has poor performance
since it has to fetch data from LevelDB whenever it vis-
its a node in the MPT. Thus, recent works try to develop
indexes that fit the batch data in the blockchain environment,
which improves the performance of the indexes of database-
oriented blockchains. Besides the original data, researchers

also index some metadata to support a broader range of que-
ries. There are also works trying to add concurrency to the
indexes that support parallel updates.

The efforts around the indexes are summarized in Table 2
and introduced in detail as follows.

3.1.1 � Boosting Data Access

The authors of SEBDB [41] identified three basic operations
in blockchains, namely: (1) fetching a block by a given block
id, transaction id, or timestamp, (2) fetching tuples with the
same transaction type, and (3) fetching transactions by given
conditions. They designed a corresponding index structure
for each operation to boost data access. For the first opera-
tion, a block-level B + tree with key (block_id, first_tx_id,
ts) is built. In this way, given the query condition, one can
go from the root down to the leaf node to get the location
of the target block. A table-level bitmap index recording
table distribution is built to solve the second scenario. Each
bitmap refers to a table, and the i-th bit in a bitmap indicates
whether block i contains transactions of that table or not.
Layered indexes are designed to deal with the third opera-
tion, in which the first level consists of bitmaps or entries

Contract Layer (Unchanged)

Data
Layer

···

Network Layer (Unchanged)

Sharding

Protocol

Ledger

Consensus
Layer ···

Concurrency

Protocol

Consensus

Algorithms

Application
Layer Easy-to-use APIs

···
DApps Digital Currency

B+ Tree AB-M TreeBitmap

Key-valueMerkle Tree MPT

Index

KV

Model

Relational

Model

Document

Model

Data Models

Fig. 3   Architecture of database-oriented blockchains 

	 C. Zhu et al.

1 3

that describe the distribution of attribute’s values among
blocks, while the second level is a B + tree for the attributes
within the block.

AuthQX [69, 70] runs in an environment with TEEs,
which provides an isolated memory for sensitive data and
ensures secure computing in the hardware level. However,
the limited memory of TEE hinders its wide application.
To solve this problem, the authors developed a mechanism

to organize data hierarchically in the untrusted and trusted
memory and designed corresponding index structures. To be
more specific, data in the untrusted memory are organized
into Merkle B trees, while the frequently accessed internal
nodes are cached in the TEE. The skip list maintained in
trusted memory buffers newly attached block data. Once the
capacity of the skip list reaches the threshold, the merge
operation from the skip list to the MB tree will be started.

Table 2   Summary of representative indexes in database-oriented blockchains. For the general notations, n refers to the number of blocks, N
refers to the number of transactions, and e refers to the number of data entries

a We omitted the “authenticated” or “verifiable” prefixes, since they are already guaranteed by the blockchains
b b is the number of buckets that describes the distribution of attribute’s values among blocks
c m represents the number of FNodes, which is specific to the queries
d l represents the number of grid node layers, which is specific to the queries
e k represents the number of all the grid nodes, which is specific to the queries
f Only supports integers, fixed-point numbers, or other data types that can be transformed to set-valued attributes
g w is related to the user-defined sliding window size, thus the overhead is constant to a given sliding window size
h t is a user-defined parameter to control the layer of the Merkle Forest

System Index Underpinning
techniques

Index Level Query time com-
plexity

Space occupation Supported query
typesa

SEBDB [41] B+ Tree Index B+ Tree Block O(log n) O(n) SQL-like (condition),
Provenance,
On-chain Join,
On-off Join

Bitmap Index Bitmap Table O(1) O(n)
Layered Index Bitmap, B + Tree Transaction O(logN) O(bN)b

AuthQX [69, 70] – Merkle B Tree,
SkipList

Entry O(log e) O(e) Range

SE-Chain [72] AB-M tree Balanced BST,
Merkle Tree

Transaction O(N) O(N) KV

Yan et al. [67] B+ Tree Based
Index

B+ Tree,
Bitmap

Block O(log n) O(n) KV, Range

Key-valueIndex Key-value Transaction O(1) O(N) KV
ForkBase [73] POS-tree B+ Tree, Merkle

Tree
FNode O(logm) c O(m) KV

LineageChain [74,
75]

DASL SkipList State
(Transaction)

O(logN) O(N) KV, Provenance

vChain [65] Intra-block Index Merkle Tree Transaction O(logN) O(N) Boolean, Rangef ,
SubscriptionInter-block Index SkipList Block O(log n) O(n)

IP-Tree Prefix Tree,
Inverted File

Grid Node O(l)d O(k)e

vChain+ [68] SWA Index Sliding Window,
Merkle Tree

Entry O(w) g O(w) Range, Multi-dimen-
sional, Combination

Zhu et al. [85] GCA​2-tree Merkle Tree Block O(log n) O(n) Multi-dimensional
Aggregation
(Count, Max, Min,
Average)

Feng et al. [62] Merkle Forest Merkle Tree Entry O(t log e) h O(e) Merkle Multiproofs

Zhang et al. [102] GEM2-Tree SMB Tree, Merkle
B Tree

Entry O(log e) O(e) Range

Zhang et al. [103] Suppressed Merkeinv
Index

Merkle B Tree Entry O(log e) O(e) Keyword

Chameleoninv Index Chameleon Tree Entry O(log e) O(e)
Chameleoninv∗ Index Chameleon Tree,

Bloom filter
Entry O(log e) O(e)

A Survey on the Integration of Blockchains and Databases﻿	

1 3

The replacement between hot and cold data follows LRU
strategy. What’s more, since the data cached in the TEE are
authenticated, the update inside the TEE can be batched to
improve the efficiency when the tree is frequently updated.

Each transaction of SE-Chain [72] is maintained in the
AB-M tree (adaptive balanced Merkle tree), which combines
the advantages of balanced binary trees (fast retrieval) and
Merkle trees (fast verification). Specifically, an AB-M tree
is divided into two layers, the lower one is a Merkle tree, and
the upper one is a binary tree containing node hash informa-
tion, so as to meet the verification requirements from leaf
node to root node. There is a threshold T controlling the size
of the Merkle tree, while the rest are arranged in the binary
tree. When processing queries, the system first searches an
approximate range from the top level according to the bal-
anced binary tree search algorithm, and then traverses the
Merkle tree to fetch the specified data.

Yan et al. [67] designed a dual-index to adapt the block
form of data storage for their proposed construction engi-
neering management system. Instead of traversing the entire
blockchain, there is a B + tree-based index and a key-value
index in the proposed system to accelerate the queries. The
former one is arranged by the locations, and takes care of
range queries. The internal nodes of the B + tree index con-
tain a bitmap to indicate whether there is a file of specific
types, which boosts the queries by the file types. The keys
of the latter index are hashes of each file and the values are
the corresponding transactions, which is responsible for the
single queries.

3.1.2 � Enriching Query Types

With the help of specifically designed indexes for basic
blockchain operations, SEBDB [41] further supports SQL-
like operations such as track-trace, on-chain join, and on-
chain and off-chain join (on-off join). The roles of the pro-
posed indexes are described as follows. First, a track-trace
operation is to find who sends the transaction and which
transaction is done. To support this, the layered indices on
the operation sender and operation type are pre-created.
Second, for the on-chain join, the table-level index can
accelerate the searching process, and layered indexes on the
join attribute can further optimize the performance. Third,
similar to the on-chain join situation, the bitmap index and
layered index on the join attribute also help the scan proce-
dure of on-chain data.

The structures of most blockchains’ index not only
depend on the items stored in the index, but also on its
update history. However, the authors of ForkBase [73]
extracted the need for structurally-invariant reusable
indexes (SIRI), whose structure is uniquely determined by
the set of records. They further proposed a SIRI instance

called POS-Tree. In a POS Tree, the data entries are sorted
and arranged into a byte sequence. Then, different types
of split functions are applied to the sequence recursively
to create leaf nodes and internal nodes, which are mod-
eled as FNodes in the POS-Tree. The FNodes are linked
and protected as those in Merkle trees. In this way, the
POS-Tree supports effective data deduplication of multi-
version data, which enables fork semantics of blockchains
that manage the conflicts.

LineageChain [74, 75] supports online forward prov-
enance tracking, i.e., providing historical blockchain states
in a tamper-evident manner to smart contracts while they
are running. To achieve such a goal, LineageChain reor-
ganizes the leaf nodes in the original Merkle tree into a
Merkle DAG, to enhance the storage layer of blockchains,
and provide efficient tracking and tamper evidence. Then,
it indexes the Merkle DAG with a deterministic append-
only skip list (DASL) to avoid searching from the head
of DAG. The DASL leverages the append-only and non-
random properties of blockchains to distinguish it from
normal skip lists. Such a scheme enables fast and low-cost
history data query, making it possible to track a specific
value when a smart contract is running.

There are light nodes that only store block headers in
a blockchain network, and they usually represent a user.
It is important for them to verify the integrity of query
results. Xu’s team successively proposed systems to sup-
port authenticated queries for light nodes [65, 68]. These
systems split the indexing and proving function of block-
chain indexes and designed accumulator-based ADSs. In
vChain [65], an accumulator-based ADS is proposed to
aggregate any query attributes dynamically and support
authenticated Boolean queries, while a Merkle tree-based
intra-block index and a skip list-based inter-block index
undertake the acceleration task. The authors also build
an inverted prefix tree (IP-Tree) over subscription queries
to efficiently handle a large number of subscription que-
ries. By introducing a set accumulator-based ADS with
sliding time window and building corresponding SWA
index, vChain+ [68] supports authenticated queries on
range, multi-dimensional, and the combination of these
types. Zhu et al. proposed another accumulator-based
ADS, namely GCA​2-tree [85], that supports verifiable
multidimensional aggregate queries. To enrich authenti-
cated query types in the hybrid-storage blockchain, Zhang
et al. [102] propose a gas-efficient ADS, called GEM2-tree,
which supports authenticated queries. To further reduce
gas cost due to storing intermediate data in GEM2-tree
and extend keyword search in hybrid-storage blockchain,
Zhang et al. [103] design novel ADS schemes, such as
suppressed Merkleinv index, Chameleoninv index, and Cha-
meleoninv∗ index.

	 C. Zhu et al.

1 3

3.1.3 � Adding Concurrency Support

Fang et al. [62] focus on introducing concurrency to block-
chains. Besides the concurrency in the transaction execution
framework, they also upgrade the index to support parallel
updates and validations. Specifically, they designed a Merkle
Forest consisting of multiple sub-trees at a specified size of
2N to increase the parallelism of generating multiproofs for
data and verifying data integrity. It is a layered structure
that the roots of the lowest level are the leaves of the upper
level, and the root is computed recursively. In this way, the
modification of low-level Merkle trees can be done in paral-
lel, and the recursive updates of upper-level trees are batched
to decrease the overhead. The validation of the multiproofs
is conducted from bottom to top.

3.2 � Protocol

In blockchains, protocols are a set of rules that allow partici-
pants to communicate and share data. Though the existing
blockchain protocols ensure relatively secure communica-
tion, the full-replicated and serial nature lowers the whole

system’s performance, which hinders the further application
of blockchains in the data management field. In this survey,
we focus on two of the promising solutions, namely shard-
ing and concurrency. In addition, the consensus algorithm
is orthogonal with the two approaches and can be arbitrarily
combined with them according to actual needs. We provide
an overview of the surveyed works in Table 3.

3.2.1 � Sharding

Sharding is originally a technique in databases to expand
storage capacity and reach higher throughput. By shard-
ing, the huge data is divided into multiple subsets and
stored on different nodes, so that transactions on differ-
ent nodes can be processed in parallel. Many database-
oriented blockchains also benefit from such a method and
improve the data processing capability. Elastico [104] is
the first sharded blockchain that divides the network into
multiple groups. Each group processes disjoint transac-
tion data and runs PBFT consensus independently. After-
ward, OmniLedger [105] introduced 2PC to the cross-shard
transaction process to ensure the atomicity of cross-shard

Table 3   Summary of representative works about protocols in database-oriented blockchains, in which “A/B” refers to the Account/Balance
model

a In tps (transactions per second), and each is the best throughput reported in the paper
b The inter-shard threat model is BFT, and the intra-shard one can be configured as either BFT or CFT according to the requirement
c r is configurable and specific to the BFT protocol it adopts

System Type Threat model Transaction model Consensus protocol Fault tolerance Throughputa Additional techniques

Elastico [104] UTXO Permissionless BFT PBFT 1/3 (Intra-shard)
1/4 (Total)

N/A –

OmniLedger [105] UTXO Permissionless BFT ByzCoinX 1/3 (Intra-shard)
1/4 (Total)

13,000 2PC

RapidChain [106] UTXO Permissionless BFT PBFT+EC 1/2 (Intra-shard)
1/3 (Total)

7380 Erasure Coding

Monoxide [107] A/B Permissionless BFT Chu-ko-nu Mining 1/2 11,694.89 –
SlimChain [61] A/B Permissioned CFT Raft N/A 1284 TEE,

Serializable Snapshot
Isolation,

Optimistic Concur-
rency Control

Permissionless BFT PoW 1/2 462

BrokerChain [56] A/B Permissionless BFT PBFT 1/3 (Intra-shard)
1/4 (Total)

30,000 –

Meepo [58] A/B Permissioned BFT,
BFT/CFTb

Any – 124,583.7 –

BFT-Store [53–55] A/B Permissionless BFT BFT+EC 1/r c 2100 Erasure coding
Section-Block-

chain [57]
A/B Permissionless BFT Proof of Storage 1/2 N/A –

SChain [63] A/B Permissioned BFT PBFT 1/3 N/A Deterministic Con-
currency Control

PEPP [60] A/B Permissioned BFT PBFT 1/3 14,000 –
SEFrame [64] A/B Permissioned BFT PBFT 1/3 N/A Optimistic Concur-

rency Control

A Survey on the Integration of Blockchains and Databases﻿	

1 3

transactions; RapidChain [106], combined the PBFT pro-
tocol with erasure coding (EC) [108] to reduce the huge
network traffic brought by PBFT; Monoxide [107] proposed
Chu-ko-nu Mining to solve the problem that the computing
power in the PoW is diluted after sharding, and enhance the
security of the system. However, there are still problems to
be solved, e.g., the efficiency of the cross-shard transaction
process, and the storage issues.

Although the transactions within the same shards can be
efficiently executed in sharded blockchains, the cross-shard
transactions usually become the bottleneck. Authors of Bro-
kerChain [56] pointed out that the cross-shard transactions
can be reduced if the partition can be altered. Thus, they
analyze the accounts that involve in the upcoming transac-
tions and dynamically adjust to the optimized account dis-
tribution. However, such a scheme cannot completely avoid
cross-shard transactions. To solve this problem, the accounts
involved in the cross-shard transactions are virtually divided
into several sub-accounts with part of the assets it holds, and
distributed in different shards. Thus, cross-shard transactions
can be divided into intra-shard and cross-shard sub-transac-
tions. The former can be effectively handled, while the latter
is taken care of by special broker accounts in both shards.

Meanwhile, Meepo [58] provides another solution to
improve the efficiency of cross-shard transaction execu-
tion. It requires a consortium environment, i.e., every node
belongs to a specific organization and each organization
contains several data shards. Moreover, nodes within the
same organization trust each other. Under such a scenario,
the authors proposed a cross-shard protocol. To be more
specific, several cross-epochs are inserted after processing
intra-shard transactions to execute inter-shard transactions
in the consensus. Each shard sends cross-calls that include
necessary data to the remote shard and executes the inter-
shard transactions on the target shard. This procedure is
executed repeatedly until there are no more cross-calls gen-
erated, i.e., all cross-shard transactions have been processed.
This indicates the cross-epochs of the current block have
finished and the consensus of the next block goes on. In
this way, cross-shard communication can be done accord-
ing to the order of cross-calls, which reduces the contention
of cross-shard transactions and improves efficiency. Meepo
also provides atomic guarantees for cross-shard transactions
in replay-epoch, which follows cross-epochs to remove any
faulty transactions.

Since the data are supposed to be fully replicated in
the primitive blockchain network, sharding should reduce
the storage overhead of every single machine. BFT-
Store [53–55] is a Byzantine fault-tolerant partition storage
engine that equips Reed-Solomon (RS) [109], a widely-used
EC. Specifically, assuming that there are n nodes in the net-
work and the system can tolerate at most f faulty nodes, an
RS engine is responsible to encode n − 2f original blocks

into n chunks with (n − 2f , 2f)-RS encoding. The choice of
parameters is based on the fact that the BFT protocol can
only ensure that n − 2f honest nodes commit blocks. Then
each chunk is distributed to a node. In this way, the storage
complexity of each block is reduced from O(n) to O(1). The
read engine handles the read requests and responses with the
target block. When the target block is local to the node, it is
returned directly, otherwise the node sends a query request
to the target node. If the request is not replied until timeout
exceeds, the node broadcasts a decoding request to n − f
random nodes to obtain necessary chunks and returns the
decoded target block. Other components include a recovery
engine that recovers the data and a scale-out engine that
coordinates the re-encoding process when a new node joins
the system.

Section-Blockchain [57] also tries to reduce the storage
overhead without compromising the security of the system
via the sharding technique. It simply partitions the blocks
into several blockchain fragments and the corresponding
database snapshots that record the global system settings
and account states at an exact moment. Then, the author
designed an efficient protocol that helps participants to opti-
mize the connection with each other to achieve a format-
ted network. With such a protocol, the author proved that
the data are safe when the participants hold all the block
headers of the mainchain, a subset of blockchain fragments
and database snapshots, and a map table between fragments
and snapshots. Since the map is much smaller than a whole
block, Section-Blockchain reduces the storage overhead of
each participant.

SlimChain [61] adopts a novel stateless scheme, in which
the off-chain storage nodes store the ledger states and simu-
late smart contract execution, while the on-chain consensus
nodes only maintain the short commitment of ledger states.
Shardings in SlimChain aim to lower the overhead of the
off-chain storage nodes. In particular, each off-chain node
can choose to store partial or full states based on their stor-
age capacities. The transactions are assigned to the nodes
which hold the necessary data fragment. There’s no need to
worry about the cross-shard transactions that no node holds
complete data, since the data can be authentically retrieved
from other nodes with the TEE environment.

3.2.2 � Concurrency

Many works have revealed that the serial execution of trans-
actions is one of the bottlenecks that encumber the perfor-
mance of blockchains, as it does not fully make use of the
concurrency ability of modern multiprocessors. How to
enable blockchains with concurrency to improve transac-
tion execution efficiency is a hot topic in recent years, and
the key lies in how to ensure that the results of concurrent
schedules are the same in all nodes. As a typical blockchain

	 C. Zhu et al.

1 3

system, Hyperledger Fabric [17] adopts a novel execute-
order-validate (EOV) scheme, in which transactions are
executed parallelly in the first stage while keeping serially
in the latter two. Such a scheme inspires the design of suc-
cussing database-oriented blockchains to further improve
the concurrency of the transactions. For example, as men-
tioned before, the stateless design of SlimChain [61] natu-
rally supports the parallel execution of transactions in the
off-chain storage nodes. To ensure the ACID property of
these transactions, the authors introduce the concurrency
control algorithms in the commit phase.

SChain [63] introduces concurrency to permissioned
blockchain transactions from both intra- and inter-block.
Since nodes from the same organization trust each other,
transactions with the same block are assigned to different
nodes and the results are shared in the organization. To max-
imize the concurrency while ensuring execution correctness,
SChain pre-analyzes the potential conflicts by each transac-
tion’s read/write set and assigns conflicting transactions to
the same executor. As for intra-block concurrency, SChain
divides the block formation into five stages and overlaps
the execution process of different blocks. In other words, it
turns the original pipeline model into a transaction stream-
ing pipeline model to make the most use of the computing
resources.

A parallel execution engine, PEPP [60], is proposed for
the consortium blockchain. It adopts a deterministic concur-
rency mechanism to obtain the predetermined serial order
of parallel execution, and conducts parallel update opera-
tions on the state tree. The workflow to process a transaction
includes three phases, namely ordering, execution, and fina-
lization, and the PEEP involves the latter two. In the execu-
tion phase, a schedule layer is responsible to coordinates the
parallel execution in a deterministic serial order. An ordered
locking mechanism is used to eliminate the non-determinism
without introducing additional network communication. In
the finalization phase, the results of transactions are updated
to a specially designed state tree that allows deferred com-
mits and parallel updates. In this way, the workflow will
not be blocked by the time-consuming tree update, and the
performance of the entire system can be further improved.

Recently, new hardware are introduced to blockchain
systems. It is also important to design suitable concurrency
mechanisms for these systems. SEFrame [62, 64] proposes a
concurrent execution mechanism based on SGX, an instance
of TEE. As mentioned before, the SGX cannot hold the
entire ledger in its memory due to hardware limitations, and
the data swap between it and main memory should also be
minimized because of the huge cost. SEFrame solves the
problem and achieves concurrency both between nodes and
within a single node. Specifically, the transactions are pro-
tected by the SGX in the execution phase, while the trusted
results are replicated in the network. To enable inter-node

concurrency, a batch of transactions is divided into several
micro-batches and assigned to different nodes for execution.
For intra-node concurrency, a pre-execution mechanism that
fetches needed data in batches is proposed to minimize the
burden on the SGX. After the pre-execution, the transactions
of a micro-batch are executed in the SGX with a batching
optimistic concurrency control (batching OCC) protocol.

3.3 � Data Model

Existing blockchain platforms are far from convenient com-
pared to traditional databases, as they lack the capability of
modeling complex tasks in the real world. The cumbersome
interfaces also prevent them from further use in business. To
solve such a problem, many works aim to enable blockchains
with complex semantics and easy-to-use APIs.

Since the relational model is widely used in business,
many researchers and engineers try to implement relational
semantics on database-oriented blockchains. SEBDB [41]
adds relational data semantics into the blockchain platforms
and supports SQL-like language as the data management
interface. The block structure of SEBDB is re-designed to
meet the requirement of relational semantics. Each transac-
tion contains several system-level and user-defined applica-
tion-level attributes, making it possible to maintain and store
the schema as a regular relational table. FalconDB [84] is
another system that explicitly supports the SQL data model.
Unlike SEBDB, one FalconDB block body only consists of
an arbitrary-sized transaction. And there are two attributes
that record the validity time of the record to manage the his-
tory versions of data.

As for the cumbersome interfaces, BlockchainDB [83]
exposes three straightforward key-value APIs, namely put,
get, and verify, to the clients, while leaving the complicated
primitive operations to a specifically designed storage layer.
The storage layer undertakes the hideous works of reading
and writing storage in a synchronized way, checking syn-
chronization status, and computing write sets for further
verification. EtherQL [43] provides two types of interfaces,
namely API and REST to meet the different requirements
of developers. Thus, application developers can directly use
the encapsulated interfaces without fully understanding the
low-level implementations. EthernityDB [82] integrates a
lightweight database system with a MongoDB-like API into
Ethereum by utilizing the smart contracts that are designed
to process collections and documents in MongoDB.

SQL-Middleware [42] provides a different solution.
Instead of modifying the underlying blockchain systems, it
is a portable middleware that abstracts the blockchain into a
SQL-based data management system. To be more specific,
it maps each function of smart contracts into a table. When a
smart contract is called, it records the structured data which
is equivalent to inserting an item into the database.

A Survey on the Integration of Blockchains and Databases﻿	

1 3

3.4 � Ledger

The ledger of a blockchain records either the account state or
the operations on the data in plain text. As it has been intro-
duced in Sect. 2.1, the ledger is distributed to all the nodes
of the network. In such a scenario, the secret data of one
participant are also leaked among the whole system. Thus,
many works try to modify the ledger to keep the privacy of
sensitive data.

The first solution is to encrypt the ledger. Adkins
et al. [66] designed an end-to-end encrypted system, in
which data is encoded rather than stored in plaintext directly.
They proposed three types of encrypted multi-map that ena-
ble efficient query and modification (including add, update,
and, especially, delete) operations. The first is a list-based
encryption scheme (LSX) that makes use of an append-only
data store. Each value of a label is linked by its address
and only the last value is stored with the label. There is a
flag indicating whether it has been deleted. Then, the struc-
ture is encrypted and stored. The other two multi-maps are
arranged in two dimensions, namely the tree-based scheme
(TRX) and the patch-based one (PAX). As for the TRX, the
list is replaced by a binary tree in the consideration of search
efficiency, while in the PAX, multiple operations are packed
into a patch to further improve the efficiency.

Instead of cryptographic methods, LedgerView [76] adds
access control views of traditional databases to permissioned
blockchains. The permission control methods can be classi-
fied from two dimensions, namely encryption-based/hash-
based, and irrevocable/revocable. For the encryption-based
methods, sensitive data are encrypted and stored on-chain.
For the irrevocable view, the owner first creates a unique
symmetric encryption key Ki for each transaction Ti and
encrypts them, denoting them as enc(Ti,Ki) . Then, it pro-
duces a new symmetric key KV for the view and stores the
view as a list enc([tid1,K1,… , tidn,Kn],KV) on the block-
chain. Next, the authenticated users receive the KV from the
owner and access corresponding transactions via KV . For the
revocable views, the lists of transactions and corresponding
keys are stored separately. To revoke the user’s access, the
owner simply generates a new key for the view. However,
when access is revoked under the revocable views, users
may still have access to information they downloaded and
stored locally, but they cannot access and download fur-
ther information. The hash-based methods are similar to the
encryption-based ones, the difference is that data are stored
off-chain and the hashes are used to verify the integrity of
retrieved data.

CAPER [77] is a novel permissioned system that sup-
ports both inter- and intra-application transactions. Instead
of a linear structure, the ledger in CAPER is extended to a
directed acyclic graph (DAG), in which the transactions and
orders are represented as vertexes and edges, respectively.

In such a scenario, each application only maintains the view
from its perspective, in which the order between each trans-
action is determined in a linear formation, while the whole
ledger can be combined by all the views virtually. As for
the inter-application transactions, the hashes of data from
other applications are included. In this way, public records
are copied on all applications, while private records of one
application can only be accessed by the application to ensure
privacy.

3.5 � Discussion

We make the following observations from the aforemen-
tioned representative database-oriented blockchains. First,
techniques from traditional databases (e.g., sharding, index-
ing, and concurrency) benefit current database-oriented
blockchains a lot since they have been examined and proved
efficient in the past decades. It is still important to draw les-
sons from mature optimizing techniques. Second, there are
also several database-oriented blockchains aim to improve
those components unique to the blockchains, such as the
chain-like ledger and the Byzantine resistance consensus
protocol. Given the difference between blockchains and
databases, such components play key roles in the functional-
ity of database-oriented blockchains. Experiments show that
corresponding improvements can greatly improve the per-
formance of the system. Last, more and more database-ori-
ented blockchains adopt multiple technical routes to enhance
its functionality and improve performance. We can conclude
that these technical routes can improve the system in vari-
ous aspects from the previous part of this section. Thus, the
combination of these techniques is a wise and promising way
to develop further database-oriented blockchains.

In a word, the database-oriented blockchains satisfy vari-
ous needs of modern data management, and the development
and improvement of it are with a wide prospect.

4 � Blockchain‑Oriented Databases

The blockchain-oriented databases take off from the data-
base end on the blockchain-database spectrum and aim to
equip the efficient and easy-to-use data management system
with blockchain-powered secure guarantee. They are usu-
ally extended from mature database systems and even the
already-running database instances (which are also called
legacy systems). The key point of designing the blockchain-
oriented databases is to efficiently implement the algorithms
and protocols of the blockchain and minimize the impact on
the base system. There are two mainstream technical routes
to satisfy the requirements, namely blockchain middleware,
and blockchain layer. In Fig. 4, we abstract the general

	 C. Zhu et al.

1 3

architecture of the blockchain-oriented databases and high-
light the mainly modified components.

4.1 � Blockchain Middleware

Though it is mainstream to build a blockchain from the
very beginning and add database features to it in the data-
bases community, the attempt of leveraging the existing
relational databases with rich features and transactional
processing capabilities to build a blockchain is also been
noticed. Nathan et al. [49] studied the feasibility of such
an idea and proposed blockchain relational database. They
first analyzed the similarities between blockchain require-
ments and database features, and then implement a block-
chain on PostgreSQL, an open-sourced relational database.
To be more specific, several middleware and components
are designed. For example, the communication middleware
is used to transfer transactions and blocks, the block proces-
sor handles the received blocks and replays the transactions
in the commit phase, the built-in catalog tables store related
metadata, and several shared memory data structures are
used to process the transactions in different isolation lev-
els. In this way, the traditional stand-alone databases are
equipped with blockchain capabilities with the cost of only
4000 lines of C code.

Since then, more and more researchers develop various
blockchain middleware to enable databases with security

guarantees in different aspects. Lian et al leverage the
immutability of blockchain ledgers to develop a tamper-
proof detection middleware for relational databases, named
TRDB [48]. In TRDB, the original data are stored and pro-
cessed in the relational databases, while the hash digest of
each entry is replicated among the blockchain for tamper
detection. There are two additional considerations, namely
data privacy and supporting relational semantics in block-
chains. For the first one, AES is used to encrypt the origi-
nal data to protect them from the transparency nature of
blockchains. To solve the second problem, TRDB concat-
enates both rows and columns of each table to detect illegal
insertion, deletion, and modification. What’s more, TRDB
caches the encrypted data with LRU strategy before it has
been logged on chain to improve the data access efficiency.
Thus, when querying the data, TRDB first intercepts the
SQL request and executes it in the relational database, then
it accesses the cache or the blockchain and subsequently
compares the query results with the calculated digest. When
a tamper is detected, TRDB warns of the misconduct behav-
ior and returns the information to the user. Similar works
include [110] and [111]. The former directly stores the raw
data on the blockchain, while the latter concentrates on
image data.

Beirami et al. [51] propose several additional built-in
attributes for each relational table to simulate block headers
in blockchains that support verifiable immutable transac-
tions. The attributes include the transaction timestamp (i), a
new table signature ( sigi ), the previous table signature ( sig′

i
 ),

the user public key(pubkey), and a bit flag to indicate if the
transaction is a deletion (del). The two signatures serve as
the hash pointer of blockchain, while others are similar to
the corresponding fields in block headers. Note that these
attributes are calculated and inserted into the augmented
tuple implicitly whenever the table is modified, which means
they are transparent to the users. Given a transaction T, the
system compares whether enc(sigt, pubkey) = hash(T , sigt−1)
holds to verify its validity.

4.2 � Blockchain Layer

Different from the simple additions of the middleware solu-
tions, a blockchain layer means stepping inside the under-
lying databases and modifying the existing components.
Though it may require more effort, such a solution allows
researchers to adjust the inner workflow and improve the
performance of the whole system.

Blockchain PG [47] adds the blockchain function to data-
bases to ensure data integrity, and achieve the traceability
of data through trace query. It is a permissioned system that
requires a CA to prove the identity of clients. The core com-
ponent of the system is PostgreSQL+ (derived from Post-
greSQL), whose “blockchain layer” can be further divided

API

Application Layer

Middlewares

Data
Layer

Index

Relational Model

Chain Structure

Consensus Layer

Network Layer

Blockchain
Layer

...Column2Column1 Timestemp PrevHash

Fig. 4   Architecture of blockchain-oriented databases 

A Survey on the Integration of Blockchains and Databases﻿	

1 3

into four sub-layers. The user layer provides interfaces to
the clients, and verifies the user’s identity with the public
key; the query layer generates an optimal plan for authenti-
cated queries to boost the query processing; the index layer
provides authenticated indexes on data stored in the source
layer, in which data are stored in an append-only behavior.

BigchainDB [112] is a commercial database-style dis-
tributed storage system that combines the key benefits of
both distributed databases and blockchains. In fact, it is built
on top of two existing RethinkDB [113] instances, namely
S (stores an unordered set of transactions and serves as a
backlog) and C (stores ordered list of blocks that forms a
blockchain), and directly inherits the strength from data-
bases. To enable BigchainDB with decentralized control
and immutability, the authors built a blockchain layer that
connects S and C with BigchainDB Consensus Algorithm
(BCA) that is in charge of transaction assigning and voting.

HBasechainDB [52] adopts the same philosophy, yet it
is built on Apache HBase [31], a column-based distributed
database for big data. The workflow of transaction process-
ing is quite similar to traditional blockchains such as Bitcoin
– a transaction is first submitted to a transaction pool of a
specific node, then the node verifies the transactions, packs
all valid transactions in a block, and broadcasts to other
nodes. When the majority votes for a block, it is considered
to be valid and appended to the ledger, while the transactions
in the invalid blocks are reassigned to other nodes randomly
until it is included in the chain or removed from the system.
Note that there is no need to worry about the competition
between the miners and the resulting forks in practice, since
HBase is of strong consistency, and the blocks are voted in
the order of their timestamp. Due to the different data model,
the authors designed 6 HBase tables, namely backlog,
block, hbasechaindb, toVote, vote, and refer-
ence, in which backLog serves as the transaction pool
and reference is an index table the maps transaction id
and the content.

chainifyDB [50, 81] is a permissioned blockchain-like
system built on heterogeneous database systems. The authors
pointed out that blockchains and traditional DBMSs share
considerable parts of their processing stack and “chainfied”
existing databases by introducing a blockchain layer. To
unify the heterogeneous underlying databases, a new trans-
action processing model called Whatever-Voting (WV) is
proposed. It consists of two phases and only focuses on the
results. In particular, each underlying database does what-
ever necessary to process the transactions and produces
a digest of its behavior in the Whatever-phase, and each
participant votes for the digest of W-phase in the Voting-
phase. Only when an agreement is reached, the state changes
are committed to a ledger by the individual organizations.
chainifyDB instantiates the WV model by batching the pro-
posed transactions and ordering them within a block. Then,

the organizations use the WV model to reach a consensus
on each block. For now, chainifyDB supports MySQL and
PostgreSQL.

4.3 � Discussion

In this section, we review representative works about the
blockchain-oriented databases and identify two mainstream
technical routes to implement it. We can conclude from the
analysis that the hash-chain feature of blockchains, along
with the multi-node consensus and backup mechanism,
becomes important reinforcement of traditional databases’
data integrity protection measures. The integration of block-
chain features helps databases to further complete their
functionality.

However, we also notice that the two technical routes
have pros and cons. There exists a trade-off between flex-
ibility and performance. In particular, building a blockchain
middleware is easy and less intrusive. It can also bridge het-
erogeneous database instances with the same data model,
which provides better portability and suits the inter-organi-
zation collaboration scenario. On the other hand, designing
a blockchain layer for a specific database instance makes it
possible to further optimize the components and provides
higher performance. To sum up, the blockchain middleware
is more friendly to the legacy systems, and the blockchain
layer is more efficient. We further compare the works in
Table 4.

5 � Hybrid Systems

The hybrid systems locate in the center of the blockchain-
database spectrum. Different from the other fusion systems
which focus on either security or performance, they are
equal combinations of blockchain and database, and reach
a balance between the two aspects. Though it is indeed that
the hybrid systems are less competitive than the other fusion
systems in most scenarios, the balanced and comprehensive
functionality enables them to cope with the basic secure data
management tasks and focus on more complex requirements.
In fact, many hybrid systems are designed to handle compli-
cated problems in practical scenarios, such as graph data and
the conflict situation between morals and laws.

The integration of the hybrid systems usually relies on
middleware to connect the existing blockchain and database
instances, and we present the abstract architecture of hybrid
systems in Fig. 5.

5.1 � Representative Systems

Instead of representing the relationship in abstract attributes,
graph databases directly store and process the relationship

	 C. Zhu et al.

1 3

of entities in the formation of vertexes and edges. The native
graph storage and processing enable the graph databases
with superior traversal performance; however, the plain KV
model limits blockchains to processing such complicated
data as the graph databases do. To enable the verifiable audit
trail of data integrity and its modifications for information
stored in a graph database, Ermolaev et al. [46] combine an
Exonum [114] blockchain and Neo4j [33], the most popular
graph database management system, into a single system. To
be more specific, each Neo4j instance handles the data store
and management, while the Exonum undertakes the role of
verifiable operation log. Unlike blockchains that maintain

data on the chain, the authors adopt a two-step solution that
the blockchain first reaches an agreement on the modifica-
tions of graph data, and then each Neo4j instance executes
the operations locally. In this way, the computation com-
plexity and the durability of the consensus process can be
greatly lowered.

In the situation of personal data management such as stu-
dent data and medical records, there exists a conflict between
personal privacy and public interests, i.e., stakeholders want
to claim the ownership of their personal data and restrict
third parties to access their data, while such a restriction
may hinder the third parties to make use of these data in
governance or innovation. Though blockchain and smart
contract seems to be a promising solution to this problem,
it is not practical since current blockchains cannot store and
process such a massive amount of data. Bertram et al. [45]
combine blockchain and databases to enable users to con-
trol the ownership of their private data. The system con-
sists of three components. The core is a distributed database
(e.g., BigchainDB [112]) that stores user data except iden-
tifying information. There is also a centralized MongoDB
that stores user identity information. Finally, there is also
a blockchain that links the two components. In particular,
individual-specific smart contracts manage the map between
the user identifier and his personal data. When a user decides
to revoke access, he simply updates his identity in the cen-
tralized database but leaves the smart contract unchanged.
Then, all third parties will lose track of this data entry while
making use of the de-identified data.

The hybrid systems are also used to simultaneously man-
age data in blockchain and database platforms. This is from
the observation that each platform has its solid advantage at
the current stage. Thus, the most practical way is to build a
combination system such that inherits both the resistance to

Table 4   Summary of representative blockchain-oriented databases 

a We present the best result that is reported in the paper
bThe authors claim that their systems are suitable for any relational database, here we present the database they used in the experiments

Category System Underlying databases Performancea Features and functionalities

Blockchain middleware Blockchain relational
Database [49]

PostgreSQLb 2500 tps (Throughput) Transform with a trivial amount
of code

TRDB [48] MySQL b 92.04%
(Change in middleware execution

efficiency compared to baseline)

Support tamper-proof detection

Beirami et al. [51] PostgreSQLb 50x (Improvement of throughput) Support verifiable immutable
transaction process

Blockchain layer Blockchain PG [47] PostgreSQLb N/A Transform from legacy systems

BigchainDB [112] RethinkDB 1,000,000 tps (Throughput) Commercial system with high
performance

HBasechainDB [52] HBase 5893 tps (Throughput) Suitable for big data scenarios
ChainifyDB [50, 81] MySQL,

PostgreSQL b
5000 tps (Throughput) Support heterogeneous database

systems

Middleware

Blockchain

Instance

Database

Instance

Fig. 5   Architecture of hybrid systems 

A Survey on the Integration of Blockchains and Databases﻿	

1 3

data modification from blockchain and the query speed from
the distributed databases. ChainSQL [115] is an implemen-
tation of the above scheme that ensures data integrity and
fast query processing. It provides APIs that support opera-
tions in SQL and JSON format. In ChainSQL, the block-
chain reaches the consensus of each transaction and stores
the operations. After that, the transactions are forwarded to
and executed in the database, and the actual data are also
stored in the database. What’s more, ChainSQL can also
serve as a disaster recovery backup since the operations are
logged on a trustworthy platform, i.e., the blockchain.

The authors of MOON [44] hold another view of simul-
taneous data management. They believe that neither of the
platforms suits all types of data, thus they aim to partition
the data to either blockchain or database, and expose unified
interfaces to developers and final users. In general, MOON
intercepts users’ requests and redirects them to the platform
that holds the data. When it comes to the situation that needs
to process data from both platforms, MOON will retrieve
data from the blockchain to a temporary table of the data-
base and execute corresponding operations there to make full
use of the mature data processing capability of databases.
The authors also conduct a case study on clinical laboratory
tests to find which platform is more suitable to hold differ-
ent types of data, i.e., how to partition the data entries. They
suggest that the data needed to change frequently should be
stored in the database, while those persistent are more suit-
able to the blockchain.

5.2 � Discussion

Table 5 summarizes the representative hybrid systems.
Although there have been numerous studies and applica-
tions of other fusion systems, we can draw from the above
analysis the unique value of hybrid systems. By directly
integrating blockchain and database instances, the hybrid
systems acquire a balanced and sufficient ability of integ-
rity and fast data processing from both systems, which can
satisfy the needs of most application scenarios. With such

a solid foundation, we can further explore some compli-
cated problems in secure data processing (e.g., data own-
ership management), which may be the most important
application scenario of hybrid systems.

We also observe that the direct integration of several
instances results in a bloated and redundant system that
requires more resources than the database-oriented block-
chains or blockchain-oriented databases. For example, the
manipulation logs on the actual data are stored both as on-
chain data on the blockchain instance and as WAL logs in
the database instance. How to minimize the redundancy
and make full use of the instances is a promising direction
for hybrid systems in the future.

6 � Discussion

6.1 � Comparison

Based on the above analysis, we compare the three fusion
systems within different dimensions in Table 6. We can
draw the conclusion that each of the fusion systems has
its unique advantages and suitable scenarios. In particu-
lar, blockchain-oriented databases suit the scenarios that
value security most and want to improve the data process-
ing capability, while blockchain-oriented databases are
the best choice to satisfy the security needs of the effi-
ciency-first applications. Hybrid systems provide a balance
between data management capabilities and blockchain
benefits, making them a viable option for many use cases.
Thus, the three systems are of equal importance, since the
three systems satisfy different urgent demands in the data
management field.

We also observe the increasing trend in the research of
database-oriented blockchain, which shows that people pay
more attention to data security. Therefore, we suggest further
studies of this aspect and expect a more competitive system
based on the massive views in this field.

Table 5   Summary of
representative hybrid systems 

aThe inconsistency comes from the underlying nature of fusion systems, depending on the authors’ focus
on its functionality

System Blockchain Database Research field

Ermolaev et al. [46] Exonum Neo4j Graph Data
Bertram et al. [45] Etherum Big-

chainDBa (User
Data),

MongoDB
(User Iden-
tity)

Data Ownership Management

ChainSQL [115] Ripple Any Data Integration of Blockchain and Database
MOON [44] BigchainDBa PostgreSQL Data Partition between Blockchain and Database

	 C. Zhu et al.

1 3

6.2 � Challenges and Future Works

Numerous cases have shown that there are strengths and
weaknesses of blockchains and databases in the data man-
agement field, thus the integration of both systems to bet-
ter undertake the task has become a promising solution in
the database community. However, it is not an easy way.
In this section, we present our observation on the research
challenges and future opportunities in the integration of
blockchains and databases, i.e., the fusion systems, from
the aspects of performance, privacy, data description ability,
new hardware, learning-based optimization, and application.

6.2.1 � Performance

Performance is the most important feature of a data manage-
ment system that is perceived by the users. Consequently,
it is one of the most critical indicators to evaluate such a
system. However, we have observed that there is still a huge
performance gap between the fusion systems and mature
commercial databases. This is due to the linear nature,
one of the fundamental features of blockchain, hindering
the transaction processing rate of blockchains and the suc-
ceeding fusion systems. To solve the problem, there are two
parallel-but-associated targets, which affect two main opera-
tions (query and modification) in a data management system,
respectively.

One is to build efficient indexes on the target data to
accelerate data access. It is relatively easy for the off-chain
part since the indexes of databases can achieve a satisfying
performance. However, for the on-chain data, it is proved in
practice that the design of new block data storage structure
and corresponding indexes can effectively improve the query
function and query performance. The index of on-chain data

can either serve for real-time transaction verification [41, 67,
72] or improve the access efficiency of transaction history
information [73–75]. In a word, a proper index of on-chain
data provides not only higher real-time access efficiency
in terms of performance, but also supports the traceability
query based on historical data in terms of functionality.

The other is to improve the consensus mechanism, which
is the key to ensuring the consistency of transaction execu-
tion among the participants, thus it has a great impact on
the overall performance and application of blockchains and
fusion systems. It is important to reach a balance between
efficiency and consistency, but there are two main drawbacks
and opportunities of current blockchain consensus mecha-
nisms. First, the serial execution of transactions does not
fully make use of the concurrency ability of modern multi-
processors, so it is a good idea to improve the concurrency
of transactions [60, 63, 64]. What’s more, the abort rate in a
high contention environment also encumbers the ability to
process transactions. Therefore, how to effectively eliminate
the conflicts remains to be researched [21, 22].

6.2.2 � Privacy

In the blockchain environment, all data and transactions
need to be replicated to all nodes to obtain consensus. As a
consequence, sensitive data may be accessed by unauthor-
ized third parties, and cannot be managed in the blockchain
environment. The fusion systems also face such a problem.
The key lies in the access control of private data. However,
directly applying access control methods for databases to the
blockchain will result in the hash value of each block can-
not correspond to the data obtained, so users cannot verify
whether the data in the chain has been tampered with. This
is a difficulty that remains to be solved.

Table 6   A high-level comparison between three fusion systems

Database-oriented Blockchains Hybrid Systems Blockchain-oriented Databases

Applicable Scenarios Guarantee data security while
Improving data processing capa-
bility

Acquire balanced properties from
both sides and reduce modifications
to legacy systems

Retain the data processing capabil-
ity while enhancing security

Representative Systems SEBDB [41],
ForkBase [73],
SlimChain [61],
SE-Chain [72],
BrokerChain [56]

Ermolev et al. [46],
MOON [44]

TRDB [48],
BigchainDB [112]

Specific Techniques Index, Sharding,
Concurrency,
Data Model, Ledger

Customizable Middleware Cryptography

Advantages Decentralized,
Data Security,
Tamper-proof,
Auditable

Low Coupling,
Balanced Security-Performance

Guarantee

High Performance,
Easy-to-use, Privacy-friendly,
Resource Efficient

A Survey on the Integration of Blockchains and Databases﻿	

1 3

Fortunately, with the help of database techniques, several
promising solutions can be further studied. For example, the
system can store sensitive data in the databases (off-chain)
which have better support for data privacy [41], or learn
lessons from database view to manage on-chain data with
access control [76]. Other technique routes include cross-
chain and cryptographic protection.

6.2.3 � Data Description Ability

The development of the Internet applications has spawned a
variety of data forms, such as graph data and document data.
Many existing studies in blockchain and database fusion sys-
tems support and extend key-value model [39, 40] and rela-
tional model [41, 42, 44, 47–51]. However, supports for the
new forms of data are not common in fusion systems, and
the data description capability in blockchain fusion systems
needs to be improved.

For example, graph databases are a rapidly evolving field
with many active research directions. Graph mining and
analysis involves extracting useful information and insights
from large-scale graph data. By integrating graph databases
with blockchains, transactional relationships can be analyzed
in a secure and decentralized manner [116].

6.2.4 � New Hardware

Recently, there is a notable development of various types of
hardware related to blockchains. For example, the success of
Bitcoin has led to the emergence of dedicated hardware such
as Field Programmable Gate Array (FPGA) and GPU, which
has greatly increased the efficiency of hash computing. In
turn, how to make full use of these emerging hardware in
the fusion systems to better manage data is an interesting
topic for the database community. Here we present several
observations.

A trusted execution environment (TEE) provides an iso-
lated memory that resists outside corruption and ensures
secure computing at the hardware level, which lowers the
security assumption to a certain extent. Thus, there is an
opportunity to improve other aspects of blockchains, espe-
cially in the terms of performance [62, 64, 69, 70]. GPU
supports parallel computing of large amounts of data, and it
is a promising idea to utilize its parallel processing capabil-
ity in boosting the data processing of fusion systems [117].

6.2.5 � Learning‑Based Optimization

Machine learning has been extensively studied over the
past decades. It simulates human learning behaviors with
high computing power to acquire new knowledge or skills,
and has been widely applicated in database optimizations
such as cost estimation, join order selection, and end-to-end

optimizer [118]. We believe that it will also gain huge suc-
cess in the optimization of blockchain-database fusion
systems.

For example, the data distribution in sharding blockchains
can greatly affect the efficiency of data access. However,
current sharding systems usually adopt a naive rule such as
prefix/suffix-based, which may not suit the real data distribu-
tion. In this way, machine learning-based rules can capture
the pattern and boost data access [119]. Other applications
include misbehavior detection of nodes [120, 121] and vul-
nerability analysis of smart contracts [122, 123].

6.2.6 � Domain‑Specific Application

The collectively maintained and tamper-resistant public
ledger of blockchain systems ensures the security and reli-
ability of the data stored in a distributed network. In addition
to general-purposed data management, blockchain-database
fusion systems can also bring new solutions to many specific
domains. We notice that more and more people combine
their original business systems with blockchains to form a
domain-specific fusion system in various fields. There is a
trend that leverages blockchain characteristics to solve the
drawbacks of the business system, and improve the short-
comings and limitations of the blockchain system itself.
However, applications in various fields have also posed more
challenges.

Take finance as an example. The processing capacity of
the blockchains is not enough to replace the existing central-
ized trading system. Therefore, it is important to improve the
consensus mechanism to adapt to high throughput financial
transaction applications. As for the supply chain, it is nec-
essary to equip the system with a traceability model that
fits the industrial supply chain scenario to promote verifi-
able data sharing in supply chain management. Other appli-
cations such as intellectual property management, asset
delivery, and medical data management, also have different
requirements for the fusion system.

7 � Conclusion

In this survey, we present the integrating trend of block-
chains and traditional databases, and propose a block-
chain-database spectrum to analyze the work related to the
fusion systems in the field of data management. First, we
classify the fusion systems into database-oriented block-
chains, blockchain-oriented databases, and hybrid systems,
and present a high-level comparison according to the dif-
ferent directions of their integration. Then, we review the
representative fusion systems of database-oriented block-
chains, blockchain-oriented databases, and hybrid systems.
To be more specific, we review representative systems of

	 C. Zhu et al.

1 3

database-oriented blockchains from index, protocol, data
model, and ledger; we analyze blockchain middleware and
blockchain layer scheme of blockchain-oriented databases;
we also demonstrate the combination approaches and ori-
ented research fields of different hybrid systems. Finally, we
present a high-level comparison between the three fusion
systems and our observations on the challenges and future
work.

We believe that this survey demonstrates the current
status and limitations of existing blockchain-related data
management research and provides insight for researchers
to conduct in-depth research in this area.

Acknowledgements  Not applicable.

Author Contributions  C.Z.: Conceptualization, Methodology, Litera-
ture search, Data analysis, Investigation, Writing - original draft; J.L.:
Literature search, Data analysis, Investigation, Writing - original draft,
Visualization; Z.Z.: Data analysis, Writing - review & editing; C.Y.:
Writing - review & editing; M.Z.: Writing - review & editing, Funding
acquisition, Supervision.

Funding  This work is supported by National Natural Science Founda-
tion of China (62072033).

Availability of Data and Materials  Not applicable.

Declarations 

Conflict of interest  We declare that authors have no known competing
interests or personal relationships that might be perceived to influence
the discussion reported in this paper.

Ethics Approval  Not applicable.

Consent to Participate  Not applicable.

Consent for Publication  Not applicable.

Code Availability  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash sys-
tem. Decentralized Business Review, 21260

	 2.	 Croman K, Decker C, Eyal I, Gencer AE, Juels A, Kosba A,
Miller A, Saxena P, Shi E, Sirer EG, Song D, Wattenhofer R

(2016) On scaling decentralized blockchains (a position paper),
vol. 9604 LNCS. Christ Church, Barbados, pp 106–125. https://​
doi.​org/​10.​1007/​978-3-​662-​53357-4_8

	 3.	 Hong A, Sun C, Chen M (2020) A survey of distributed database
systems based on blockchain. In: 2020 3rd International Con-
ference on Smart BlockChain (SmartBlock). IEEE, Zhengzhou,
China, pp 191–196. https://​doi.​org/​10.​1109/​Smart​Block​52591.​
2020.​00042

	 4.	 Przytarski D, Stach C, Gritti C, Mitschang B (2021) Query
processing in blockchain systems: current state and future chal-
lenges. Future Internet 14(1):1. https://​doi.​org/​10.​3390/​fi140​
10001

	 5.	 Zhang J, Zhong S, Wang T, Chao H-C, Wang J (2020) Block-
chain-based systems and applications: a survey. J Internet Tech-
nol 21(1):1–14. https://​doi.​org/​10.​3966/​16079​26420​20012​
101001

	 6.	 Wang Q-g, He P, Nie T-z, Shen D-r, Yu G (2018) Survey of data
storage and query techniques in blockchain systems. Comput Sci
45(12):7. https://​doi.​org/​10.​11896/j.​issn.​1002-​137X.​2018.​12.​002

	 7.	 Zhang C-g, Zhang Y-f, Li X-h, Nie T-z, Yu G (2020) Survey of
new blockchain techniques: Dag based blockchain and shard-
ing based blockchain. Comput Sci 47(10):8. https://​doi.​org/​10.​
11896/​jsjkx.​19100​0057

	 8.	 Qian W, Jin C, Shao Q, Zhou A (2018) Blockchain and sharing
database. Big Data Res 4(1):10. https://​doi.​org/​10.​11959/j.​issn.​
2096-​0271.​20180​04

	 9.	 Huang HW, Kong W, Peng XW, Zheng ZB (2022) Survey on
blockchain sharding technology. Comput Eng 48(6):10. https://​
doi.​org/​10.​19678/j.​issn.​1000-​3428.​00638​87

	 10.	 Yu G, Wang X, Yu K, Ni W, Zhang JA, Liu RP (2020) Survey:
Sharding in blockchains. IEEE Access 8:14155–14181. https://​
doi.​org/​10.​1109/​ACCESS.​2020.​29651​47

	 11.	 Yu G, Nie T-Z, Li X-H, Zhang Y-F, Shen D-R, Bao Y-B (2021)
The challenge and prospect of distributed data management
techniques in blockchain systems. Comput Sci 044(001):28–53.
https://​doi.​org/​10.​11897/​SP.J.​1016.​2021.​00028

	 12.	 Zhang Z-W, Wang G-R, Xu J-L, Du X-Y (2020) Survey on data
management in blockchain systems. Ruan Jian Xue Bao/J Softw
9:23. https://​doi.​org/​10.​13328/j.​cnki.​jos.​006091

	 13.	 Ruan P, Dinh TTA, Loghin D, Zhang M, Chen G, Lin Q, Ooi
BC (2021) Blockchains vs. distributed databases: Dichotomy and
fusion. In: Proceedings of the 2021 international conference on
management of data. SIGMOD ’21. Association for Computing
Machinery, New York, NY, USA, , pp 1504–1517. https://​doi.​
org/​10.​1145/​34480​16.​34527​89

	 14.	 Ge Z, Loghin D, Ooi BC, Ruan P, Wang T (2022) Hybrid block-
chain database systems: design and performance. Proc VLDB
Endow 15(5):1092–1104. https://​doi.​org/​10.​14778/​35103​97.​
35104​06

	 15.	 Buterin V et al (2014) A next-generation smart contract and
decentralized application platform. White Paper 3(37):2-1

	 16.	 Buchmann J, Dahmen E, Schneider M (2008) Merkle tree tra-
versal revisited. In: Post-quantum cryptography. Springer, Berlin,
pp 63–78. https://​doi.​org/​10.​1007/​978-3-​540-​88403-3_5

	 17.	 Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis
K, Caro AD, Enyeart D, Ferris C, Laventman G, Manevich Y,
Muralidharan S, Murthy C, Nguyen B, Sethi M, Singh G, Smith
K, Sorniotti A, Stathakopoulou C, Vukolic M, Cocco SW, Yel-
lick J (2018) Hyperledger fabric: a distributed operating system
for permissioned blockchains. In: Proceedings of the thirteenth
EuroSys conference, EuroSys 2018, Porto, Portugal, April
23–26, 2018, pp. 30–13015. ACM, New York, NY, USA . https://​
doi.​org/​10.​1145/​31905​08.​31905​38

	 18.	 Castro M, Liskov B et al (1999) Practical byzantine fault toler-
ance. In: OsDI, 99:173–186

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1109/SmartBlock52591.2020.00042
https://doi.org/10.1109/SmartBlock52591.2020.00042
https://doi.org/10.3390/fi14010001
https://doi.org/10.3390/fi14010001
https://doi.org/10.3966/160792642020012101001
https://doi.org/10.3966/160792642020012101001
https://doi.org/10.11896/j.issn.1002-137X.2018.12.002
https://doi.org/10.11896/jsjkx.191000057
https://doi.org/10.11896/jsjkx.191000057
https://doi.org/10.11959/j.issn.2096-0271.2018004
https://doi.org/10.11959/j.issn.2096-0271.2018004
https://doi.org/10.19678/j.issn.1000-3428.0063887
https://doi.org/10.19678/j.issn.1000-3428.0063887
https://doi.org/10.1109/ACCESS.2020.2965147
https://doi.org/10.1109/ACCESS.2020.2965147
https://doi.org/10.11897/SP.J.1016.2021.00028
https://doi.org/10.13328/j.cnki.jos.006091
https://doi.org/10.1145/3448016.3452789
https://doi.org/10.1145/3448016.3452789
https://doi.org/10.14778/3510397.3510406
https://doi.org/10.14778/3510397.3510406
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538

A Survey on the Integration of Blockchains and Databases﻿	

1 3

	 19.	 Golan Gueta G, Abraham I, Grossman S, Malkhi D, Pinkas B,
Reiter M, Seredinschi D-A, Tamir O, Tomescu A (2019) SBFT:
A Scalable and Decentralized Trust Infrastructure. In: 2019
49th Annual IEEE/IFIP international conference on dependable
systems and networks (DSN). IEEE, Portland, OR, USA, pp
568–580. https://​doi.​org/​10.​1109/​DSN.​2019.​00063

	 20.	 Liu J, Li W, Karame GO, Asokan N (2019) Scalable byzantine
consensus via hardware-assisted secret sharing. IEEE Trans
Comput 68(1):139–151. https://​doi.​org/​10.​1109/​TC.​2018.​28600​
09

	 21.	 Sharma A, Schuhknecht FM, Agrawal D, Dittrich J (2019) Blur-
ring the Lines between Blockchains and Database Systems: The
Case of Hyperledger Fabric. In: Proceedings of the 2019 inter-
national conference on management of data. ACM, Amsterdam,
pp 105–122. https://​doi.​org/​10.​1145/​32998​69.​33198​83

	 22.	 Ruan P, Loghin D, Ta Q-T, Zhang M, Chen G, Ooi BC (2020) A
transactional perspective on execute-order-validate blockchains.
In: Proceedings of the 2020 ACM SIGMOD international con-
ference on management of data. Association for Computing
Machinery, New York, NY, USA, pp 543–557. https://​doi.​org/​
10.​1145/​33184​64.​33896​93

	 23.	 Gorenflo C, Lee S, Golab L, Keshav S (2019) FastFabric: scaling
hyperledger fabric to 20,000 transactions per second. In: 2019
IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC). IEEE, Seoul, Korea (South), pp 455–463. https://​
doi.​org/​10.​1109/​BLOC.​2019.​87514​52

	 24.	 Gorenflo C, Golab L, Keshav S (2020) XOX fabric: a hybrid
approach to blockchain transaction execution. In: 2020 IEEE
international conference on blockchain and cryptocurrency
(ICBC). IEEE, Toronto, ON, Canada, pp 1–9. https://​doi.​org/​
10.​1109/​ICBC4​8266.​2020.​91694​78

	 25.	 Matallah H, Belalem G, Bouamrane K (2021) Comparative study
between the mysql relational database and the mongodb nosql
database. Int J Softw Sci Comput Intell 13(3):38–63. https://​doi.​
org/​10.​4018/​IJSSCI.​20210​70104

	 26.	 Almeida F, Silva P, Araújo F (2019) Performance analysis
and optimization techniques for oracle relational databases.
Cybern Inf Technol 19(2):117–132. https://​doi.​org/​10.​2478/​
cait-​2019-​0019

	 27.	 Podgorelec B, Turkanović M, Šestak M (2020) A brief review of
database solutions used within blockchain platforms. In: Prieto J,
Pinto A, Das AK, Ferretti S (eds) Blockchain and Applications.
Springer, Cham, pp 121–130. https://​doi.​org/​10.​1007/​978-3-​030-​
52535-4_​13

	 28.	 Olson MA, Bostic K, Seltzer MI (1999) Berkeley DB. In: Pro-
ceedings of the FREENIX Track: 1999 USENIX annual techni-
cal conference, June 6–11, 1999, Monterey, California, USA, pp
183–191

	 29.	 Liu Q, Yuan H (2019) A high performance memory key-value
database based on redis. J Comput 14(3):170–183. https://​doi.​
org/​10.​17706/​jcp.​14.3.​170-​183

	 30.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows
M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distrib-
uted storage system for structured data. ACM Trans Comput Syst
26(2):4–1426. https://​doi.​org/​10.​1145/​13658​15.​13658​16

	 31.	 Vora MN (2011) Hadoop-hbase for large-scale data, vol. 1. Har-
bin, China, pp 601–605. https://​doi.​org/​10.​1109/​ICCSNT.​2011.​
61820​30

	 32.	 Chickerur S, Goudar A, Kinnerkar A (2015) Comparison of rela-
tional database with document-oriented database (mongodb) for
big data applications. In: 2015 8th International conference on
advanced software engineering and its applications (ASEA), pp
41–47. https://​doi.​org/​10.​1109/​ASEA.​2015.​19

	 33.	 Guia J, Soares VG, Bernardino J (2017) Graph databases: Neo4j
analysis, vol. 1. Porto, Portugal, pp 351–356 . https://​doi.​org/​10.​
5220/​00063​56003​510356

	 34.	 Ahmad K, Ansari M (2017) Hands-On InfluxDB, pp 341–354.
https://​doi.​org/​10.​1201/​97813​15155​579

	 35.	 Bacon DF, Bales N, Bruno N, Cooper BF, Dickinson A, Fikes A,
Fraser C, Gubarev A, Joshi M, Kogan E, Lloyd A, Melnik S, Rao
R, Shue D, Taylor C, van der Holst M, Woodford D (2017) Span-
ner: Becoming a sql system. In: Proceedings of the 2017 ACM
international conference on management of data. Association
for Computing Machinery, New York, NY, USA, pp 331–343.
https://​doi.​org/​10.​1145/​30359​18.​30561​03

	 36.	 Taft R, Sharif I, Matei A, VanBenschoten N, Lewis J, Grieger
T, Niemi K, Woods A, Birzin A, Poss R, Bardea P, Ranade
A, Darnell B, Gruneir B, Jaffray J, Zhang L, Mattis P (2020)
Cockroachdb: The resilient geo-distributed sql database. In:
Proceedings of the 2020 ACM SIGMOD international confer-
ence on management of data, pp 1493–1509. Association for
Computing Machinery, New York, NY, USA. https://​doi.​org/​
10.​1145/​33184​64.​33861​34

	 37.	 Huang D, Liu Q, Cui Q, Fang Z, Ma X, Xu F, Shen L, Tang
L, Zhou Y, Huang M, Wei W, Liu C, Zhang J, Li J, Wu X,
Song L, Sun R, Yu S, Zhao L, Cameron N, Pei L, Tang X
(2020) Tidb: a raft-based htap database. Proc VLDB Endow
13(12):3072–3084 https://​doi.​org/​10.​14778/​34154​78.​34155​35

	 38.	 Verbitski A, Gupta A, Saha D, Brahmadesam M, Gupta K,
Mittal R, Krishnamurthy S, Maurice S, Kharatishvili T, Bao X
(2017) Amazon aurora: design considerations for high through-
put cloud-native relational databases. In: Proceedings of the
2017 ACM international conference on management of data.
Association for Computing Machinery, New York, NY, USA,
pp 1041–1052. https://​doi.​org/​10.​1145/​30359​18.​30561​01

	 39.	 Konashevych O (2019) Cross-blockchain databases for gov-
ernments: the technology for public registries and smart laws.
SSRN Electron J. https://​doi.​org/​10.​2139/​ssrn.​35372​58

	 40.	 Tseng L, Yao X, Otoum S, Aloqaily M, Jararweh Y (2020)
Blockchain-based database in an IoT environment: challenges,
opportunities, and analysis. Clust Comput 23(3):2151–2165.
https://​doi.​org/​10.​1007/​s10586-​020-​03138-7

	 41.	 Zhu Y, Zhang Z, Jin C, Zhou A, Yan Y (2019) SEBDB: seman-
tics empowered BlockChain DataBase. In: 2019 IEEE 35th
International conference on data engineering (ICDE). IEEE,
Macao, Macao, pp 1820–1831. https://​doi.​org/​10.​1109/​ICDE.​
2019.​00198

	 42.	 Tong X, Tang H, Jiang N, Fan W, Gao Y, Deng S, Zhang Z, Jin
C, Yang Y, Qin G (2021) SQL-middleware: enabling the block-
chain with SQL. In: Jensen CS, Lim E-P, Yang D-N, Lee W-C,
Tseng VS, Kalogeraki V, Huang J-W, Shen C-Y (eds) Database
systems for advanced applications vol. 12683. Springer, Cham,
, pp 622–626. https://​doi.​org/​10.​1007/​978-3-​030-​73200-4_​48

	 43.	 Li Y, Zheng K, Yan Y, Liu Q, Zhou X (2017) EtherQL: a query
layer for blockchain system. In: Candan S, Chen L, Pedersen
TB, Chang L, Hua W (eds) Database systems for advanced
applications vol 10178. Springer, Cham, pp 556–567. https://​
doi.​org/​10.​1007/​978-3-​319-​55699-4_​34

	 44.	 Carlos Marinho SS, Filho JSC, Moreira LO, Machado JC
(2020) Using a Hybrid Approach to Data Management in
Relational Database and Blockchain: A Case Study on The
E-health Domain. In: 2020 IEEE international conference on
software architecture companion (ICSA-C), pp 114–121. IEEE,
Salvador, Brazil. https://​doi.​org/​10.​1109/​ICSA-​C50368.​2020.​
00030

	 45.	 Bertram S, Georg C-P (2018) A privacy-preserving system for
data ownership using blockchain and distributed databases.
arXiv.​ arXiv:​1810.​11655

	 46.	 Ermolaev V, Klangberg I, Madhwal Y, Vapper S, Wels S,
Yanovich Y (2020) Incorruptible auditing: blockchain-powered
graph database management. In: 2020 IEEE international confer-
ence on blockchain and cryptocurrency (ICBC). IEEE, Toronto,

https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/TC.2018.2860009
https://doi.org/10.1109/TC.2018.2860009
https://doi.org/10.1145/3299869.3319883
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1109/BLOC.2019.8751452
https://doi.org/10.1109/BLOC.2019.8751452
https://doi.org/10.1109/ICBC48266.2020.9169478
https://doi.org/10.1109/ICBC48266.2020.9169478
https://doi.org/10.4018/IJSSCI.2021070104
https://doi.org/10.4018/IJSSCI.2021070104
https://doi.org/10.2478/cait-2019-0019
https://doi.org/10.2478/cait-2019-0019
https://doi.org/10.1007/978-3-030-52535-4_13
https://doi.org/10.1007/978-3-030-52535-4_13
https://doi.org/10.17706/jcp.14.3.170-183
https://doi.org/10.17706/jcp.14.3.170-183
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/ICCSNT.2011.6182030
https://doi.org/10.1109/ICCSNT.2011.6182030
https://doi.org/10.1109/ASEA.2015.19
https://doi.org/10.5220/0006356003510356
https://doi.org/10.5220/0006356003510356
https://doi.org/10.1201/9781315155579
https://doi.org/10.1145/3035918.3056103
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.2139/ssrn.3537258
https://doi.org/10.1007/s10586-020-03138-7
https://doi.org/10.1109/ICDE.2019.00198
https://doi.org/10.1109/ICDE.2019.00198
https://doi.org/10.1007/978-3-030-73200-4_48
https://doi.org/10.1007/978-3-319-55699-4_34
https://doi.org/10.1007/978-3-319-55699-4_34
https://doi.org/10.1109/ICSA-C50368.2020.00030
https://doi.org/10.1109/ICSA-C50368.2020.00030
http://arxiv.org/abs/1810.11655

	 C. Zhu et al.

1 3

ON, Canada, , pp 1–3. https://​doi.​org/​10.​1109/​ICBC4​8266.​2020.​
91694​31

	 47.	 Guo Q, Deng S, Cai L, Zhu Y, Zhang Z, Jin C (2020) Blockchain
PG: Enabling Authenticated Query and Trace Query in Data-
base. In: Wang, X., Zhang, R., Lee, Y.-K., Sun, L., Moon, Y.-S.
(eds.) Web and big data, vol 12318. Springer, Cham, pp 529–534.
https://​doi.​org/​10.​1007/​978-3-​030-​60290-1_​41

	 48.	 Lian J, Wang S, Xie Y (2021) TDRB: an efficient tamper-proof
detection middleware for relational database based on blockchain
technology. IEEE Access 9:66707–66722. https://​doi.​org/​10.​
1109/​ACCESS.​2021.​30762​35

	 49.	 Nathan S, Govindarajan C, Saraf A, Sethi M, Jayachandran P
(2019) Blockchain meets database: design and implementa-
tion of a blockchain relational database. Proc VLDB Endow
12(11):1539–1552. https://​doi.​org/​10.​14778/​33422​63.​33426​32

	 50.	 Schuhknecht FM, Sharma A, Dittrich J, Agrawal D (2021)
chainifydb: How to get rid of your blockchain and use your
DBMS instead. In: 11th Conference on innovative data systems
research, CIDR 2021, virtual event, January 11–15, 2021, Online
Proceedings

	 51.	 Beirami A, Zhu Y, Pu K (2019) Trusted relational databases
with blockchain: design and optimization. Procedia Comput Sci
155:137–144. https://​doi.​org/​10.​1016/j.​procs.​2019.​08.​022

	 52.	 Sahoo MS, Baruah PK (2018) HBasechainDB: a scalable block-
chain framework on hadoop ecosystem. In: Yokota R, Wu W
(eds.) Supercomputing frontiers vol 10776. Springer, Cham, pp
18–29. https://​doi.​org/​10.​1007/​978-3-​319-​69953-0_2

	 53.	 Qi X, Zhang Z, Jin C, Zhou A (2021) A reliable storage parti-
tion for permissioned blockchain. IEEE Trans Knowl Data Eng
33(1):14–27. https://​doi.​org/​10.​1109/​TKDE.​2020.​30126​68

	 54.	 Qi X, Zhang Z, Jin C, Zhou A (2020) BFT-Store: Storage Parti-
tion for Permissioned Blockchain via Erasure Coding. In: 2020
IEEE 36th international conference on data engineering (ICDE).
IEEE, Dallas, TX, USA, pp 1926–1929. https://​doi.​org/​10.​1109/​
ICDE4​8307.​2020.​00205

	 55.	 Qi X, Chen Z, Zhang Z, Jin C, Zhou A, Zhuo H, Xu Q (2021) A
Byzantine Fault tolerant storage for permissioned blockchain. In:
Proceedings of the 2021 international conference on management
of data. ACM, Virtual Event China, pp 2770–2774. https://​doi.​
org/​10.​1145/​34480​16.​34527​44

	 56.	 Huang H, Peng X, Zhan J, Zhang S, Lin Y, Zheng Z, Guo S
(2022) BrokerChain: a cross-shard blockchain protocol for
account/balance-based state sharding. In: IEEE INFOCOM
2022—IEEE conference on computer communications. IEEE,
London, UK, pp 968–1977. https://​doi.​org/​10.​1109/​INFOC​
OM488​80.​2022.​97968​59

	 57.	 Xu Y (2018) Section-Blockchain: a storage reduced blockchain
protocol, the foundation of an autotrophic decentralized storage
architecture. In: 2018 23rd international conference on engineer-
ing of complex computer systems (ICECCS). IEEE, Melbourne,
VIC, pp 115–125. https://​doi.​org/​10.​1109/​ICECC​S2018.​2018.​
00020

	 58.	 Zheng P, Xu Q, Zheng Z, Zhou Z, Yan Y, Zhang H (2021)
Meepo: sharded consortium blockchain. In: 2021 IEEE 37th
international conference on data engineering (ICDE). IEEE,
Chania, Greece, pp 1847–1852. https://​doi.​org/​10.​1109/​ICDE5​
1399.​2021.​00165

	 59.	 Al-Bassam M, Sonnino A, Bano S, Hrycyszyn D, Danezis G
(2018) Chainspace: A Sharded Smart Contracts Platform. In:
Proceedings 2018 network and distributed system security sym-
posium. Internet Society, San Diego, CA. https://​doi.​org/​10.​
14722/​ndss.​2018.​23241

	 60.	 Chen Z, Qi X, Du X, Zhang Z, Jin C (2021) PEEP: A Paral-
lel Execution Engine for Permissioned Blockchain Systems.
In: Jensen, C.S., Lim, E.-P., Yang, D.-N., Lee, W.-C., Tseng,
V.S., Kalogeraki, V., Huang, J.-W., Shen, C.-Y. (eds.) Database

Systems for Advanced Applications vol. 12683, pp. 341–357.
Springer International Publishing, Cham. https://​doi.​org/​10.​
1007/​978-3-​030-​73200-4_​24

	 61.	 Xu C, Zhang C, Xu J, Pei J (2021) SlimChain: scaling blockchain
transactions through off-chain storage and parallel processing.
Proc VLDB Endow 14(11):2314–2326. https://​doi.​org/​10.​14778/​
34762​49.​34762​83

	 62.	 Fang M, Zhang Z, Jin C, Zhou A (2021) High-performance smart
contracts concurrent execution for permissioned blockchain
using SGX. In: 2021 IEEE 37th international conference on
data engineering (ICDE). IEEE, Chania, Greece, pp 1907–1912.
https://​doi.​org/​10.​1109/​ICDE5​1399.​2021.​00175

	 63.	 Chen Z, Zhuo H, Xu Q, Qi X, Zhu C, Zhang Z, Jin C, Zhou A,
Yan Y, Zhang H (2021) SChain: a scalable consortium block-
chain exploiting intra- and inter-block concurrency. Proc VLDB
Endow 14(12):2799–2802. https://​doi.​org/​10.​14778/​34763​11.​
34763​48

	 64.	 Fang M, Zhou X, Zhang Z, Jin C, Zhou A (2022) SEFrame: an
SGX-enhanced smart contract execution framework for permis-
sioned blockchain. In: 2022 IEEE 38th international conference
on data engineering (ICDE). IEEE, Kuala Lumpur, Malaysia, pp
3166–3169. https://​doi.​org/​10.​1109/​ICDE5​3745.​2022.​00289

	 65.	 Xu C, Zhang C, Xu J (2019) vChain: enabling verifiable boolean
range queries over blockchain databases. In: Proceedings of the
2019 international conference on management of data. ACM,
Amsterdam Netherlands, pp 141–158. https://​doi.​org/​10.​1145/​
32998​69.​33000​83

	 66.	 Adkins D, Agarwal A, Kamara S, Moataz T (2020) Encrypted
blockchain databases. In: Proceedings of the 2nd ACM Confer-
ence on Advances in Financial Technologies. ACM, New York,
NY, USA, pp 241–254. https://​doi.​org/​10.​1145/​34196​14.​34232​
66

	 67.	 Yan D, Jia X, Shu J, Yu R (2021) A blockchain-based database
system for decentralized information management. In: 2021
IEEE global communications conference (GLOBECOM). IEEE,
Madrid, Spain, pp 1–6. https://​doi.​org/​10.​1109/​GLOBE​COM46​
510.​2021.​96856​95

	 68.	 Wang H, Xu C, Zhang C, Xu J, Peng Z, Pei J (2022) vChain+:
optimizing verifiable blockchain boolean range queries. In: 2022
IEEE 38th international conference on data engineering (ICDE).
IEEE, Kuala Lumpur, Malaysia, pp 1927–1940. https://​doi.​org/​
10.​1109/​ICDE5​3745.​2022.​00190

	 69.	 Pang S, Shao Q, Zhang Z, Jin C (2020) AuthQX: enabling
authenticated query over blockchain via Intel SGX. In: Nah Y,
Cui B, Lee S-W, Yu JX, Moon Y-S, Whang SE (eds) Database
systems for advanced applications vol 12114. Springer, Cham,
pp 727–731. https://​doi.​org/​10.​1007/​978-3-​030-​59419-0_​45

	 70.	 Shao Q, Pang S, Zhang Z, Jing C (2020) Authenticated range
query using SGX for blockchain light clients. In: Nah Y, Cui
B, Lee S-W, Yu JX, Moon Y-S, Whang SE (eds) Database sys-
tems for advanced applications vol. 12114. Springer, Cham, , pp
306–321. https://​doi.​org/​10.​1007/​978-3-​030-​59419-0_​19

	 71.	 Shao Q, Zhang Z, Jin C, Zhou A (2021) Trusted sliding-window
aggregation over blockchains. In: 2021 IEEE 27th international
conference on parallel and distributed systems (ICPADS). IEEE,
Beijing, China, pp 257–265. https://​doi.​org/​10.​1109/​ICPAD​
S53394.​2021.​00038

	 72.	 Jia D-Y, Xin J-C, Wang Z-Q, Lei H, Wang G-R (2021) SE-chain:
a scalable storage and efficient retrieval model for blockchain.
J Comput Sci Technol 36(3):693–706. https://​doi.​org/​10.​1007/​
s11390-​020-​0158-2

	 73.	 Wang S, Dinh TTA, Lin Q, Xie Z, Zhang M, Cai Q, Chen G,
Ooi BC, Ruan P (2018) Forkbase: an efficient storage engine
for blockchain and forkable applications. Proc VLDB Endow
11(10):1137–1150. https://​doi.​org/​10.​14778/​32317​51.​32317​62

https://doi.org/10.1109/ICBC48266.2020.9169431
https://doi.org/10.1109/ICBC48266.2020.9169431
https://doi.org/10.1007/978-3-030-60290-1_41
https://doi.org/10.1109/ACCESS.2021.3076235
https://doi.org/10.1109/ACCESS.2021.3076235
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1016/j.procs.2019.08.022
https://doi.org/10.1007/978-3-319-69953-0_2
https://doi.org/10.1109/TKDE.2020.3012668
https://doi.org/10.1109/ICDE48307.2020.00205
https://doi.org/10.1109/ICDE48307.2020.00205
https://doi.org/10.1145/3448016.3452744
https://doi.org/10.1145/3448016.3452744
https://doi.org/10.1109/INFOCOM48880.2022.9796859
https://doi.org/10.1109/INFOCOM48880.2022.9796859
https://doi.org/10.1109/ICECCS2018.2018.00020
https://doi.org/10.1109/ICECCS2018.2018.00020
https://doi.org/10.1109/ICDE51399.2021.00165
https://doi.org/10.1109/ICDE51399.2021.00165
https://doi.org/10.14722/ndss.2018.23241
https://doi.org/10.14722/ndss.2018.23241
https://doi.org/10.1007/978-3-030-73200-4_24
https://doi.org/10.1007/978-3-030-73200-4_24
https://doi.org/10.14778/3476249.3476283
https://doi.org/10.14778/3476249.3476283
https://doi.org/10.1109/ICDE51399.2021.00175
https://doi.org/10.14778/3476311.3476348
https://doi.org/10.14778/3476311.3476348
https://doi.org/10.1109/ICDE53745.2022.00289
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1145/3419614.3423266
https://doi.org/10.1145/3419614.3423266
https://doi.org/10.1109/GLOBECOM46510.2021.9685695
https://doi.org/10.1109/GLOBECOM46510.2021.9685695
https://doi.org/10.1109/ICDE53745.2022.00190
https://doi.org/10.1109/ICDE53745.2022.00190
https://doi.org/10.1007/978-3-030-59419-0_45
https://doi.org/10.1007/978-3-030-59419-0_19
https://doi.org/10.1109/ICPADS53394.2021.00038
https://doi.org/10.1109/ICPADS53394.2021.00038
https://doi.org/10.1007/s11390-020-0158-2
https://doi.org/10.1007/s11390-020-0158-2
https://doi.org/10.14778/3231751.3231762

A Survey on the Integration of Blockchains and Databases﻿	

1 3

	 74.	 Ruan P, Chen G, Dinh TTA, Lin Q, Ooi BC, Zhang M (2019)
Fine-grained, secure and efficient data provenance on blockchain
systems. Proc VLDB Endow 12(9):975–988. https://​doi.​org/​10.​
14778/​33297​72.​33297​75

	 75.	 Ruan P, Dinh TTA, Lin Q, Zhang M, Chen G, Ooi BC (2021)
LineageChain: a fine-grained, secure and efficient data prov-
enance system for blockchains. VLDB J 30(1):3–24. https://​doi.​
org/​10.​1007/​s00778-​020-​00646-1

	 76.	 Ruan P, Kanza Y, Ooi BC, Srivastava D (2022) LedgerView:
access-control views on hyperledger fabric. In: Proceedings of
the 2022 international conference on management of data. ACM,
Philadelphia PA USA, pp 2218–2231. https://​doi.​org/​10.​1145/​
35142​21.​35260​46

	 77.	 Amiri MJ, Agrawal D, Abbadi AE (2019) CAPER: a cross-
application permissioned blockchain. Proc VLDB Endow
12(11):1385–1398. https://​doi.​org/​10.​14778/​33422​63.​33422​75

	 78.	 Gupta S, Hellings J, Sadoghi M (2020) RCC: resilient concur-
rent consensus for high-throughput secure transaction processing.
arXiv.​ arXiv:​1911.​00837

	 79.	 Kant K, Pandey S, Shanker U (2022) A journey from commit
processing in distributed databases to consensus in blockchain.
In: 2022 IEEE 38th international conference on data engineering
(ICDE). IEEE, Kuala Lumpur, Malaysia, pp 3236–3240. https://​
doi.​org/​10.​1109/​ICDE5​3745.​2022.​00306

	 80.	 Dang H, Dinh TTA, Loghin D, Chang E-C, Lin Q, Ooi BC (2019)
Towards scaling blockchain systems via sharding. In: Proceed-
ings of the 2019 international conference on management of data.
ACM, Amsterdam Netherlands, pp 123–140. https://​doi.​org/​10.​
1145/​32998​69.​33198​89

	 81.	 Schuhknecht FM, Sharma A, Dittrich J, Agrawal D (2019) Chain-
ifydb: how to blockchainify any data management system. CoRR
arXiv.​1912:​04820

	 82.	 Helmer S, Roggia M, Ioini NE, Pahl C (2018) EthernityDB:
integrating database functionality into a blockchain. In: Benc-
zúr A, Thalheim B, Horváth T, Chiusano S, Cerquitelli T, Sidló
C, Revesz PZ (eds) New trends in databases and information
systems vol 909. Springer, Cham, pp 37–44. https://​doi.​org/​10.​
1007/​978-3-​030-​00063-9_5

	 83.	 El-Hindi M, Binnig C, Arasu A, Kossmann D, Ramamurthy R
(2019) BlockchainDB: a shared database on blockchains. Proc
VLDB Endow 12(11):1597–1609. https://​doi.​org/​10.​14778/​
33422​63.​33426​36

	 84.	 Peng Y, Du M, Li F, Cheng R, Song D (2020) FalconDB: block-
chain-based collaborative database. In: Proceedings of the 2020
ACM SIGMOD international conference on management of data.
ACM, Portland OR USA, pp 637–652. https://​doi.​org/​10.​1145/​
33184​64.​33805​94

	 85.	 Zhu Y, Zhang Z, Jin C, Zhou A (2020) Enabling generic veri-
fiable aggregate query on blockchain systems. In: 2020 IEEE
26th international conference on parallel and distributed systems
(ICPADS). IEEE, Hong Kong, pp 456–465. https://​doi.​org/​10.​
1109/​ICPAD​S51040.​2020.​00066

	 86.	 Amazon: Amazon Quantum Ledger Database (2019). https://​aws.​
amazon.​com/​qldb/

	 87.	 Yang X, Zhang Y, Wang S, Yu B, Li F, Li Y, Yan W (2020)
Ledgerdb: a centralized ledger database for universal audit and
verification. Proc VLDB Endow 13(12):3138–3151. https://​doi.​
org/​10.​14778/​34154​78.​34155​40

	 88.	 Zhang M, Xie Z, Yue C, Zhong Z (2020) Spitz: A verifiable
database system. Proc VLDB Endow 13(12):3449–3460. https://​
doi.​org/​10.​14778/​34154​78.​34155​67

	 89.	 Yue C, Dinh TTA, Xie Z, Zhang M, Chen G, Ooi BC, Xiao
X (2022) Glassdb: practical verifiable ledger database through
transparency. CoRR arXiv:​abs/​2207.​00944

	 90.	 Azaria A, Ekblaw A, Vieira T, Lippman A (2016) MedRec:
using blockchain for medical data access and permission man-
agement. In: 2016 2nd International conference on open and big
data (OBD). IEEE, Vienna, Austria, pp 25–30. https://​doi.​org/​
10.​1109/​OBD.​2016.​11

	 91.	 Aswathy SV, Lakshmy KV (2019) BVD: a blockchain based
vehicle database system. In: Thampi SM, Madria S, Wang G,
Rawat DB, Alcaraz Calero JM (eds) Security in computing and
communications, vol 969. Springer, Singapore, pp 220–230.
https://​doi.​org/​10.​1007/​978-​981-​13-​5826-5_​16

	 92.	 Kotobi K, Bilen SG (2018) Secure blockchains for dynamic spec-
trum access: a decentralized database in moving cognitive radio
networks enhances security and user access. IEEE Veh Technol
Mag 13(1):32–39. https://​doi.​org/​10.​1109/​MVT.​2017.​27404​58

	 93.	 Vainshtein Y, Gudes E (2021) Use of blockchain for ensur-
ing data integrity in cloud databases. In: Dolev S, Margalit O,
Pinkas B, Schwarzmann A (eds) Cyber security cryptography
and machine learning, vol 12716. Springer, Cham, pp 325–335.
https://​doi.​org/​10.​1007/​978-3-​030-​78086-9_​25

	 94.	 Mashatan A, Lemieux V, Lee SHM, Szufel P, Roberts Z (2021)
Usurping double-ending fraud in real estate transactions via
blockchain technology. J Database Manag 32(1):27–48. https://​
doi.​org/​10.​4018/​JDM.​20210​10102

	 95.	 Hao K, Xin J, Wang Z, Cao K, Wang G (2019) Blockchain-
based outsourced storage schema in untrusted environment. IEEE
Access 7:122707–122721. https://​doi.​org/​10.​1109/​ACCESS.​
2019.​29385​78

	 96.	 Zheng W, Zheng Z, Chen X, Dai K, Li P, Chen R (2019)
NutBaaS: a blockchain-as-a-service platform. IEEE Access
7:134422–134433. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29419​
05

	 97.	 Hu S, Cai C, Wang Q, Wang C, Luo X, Ren K (2018) Searching
an encrypted cloud meets blockchain: a decentralized, reliable
and fair realization. In: IEEE INFOCOM 2018—IEEE confer-
ence on computer communications. IEEE, Honolulu, HI, pp
792–800. https://​doi.​org/​10.​1109/​INFOC​OM.​2018.​84858​90

	 98.	 Li D, Han D, Zheng Z, Weng T-H, Li H, Liu H, Castiglione A,
Li K-C (2022) MOOCsChain: a blockchain-based secure storage
and sharing scheme for MOOCs learning. Comput Standards
Interfaces 81:103597. https://​doi.​org/​10.​1016/j.​csi.​2021.​103597

	 99.	 Pandey D, Agrawal N, Jhanwar MP (2020) Covidbloc: a block-
chain powered exposure database for contact tracing. IACR
Cryptol. ePrint Arch, 1543

	100.	 Ravishankar B, Kulkarni P, Vishnudas MV (2020) Blockchain-
based database to ensure data integrity in cloud computing envi-
ronments. In: 2020 International conference on mainstreaming
block chain implementation (ICOMBI). IEEE, Bengaluru, India,
pp 1–4. https://​doi.​org/​10.​23919/​ICOMB​I48604.​2020.​92035​00

	101.	 Sui Z, Lai S, Zuo C, Yuan X, Liu JK, Qian H (2019) An
encrypted database with enforced access control and blockchain
validation. In: Guo F, Huang X, Yung M (eds) Information secu-
rity and cryptology, vol 11449. Springer, Cham, pp 260–273.
https://​doi.​org/​10.​1007/​978-3-​030-​14234-6_​14

	102.	 Zhang C, Xu C, Xu J, Tang Y, Choi B (2019) GEM̂2-Tree:
A Gas-Efficient Structure for Authenticated Range Queries in
Blockchain. In: 2019 IEEE 35th international conference on data
engineering (ICDE). IEEE, Macao, Macao, pp 842–853. https://​
doi.​org/​10.​1109/​ICDE.​2019.​00080

	103.	 Zhang C, Xu C, Wang H, Xu J, Choi B (2021) Authenticated
keyword search in scalable hybrid-storage blockchains. In: 2021
IEEE 37th international conference on data engineering (ICDE).
IEEE, Chania, Greece, pp 996–1007. https://​doi.​org/​10.​1109/​
ICDE5​1399.​2021.​00091

	104.	 Luu L, Narayanan V, Zheng C, Baweja K, Gilbert S, Saxena
P (2016) A secure sharding protocol for open blockchains. In:

https://doi.org/10.14778/3329772.3329775
https://doi.org/10.14778/3329772.3329775
https://doi.org/10.1007/s00778-020-00646-1
https://doi.org/10.1007/s00778-020-00646-1
https://doi.org/10.1145/3514221.3526046
https://doi.org/10.1145/3514221.3526046
https://doi.org/10.14778/3342263.3342275
http://arxiv.org/abs/1911.00837
https://doi.org/10.1109/ICDE53745.2022.00306
https://doi.org/10.1109/ICDE53745.2022.00306
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3299869.3319889
http://arxiv.org/abs/1912:04820
https://doi.org/10.1007/978-3-030-00063-9_5
https://doi.org/10.1007/978-3-030-00063-9_5
https://doi.org/10.14778/3342263.3342636
https://doi.org/10.14778/3342263.3342636
https://doi.org/10.1145/3318464.3380594
https://doi.org/10.1145/3318464.3380594
https://doi.org/10.1109/ICPADS51040.2020.00066
https://doi.org/10.1109/ICPADS51040.2020.00066
https://aws.amazon.com/qldb/
https://aws.amazon.com/qldb/
https://doi.org/10.14778/3415478.3415540
https://doi.org/10.14778/3415478.3415540
https://doi.org/10.14778/3415478.3415567
https://doi.org/10.14778/3415478.3415567
http://arxiv.org/2207.00944
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1007/978-981-13-5826-5_16
https://doi.org/10.1109/MVT.2017.2740458
https://doi.org/10.1007/978-3-030-78086-9_25
https://doi.org/10.4018/JDM.2021010102
https://doi.org/10.4018/JDM.2021010102
https://doi.org/10.1109/ACCESS.2019.2938578
https://doi.org/10.1109/ACCESS.2019.2938578
https://doi.org/10.1109/ACCESS.2019.2941905
https://doi.org/10.1109/ACCESS.2019.2941905
https://doi.org/10.1109/INFOCOM.2018.8485890
https://doi.org/10.1016/j.csi.2021.103597
https://doi.org/10.23919/ICOMBI48604.2020.9203500
https://doi.org/10.1007/978-3-030-14234-6_14
https://doi.org/10.1109/ICDE.2019.00080
https://doi.org/10.1109/ICDE.2019.00080
https://doi.org/10.1109/ICDE51399.2021.00091
https://doi.org/10.1109/ICDE51399.2021.00091

	 C. Zhu et al.

1 3

Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security. Association for Computing
Machinery, New York, NY, USA, pp 17–30. https://​doi.​org/​10.​
1145/​29767​49.​29783​89

	105.	 Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford
B (2018) Omniledger: a secure, scale-out, decentralized ledger
via sharding, vol 2018. San Francisco, CA, United states, pp
583–598. https://​doi.​org/​10.​1109/​SP.​2018.​000-5

	106.	 Zamani M, Movahedi M, Raykova M (2018) Rapidchain: Scaling
blockchain via full sharding. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security.
Association for Computing Machinery, New York, NY, USA, pp
931–948. https://​doi.​org/​10.​1145/​32437​34.​32438​53

	107.	 Wang J, Wang H (2019) Monoxide: scale out blockchains with
asynchronous consensus zones. In: 16th USENIX Symposium
on networked systems design and implementation (NSDI 19),
pp 95–112

	108.	 Hamming RW (1950) Error detecting and error correcting codes.
Bell Syst Tech J 29(2):147–160. https://​doi.​org/​10.​1002/j.​1538-​
7305.​1950.​tb004​63.x

	109.	 Reed IS, Solomon G (1960) Polynomial codes over certain finite
fields. J Soc Ind Appl Math 8(2):300–304. https://​doi.​org/​10.​
1137/​01080​18

	110.	 Rani K, Sharma C (2019) Tampering detection of distributed
databases using blockchain technology. In: 2019 Twelfth inter-
national conference on contemporary computing (IC3). IEEE,
Noida, India, pp 1–4. https://​doi.​org/​10.​1109/​IC3.​2019.​88449​38

	111.	 Jnoub N, Klas W (2019) Detection of tampered images using
blockchain technology. In: 2019 IEEE international conference
on blockchain and cryptocurrency (ICBC), pp 70–73. https://​doi.​
org/​10.​1109/​BLOC.​2019.​87513​00

	112.	 Trent M, Rodolphe M, Andreas M, Dimitri DJ, Troy M, Greg M,
Ryan H, Sylvain B, Alberto G. Bigchaindb: a scalable blockchain
database (draft)

	113.	 RethinkDB: RethinkDB. https://​rethi​nkdb.​com/
	114.	 Yanovich Y, Ivashchenko I, Ostrovsky A, Shevchenko A, Sidorov

A (2018) Exonum: byzantine fault tolerant protocol for block-
chains. bitfury.com, pp 1–36

	115.	 Muzammal M, Qu Q, Nasrulin B (2019) Renovating blockchain
with distributed databases: an open source system. Futur Gener
Comput Syst 90:105–117. https://​doi.​org/​10.​1016/j.​future.​2018.​
07.​042

	116.	 Tsoulias K, Palaiokrassas G, Fragkos G, Litke A, Varvarigou
TA (2020) A graph model based blockchain implementation for
increasing performance and security in decentralized ledger sys-
tems. IEEE Access 8:130952–130965. https://​doi.​org/​10.​1109/​
ACCESS.​2020.​30063​83

	117.	 Iliakis K, Koliogeorgi K, Litke A, Varvarigou T, Soudris D
(2022) GPU accelerated blockchain over key-value database
transactions. IET Blockchain 2(1):1–12. https://​doi.​org/​10.​1049/​
blc2.​12011

	118.	 Zhou X, Chai C, Li G, Sun J (2022) Database meets artificial
intelligence: a survey. IEEE Trans Knowl Data Eng 34(3):1096–
1116. https://​doi.​org/​10.​1109/​TKDE.​2020.​29946​41

	119.	 Jia D, Xin J, Wang Z, Wang G (2021) Optimized data storage
method for sharding-based blockchain. IEEE Access 9:67890–
67900. https://​doi.​org/​10.​1109/​ACCESS.​2021.​30776​50

	120.	 Jia D, Xin J, Wang Z, Guo W, Wang G (2020) An Optimized
Data Distribution Model for ElasticChain to Support blockchain
scalable storage. In: Cao J, Vong CM, Miche Y, Lendasse A (eds)
Proceedings of ELM 2018, vol 11. Springer, Cham, pp 76–85.
https://​doi.​org/​10.​1007/​978-3-​030-​23307-5_9

	121.	 Partheeban P, Kavitha V (2022) Blockchain based cloud ser-
vice security architecture with distributed machine learning for
smart device traffic record transaction. Concurr Comput Pract
Exp 34(3). https://​doi.​org/​10.​1002/​cpe.​6583

	122.	 Zhou Q, Zheng K, Zhang K, Hou L, Wang X (2022) Vulner-
ability analysis of smart contract for blockchain-based iot appli-
cations: a machine learning approach. IEEE Internet Things J
9(24):24695–24707. https://​doi.​org/​10.​1109/​JIOT.​2022.​31962​69

	123.	 Shakya S, Mukherjee A, Halder R, Maiti A, Chaturvedi A (2022)
Smartmixmodel: machine learning-based vulnerability detection
of solidity smart contracts. In: 2022 IEEE international confer-
ence on blockchain (Blockchain), pp 37–44. https://​doi.​org/​10.​
1109/​Block​chain​55522.​2022.​00016

https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1109/IC3.2019.8844938
https://doi.org/10.1109/BLOC.2019.8751300
https://doi.org/10.1109/BLOC.2019.8751300
https://rethinkdb.com/
https://doi.org/10.1016/j.future.2018.07.042
https://doi.org/10.1016/j.future.2018.07.042
https://doi.org/10.1109/ACCESS.2020.3006383
https://doi.org/10.1109/ACCESS.2020.3006383
https://doi.org/10.1049/blc2.12011
https://doi.org/10.1049/blc2.12011
https://doi.org/10.1109/TKDE.2020.2994641
https://doi.org/10.1109/ACCESS.2021.3077650
https://doi.org/10.1007/978-3-030-23307-5_9
https://doi.org/10.1002/cpe.6583
https://doi.org/10.1109/JIOT.2022.3196269
https://doi.org/10.1109/Blockchain55522.2022.00016
https://doi.org/10.1109/Blockchain55522.2022.00016

	A Survey on the Integration of Blockchains and Databases
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Backgrounds
	2.1.1 Blockchain
	2.1.2 Database

	2.2 Blockchain-Database Spectrum
	2.3 Fusion Systems

	3 Database-Oriented Blockchains
	3.1 Index
	3.1.1 Boosting Data Access
	3.1.2 Enriching Query Types
	3.1.3 Adding Concurrency Support

	3.2 Protocol
	3.2.1 Sharding
	3.2.2 Concurrency

	3.3 Data Model
	3.4 Ledger
	3.5 Discussion

	4 Blockchain-Oriented Databases
	4.1 Blockchain Middleware
	4.2 Blockchain Layer
	4.3 Discussion

	5 Hybrid Systems
	5.1 Representative Systems
	5.2 Discussion

	6 Discussion
	6.1 Comparison
	6.2 Challenges and Future Works
	6.2.1 Performance
	6.2.2 Privacy
	6.2.3 Data Description Ability
	6.2.4 New Hardware
	6.2.5 Learning-Based Optimization
	6.2.6 Domain-Specific Application

	7 Conclusion
	Acknowledgements
	References

