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Abstract
The success of blockchain technology in cryptocurrencies reveals its potential in the data management field. Recently, there 
is a trend in the database community to integrate blockchains and traditional databases to obtain security, efficiency, and 
privacy from the two distinctive but related systems. In this survey, we discuss the use of blockchain technology in the data 
management field and focus on the fusion system of blockchains and databases. We first classify existing blockchain-related 
data management technologies by their locations on the blockchain-database spectrum. Based on the taxonomy, we discuss 
three types of fusion systems and analyze their design spaces and trade-offs. Then, by further investigating the typical systems 
and techniques of each type of fusion system and comparing the solutions, we provide insights of each fusion model. Finally, 
we outline the unsolved challenges and promising directions in this field and believe that fusion systems will take a more 
important role in data management tasks. We hope this survey can help both academia and industry to better understand the 
advantages and limitations of blockchain-related data management systems and develop fusion systems that meet various 
requirements in practice.
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1  Introduction

Blockchain technology has come into people’s view with the 
release of the Bitcoin white paper [1] in 2008. Since then, 
more and more cryptocurrencies and decentralized applica-
tions are adopting blockchain technology. Blockchain has 
taken the world by storm in the past decades.

The huge success of blockchain technology raises peo-
ple’s interest in applying it to the data management field. A 
blockchain is essentially a novel data management system, 
which is maintained by multiple participants (or nodes). 

Compared to traditional database systems, there may be 
some participants behaving unexpectedly, but blockchains 
hold some promising properties under such a circumstance 
to protect the integrity of data.

•	 Decentralization. There is no central node in a block-
chain system and every node in the network holds a rep-
lica of the data. In this way, the blockchain eliminates 
the risks that come with a centralized storage schema 
in traditional databases, i.e., malicious or failed central 
storage may cause the loss of data.

•	 Immutability. Once data are appended to the blockchain 
and confirmed by the majority of the chain’s participants, 
it can never be replaced or reversed as the records are 
linked one after another with hash values. This marks 
blockchains as different from regular databases, in which 
information can be easily edited or deleted.

•	 Tamper-Proof. When mining a new block, metadata of 
current system states and corresponding proofs are gener-
ated and distributed to the network with the replication of 
the block. Since the proof is guaranteed by cryptography 
methods, any tiny alteration to the data will lead to a 
failure of validation. If there is any conflict during block 
validation, the participant can immediately recognize that 
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the block has been tampered with, then he can refuse this 
block to protect the security of the data.

•	 Provenance. Since the immutability of blockchain, the 
only accepted way to modify what has already been on 
the chain is to create a new log and append it to the chain 
to declare the invalidity of previous data. This mecha-
nism ensures that every modification of data entry can 
be recorded as a trail, from which one can clearly obtain 
the history status of the data.

Despite the strong guarantee in data security, blockchain 
is still far from an ideal data management system. It suf-
fers from low performance, high resource consumption, and 
potential privacy concerns.

•	 Performance. With its underlying chain structure, block-
chain has to process each transaction serially. Moreover, 
other participants validate the received block by replay-
ing the transactions in it, which is also a sequential pro-
cess. These two linear transaction processing steps have 
a significant impact on the blockchain’s performance. It 
is reported that Bitcoin, as a representative blockchain 
system, only achieves a throughput of 7 transactions/sec-
ond. In contrast, a commercial database system can easily 
process 2000 to 56,000 transactions in one second [2].

•	 Resource Consumption. On one hand, as the transactions 
go on, the append-only ledger consumes more and more 
storage, which will be a burden for devices with limited 
storage capacity such as smartphones or even personal 
computers. On the other hand, the mining procedure 
requires participants to compete with others to calcu-
late a specific problem, while only one of them wins the 
right to append a block, which wastes massive energy and 
computing resources.

•	 Privacy Issues. Every participant in a blockchain network 
holds the full copy of data due to the verification need. 
However, this is at the cost of some privacy concerns. In 
real-world business applications, companies will never 
want collaborators or customers to access their sensitive 
information, while this goal can be easily achieved by 
leveraging views in databases.

Apparently, blockchain technology has its superiority and 
defect, and neither it nor a database can perfectly undertake 
all the requirements of modern data management tasks. For-
tunately, blockchains and databases share so many similar 
technical concepts and solutions, making it possible to com-
bine the strengths of security, efficiency, and privacy from 
both sides. For example, transactions in both systems result 
in state changes and should hold ACID properties to ensure 
their reliability. Smart contracts in blockchains are corre-
sponding to stored procedures in databases, as they aggre-
gate transactions. Moreover, both systems adopt indexes to 

satisfy various requirements, i.e., tamper-proof and verifi-
ability for blockchains, and efficient query for databases.

We have noticed that there are massive works trying to 
integrate blockchain and database technologies to develop 
a fusion system that protects data integrity and processes 
transactions effectively at the same time. Though the inte-
gration of blockchains and databases has attracted more and 
more attention, there are few discussions about it. At present, 
most of the surveys about blockchains [3–9] concentrate on 
some specific domains, instead of a comprehensive study of 
the trend of fusion. We argue that drawing a whole picture is 
of vital importance, as it will better guide the database com-
munity to develop systems that fit various real-world needs.

Difference with Existing Works Existing surveys only 
focused on some specific aspects of blockchains in the data 
management field. For example, Wang et al. [6] investigate 
the storage and query techniques of blockchains, while 
the authors of [5, 8] focus on the applications in specific 
domains. Other aspects including system architecture [3], 
query processing [4], and sharding technique [7, 9, 10] have 
also been analyzed. There are also surveys [11, 12] trying to 
comprehensively analyze blockchains as a data management 
system; however, their goal is to dichotomize blockchains 
and databases, and to compare the two systems.

The trend of the fusion between blockchains and data-
bases has also been noticed and analyzed in other works. 
Based on the comparisons between blockchains and distrib-
uted databases, Ruan et al. [13] discuss the fusion trend and 
some representative works. Recently, the authors of [14] 
conduct extensive experiments on some hybrid blockchain 
database systems and reveal the variety of design choices 
of such systems. However, due to the experimental limi-
tations, only a few systems are studied. Thus, some most 
recent works are not covered and discussed.

Contributions In this paper, we conduct a comprehensive 
survey on the integration of blockchains and databases in the 
data management field. To sum up, we made the following 
contributions.

•	 We propose the blockchain-database spectrum, a frame-
work to analyze the works about blockchains in the data 
management field, and recognize the trend of integrating 
blockchains and traditional databases. We further iden-
tify three typical models of the fusion, namely database-
oriented blockchains, blockchain-oriented databases, and 
hybrid systems, and conduct a comprehensive compari-
son of the three types of systems in the design spaces and 
trade-offs.

•	 We review each of the representative systems of data-
base-oriented blockchains, blockchain-oriented data-
bases, and hybrid systems. Besides, we summarize and 
evaluate the techniques used in each model, which pro-
vides insights into each fusion model.
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•	 Based on the exhaustive research and analysis of existing 
works, we discuss the limitations of existing methods for 
blockchain-related data management systems and pro-
vide future research directions.

The rest of this paper is organized as follows. First, the pre-
liminaries are provided in Sect. 2, including a basic introduc-
tion to blockchains and databases and the blockchain-data-
base spectrum. We also classify existing blockchain-related 
data management technologies by their coordinates on the 
blockchain-database spectrum and identify their design 
spaces in this section. We review the representative systems 
and techniques of database-oriented blockchains, block-
chain-oriented databases, and hybrid systems in Sects. 3–5, 
respectively. Then, we compare these systems and provide 
challenges and opportunities in the blockchain-related data 
management field in Sect. 6. Finally, Sect. 7 concludes the 
paper.

2 � Preliminaries

2.1 � Backgrounds

We begin this section with some basic information about 
blockchains and databases to provide a primary impression 
of the two different but relevant technologies.

2.1.1 � Blockchain

Blockchain is an innovative data storage and management 
technology that integrates a variety of established tech-
nologies, including high-performance data storage, peer-
to-peer networks, cryptography, consensus protocols, etc. 
The concept of blockchain originated from Bitcoin, which 
is proposed by Satoshi Nakamoto [1], and most of the 

existing blockchain systems also follow the chain structure 
in Bitcoin. Taking Bitcoin as an example, the structure of 
a typical blockchain is shown in Fig. 1a. Blocks are con-
nected in a linked list and new blocks can only be added at 
the end of the chain. Therefore, all nodes in the blockchain 
system store the blocks and the transactions in a consistent 
order. The block, the basic structural unit of the block-
chain, consists of a block header containing metadata and 
a block body containing transaction data. Block header 
consists of block height, the previous block’s hash value, 
timestamp, nonce, miner signature, and Merkle root, and 
block body can be viewed as a collection of transaction 
records consisting of multiple transactions. For example, 
the block body of the Bitcoin system contains a Merkle 
tree consisting of approximately 2,500 transaction records 
that have been hashed, each consisting of information such 
as transaction hash, inputs, outputs, timestamps, and fees. 
Blocks are connected by hash values. The hash value of 
each block is obtained by re-hashing the Merkle tree’s 
root, the previous block’s hash value, and other informa-
tion. Any change in transaction data in a block will cause 
a change in the hash value of this block, which in turn 
will change all subsequent blocks along the chain. To sum 
up, blockchain incorporates the hash function in the chain 
structure, making data tampering infeasible in blockchain 
and enhancing data storage security.

For a clear understanding of the blockchain hierarchy, 
we abstract the blockchain into 5 layers in Fig. 1b.

•	 Data layer. To efficiently organize various data in the 
blockchain, the data layer contains elements such as data 
structure, transaction model, index data, state data, and 
persistent storage scheme.

•	 Network layer. To meet the communication between 
nodes in a decentralized blockchain network, the P2P 
protocol plays an important role in the network layer. 

Fig. 1   Blockchain overview
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The content transmitted between nodes mainly consists 
of transaction data and block data.

•	 Consensus layer. Unlike centrally governed databases, 
blockchain uses a distributed consensus algorithm to 
ensure that nodes in the network that do not trust each 
other can agree on the same ledger. The use of consen-
sus algorithms improves the blockchain’s ability to cope 
with crash tolerance or Byzantine fault tolerance, giving 
the blockchain a higher level of security than traditional 
databases.

•	 Contract layer. Containing various scripts, algorithms 
and smart contracts, it is the foundation of blockchain 
programmability.

•	 Application layer. Users can easily develop new decen-
tralized and cryptographically secure blockchain-based 
applications using the APIs provided by the blockchain.

Permissionless and Permissioned Blockchains can be 
broadly classified into two categories: permissionless block-
chains and permissioned blockchains.

Permissionless blockchains are a type of blockchain in 
which anyone can participate in the network without any 
prior approval or authorization. It is often referred to as 
a public blockchain as the network is open to the public. 
Examples of popular permissionless blockchains include 
Bitcoin, Ethereum [15], etc. Ethereum abandons the UTXO 
transaction model proposed by Bitcoin in favor of the 
account/balance transaction model and extends the Merkle 
tree to the Merkle Patricia Trie (MPT) [16]. The Merkle 
roots originally stored in the block header are changed to 
three Merkle Patricia tree roots in Ethereum, correspond-
ing to the world state tree, transaction tree, and receipt 
tree, respectively. Besides, the most important innovation 
of Ethereum is that it provides Turing-complete scripting 
languages Solidity and Serpent, and provides a sandbox 
environment Ethereum Virtual Machine (EVM) for users to 
write and run smart contracts. With programmability, built-
in persistent state storage, and Turing completeness, smart 
contracts make it easy for developers to create their block-
chain applications on the Ethereum platform, which marks 
the birth of the blockchain 2.0 era.

Permissioned blockchain are blockchains that 
require permission to join and participate in consensus. 
Hyperledger Fabric [17], a permissioned blockchain, has 
evolved into an enterprise-accessible distributed ledger 
technology platform. Fabric allows users to write smart 
contracts (also called chaincodes) in Go or Java. There-
fore, it is the first platform that supports high-level pro-
gramming languages for writing smart contracts. Unlike 
permissionless blockchains such as Bitcoin and Ethereum, 
Fabric adds an access mechanism where only authorized 
nodes can join the network and uses Raft, an efficient 
algorithm but cannot resist Byzantine behaviors. Fabric 

is innovative in that it uses a loosely coupled design that 
modularizes consensus algorithms, authentication, key 
management protocols, and cryptographic libraries, further 
meeting the diversity of enterprise needs for blockchain.

Innovations on Blockchain Blockchains have achieved 
great success and promoted many developments in differ-
ent fields. However, traditional blockchain systems still 
suffer from problems of low throughput and high latency. 
There are several innovations in consensus algorithms and 
transaction concurrency to address these issues.

The consensus algorithm is one of the core technolo-
gies of blockchain, which describes how the peers reach 
an agreement on the state of the world. The efficiency of 
consensus algorithm impacts the performance of the entire 
blockchain system. Here, we introduce some BFT-based 
protocols. Castro et  al.  [18] propose PBFT consensus 
algorithm which reduces BFT’s complexity from expo-
nential to polynomial. To further optimize the decentrali-
zation level and performance scalability of blockchains, 
SBFT [19] reduces communication to linear with collec-
tors and threshold signatures. FastBFT [20] designed a 
novel message aggregation technique, reducing message 
complexity from O(n2) to O(n).

The purpose of concurrency control is to optimize 
transaction processing, which involves improving the effi-
ciency of transaction validation, execution, and confirma-
tion on blockchains. Take Hyperledger Fabric for instance, 
although it parallelly executes the transactions in the 
execution phase, the throughput cannot further improve, 
especially when there are high contentions among each 
transaction. To be more specific, though all the conflict 
transactions are simulated in the execution phase, only 
one of them can be eventually submitted in the final vali-
dation phase, and others have to be aborted. The solution 
is to reduce the abort rate. Fabric++ [21] uses reordering 
and early abortion to solve this problem. It obtains the 
read/write set of each transaction in the execute phase and 
recognizes the conflicting transactions with a dependency 
graph between the transactions within the same block. 
Then it reorders the transactions and early aborts the 
transactions that cannot be serialized. FabricSharp [22] 
optimizes the reordering mechanism to support inter-block 
transactions, which further promotes the commit rate and 
the performance in terms of throughput. FastFabric [23] 
extends the concurrency of Fabric by introducing a valida-
tion pipeline, which parallelizes as many validation steps 
as possible, including endorsement policy validation and 
syntactic verification. Finally, XOX Fabric [24] proposes 
a novel hybrid execution model consisting of a pre-order 
and a post-order execution step which makes a trade-off 
between minimal invalid transactions and maximal con-
current execution.
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2.1.2 � Database

Database technology has been developed for decades. 
Unlike blockchain, it supports features like ACID prop-
erties, complex queries, low transaction latency, high 
throughput, and scalability. Mainstream databases are 
divided into three categories: SQL databases, NoSQL 
databases, and NewSQL databases.

•	 SQL databases. As one of the most widely used data-
bases supporting the relational model, SQL database 
(e.g., MySQL [25], Oracle [26]) is usually used to store 
structured data which is highly-organized and format-
ted. Therefore, SQL databases can comply with atomic-
ity, consistency, isolation and persistence. In addition, 
SQL databases also have good support for transaction 
concurrency control and data privacy protection.

•	 NoSQL databases. To have better horizontal scalability, 
many databases abandon the relational model and sup-
port for SQL statements, replacing them with support 
for semi-structured and unstructured data. These data-
bases are called NoSQL databases. Unlike relational 
databases, NoSQL databases have multiple types: key-
value databases (e.g., LevelDB [27], BerkeleyDB [28], 
Redis  [29]), column-oriented databases (e.g., Big-
table [30], Apache HBase [31]), document-oriented 
databases (e.g., MongoDB [32]), graph databases (e.g., 
Neo4j [33]), time series databases (e.g., InfluxDB [34]) 
and so on.

•	 NewSQL databases. A new type of database man-
agement system (DBMS) is designed to provide a 
NoSQL system’s high scalability and performance 
while retaining the ACID transactional characteris-
tics of a traditional relational database management 
system (RDBMS). NewSQL systems can use both 
relational and non-relational data models. The main-
stream NewSQL systems include Google Cloud Span-
ner [35], CockroachDB [36], TiDB [37], and Amazon 
Aurora [38]. These NewSQL systems are all built with 
distributed architectures that provide high scalability 
and performance while retaining ACID transaction 
features and SQL query language support. Their emer-
gence provides new options for addressing the needs of 
large-scale data processing and distributed systems.

In general, blockchains and databases are different data 
management technologies with different futures and appli-
cation scenarios. Blockchains have the advantage of secu-
rity for applications requiring security, while databases 
have the advantage of performance and usability for large-
scale data processing and high concurrent access.

2.2 � Blockchain‑Database Spectrum

Though blockchains and databases are essentially designed 
for different goals, both systems have the capability to manage 
data. Along this point of view, we present our blockchain-
database spectrum in Fig. 2 to compare them and find possible 
fusion directions.

In this framework, blockchains lie at the security end of the 
spectrum, while databases are at the other performance end. 
Besides both ends, there are also systems located in the middle 
parts of the blockchain-database spectrum. These systems are 
fusions of blockchains and databases to varying degrees and 
can be further classified into three major types, namely data-
base-oriented blockchains, blockchain-oriented databases, 
and hybrid systems. As Fig. 2 depicts, the difference lies in 
the design considerations and trade-offs between performance 
and data security.

2.3 � Fusion Systems

In this survey, we focus on the fusions systems, i.e., database-
oriented blockchains, blockchain-oriented databases, and 
hybrid systems, which occupy the middle parts of the block-
chain-database spectrum in Fig. 2. We will informally define 
these systems and briefly describe their design considerations 
in this section, while leaving the details to the rest of this sur-
vey. A high-level and coarse-grained comparison between pure 
blockchains, pure databases, and three types of fusion systems 
based on their locations in the blockchain-database spectrum 
is summarized in Table 1.

Database-Oriented Blockchains The database-oriented 
blockchains are at the blockchain side of the blockchain-
database spectrum. Same as blockchains, database-oriented 
blockchains retain the essential chain-like structure of ledg-
ers, which keeps track of data modifications and ensures data 
security. Besides the security, database-oriented blockchains 
also pursue features to provide a better experience in real-
world practice just as databases do, such as easy-to-use APIs, 
higher throughput, lower resource consumption, and assur-
ance of secret data’s privacy. To sum up, database-oriented 
blockchains are a collection of systems that are built on top of 
blockchains and integrated with database features.

As it has been revealed in the spectrum, the most straight-
forward and widely-used solution is to equip the systems with 
mature techniques from databases, including sharding [7, 
53–59], concurrency control [21, 49, 60–64], indexing [41, 

Fig. 2   Blockchain-database spectrum



	 C. Zhu et al.

1 3

62, 65–75], views [76, 77], and so on. There is another direc-
tion that modifies existing components in blockchains, such 
as consensus protocols [50, 78–81] and data processing lay-
ers [41, 82–85].

Blockchain-Oriented Databases Opposite to the data-
base-oriented blockchains, the blockchain-oriented data-
bases are closer to databases. Such systems pay more atten-
tion to processing performance and usually support more 
complicated data models such as relational. Some of them 
also support SQL-like interfaces, making them more con-
venient for application developers.

To achieve such a goal while keeping a basic security 
guarantee, blockchain-oriented databases are built upon an 
existing database instance, while learning lessons of hash 
chain from blockchains. That is, they usually contain a 
blockchain layer [50] or a middleware [48, 49] with block-
chain features, and the chain-like relationships are either 
revealed by the internal fields or stored in a specific table. 
We regard such systems as general blockchain-oriented 
databases and introduce the technical details in Sect. 4.

We also notice that there is another way to build a data-
base system that supports verifiable data processing, which 
results in the so-called ledger databases [86–89]. However, 
such systems adopt a different trust assumption with block-
chains, i.e., there is usually a centralized service provider 
and require a trusted auditor to replay the log of transactions 
to detect if the server has tampered with the data. Hence, we 
exclude the ledger databases from the blockchain-oriented 
databases, and ignore them in the following of this paper.

Hybrid Systems Such systems locate around the very 
center of the spectrum, which means they reach a balance 

between security and performance. Note that this can be 
interpreted into two situations. The ideal one is to achieve 
decentralized data security as blockchains and high through-
put as commercial databases at the same time. However, 
this is an unreachable target at present and no one has been 
recognized to provide a perfect solution to this problem. 
On the other hand, equally combining blockchains and 
databases into a single system is also a way to reach the 
balance [44–46]. This usually results in a middleware that 
connects a blockchain of metadata or logs, and a database of 
various forms of data. In this way, such systems ensure the 
security of metadata and the performance of data process-
ing, which is at the cost of inheriting some defects from both 
sides. For example, the system may be redundant to include 
both instances, and the actual data stored in the database 
are usually not protected by the blockchain. We use hybrid 
systems to refer to the latter systems in the rest of this survey.

3 � Database‑Oriented Blockchains

The efforts to explore the data management possibility of 
blockchains have taken a long way. At the early stage of 
the exploration, many researchers try to adopt blockchains 
to real application scenarios, which leads to the earliest 
database-oriented blockchains. For example, MedRec [90] 
is an Ethereum-based decentralized system to process elec-
tronic medical records (EMR) and can be integrated with 
the existing EMR management systems. It utilized the data 
management ability of underlying Ethereum by proposing 
three dedicated smart contracts to contain metadata about 

Table 1   A high-level comparison of inherent features between data management technologies

a No privacy for the on-chain metadata

System Security Performance and usability

Decentralization Data security Auditability Performance Ease of Use Data Model Privacy Resource 
requirement

Blockchains High Very high Every partici-
pant

Very low Low KV No Very high

Database-
oriented 
Blockchains

High Very high Every partici-
pant

Low Medium KV [39, 40], 
Relational [41, 
42], Docu-
ment [43]

Low High

Hybrid Systems Partial High Every partici-
pant

Low High Relational [44], 
Docu-
ment [45], 
Graph [46]

Lowa High

Blockchain-
oriented 
databases

Partial High Authorized 
users

High High Relational 
[47–51], Col-
umn [52]

High Normal

Databases No Basic Authorized 
users

Very high High KV, Relational, 
Graph, Docu-
ment

High Normal
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the record ownership, permissions, and data integrity. Other 
works attempt to apply blockchain to other fields and man-
age corresponding data with the help of smart contracts, 
such as vehicles [91], cognitive radio (CRs) [92], IoT [40], 
cloud computing and services [93–96], decentralized pri-
vacy-preserving search [97], MOOC [98], and COVID-19 
contact tracing [99].

However, the aforementioned systems just take exigu-
ous steps toward databases in the spectrum. The successors 
propose prototype systems or protocols to manage general 
data with integrated database systems, which mainly focus 
on data integrity. Gaetani et al. [100] design a two-layer 
blockchain-based system in cloud computing environment. 
The first layer uses a lightweight distributed consensus pro-
tocol that ensures low latency and high throughput, and the 
second one is a PoW blockchain to ensure data integrity. 
Sui et al. [101] propose an encrypted data management sys-
tem with mandatory access control, in which blockchain 
provides the integrity guarantee. Konashevych proposes 
a protocol [39] to design a cross-blockchain database that 
manages data on different chains and solves problems of 
immutability, as well as duplication of tokens as the result 
of hard forks.

Recently, researchers of database-oriented blockchains 
aim to equip pure blockchain systems with the ability to 
manage general data and reach the goal of high throughput, 
low resource consumption, easy-to-use APIs, and privacy 
of secret data. Such systems usually modify several compo-
nents of blockchains, including: (1) index, (2) protocol, e.g., 
sharding and consensus, (3) API and data models, and (4) 
ledger arrangement, as Fig. 3 shows. Note that these techni-
cal routes do not necessarily correspond to the goals. They 
can either be combined to solve a single problem, or improve 
the system in various aspects individually. Moreover, many 
researchers try to improve multiple aspects in their single 
system and adopt many techniques. Thus, we review exist-
ing studies from the technical routes rather than the goals 
in this section.

3.1 � Index

In databases, an index is a structure that sorts the speci-
fied values which aim to boost query processing and data 
updates. However, indexes in blockchains usually take an 
additional task to prove the integrity of data as an authen-
ticated data structure (ADS) does. For example, Ethereum 
uses MPT to index the states of each account and protect 
the data. However, such an index has poor performance 
since it has to fetch data from LevelDB whenever it vis-
its a node in the MPT. Thus, recent works try to develop 
indexes that fit the batch data in the blockchain environment, 
which improves the performance of the indexes of database-
oriented blockchains. Besides the original data, researchers 

also index some metadata to support a broader range of que-
ries. There are also works trying to add concurrency to the 
indexes that support parallel updates.

The efforts around the indexes are summarized in Table 2 
and introduced in detail as follows.

3.1.1 � Boosting Data Access

The authors of SEBDB [41] identified three basic operations 
in blockchains, namely: (1) fetching a block by a given block 
id, transaction id, or timestamp, (2) fetching tuples with the 
same transaction type, and (3) fetching transactions by given 
conditions. They designed a corresponding index structure 
for each operation to boost data access. For the first opera-
tion, a block-level B + tree with key (block_id, first_tx_id, 
ts) is built. In this way, given the query condition, one can 
go from the root down to the leaf node to get the location 
of the target block. A table-level bitmap index recording 
table distribution is built to solve the second scenario. Each 
bitmap refers to a table, and the i-th bit in a bitmap indicates 
whether block i contains transactions of that table or not. 
Layered indexes are designed to deal with the third opera-
tion, in which the first level consists of bitmaps or entries 
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that describe the distribution of attribute’s values among 
blocks, while the second level is a B + tree for the attributes 
within the block.

AuthQX [69, 70] runs in an environment with TEEs, 
which provides an isolated memory for sensitive data and 
ensures secure computing in the hardware level. However, 
the limited memory of TEE hinders its wide application. 
To solve this problem, the authors developed a mechanism 

to organize data hierarchically in the untrusted and trusted 
memory and designed corresponding index structures. To be 
more specific, data in the untrusted memory are organized 
into Merkle B trees, while the frequently accessed internal 
nodes are cached in the TEE. The skip list maintained in 
trusted memory buffers newly attached block data. Once the 
capacity of the skip list reaches the threshold, the merge 
operation from the skip list to the MB tree will be started. 

Table 2   Summary of representative indexes in database-oriented blockchains. For the general notations, n refers to the number of blocks, N 
refers to the number of transactions, and e refers to the number of data entries

a We omitted the “authenticated” or “verifiable” prefixes, since they are already guaranteed by the blockchains
b b is the number of buckets that describes the distribution of attribute’s values among blocks
c m represents the number of FNodes, which is specific to the queries
d l represents the number of grid node layers, which is specific to the queries
e k represents the number of all the grid nodes, which is specific to the queries
f Only supports integers, fixed-point numbers, or other data types that can be transformed to set-valued attributes
g w is related to the user-defined sliding window size, thus the overhead is constant to a given sliding window size
h t is a user-defined parameter to control the layer of the Merkle Forest

System Index Underpinning 
techniques

Index Level Query time com-
plexity

Space occupation Supported query 
typesa

SEBDB [41] B+ Tree Index B+ Tree Block O(log n) O(n) SQL-like (condition), 
Provenance,  
On-chain Join,  
On-off Join

Bitmap Index Bitmap Table O(1) O(n)
Layered Index Bitmap, B + Tree Transaction O(logN) O(bN)b  

AuthQX [69, 70] – Merkle B Tree, 
SkipList

Entry O(log e) O(e) Range

SE-Chain [72] AB-M tree Balanced BST, 
Merkle Tree

Transaction O(N) O(N) KV

Yan et al. [67] B+ Tree Based 
Index

B+ Tree,
Bitmap

Block O(log n) O(n) KV, Range

Key-valueIndex Key-value Transaction O(1) O(N) KV
ForkBase [73] POS-tree B+ Tree, Merkle 

Tree
FNode O(logm) c O(m) KV

LineageChain [74, 
75]

DASL SkipList State
(Transaction)

O(logN) O(N) KV, Provenance

vChain [65] Intra-block Index Merkle Tree Transaction O(logN) O(N) Boolean, Rangef , 
SubscriptionInter-block Index SkipList Block O(log n) O(n)

IP-Tree Prefix Tree,
Inverted File

Grid Node O(l)d O(k)e

vChain+ [68] SWA Index Sliding Window, 
Merkle Tree

Entry O(w) g O(w) Range, Multi-dimen-
sional, Combination

Zhu et al. [85] GCA​2-tree Merkle Tree Block O(log n) O(n) Multi-dimensional 
Aggregation 
(Count, Max, Min, 
Average)

Feng et al. [62] Merkle Forest Merkle Tree Entry O(t log e) h O(e) Merkle Multiproofs

Zhang et al. [102] GEM2-Tree SMB Tree, Merkle 
B Tree

Entry O(log e) O(e) Range

Zhang et al. [103] Suppressed Merkeinv 
Index

Merkle B Tree Entry O(log e) O(e) Keyword

Chameleoninv Index Chameleon Tree Entry O(log e) O(e)
Chameleoninv∗ Index Chameleon Tree, 

Bloom filter
Entry O(log e) O(e)
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The replacement between hot and cold data follows LRU 
strategy. What’s more, since the data cached in the TEE are 
authenticated, the update inside the TEE can be batched to 
improve the efficiency when the tree is frequently updated.

Each transaction of SE-Chain [72] is maintained in the 
AB-M tree (adaptive balanced Merkle tree), which combines 
the advantages of balanced binary trees (fast retrieval) and 
Merkle trees (fast verification). Specifically, an AB-M tree 
is divided into two layers, the lower one is a Merkle tree, and 
the upper one is a binary tree containing node hash informa-
tion, so as to meet the verification requirements from leaf 
node to root node. There is a threshold T controlling the size 
of the Merkle tree, while the rest are arranged in the binary 
tree. When processing queries, the system first searches an 
approximate range from the top level according to the bal-
anced binary tree search algorithm, and then traverses the 
Merkle tree to fetch the specified data.

Yan et al. [67] designed a dual-index to adapt the block 
form of data storage for their proposed construction engi-
neering management system. Instead of traversing the entire 
blockchain, there is a B + tree-based index and a key-value 
index in the proposed system to accelerate the queries. The 
former one is arranged by the locations, and takes care of 
range queries. The internal nodes of the B + tree index con-
tain a bitmap to indicate whether there is a file of specific 
types, which boosts the queries by the file types. The keys 
of the latter index are hashes of each file and the values are 
the corresponding transactions, which is responsible for the 
single queries.

3.1.2 � Enriching Query Types

With the help of specifically designed indexes for basic 
blockchain operations, SEBDB [41] further supports SQL-
like operations such as track-trace, on-chain join, and on-
chain and off-chain join (on-off join). The roles of the pro-
posed indexes are described as follows. First, a track-trace 
operation is to find who sends the transaction and which 
transaction is done. To support this, the layered indices on 
the operation sender and operation type are pre-created. 
Second, for the on-chain join, the table-level index can 
accelerate the searching process, and layered indexes on the 
join attribute can further optimize the performance. Third, 
similar to the on-chain join situation, the bitmap index and 
layered index on the join attribute also help the scan proce-
dure of on-chain data.

The structures of most blockchains’ index not only 
depend on the items stored in the index, but also on its 
update history. However, the authors of ForkBase [73] 
extracted the need for structurally-invariant reusable 
indexes (SIRI), whose structure is uniquely determined by 
the set of records. They further proposed a SIRI instance 

called POS-Tree. In a POS Tree, the data entries are sorted 
and arranged into a byte sequence. Then, different types 
of split functions are applied to the sequence recursively 
to create leaf nodes and internal nodes, which are mod-
eled as FNodes in the POS-Tree. The FNodes are linked 
and protected as those in Merkle trees. In this way, the 
POS-Tree supports effective data deduplication of multi-
version data, which enables fork semantics of blockchains 
that manage the conflicts.

LineageChain [74, 75] supports online forward prov-
enance tracking, i.e., providing historical blockchain states 
in a tamper-evident manner to smart contracts while they 
are running. To achieve such a goal, LineageChain reor-
ganizes the leaf nodes in the original Merkle tree into a 
Merkle DAG, to enhance the storage layer of blockchains, 
and provide efficient tracking and tamper evidence. Then, 
it indexes the Merkle DAG with a deterministic append-
only skip list (DASL) to avoid searching from the head 
of DAG. The DASL leverages the append-only and non-
random properties of blockchains to distinguish it from 
normal skip lists. Such a scheme enables fast and low-cost 
history data query, making it possible to track a specific 
value when a smart contract is running.

There are light nodes that only store block headers in 
a blockchain network, and they usually represent a user. 
It is important for them to verify the integrity of query 
results. Xu’s team successively proposed systems to sup-
port authenticated queries for light nodes [65, 68]. These 
systems split the indexing and proving function of block-
chain indexes and designed accumulator-based ADSs. In 
vChain [65], an accumulator-based ADS is proposed to 
aggregate any query attributes dynamically and support 
authenticated Boolean queries, while a Merkle tree-based 
intra-block index and a skip list-based inter-block index 
undertake the acceleration task. The authors also build 
an inverted prefix tree (IP-Tree) over subscription queries 
to efficiently handle a large number of subscription que-
ries. By introducing a set accumulator-based ADS with 
sliding time window and building corresponding SWA 
index, vChain+ [68] supports authenticated queries on 
range, multi-dimensional, and the combination of these 
types. Zhu et  al. proposed another accumulator-based 
ADS, namely GCA​2-tree  [85], that supports verifiable 
multidimensional aggregate queries. To enrich authenti-
cated query types in the hybrid-storage blockchain, Zhang 
et al. [102] propose a gas-efficient ADS, called GEM2-tree, 
which supports authenticated queries. To further reduce 
gas cost due to storing intermediate data in GEM2-tree 
and extend keyword search in hybrid-storage blockchain, 
Zhang et al. [103] design novel ADS schemes, such as 
suppressed Merkleinv index, Chameleoninv index, and Cha-
meleoninv∗ index.
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3.1.3 � Adding Concurrency Support

Fang et al. [62] focus on introducing concurrency to block-
chains. Besides the concurrency in the transaction execution 
framework, they also upgrade the index to support parallel 
updates and validations. Specifically, they designed a Merkle 
Forest consisting of multiple sub-trees at a specified size of 
2N to increase the parallelism of generating multiproofs for 
data and verifying data integrity. It is a layered structure 
that the roots of the lowest level are the leaves of the upper 
level, and the root is computed recursively. In this way, the 
modification of low-level Merkle trees can be done in paral-
lel, and the recursive updates of upper-level trees are batched 
to decrease the overhead. The validation of the multiproofs 
is conducted from bottom to top.

3.2 � Protocol

In blockchains, protocols are a set of rules that allow partici-
pants to communicate and share data. Though the existing 
blockchain protocols ensure relatively secure communica-
tion, the full-replicated and serial nature lowers the whole 

system’s performance, which hinders the further application 
of blockchains in the data management field. In this survey, 
we focus on two of the promising solutions, namely shard-
ing and concurrency. In addition, the consensus algorithm 
is orthogonal with the two approaches and can be arbitrarily 
combined with them according to actual needs. We provide 
an overview of the surveyed works in Table 3.

3.2.1 � Sharding

Sharding is originally a technique in databases to expand 
storage capacity and reach higher throughput. By shard-
ing, the huge data is divided into multiple subsets and 
stored on different nodes, so that transactions on differ-
ent nodes can be processed in parallel. Many database-
oriented blockchains also benefit from such a method and 
improve the data processing capability. Elastico [104] is 
the first sharded blockchain that divides the network into 
multiple groups. Each group processes disjoint transac-
tion data and runs PBFT consensus independently. After-
ward, OmniLedger [105] introduced 2PC to the cross-shard 
transaction process to ensure the atomicity of cross-shard 

Table 3   Summary of representative works about protocols in database-oriented blockchains, in which “A/B” refers to the Account/Balance 
model

a In tps (transactions per second), and each is the best throughput reported in the paper
b The inter-shard threat model is BFT, and the intra-shard one can be configured as either BFT or CFT according to the requirement
c r is configurable and specific to the BFT protocol it adopts

System Type Threat model Transaction model Consensus protocol Fault tolerance Throughputa Additional techniques

Elastico [104] UTXO Permissionless BFT PBFT 1/3 (Intra-shard)
1/4 (Total)

N/A –

OmniLedger [105] UTXO Permissionless BFT ByzCoinX 1/3 (Intra-shard)
1/4 (Total)

13,000 2PC

RapidChain [106] UTXO Permissionless BFT PBFT+EC 1/2 (Intra-shard)
1/3 (Total)

7380 Erasure Coding

Monoxide [107] A/B Permissionless BFT Chu-ko-nu Mining 1/2 11,694.89 –
SlimChain [61] A/B Permissioned CFT Raft N/A 1284 TEE,

Serializable Snapshot 
Isolation, 

Optimistic Concur-
rency Control

Permissionless BFT PoW 1/2 462

BrokerChain [56] A/B Permissionless BFT PBFT 1/3 (Intra-shard)
1/4 (Total)

30,000 –

Meepo [58] A/B Permissioned BFT,
BFT/CFTb

Any – 124,583.7 –

BFT-Store [53–55] A/B Permissionless BFT BFT+EC 1/r c 2100 Erasure coding
Section-Block-

chain [57]
A/B Permissionless BFT Proof of Storage 1/2 N/A –

SChain [63] A/B Permissioned BFT PBFT 1/3 N/A Deterministic Con-
currency Control

PEPP [60] A/B Permissioned BFT PBFT 1/3 14,000 –
SEFrame [64] A/B Permissioned BFT PBFT 1/3 N/A Optimistic Concur-

rency Control
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transactions; RapidChain [106], combined the PBFT pro-
tocol with erasure coding (EC) [108] to reduce the huge 
network traffic brought by PBFT; Monoxide [107] proposed 
Chu-ko-nu Mining to solve the problem that the computing 
power in the PoW is diluted after sharding, and enhance the 
security of the system. However, there are still problems to 
be solved, e.g., the efficiency of the cross-shard transaction 
process, and the storage issues.

Although the transactions within the same shards can be 
efficiently executed in sharded blockchains, the cross-shard 
transactions usually become the bottleneck. Authors of Bro-
kerChain [56] pointed out that the cross-shard transactions 
can be reduced if the partition can be altered. Thus, they 
analyze the accounts that involve in the upcoming transac-
tions and dynamically adjust to the optimized account dis-
tribution. However, such a scheme cannot completely avoid 
cross-shard transactions. To solve this problem, the accounts 
involved in the cross-shard transactions are virtually divided 
into several sub-accounts with part of the assets it holds, and 
distributed in different shards. Thus, cross-shard transactions 
can be divided into intra-shard and cross-shard sub-transac-
tions. The former can be effectively handled, while the latter 
is taken care of by special broker accounts in both shards.

Meanwhile, Meepo [58] provides another solution to 
improve the efficiency of cross-shard transaction execu-
tion. It requires a consortium environment, i.e., every node 
belongs to a specific organization and each organization 
contains several data shards. Moreover, nodes within the 
same organization trust each other. Under such a scenario, 
the authors proposed a cross-shard protocol. To be more 
specific, several cross-epochs are inserted after processing 
intra-shard transactions to execute inter-shard transactions 
in the consensus. Each shard sends cross-calls that include 
necessary data to the remote shard and executes the inter-
shard transactions on the target shard. This procedure is 
executed repeatedly until there are no more cross-calls gen-
erated, i.e., all cross-shard transactions have been processed. 
This indicates the cross-epochs of the current block have 
finished and the consensus of the next block goes on. In 
this way, cross-shard communication can be done accord-
ing to the order of cross-calls, which reduces the contention 
of cross-shard transactions and improves efficiency. Meepo 
also provides atomic guarantees for cross-shard transactions 
in replay-epoch, which follows cross-epochs to remove any 
faulty transactions.

Since the data are supposed to be fully replicated in 
the primitive blockchain network, sharding should reduce 
the storage overhead of every single machine. BFT-
Store [53–55] is a Byzantine fault-tolerant partition storage 
engine that equips Reed-Solomon (RS) [109], a widely-used 
EC. Specifically, assuming that there are n nodes in the net-
work and the system can tolerate at most f faulty nodes, an 
RS engine is responsible to encode n − 2f  original blocks 

into n chunks with (n − 2f , 2f )-RS encoding. The choice of 
parameters is based on the fact that the BFT protocol can 
only ensure that n − 2f  honest nodes commit blocks. Then 
each chunk is distributed to a node. In this way, the storage 
complexity of each block is reduced from O(n) to O(1). The 
read engine handles the read requests and responses with the 
target block. When the target block is local to the node, it is 
returned directly, otherwise the node sends a query request 
to the target node. If the request is not replied until timeout 
exceeds, the node broadcasts a decoding request to n − f  
random nodes to obtain necessary chunks and returns the 
decoded target block. Other components include a recovery 
engine that recovers the data and a scale-out engine that 
coordinates the re-encoding process when a new node joins 
the system.

Section-Blockchain [57] also tries to reduce the storage 
overhead without compromising the security of the system 
via the sharding technique. It simply partitions the blocks 
into several blockchain fragments and the corresponding 
database snapshots that record the global system settings 
and account states at an exact moment. Then, the author 
designed an efficient protocol that helps participants to opti-
mize the connection with each other to achieve a format-
ted network. With such a protocol, the author proved that 
the data are safe when the participants hold all the block 
headers of the mainchain, a subset of blockchain fragments 
and database snapshots, and a map table between fragments 
and snapshots. Since the map is much smaller than a whole 
block, Section-Blockchain reduces the storage overhead of 
each participant.

SlimChain [61] adopts a novel stateless scheme, in which 
the off-chain storage nodes store the ledger states and simu-
late smart contract execution, while the on-chain consensus 
nodes only maintain the short commitment of ledger states. 
Shardings in SlimChain aim to lower the overhead of the 
off-chain storage nodes. In particular, each off-chain node 
can choose to store partial or full states based on their stor-
age capacities. The transactions are assigned to the nodes 
which hold the necessary data fragment. There’s no need to 
worry about the cross-shard transactions that no node holds 
complete data, since the data can be authentically retrieved 
from other nodes with the TEE environment.

3.2.2 � Concurrency

Many works have revealed that the serial execution of trans-
actions is one of the bottlenecks that encumber the perfor-
mance of blockchains, as it does not fully make use of the 
concurrency ability of modern multiprocessors. How to 
enable blockchains with concurrency to improve transac-
tion execution efficiency is a hot topic in recent years, and 
the key lies in how to ensure that the results of concurrent 
schedules are the same in all nodes. As a typical blockchain 
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system, Hyperledger Fabric [17] adopts a novel execute-
order-validate (EOV) scheme, in which transactions are 
executed parallelly in the first stage while keeping serially 
in the latter two. Such a scheme inspires the design of suc-
cussing database-oriented blockchains to further improve 
the concurrency of the transactions. For example, as men-
tioned before, the stateless design of SlimChain [61] natu-
rally supports the parallel execution of transactions in the 
off-chain storage nodes. To ensure the ACID property of 
these transactions, the authors introduce the concurrency 
control algorithms in the commit phase.

SChain  [63] introduces concurrency to permissioned 
blockchain transactions from both intra- and inter-block. 
Since nodes from the same organization trust each other, 
transactions with the same block are assigned to different 
nodes and the results are shared in the organization. To max-
imize the concurrency while ensuring execution correctness, 
SChain pre-analyzes the potential conflicts by each transac-
tion’s read/write set and assigns conflicting transactions to 
the same executor. As for intra-block concurrency, SChain 
divides the block formation into five stages and overlaps 
the execution process of different blocks. In other words, it 
turns the original pipeline model into a transaction stream-
ing pipeline model to make the most use of the computing 
resources.

A parallel execution engine, PEPP [60], is proposed for 
the consortium blockchain. It adopts a deterministic concur-
rency mechanism to obtain the predetermined serial order 
of parallel execution, and conducts parallel update opera-
tions on the state tree. The workflow to process a transaction 
includes three phases, namely ordering, execution, and fina-
lization, and the PEEP involves the latter two. In the execu-
tion phase, a schedule layer is responsible to coordinates the 
parallel execution in a deterministic serial order. An ordered 
locking mechanism is used to eliminate the non-determinism 
without introducing additional network communication. In 
the finalization phase, the results of transactions are updated 
to a specially designed state tree that allows deferred com-
mits and parallel updates. In this way, the workflow will 
not be blocked by the time-consuming tree update, and the 
performance of the entire system can be further improved.

Recently, new hardware are introduced to blockchain 
systems. It is also important to design suitable concurrency 
mechanisms for these systems. SEFrame [62, 64] proposes a 
concurrent execution mechanism based on SGX, an instance 
of TEE. As mentioned before, the SGX cannot hold the 
entire ledger in its memory due to hardware limitations, and 
the data swap between it and main memory should also be 
minimized because of the huge cost. SEFrame solves the 
problem and achieves concurrency both between nodes and 
within a single node. Specifically, the transactions are pro-
tected by the SGX in the execution phase, while the trusted 
results are replicated in the network. To enable inter-node 

concurrency, a batch of transactions is divided into several 
micro-batches and assigned to different nodes for execution. 
For intra-node concurrency, a pre-execution mechanism that 
fetches needed data in batches is proposed to minimize the 
burden on the SGX. After the pre-execution, the transactions 
of a micro-batch are executed in the SGX with a batching 
optimistic concurrency control (batching OCC) protocol.

3.3 � Data Model

Existing blockchain platforms are far from convenient com-
pared to traditional databases, as they lack the capability of 
modeling complex tasks in the real world. The cumbersome 
interfaces also prevent them from further use in business. To 
solve such a problem, many works aim to enable blockchains 
with complex semantics and easy-to-use APIs.

Since the relational model is widely used in business, 
many researchers and engineers try to implement relational 
semantics on database-oriented blockchains. SEBDB [41] 
adds relational data semantics into the blockchain platforms 
and supports SQL-like language as the data management 
interface. The block structure of SEBDB is re-designed to 
meet the requirement of relational semantics. Each transac-
tion contains several system-level and user-defined applica-
tion-level attributes, making it possible to maintain and store 
the schema as a regular relational table. FalconDB [84] is 
another system that explicitly supports the SQL data model. 
Unlike SEBDB, one FalconDB block body only consists of 
an arbitrary-sized transaction. And there are two attributes 
that record the validity time of the record to manage the his-
tory versions of data.

As for the cumbersome interfaces, BlockchainDB [83] 
exposes three straightforward key-value APIs, namely put, 
get, and verify, to the clients, while leaving the complicated 
primitive operations to a specifically designed storage layer. 
The storage layer undertakes the hideous works of reading 
and writing storage in a synchronized way, checking syn-
chronization status, and computing write sets for further 
verification. EtherQL [43] provides two types of interfaces, 
namely API and REST to meet the different requirements 
of developers. Thus, application developers can directly use 
the encapsulated interfaces without fully understanding the 
low-level implementations. EthernityDB [82] integrates a 
lightweight database system with a MongoDB-like API into 
Ethereum by utilizing the smart contracts that are designed 
to process collections and documents in MongoDB.

SQL-Middleware  [42] provides a different solution. 
Instead of modifying the underlying blockchain systems, it 
is a portable middleware that abstracts the blockchain into a 
SQL-based data management system. To be more specific, 
it maps each function of smart contracts into a table. When a 
smart contract is called, it records the structured data which 
is equivalent to inserting an item into the database.
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3.4 � Ledger

The ledger of a blockchain records either the account state or 
the operations on the data in plain text. As it has been intro-
duced in Sect. 2.1, the ledger is distributed to all the nodes 
of the network. In such a scenario, the secret data of one 
participant are also leaked among the whole system. Thus, 
many works try to modify the ledger to keep the privacy of 
sensitive data.

The first solution is to encrypt the ledger. Adkins 
et al.  [66] designed an end-to-end encrypted system, in 
which data is encoded rather than stored in plaintext directly. 
They proposed three types of encrypted multi-map that ena-
ble efficient query and modification (including add, update, 
and, especially, delete) operations. The first is a list-based 
encryption scheme (LSX) that makes use of an append-only 
data store. Each value of a label is linked by its address 
and only the last value is stored with the label. There is a 
flag indicating whether it has been deleted. Then, the struc-
ture is encrypted and stored. The other two multi-maps are 
arranged in two dimensions, namely the tree-based scheme 
(TRX) and the patch-based one (PAX). As for the TRX, the 
list is replaced by a binary tree in the consideration of search 
efficiency, while in the PAX, multiple operations are packed 
into a patch to further improve the efficiency.

Instead of cryptographic methods, LedgerView [76] adds 
access control views of traditional databases to permissioned 
blockchains. The permission control methods can be classi-
fied from two dimensions, namely encryption-based/hash-
based, and irrevocable/revocable. For the encryption-based 
methods, sensitive data are encrypted and stored on-chain. 
For the irrevocable view, the owner first creates a unique 
symmetric encryption key Ki for each transaction Ti and 
encrypts them, denoting them as enc(Ti,Ki) . Then, it pro-
duces a new symmetric key KV for the view and stores the 
view as a list enc([tid1,K1,… , tidn,Kn],KV ) on the block-
chain. Next, the authenticated users receive the KV from the 
owner and access corresponding transactions via KV . For the 
revocable views, the lists of transactions and corresponding 
keys are stored separately. To revoke the user’s access, the 
owner simply generates a new key for the view. However, 
when access is revoked under the revocable views, users 
may still have access to information they downloaded and 
stored locally, but they cannot access and download fur-
ther information. The hash-based methods are similar to the 
encryption-based ones, the difference is that data are stored 
off-chain and the hashes are used to verify the integrity of 
retrieved data.

CAPER [77] is a novel permissioned system that sup-
ports both inter- and intra-application transactions. Instead 
of a linear structure, the ledger in CAPER is extended to a 
directed acyclic graph (DAG), in which the transactions and 
orders are represented as vertexes and edges, respectively. 

In such a scenario, each application only maintains the view 
from its perspective, in which the order between each trans-
action is determined in a linear formation, while the whole 
ledger can be combined by all the views virtually. As for 
the inter-application transactions, the hashes of data from 
other applications are included. In this way, public records 
are copied on all applications, while private records of one 
application can only be accessed by the application to ensure 
privacy.

3.5 � Discussion

We make the following observations from the aforemen-
tioned representative database-oriented blockchains. First, 
techniques from traditional databases (e.g., sharding, index-
ing, and concurrency) benefit current database-oriented 
blockchains a lot since they have been examined and proved 
efficient in the past decades. It is still important to draw les-
sons from mature optimizing techniques. Second, there are 
also several database-oriented blockchains aim to improve 
those components unique to the blockchains, such as the 
chain-like ledger and the Byzantine resistance consensus 
protocol. Given the difference between blockchains and 
databases, such components play key roles in the functional-
ity of database-oriented blockchains. Experiments show that 
corresponding improvements can greatly improve the per-
formance of the system. Last, more and more database-ori-
ented blockchains adopt multiple technical routes to enhance 
its functionality and improve performance. We can conclude 
that these technical routes can improve the system in vari-
ous aspects from the previous part of this section. Thus, the 
combination of these techniques is a wise and promising way 
to develop further database-oriented blockchains.

In a word, the database-oriented blockchains satisfy vari-
ous needs of modern data management, and the development 
and improvement of it are with a wide prospect.

4 � Blockchain‑Oriented Databases

The blockchain-oriented databases take off from the data-
base end on the blockchain-database spectrum and aim to 
equip the efficient and easy-to-use data management system 
with blockchain-powered secure guarantee. They are usu-
ally extended from mature database systems and even the 
already-running database instances (which are also called 
legacy systems). The key point of designing the blockchain-
oriented databases is to efficiently implement the algorithms 
and protocols of the blockchain and minimize the impact on 
the base system. There are two mainstream technical routes 
to satisfy the requirements, namely blockchain middleware, 
and blockchain layer. In Fig. 4, we abstract the general 
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architecture of the blockchain-oriented databases and high-
light the mainly modified components.

4.1 � Blockchain Middleware

Though it is mainstream to build a blockchain from the 
very beginning and add database features to it in the data-
bases community, the attempt of leveraging the existing 
relational databases with rich features and transactional 
processing capabilities to build a blockchain is also been 
noticed. Nathan et al. [49] studied the feasibility of such 
an idea and proposed blockchain relational database. They 
first analyzed the similarities between blockchain require-
ments and database features, and then implement a block-
chain on PostgreSQL, an open-sourced relational database. 
To be more specific, several middleware and components 
are designed. For example, the communication middleware 
is used to transfer transactions and blocks, the block proces-
sor handles the received blocks and replays the transactions 
in the commit phase, the built-in catalog tables store related 
metadata, and several shared memory data structures are 
used to process the transactions in different isolation lev-
els. In this way, the traditional stand-alone databases are 
equipped with blockchain capabilities with the cost of only 
4000 lines of C code.

Since then, more and more researchers develop various 
blockchain middleware to enable databases with security 

guarantees in different aspects. Lian et  al leverage the 
immutability of blockchain ledgers to develop a tamper-
proof detection middleware for relational databases, named 
TRDB [48]. In TRDB, the original data are stored and pro-
cessed in the relational databases, while the hash digest of 
each entry is replicated among the blockchain for tamper 
detection. There are two additional considerations, namely 
data privacy and supporting relational semantics in block-
chains. For the first one, AES is used to encrypt the origi-
nal data to protect them from the transparency nature of 
blockchains. To solve the second problem, TRDB concat-
enates both rows and columns of each table to detect illegal 
insertion, deletion, and modification. What’s more, TRDB 
caches the encrypted data with LRU strategy before it has 
been logged on chain to improve the data access efficiency. 
Thus, when querying the data, TRDB first intercepts the 
SQL request and executes it in the relational database, then 
it accesses the cache or the blockchain and subsequently 
compares the query results with the calculated digest. When 
a tamper is detected, TRDB warns of the misconduct behav-
ior and returns the information to the user. Similar works 
include [110] and [111]. The former directly stores the raw 
data on the blockchain, while the latter concentrates on 
image data.

Beirami et al. [51] propose several additional built-in 
attributes for each relational table to simulate block headers 
in blockchains that support verifiable immutable transac-
tions. The attributes include the transaction timestamp (i), a 
new table signature ( sigi ), the previous table signature ( sig′

i
 ), 

the user public key(pubkey), and a bit flag to indicate if the 
transaction is a deletion (del). The two signatures serve as 
the hash pointer of blockchain, while others are similar to 
the corresponding fields in block headers. Note that these 
attributes are calculated and inserted into the augmented 
tuple implicitly whenever the table is modified, which means 
they are transparent to the users. Given a transaction T, the 
system compares whether enc(sigt, pubkey) = hash(T , sigt−1) 
holds to verify its validity.

4.2 � Blockchain Layer

Different from the simple additions of the middleware solu-
tions, a blockchain layer means stepping inside the under-
lying databases and modifying the existing components. 
Though it may require more effort, such a solution allows 
researchers to adjust the inner workflow and improve the 
performance of the whole system.

Blockchain PG [47] adds the blockchain function to data-
bases to ensure data integrity, and achieve the traceability 
of data through trace query. It is a permissioned system that 
requires a CA to prove the identity of clients. The core com-
ponent of the system is PostgreSQL+ (derived from Post-
greSQL), whose “blockchain layer” can be further divided 
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Chain Structure
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Fig. 4   Architecture of blockchain-oriented databases 
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into four sub-layers. The user layer provides interfaces to 
the clients, and verifies the user’s identity with the public 
key; the query layer generates an optimal plan for authenti-
cated queries to boost the query processing; the index layer 
provides authenticated indexes on data stored in the source 
layer, in which data are stored in an append-only behavior.

BigchainDB [112] is a commercial database-style dis-
tributed storage system that combines the key benefits of 
both distributed databases and blockchains. In fact, it is built 
on top of two existing RethinkDB [113] instances, namely 
S (stores an unordered set of transactions and serves as a 
backlog) and C (stores ordered list of blocks that forms a 
blockchain), and directly inherits the strength from data-
bases. To enable BigchainDB with decentralized control 
and immutability, the authors built a blockchain layer that 
connects S and C with BigchainDB Consensus Algorithm 
(BCA) that is in charge of transaction assigning and voting.

HBasechainDB [52] adopts the same philosophy, yet it 
is built on Apache HBase [31], a column-based distributed 
database for big data. The workflow of transaction process-
ing is quite similar to traditional blockchains such as Bitcoin 
– a transaction is first submitted to a transaction pool of a 
specific node, then the node verifies the transactions, packs 
all valid transactions in a block, and broadcasts to other 
nodes. When the majority votes for a block, it is considered 
to be valid and appended to the ledger, while the transactions 
in the invalid blocks are reassigned to other nodes randomly 
until it is included in the chain or removed from the system. 
Note that there is no need to worry about the competition 
between the miners and the resulting forks in practice, since 
HBase is of strong consistency, and the blocks are voted in 
the order of their timestamp. Due to the different data model, 
the authors designed 6 HBase tables, namely backlog, 
block, hbasechaindb, toVote, vote, and refer-
ence, in which backLog serves as the transaction pool 
and reference is an index table the maps transaction id 
and the content.

chainifyDB [50, 81] is a permissioned blockchain-like 
system built on heterogeneous database systems. The authors 
pointed out that blockchains and traditional DBMSs share 
considerable parts of their processing stack and “chainfied” 
existing databases by introducing a blockchain layer. To 
unify the heterogeneous underlying databases, a new trans-
action processing model called Whatever-Voting (WV) is 
proposed. It consists of two phases and only focuses on the 
results. In particular, each underlying database does what-
ever necessary to process the transactions and produces 
a digest of its behavior in the Whatever-phase, and each 
participant votes for the digest of W-phase in the Voting-
phase. Only when an agreement is reached, the state changes 
are committed to a ledger by the individual organizations. 
chainifyDB instantiates the WV model by batching the pro-
posed transactions and ordering them within a block. Then, 

the organizations use the WV model to reach a consensus 
on each block. For now, chainifyDB supports MySQL and 
PostgreSQL.

4.3 � Discussion

In this section, we review representative works about the 
blockchain-oriented databases and identify two mainstream 
technical routes to implement it. We can conclude from the 
analysis that the hash-chain feature of blockchains, along 
with the multi-node consensus and backup mechanism, 
becomes important reinforcement of traditional databases’ 
data integrity protection measures. The integration of block-
chain features helps databases to further complete their 
functionality.

However, we also notice that the two technical routes 
have pros and cons. There exists a trade-off between flex-
ibility and performance. In particular, building a blockchain 
middleware is easy and less intrusive. It can also bridge het-
erogeneous database instances with the same data model, 
which provides better portability and suits the inter-organi-
zation collaboration scenario. On the other hand, designing 
a blockchain layer for a specific database instance makes it 
possible to further optimize the components and provides 
higher performance. To sum up, the blockchain middleware 
is more friendly to the legacy systems, and the blockchain 
layer is more efficient. We further compare the works in 
Table 4.

5 � Hybrid Systems

The hybrid systems locate in the center of the blockchain-
database spectrum. Different from the other fusion systems 
which focus on either security or performance, they are 
equal combinations of blockchain and database, and reach 
a balance between the two aspects. Though it is indeed that 
the hybrid systems are less competitive than the other fusion 
systems in most scenarios, the balanced and comprehensive 
functionality enables them to cope with the basic secure data 
management tasks and focus on more complex requirements. 
In fact, many hybrid systems are designed to handle compli-
cated problems in practical scenarios, such as graph data and 
the conflict situation between morals and laws.

The integration of the hybrid systems usually relies on 
middleware to connect the existing blockchain and database 
instances, and we present the abstract architecture of hybrid 
systems in Fig. 5.

5.1 � Representative Systems

Instead of representing the relationship in abstract attributes, 
graph databases directly store and process the relationship 
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of entities in the formation of vertexes and edges. The native 
graph storage and processing enable the graph databases 
with superior traversal performance; however, the plain KV 
model limits blockchains to processing such complicated 
data as the graph databases do. To enable the verifiable audit 
trail of data integrity and its modifications for information 
stored in a graph database, Ermolaev et al. [46] combine an 
Exonum [114] blockchain and Neo4j [33], the most popular 
graph database management system, into a single system. To 
be more specific, each Neo4j instance handles the data store 
and management, while the Exonum undertakes the role of 
verifiable operation log. Unlike blockchains that maintain 

data on the chain, the authors adopt a two-step solution that 
the blockchain first reaches an agreement on the modifica-
tions of graph data, and then each Neo4j instance executes 
the operations locally. In this way, the computation com-
plexity and the durability of the consensus process can be 
greatly lowered.

In the situation of personal data management such as stu-
dent data and medical records, there exists a conflict between 
personal privacy and public interests, i.e., stakeholders want 
to claim the ownership of their personal data and restrict 
third parties to access their data, while such a restriction 
may hinder the third parties to make use of these data in 
governance or innovation. Though blockchain and smart 
contract seems to be a promising solution to this problem, 
it is not practical since current blockchains cannot store and 
process such a massive amount of data. Bertram et al. [45] 
combine blockchain and databases to enable users to con-
trol the ownership of their private data. The system con-
sists of three components. The core is a distributed database 
(e.g., BigchainDB [112]) that stores user data except iden-
tifying information. There is also a centralized MongoDB 
that stores user identity information. Finally, there is also 
a blockchain that links the two components. In particular, 
individual-specific smart contracts manage the map between 
the user identifier and his personal data. When a user decides 
to revoke access, he simply updates his identity in the cen-
tralized database but leaves the smart contract unchanged. 
Then, all third parties will lose track of this data entry while 
making use of the de-identified data.

The hybrid systems are also used to simultaneously man-
age data in blockchain and database platforms. This is from 
the observation that each platform has its solid advantage at 
the current stage. Thus, the most practical way is to build a 
combination system such that inherits both the resistance to 

Table 4   Summary of representative blockchain-oriented databases 

a We present the best result that is reported in the paper
bThe authors claim that their systems are suitable for any relational database, here we present the database they used in the experiments

Category System Underlying databases Performancea Features and functionalities

Blockchain middleware Blockchain relational
Database [49]

PostgreSQLb 2500 tps (Throughput) Transform with a trivial amount 
of code

TRDB [48] MySQL b 92.04%
(Change in middleware execution 

efficiency compared to baseline)

Support tamper-proof detection

Beirami et al. [51] PostgreSQLb 50x (Improvement of throughput) Support verifiable immutable 
transaction process

Blockchain layer Blockchain PG [47] PostgreSQLb N/A Transform from legacy systems

BigchainDB [112] RethinkDB 1,000,000 tps (Throughput) Commercial system with high 
performance

HBasechainDB [52] HBase 5893 tps (Throughput) Suitable for big data scenarios
ChainifyDB [50, 81] MySQL,

PostgreSQL b
5000 tps (Throughput) Support heterogeneous database 

systems

Middleware

Blockchain

Instance

Database

Instance

Fig. 5   Architecture of hybrid systems 
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data modification from blockchain and the query speed from 
the distributed databases. ChainSQL [115] is an implemen-
tation of the above scheme that ensures data integrity and 
fast query processing. It provides APIs that support opera-
tions in SQL and JSON format. In ChainSQL, the block-
chain reaches the consensus of each transaction and stores 
the operations. After that, the transactions are forwarded to 
and executed in the database, and the actual data are also 
stored in the database. What’s more, ChainSQL can also 
serve as a disaster recovery backup since the operations are 
logged on a trustworthy platform, i.e., the blockchain.

The authors of MOON [44] hold another view of simul-
taneous data management. They believe that neither of the 
platforms suits all types of data, thus they aim to partition 
the data to either blockchain or database, and expose unified 
interfaces to developers and final users. In general, MOON 
intercepts users’ requests and redirects them to the platform 
that holds the data. When it comes to the situation that needs 
to process data from both platforms, MOON will retrieve 
data from the blockchain to a temporary table of the data-
base and execute corresponding operations there to make full 
use of the mature data processing capability of databases. 
The authors also conduct a case study on clinical laboratory 
tests to find which platform is more suitable to hold differ-
ent types of data, i.e., how to partition the data entries. They 
suggest that the data needed to change frequently should be 
stored in the database, while those persistent are more suit-
able to the blockchain.

5.2 � Discussion

Table 5 summarizes the representative hybrid systems. 
Although there have been numerous studies and applica-
tions of other fusion systems, we can draw from the above 
analysis the unique value of hybrid systems. By directly 
integrating blockchain and database instances, the hybrid 
systems acquire a balanced and sufficient ability of integ-
rity and fast data processing from both systems, which can 
satisfy the needs of most application scenarios. With such 

a solid foundation, we can further explore some compli-
cated problems in secure data processing (e.g., data own-
ership management), which may be the most important 
application scenario of hybrid systems.

We also observe that the direct integration of several 
instances results in a bloated and redundant system that 
requires more resources than the database-oriented block-
chains or blockchain-oriented databases. For example, the 
manipulation logs on the actual data are stored both as on-
chain data on the blockchain instance and as WAL logs in 
the database instance. How to minimize the redundancy 
and make full use of the instances is a promising direction 
for hybrid systems in the future.

6 � Discussion

6.1 � Comparison

Based on the above analysis, we compare the three fusion 
systems within different dimensions in Table 6. We can 
draw the conclusion that each of the fusion systems has 
its unique advantages and suitable scenarios. In particu-
lar, blockchain-oriented databases suit the scenarios that 
value security most and want to improve the data process-
ing capability, while blockchain-oriented databases are 
the best choice to satisfy the security needs of the effi-
ciency-first applications. Hybrid systems provide a balance 
between data management capabilities and blockchain 
benefits, making them a viable option for many use cases. 
Thus, the three systems are of equal importance, since the 
three systems satisfy different urgent demands in the data 
management field.

We also observe the increasing trend in the research of 
database-oriented blockchain, which shows that people pay 
more attention to data security. Therefore, we suggest further 
studies of this aspect and expect a more competitive system 
based on the massive views in this field.

Table 5   Summary of 
representative hybrid systems 

aThe inconsistency comes from the underlying nature of fusion systems, depending on the authors’ focus 
on its functionality

System Blockchain Database Research field

Ermolaev et al. [46]  Exonum Neo4j Graph Data
Bertram et al. [45] Etherum Big-

chainDBa (User 
Data),

MongoDB 
(User Iden-
tity)

Data Ownership Management

ChainSQL [115] Ripple Any Data Integration of Blockchain and Database
MOON [44] BigchainDBa PostgreSQL Data Partition between Blockchain and Database
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6.2 � Challenges and Future Works

Numerous cases have shown that there are strengths and 
weaknesses of blockchains and databases in the data man-
agement field, thus the integration of both systems to bet-
ter undertake the task has become a promising solution in 
the database community. However, it is not an easy way. 
In this section, we present our observation on the research 
challenges and future opportunities in the integration of 
blockchains and databases, i.e., the fusion systems, from 
the aspects of performance, privacy, data description ability, 
new hardware, learning-based optimization, and application.

6.2.1 � Performance

Performance is the most important feature of a data manage-
ment system that is perceived by the users. Consequently, 
it is one of the most critical indicators to evaluate such a 
system. However, we have observed that there is still a huge 
performance gap between the fusion systems and mature 
commercial databases. This is due to the linear nature, 
one of the fundamental features of blockchain, hindering 
the transaction processing rate of blockchains and the suc-
ceeding fusion systems. To solve the problem, there are two 
parallel-but-associated targets, which affect two main opera-
tions (query and modification) in a data management system, 
respectively.

One is to build efficient indexes on the target data to 
accelerate data access. It is relatively easy for the off-chain 
part since the indexes of databases can achieve a satisfying 
performance. However, for the on-chain data, it is proved in 
practice that the design of new block data storage structure 
and corresponding indexes can effectively improve the query 
function and query performance. The index of on-chain data 

can either serve for real-time transaction verification [41, 67, 
72] or improve the access efficiency of transaction history 
information [73–75]. In a word, a proper index of on-chain 
data provides not only higher real-time access efficiency 
in terms of performance, but also supports the traceability 
query based on historical data in terms of functionality.

The other is to improve the consensus mechanism, which 
is the key to ensuring the consistency of transaction execu-
tion among the participants, thus it has a great impact on 
the overall performance and application of blockchains and 
fusion systems. It is important to reach a balance between 
efficiency and consistency, but there are two main drawbacks 
and opportunities of current blockchain consensus mecha-
nisms. First, the serial execution of transactions does not 
fully make use of the concurrency ability of modern multi-
processors, so it is a good idea to improve the concurrency 
of transactions [60, 63, 64]. What’s more, the abort rate in a 
high contention environment also encumbers the ability to 
process transactions. Therefore, how to effectively eliminate 
the conflicts remains to be researched [21, 22].

6.2.2 � Privacy

In the blockchain environment, all data and transactions 
need to be replicated to all nodes to obtain consensus. As a 
consequence, sensitive data may be accessed by unauthor-
ized third parties, and cannot be managed in the blockchain 
environment. The fusion systems also face such a problem. 
The key lies in the access control of private data. However, 
directly applying access control methods for databases to the 
blockchain will result in the hash value of each block can-
not correspond to the data obtained, so users cannot verify 
whether the data in the chain has been tampered with. This 
is a difficulty that remains to be solved.

Table 6   A high-level comparison between three fusion systems

Database-oriented Blockchains Hybrid Systems Blockchain-oriented Databases

Applicable Scenarios Guarantee data security while 
Improving data processing capa-
bility

Acquire balanced properties from 
both sides and reduce modifications 
to legacy systems

Retain the data processing capabil-
ity while enhancing security

Representative Systems SEBDB [41],
ForkBase [73],
SlimChain [61],
SE-Chain [72],
BrokerChain [56]

Ermolev et al. [46],
MOON [44]

TRDB [48],
BigchainDB [112]

Specific Techniques Index, Sharding,
Concurrency,
Data Model, Ledger

Customizable Middleware Cryptography

Advantages Decentralized,
Data Security,
Tamper-proof,
Auditable

Low Coupling,
Balanced Security-Performance 

Guarantee

High Performance,
Easy-to-use, Privacy-friendly,
Resource Efficient
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Fortunately, with the help of database techniques, several 
promising solutions can be further studied. For example, the 
system can store sensitive data in the databases (off-chain) 
which have better support for data privacy [41], or learn 
lessons from database view to manage on-chain data with 
access control [76]. Other technique routes include cross-
chain and cryptographic protection.

6.2.3 � Data Description Ability

The development of the Internet applications has spawned a 
variety of data forms, such as graph data and document data. 
Many existing studies in blockchain and database fusion sys-
tems support and extend key-value model [39, 40] and rela-
tional model [41, 42, 44, 47–51]. However, supports for the 
new forms of data are not common in fusion systems, and 
the data description capability in blockchain fusion systems 
needs to be improved.

For example, graph databases are a rapidly evolving field 
with many active research directions. Graph mining and 
analysis involves extracting useful information and insights 
from large-scale graph data. By integrating graph databases 
with blockchains, transactional relationships can be analyzed 
in a secure and decentralized manner [116].

6.2.4 � New Hardware

Recently, there is a notable development of various types of 
hardware related to blockchains. For example, the success of 
Bitcoin has led to the emergence of dedicated hardware such 
as Field Programmable Gate Array (FPGA) and GPU, which 
has greatly increased the efficiency of hash computing. In 
turn, how to make full use of these emerging hardware in 
the fusion systems to better manage data is an interesting 
topic for the database community. Here we present several 
observations.

A trusted execution environment (TEE) provides an iso-
lated memory that resists outside corruption and ensures 
secure computing at the hardware level, which lowers the 
security assumption to a certain extent. Thus, there is an 
opportunity to improve other aspects of blockchains, espe-
cially in the terms of performance [62, 64, 69, 70]. GPU 
supports parallel computing of large amounts of data, and it 
is a promising idea to utilize its parallel processing capabil-
ity in boosting the data processing of fusion systems [117].

6.2.5 � Learning‑Based Optimization

Machine learning has been extensively studied over the 
past decades. It simulates human learning behaviors with 
high computing power to acquire new knowledge or skills, 
and has been widely applicated in database optimizations 
such as cost estimation, join order selection, and end-to-end 

optimizer [118]. We believe that it will also gain huge suc-
cess in the optimization of blockchain-database fusion 
systems.

For example, the data distribution in sharding blockchains 
can greatly affect the efficiency of data access. However, 
current sharding systems usually adopt a naive rule such as 
prefix/suffix-based, which may not suit the real data distribu-
tion. In this way, machine learning-based rules can capture 
the pattern and boost data access [119]. Other applications 
include misbehavior detection of nodes [120, 121] and vul-
nerability analysis of smart contracts [122, 123].

6.2.6 � Domain‑Specific Application

The collectively maintained and tamper-resistant public 
ledger of blockchain systems ensures the security and reli-
ability of the data stored in a distributed network. In addition 
to general-purposed data management, blockchain-database 
fusion systems can also bring new solutions to many specific 
domains. We notice that more and more people combine 
their original business systems with blockchains to form a 
domain-specific fusion system in various fields. There is a 
trend that leverages blockchain characteristics to solve the 
drawbacks of the business system, and improve the short-
comings and limitations of the blockchain system itself. 
However, applications in various fields have also posed more 
challenges.

Take finance as an example. The processing capacity of 
the blockchains is not enough to replace the existing central-
ized trading system. Therefore, it is important to improve the 
consensus mechanism to adapt to high throughput financial 
transaction applications. As for the supply chain, it is nec-
essary to equip the system with a traceability model that 
fits the industrial supply chain scenario to promote verifi-
able data sharing in supply chain management. Other appli-
cations such as intellectual property management, asset 
delivery, and medical data management, also have different 
requirements for the fusion system.

7 � Conclusion

In this survey, we present the integrating trend of block-
chains and traditional databases, and propose a block-
chain-database spectrum to analyze the work related to the 
fusion systems in the field of data management. First, we 
classify the fusion systems into database-oriented block-
chains, blockchain-oriented databases, and hybrid systems, 
and present a high-level comparison according to the dif-
ferent directions of their integration. Then, we review the 
representative fusion systems of database-oriented block-
chains, blockchain-oriented databases, and hybrid systems. 
To be more specific, we review representative systems of 
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database-oriented blockchains from index, protocol, data 
model, and ledger; we analyze blockchain middleware and 
blockchain layer scheme of blockchain-oriented databases; 
we also demonstrate the combination approaches and ori-
ented research fields of different hybrid systems. Finally, we 
present a high-level comparison between the three fusion 
systems and our observations on the challenges and future 
work.

We believe that this survey demonstrates the current 
status and limitations of existing blockchain-related data 
management research and provides insight for researchers 
to conduct in-depth research in this area.
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