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Abstract

Australian Red Cross Lifeblood collects blood from non-remunerated voluntary donors.
Thus, itis important to ensure that donors experience good service so they will return to donate
blood again. Donor experience is adversely influenced by prolonged waiting times, but they
may be reduced by determining the staffing demand over the day. In this paper, we propose
a Monte-Carlo simulation-based simulated annealing algorithm that seeks the minimum
number of employees to meet demand over a single day while ensuring the system’s predicted
average waiting time does not exceed a specified threshold. To enhance the efficiency of our
simulated annealing algorithm, we develop a novel neighbourhood search method based on
the staff occupancy levels. We use data from four different Australian Red Cross Lifeblood
donor centres, demonstrating that our methodology can be adapted to any donor centre to
determine the minimum staffing demand. Since these staffing demands ensure the donor
waiting time target is met for each donor centre, they have the potential to improve both
donor and staff satisfaction as well as streamline the donor flow.

Keywords Staffing demand - Blood donor centre - Simulation - Simulated annealing -
Neighbourhood search - Stochastic optimisation
1 Introduction

Australian Red Cross Lifeblood (ARCL) is a non-profit health service provider funded by the
Australian governments. It mainly provides blood or blood products while supplying breast
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milk, transplantation, and biological products for world-class health outcomes (ARCL,2022)
. They have collected blood from more than 500,000 donors at 96 static and mobile donor
centres across Australia during 2020-2021. In this research, we use data from four different
Australian Red Cross Lifeblood donor centres in Melbourne CBD, Gosford, Townsville and
Warrnambool to determine their minimum staffing requirements.

For each of the four donor centres, the donation processes are very similar. Donors who
arrive at a donor centre go through a rigorous donation process to complete the donation.
A donor can make an appointment before arriving at the donor centre. However, scheduled
donors may fail to show up or be unpunctual for their appointments. Unscheduled donors
can be accommodated, if there is enough capacity and machines available and if there are
not already too many donors waiting to be seen. Otherwise, the donor is booked for the next
available appointment.

The donation process is shown in Fig. 1. There are three key stages: registration, assess-
ment, and blood collection. Every donor first registers at the reception desk and completes an
electronic health questionnaire provided by the receptionist. Next, the donor proceeds to the
assessment stage, where a nurse checks the donor’s eligibility to donate blood and adminis-
ters some simple health tests, such as hemoglobin tests, in an interview room. The final key
stage, blood collection, consists of three main steps. First, a nurse performs the needle-in,
and then a machine that is specialised in collecting whole blood or blood components such
as plasma or platelets collects the blood or component. Nurses can assist other donors while
a machine collects blood. When the collection is complete, the machine automatically stops,
and an available nurse conducts the needle-out. Donors should then rest for a few minutes on
the same couch and at least fifteen minutes in the refreshment area before leaving the donor
centre. Donors may have to queue for registration, assessment, and needle-out (waiting while
lying on the couch after the machine stops drawing blood) due to the unavailability of staff,
as depicted in Fig. 1. A donor, in particular, may have to wait until a staff member, couch, and
appropriate machine are available to start the needle-in. The first-in-first-out policy applies
to all queues, but it can be violated in the needle-in queue since priority is given to the very
first donor in the queue whose collection type matches an available machine.

Blood collection in Australia entirely depends on voluntary blood donors. The donations
from regular donors are safer and more economical than those from new donors; hence,
repeating donations is encouraged (Devine et al., 2007) . Furthermore, recommendations
from existing donors influence third parties to become new donors. In Australia, only 57.5%
of first-time donors make a subsequent donation within 12 months, and the return rates are
affected mainly by donors’ satisfaction with their previous visit (Masser et al., 2016) .
Therefore, it is important to provide a quality service that will encourage repeat donations.
Donor satisfaction relies on the time spent inside the donor centre. Prolonged waiting times in
the queues and long assessment times may adversely affect the donor experience. Therefore,
reducing waiting times is crucial to improving donor satisfaction.

ARCL has a Key Performance Indicator (KPI) to limit the Time-to-Couch (TTC) (that
is, the duration from donor arrival to needle-in) to 25min. According to Fig.1, TTC is
directly affected by the waiting times at the queues for registration, assessment, and needle-
in. Therefore, limiting the average waiting time at these three queues to a suitable threshold
will accomplish the KPI. We define this threshold as the ‘waiting time target’. It can be
derived by subtracting the expected times! for registration (2 min), questionnaire completion
(5 min), and assessment (12 min) from 25 min. Hence, the waiting time target is set at 6 min.

! The expected times for registration, questionnaire completion, and assessment were supplied by ARCL.
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Fig. 1 Donation process

To determine waiting times, modelling the donor flow is essential. We identified three
major challenges in modelling the donor flow. The first challenge is modelling donor arrival
patterns, which vary due to the earliness and tardiness of appointment-based arrivals, unsched-
uled arrivals, and no-shows. Second, there are resource limitations to be considered. The
facilities that a donor centre can provide are limited, even if the demand for them increases.
In a donor centre, there are limited human resources such as receptionists and nurses, as
well as physical resources such as reception desk space, interview rooms, blood collection
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machines, and couches. Third, uncertainties in processing times due to factors such as staff
member skills, donor deferrals for health and safety reasons, and donor adverse events dur-
ing collection. The distributions of data on activities, including registration, assessment, and
collection, are highly positively skewed as a result of these uncertainties. Therefore, we need
to model the donation process by considering all sources of uncertainty.

Optimal staffing is a key factor in streamlining donor flow and reducing waiting times.
Adding more staff to a donor centre is a simple solution, but it has a negative financial
impact as it increases the total number of staff working hours. Therefore, the staffing demand
must be minimised. Furthermore, the staffing demand throughout the day is not consistent.
This prompts the question, “How do we predict the minimum staffing requirement, which is
throughout the day, while keeping the average waiting time at or below its target?”.

In this paper, we propose a stochastic optimisation method to get optimal/near-optimal
results for our research question. First and foremost, we fit probability distributions to the data
on the duration of registration, questionnaire completion, assessment, and blood collection
for all four donor centres. We test a variety of probability distributions by considering the
shape of the histograms and the descriptive statistics of the data. The realisations randomly
generated from the fitted distributions are then incorporated to develop a comprehensive
discrete event simulation model that effectively represents the donation process of a blood
donor centre. The simulation model generates accurate and reproducible waiting times so
that we can determine the average waiting time associated with a certain staff configuration.
Next, we develop an integrated simulation and simulated annealing algorithm that seeks the
minimum number of employees to meet varying demands over a single day while ensuring the
system’s predicted average waiting time does not exceed the waiting time target. To enhance
the efficiency of our simulated annealing algorithm, we develop a novel neighbourhood
search method based on the staff occupancy levels.

This paper is organised as follows: First, we give a literature survey of fitting probability
distributions to data, simulating a complex queueing system, and minimum staffing problem
in Sect.2. We introduce data we received from the ARCL relevant to four donor centres and
present the results of fitted probability distributions to activity durations in Sect. 3. Next, we
develop a simulation model that represents the donation process of a donor centre over a
typical day using the randomly drawn realisations from the fitted probability distributions in
Sect.4. In Sect. 5, we explain our simulated annealing algorithm and neighbourhood search
method to determine the minimum staffing requirement. In Sect. 6, we discuss the numerical
results of our method with an analysis. We conclude the paper by providing a summary of
our work and giving some directions for future research in Sect.7.

2 Literature review

This section addresses the methods of fitting probability distributions to data and the minimum
staffing problem using the most relevant literature.

2.1 Data fitting with probability distributions
The histograms generated for the data on the duration of activities registration, question-

naire completion, and assessment are positively skewed (see Fig.2). Therefore, we need to
investigate distributions that are suitable for positively skewed data. Since the distributions
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Fig.2 Histogram of registration duration data of the Melbourne CBD donor centre
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Fig.3 Histogram of plasma collection duration data of the Gosford donor centre

of collection durations often have two or more peaks (see Fig.3), we discuss the relevant
literature on fitting multi-model distributions to data.

Normal distribution is commonly used for fitting continuous data (Siegel & Wagner, 2022;
Mihaylova et al., 2011) . When the data is skewed or non-normal, different distributions such
as gamma, log-normal, and Weibull are preferred.

Patients’ length of stay data is one of the most studied right-skewed distributions in
healthcare modelling literature. In particular, gamma, log-normal, and Weibull distributions
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were used by McClean and Millard (1993); Marazzi et al. (1998); Gardiner et al. (2014)
while Williford et al. (2020) used a gamma mixture distribution for dealing with highly
skewed hospital length of stay distributions. Furthermore, Faddy et al. (2009) showed that
the phase-type distribution is more suitable for length of stay data after comparison with
gamma and log-normal distributions. Kumar and Anjomshoa (2019) also used a Coxian
phase-type distribution for length of stay data which is positively skewed.

Lovelace-Tozer (2018) applied gamma, log-normal, Weibull, and Coxian-phase type dis-
tributions to find the best fit for data on the duration of all activities at a blood donor centre.
The Coxian phase-type distributions were best suited to fit donor centre activity durations,
except for plasma, and single-dose and double-dose platelet collections. For plasma and
double-dose platelet collection durations, a Gaussian mixture distribution with three com-
ponents and a gamma distribution were fitted. She used the fitted distributions to develop a
simulation model to represent the donation process at a donor centre. However, no distri-
bution was well fitted for single-dose platelet collection duration so she used the empirical
density function and bootstrapping observations when developing the model. Phase-type
distributions have recently been popular for stochastic modelling of data from many areas,
including the healthcare industry, survival analysis, and queueing theory (Fackrell, 2009). In
particular, it appears that the application of Coxian phase-type models, which Cox (1955)
first proposed, is of great relevance.

The phase-type (PH) distribution, introduced in 1975 by Neuts (1975) is the distribution
of the absorption time in a finite-state continuous time Markov chain. The Coxian phase-
type distribution is a special type of Markov model and a subclass of phase-type distribution
where the transient states are ordered and transitions are forward owing with absorption
possible from any of the states (Kumar, 2019). Latouche and Ramaswami (1993) developed
a simple algorithm to model inter-arrival times and service times. According to Donnelly et al.
(2018), the most common methods for fitting the Coxian phase-type distribution are maximum
likelihood estimation and often using the Expectation-Maximisation (EM) algorithm, which
was implemented for phase-type distributions by Asmussen et al. (1996).

2.2 Minimum staffing problem

Most studies have shown that determining the minimum number of staff required to cover
the demand for service over a tactical horizon is the first step in developing a shift schedule
Ernst et al. (2004); Baker et al. (1979). This step is known as staffing or staff dimensioning.
Defraeye and Van Nieuwenhuyse (2016) provided a state-of-the-art literature review on staff
scheduling approaches that account for demand. They decomposed the scheduling process
into four steps, such as forecasting demand (based on empirical data), determining staffing
requirements, shift scheduling, and rostering. The ultimate goal of determining the staffing
demand is to reduce costs by developing an optimal shift schedule (Gunawan & Lau, 2013;
El-Rifai et al., 2015) . In this sub-section, we study the methods developed in the literature
for solving the minimum staffing problem.

There are a limited number of studies conducted to determine the minimum staffing
requirement at blood donor centres. Van Brummelen et al. (2018) modelled a blood collection
site in the Netherlands as a tandem queue with three key stages to determine the average
waiting time. They considered whole blood donors who arrived without an appointment.
The minimum number of staff members required for any given 30-minute duration was
determined using queueing theory.
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Our focus is to take into account the appointment-based arrivals with earliness and tardi-
ness, random arrivals, and no-shows, which makes the arrival process complex. Many studies
applied queueing theory to determine waiting time by incorporating only the unscheduled
arrivals. Hence, there is a lack of literature on modelling complex arrival processes and ser-
vice processes using queueing theory. A common way of modelling a complex system is to
develop simulation models. Most importantly, a simulation model can be used to investigate
novel ideas that are challenging to test empirically.

Alfonso et al. (2015) incorporated a simulation-optimisation approach for capacity plan-
ning and appointment scheduling of blood donors. However, they also took into account
only the unscheduled donor arrivals and no-shows of scheduled donors. Even though their
focus is appointment scheduling, this approach gives us an insight into the problem formu-
lation. Smith and Nelson (2015) developed a simulation model to obtain passenger waiting
times for flight check-ins at an airport. Hence, there is no study that considers scheduled
donors, unscheduled donors, no-shows, and the earliness and tardiness of scheduled donors
simultaneously.

Rohleder et al. (2011) used a discrete event simulation model to fine-tune the number of
required human resources to match the demand at an outpatient orthopedic clinic. They found
that adding some key resources, like an X-ray technician, could reduce waiting times. Wang et
al. (2012) used Markov chain modelling to improve the workflow of a tomography department
and showed that improving productivity at the bottleneck leads to the highest productivity
increase via a what-if analysis. Blake and Shimla (2014) determined the minimum staffing
requirements of a blood donor centre using a deterministic flow shop model. These studies
show improvements in their systems by adjusting staffing levels appropriately. But they have
not optimised the number of staff, which is an important factor for the financial aspect of an
organisation.

Ahmed and Alkhamis (2009) presented a discrete event simulation-based optimisation
model to determine the optimal number of doctors, lab technicians, and nurses in an emer-
gency department while minimising patient waiting times. Their objective function was to
maximise the throughput (patients dismissed per unit time) subject to a budget constraint,
a constraint imposed on the average waiting time in the system for patients, and upper and
lower bounds of the number of servers. The authors used a feasibility detection procedure
with stochastic constraints.

The methods of finding the minimum sufficient staff are specific to each problem, as they
have different objectives and constraints. Rodriguez et al. (2015) found the minimum number
of resources required for each profession to meet all demands in home-care services. They
developed two optimisation problems and solved them using branch-and-cut algorithms. The
first problem finds the minimum required staff for each resource and each scenario. It has a
single objective that minimises the number of routes assigned to resources, along with several
constraints for resource allocation. The second problem’s objective is to find the minimum
sufficient staff to meet the given performance level.

Our study is interested in discrete simulation-based optimisation methods where the objec-
tive function must be estimated through stochastic simulation. This is quite an underdeveloped
research area. Stochastic optimisation problems can be solved using exact methods such as
branch-and-bound, ranking and selection, multiple comparison methods, and also heuristic
methods such as evolutionary algorithms, tabu search, ant systems, random search, simu-
lated annealing, and genetic algorithms (Pflug, 2009). Amaran et al. (2016) provided a better
review of algorithms for simulation optimisation. Our problem has a large number of poten-
tial solutions. Therefore, it is better to choose algorithms such as tabu search, the simulated
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annealing algorithm, and the genetic algorithm that have a search component. However, each
search strategy has its own set of limitations.

A serious drawback of genetic algorithms is their inefficiency when implemented on
sequential machines; hence, they must be implemented on parallel machines (Jog et al.,
1991) . According to comparison analyses conducted by Connor and Shea (2000) and Kam-
boj and Sengupta (2009), simulated annealing finds higher quality solutions than tabu search
at the cost of increased computational expense. Henderson et al. (2003) explained that while
the simulated annealing algorithm has proven to be a good technique for solving difficult
discrete optimisation problems, its main disadvantage is that solving a complex system prob-
lems can be an extremely slow, albeit convergent, process that consumes significantly more
processor time than some conventional algorithms. Therefore, researchers modified the orig-
inal simulated annealing algorithm of Kirkpatrick et al. (1983) to adapt it to the background
of the problem to get more efficient results. Basically, they used two ways to make the simu-
lated annealing algorithm intelligent: annealing schedules to control the temperature (Ahmed
2007; Shi-hua et al. 2016), and solution search strategies (Matsuo et al., 1989; Zhou et al.,
2015; Bayram and Sahin, 2013). Therefore, we adapt the simulated annealing algorithm to
our minimum staffing problem and develop a novel neighbourhood generating mechanism
to improve its efficiency.

The simulated annealing algorithm is popular for its ability to adapt to the context of
the problem, its convergence properties, and its ability to escape from local optima via
hill-climbing moves. We review recent studies of the simulated annealing algorithm from
different contexts since there is no literature that applies the simulated annealing algorithm in
the context of a blood donor centre. Suman and Kumar (2006) provided a review of studies
on simulated annealing as a tool for single and multi-objective optimisation. Ahmed and
Alkhamis (2002) proposed combining the simulated annealing algorithm with the ranking
and selection procedure for solving the discrete simulation-based optimisation problem of an
inventory system. Bulgak and Sanders (1988) and Jorge and John (1992) integrated simulation
with a modified simulated annealing algorithm to find the optimal buffer allocation.

3 Current load of the system
3.1 Data

We received data sets corresponding to the four donor centres of ARCL established in Mel-
bourne CBD, Gosford, Townsville, and Warrnambool. There are two datasets for each donor
centre, including donor timestamps and staff rosters. The data sets for the Melbourne CBD
donor centre span from 28 February 2017 to 24 December 2018, whereas the data for the
other three donor centres span from 28 February 2017 to 13 December 2018.

The timestamp dataset consists of donation identification numbers; a unique number for
each donation, including donations from walk-ins. Each row corresponds to a donation with
information on donor demographics, blood collection types, timestamps, and the serving
nurse. Once all the variables in the timestamp data sets were clarified, we cleaned the data
sets by identifying duplicate data rows. There were a few unusual cases where some variables’
entries were missing from the datasets. We investigated these unusual cases by discussing
them with the ARCL. The reasonable cases, such as donor deferrals due to ineligibility for
donations, were retained, and the absurd cases were eliminated.
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Table 1 Appointment details of scheduled donors in each donor centre

Donor centre Melbourne CBD Gosford Townsville ‘Warrnambool
Earliest appointment time 7:00 AM 8:00 AM 7:00 AM 7:00 AM
Last appointment time 7:00 PM 8:00 PM 7:00 PM 7:30 PM

Table 2 Proportions of each blood collection type of scheduled donors

Collection type Whole blood Plasma Single-dose platelets Double-dose platelets
Melbourne 0.5160 0.4670 0.0040 0.0130

Gosford 0.5090 0.4910 - -

Townsville 0.0931 0.9069 - -

Warrnambool 0.5170 0.4830 - -

The Melbourne CBD donor centre operates seven days a week, while both the Gosford and
Townsville donor centres operate from Monday to Saturday. In the Warrnambool donor centre,
appointments were scheduled from Monday to Friday. Since the number of appointments and
operating times are different between weekdays and weekend days for each donor centre,
we consider only the weekday data for the data analysis of this research. Therefore, donors
can make their appointments during a weekday from the earliest appointment time to the last
appointment time in each donor centre as shown in Table 1.

The Melbourne CBD donor centre collects whole blood, plasma, and single-dose and
double-dose platelets, whereas the other three donor centres collect only whole blood and
plasma. The proportions of different blood collection types that were analysed from the
timestamp data sets in each donor centre are shown in Table 2. The Melbourne CBD donor
centre is classified as a metropolitan static donor centre while the others are classified as
non-metropolitan static donor centres. The Melbourne CBD donor centre is the largest donor
centre in Victoria. The Warrnambool donor centre is a small donor centre that is also estab-
lished in Victoria. Out of the four donor centres, it has the fewest daily donor appointments,
and 51.7% of collections were whole blood, as shown in Table 2. The Gosford donor centre
is a medium-sized donor centre situated in West Gosford, New South Wales. The Townsville
donor centre is Australia’s first plasma-focused donor centre and was established in Queens-
land. According to the data analysis of the Townsville donor centre as shown in Table 2, only
9.3% of collections were whole blood, and the rest of the collections were plasma. However,
starting from December 2017, its whole blood collection was continued only for treating
therapeutic venesection patients.

3.2 Fitting probability distributions

This Section explains how we identified the most suitable distributions to model the durations
of

Registration from registration start time to end time,

Questionnaire completion from registration end time to end time of questionnaire com-
pletion,

Assessment assessment start time to end time,

Collection of different blood components needle-in time to needle-out time.
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Next, we calculated all these activity durations using the timestamps of donors. All distri-
butions were positively skewed with long tails, except collection durations, as we discussed
in Sect.2.1. Therefore, we tested several probability distributions that are defined for non-
negative real values and popular for right-skewed data, such as the gamma, log-normal,
Weibull, and Coxian phase-type distributions, to find the best fit for the durations of reg-
istration, questionnaire completion, and assessment. The suitability of the normal mixture,
gamma mixture, Weibull mixture, and Coxian phase-type distributions for the collection
durations was then investigated, given that their histograms had multi-model shapes.

We used the R package fitdistrplus for fitting gamma, log-normal, and Weibull distribu-
tions to the data (Delignette-Muller and Dutang 2015). The mapfit package in R was utilised
for fitting Coxian phase-type distributions which uses the Expectation-Maximisation (EM)
algorithm for parameter estimation (Okamura & Dohi, 2016) . For fitting mixture distribu-
tions, we used mixR R package (Yu 2022).

We selected the best-fit distribution that has the minimum Akaike Information Criterion
(AIC) (Akaike, 1973) and Bayesian Information Criterion (BIC) (Kriegeskorte, 2015)
values to avoid overfitting. These information criteria are tools for selecting the most suitable
model among a collection of candidate models to fit to the set of data. They are likelihood-
based measures of model fit that use a penalty for the number of parameters in the model.
Furthermore, we use one-sample Kolmogorov-Smirnov (KS) test (Frank, 1951) where
the false positive rate is 0.01 to determine if a sample comes from a population with a
specified distribution. If AIC and BIC suggest different models, we choose the model with
fewer parameters (Kumar, 2019). However, for the Coxian phase-type distributions, we
considered only the AIC values since the MAPfit package does not provide BIC values.

According to the KS test results, the gamma, log-normal, and Weibull distributions did not
provide statistically significant fits. Coxian phase-type distributions provided better fits for the
registration, questionnaire completion, and assessment durations for all four donor centres.
Different mixture distributions were fitted for collection durations. We have given a summary
of fitted distributions in Table 3 where the number of components of each distribution can
be found within brackets next to the distribution name. Readers may refer to “Appendix A”
for information on the number of components, AIC, BIC, log-likelihood, and the KS-test’s
p-values of all fitted distributions to activity durations in each donor centre.

Figures 4 and 5 depict the fitted 43-phase Coxian distribution to the data on assessment
duration and the fitted 5-component gamma mixture distribution to the data on whole blood
collection duration of the Melbourne CBD donor centre, respectively.

4 Discrete event simulation model

This section explains the process of developing a discrete event simulation model that repre-
sents the operations of a donor centre during a typical weekday. The simulation model allows
us to calculate the mean waiting time associated with a certain staff configuration. We use
the developed simulation model to determine the average waiting times of each donor centre
by changing the parameter values. We explain the donor attributes that are associated with a
donor and the methods of generating them in Sect. 4.1 followed by the integrated model in
Sect.4.2.

@ Springer



Annals of Operations Research

Q)X [ewtioN (¢)

amyxrw [eurioN ()

QIN)XTW [RULION (/)

AINXIw [ewlloN ()
AIn)XIW ewiwen (g)

myxIw [eurioN (9)

uond9[[09 Ja1are[d asop-a[qno
uo109[[09 191re[d 9s0p-a[Surg

UOMOI[0 BUISL]J

QImyXIw ewwen) (/) QIMIXIW BWWERD) (§) QIMIXIW BwIwen) (f) QIMXTW ewwen) (g) UOIIOJ[[0D POO[q A[OYM
uerxo) (91) uerxo) (11) uerxo) (L1) UBIX0)) (€4) JUSUWISSISSY
uerxo) (1) uerxo) (61) ueIxo) (87) ueIxo) (86) SuI[[y 2rreuuonsang

uerxo) (L) uerxo) (8) uerxo) (6) uerxo) (Lg) uonensISoy
[OOQUIBULIBA\ J[[IASUMO], plojson QUINOQ[IIA uonen ANAnoy

suoneInp AJIAnoe yoes 10y suonnquysip Ajiqeqoxd pepry € ajqel

pringer

Qs



Annals of Operations Research

- "]
IS

Density
0.02 0.03 0.04 0.05 006
|
~

0.00 0.01

T T T T T 1
0 10 20 30 40 50

Assessment duration (minutes)

Fig.4 Histogram of the assessment duration of the Melbourne CBD donor centre with the fitted curve
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4.1 Donor attributes

We know the donor centres encourage donors to make appointments before the donation day
but accept unscheduled donors if time permits; otherwise, schedule a suitable appointment
time on an upcoming day for them. Each donor who arrives at the donor centre with an
appointment has the following attributes:
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Appointment time

Arrival time

Collection type: whole blood, plasma, single-dose platelets, double-dose platelets
Registration duration

Questionnaire completion duration
Assessment duration

Needle-in duration

Collection duration

Needle-out duration

Resting duration on the couch

Resting duration at the refreshment area

Unscheduled donors are those that visit the donor centre without making an appoint-
ment; they have all of the attributes listed above, with the exception of the appointment time.
Additionally, donors who miss their appointment only have the appointment time and collec-
tion type attributes. We must first establish the parameters of each of these donor attributes
because they are all stochastic input variables for the simulation model. We now specify the
parameters of donor attributes for all four donor centres along with the methods of generating
them.

4.1.1 Scheduled donor appointment times

Table 1 shows the parameters required for generating donor appointment times. Each donor
centre’s appointment times are every 15-minute mark from the first appointment time to
the last appointment time. For example, appointment times in the Melbourne CBD donor
centre are 7:00 AM, 7:15 AM, 7:30 AM, ..., 7:00 PM. For each donor centre, the number
of appointments for a given 15-minute mark was derived by calculating the average number
of appointments made at that 15-minute mark. Hence, we scheduled 294, 84, 94, and 53
total donors for the Melbourne CBD, Gosford, Townsville, and Warrnambool donor centres,
respectively, for a typical weekday.

4.1.2 Blood collection types for scheduled donors

For each scheduled donor, we generated a blood collection type according to the proportions
of each blood collection type of scheduled donors as shown in Table 2. The proportions were
calculated using timestamp data. For example, consider the Melbourne CBD donor centre,
which has 294 scheduled donors. For each scheduled donor, we generate a random value from
a continuous uniform distribution with parameters 0 and 1. If the random value is smaller
than the whole blood proportion, the donor becomes a whole blood donor. Otherwise, if the
random number is less than the total proportion of whole blood and plasma, then the donor
becomes a plasma donor. Following this method, we can allocate a blood collection type for
each donor using their cumulative probabilities.

4.1.3 No-show donors
We extracted the details of donors who have an appointment time but no timestamp details

from the timestamp data of each donor centre and considered them no-shows. We partitioned
the time from the earliest appointment time to the last appointment time into 2-hour periods
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Table4 No-show proportions given the blood collection type and time category for the Melbourne CBD donor
centre

Time category Whole blood Plasma Single-dose platelets Double-dose platelets
7:00 to 9:00 0.1200 0.1885 0.1114 0.1114
9:00 to 11:00 0.1252 0.1622 0.0917 0.0917
11:00 to 13:00 0.1300 0.1583 0.0995 0.0995
13:00 to 15:00 0.1337 0.1668 0.1359 0.1359
15:00 to 17:00 0.1335 0.1391 0.0643 0.0643
17:00 to 19:00 0.1268 0.1539 0.1121 0.1121

Table 5 No-show proportions

given the blood collection type Time category Whole blood Plasma
and time category for the Gosford  g.0( {5 10:00 0.1451 0.1039
donor centre
10:00 to 12:00 0.1433 0.0970
12:00 to 14:00 0.1225 0.1035
14:00 to 16:00 0.1459 0.1027
16:00 to 18:00 0.1677 0.1181
18:00 to 20:00 0.1654 0.1350
T_able 6 No-show prop.ortions Time category Whole blood Plasma
given the blood collection type
and time category for the 7:00 to 9:00 0.1870 0.0600
Townsville donor centre
9:00 to 11:00 0.1780 0.0570
11:00 to 13:00 0.2000 0.0650
13:00 to 15:00 0.2260 0.0470
15:00 to 17:00 0.2880 0.0690
17:00 to 19:00 0.1660 0.0690

for the Melbourne CBD, Gosford, and Townsville donor centres, and for the Warrnambool
donor centre, we partitioned it into 2.5-hour periods (because it schedules donors for 12.5h).
Then, we calculated no-show proportions given the blood collection type and time category
as shown in Tables 4, 5, 6, and 7 separately for each donor centre. For each scheduled donor,
we assigned the label no-show or show-up according to the no-show proportions using the
same random approach as allocating the collection types. Donors with no-show label were
eliminated from the list of scheduled donors. Considering the Townsville donor centre, we
can see high no-show proportions of whole blood donors compared to plasma donors since
there were a small number of whole blood donors scheduled.

4.1.4 Scheduled donor arrival times

Once the no-show donors have been eliminated from the list of scheduled donors, we com-
puted the arrival times of the remaining donors. We calculated donors’ earliness and tardiness
times from the timestamp data sets by subtracting the appointment time from the arrival time.
Therefore, earliness times become negative values and tardiness times become positive val-
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Table 7 No-show proportions

i \W%
given the blood collection type Time category hole blood Plasma
and time category for the 7:00 to 9:30 0.1710 0.0910
Warrnambool donor centre
9:30 to 12:00 0.1260 0.0850
12:00 to 14:30 0.1710 0.0930
14:30 to 17:00 0.1230 0.0830
17:00 to 19:30 0.1690 0.0940

Table 8 Parameters for generating scheduled donor arrival times

Donor centre Melbourne CBD Gosford Townsville ‘Warrnambool
Mean (minutes) 3.8037 2.4833 0.2493 3.4585
Standard deviation (minutes) 10.9755 9.9558 11.6739 12.6660

ues. We fitted a normal distribution for each donor centre’s earliness and tardiness times.
The means and standard deviations of the normal distributions are included in Table 8. For
each scheduled donor, we added the realisation generated from the fitted normal distribution
to his appointment time to get the arrival time. If a donor’s arrival time is later than the last
appointment time in Table 1, we replace it with the last appointment time. A donor’s arrival
time is replaced by the earliest appointment time in Table 1, if it is earlier than the earliest
appointment time.

4.1.5 Unscheduled donor arrival times

We generated unscheduled donor arrival times using an inhomogeneous Poisson process. The
probability density function p(t) of unscheduled donor arrivals at time ¢ was derived using
Kernel Smoothing, where the kernel is the standard normal distribution (Weglarczyk, 2018)
. Let uy,us,...,un be the unscheduled arrival times from the data, where N is the total
number of data points and v is the bandwidth for kernel density estimation (a real positive
number that defines smoothness of the density plot). Therefore,

2 2
e*(t*ut) /2v .

1 4
P(I):mgﬁ

The intensity function A(#) was generated using the probability density function p(t) to
determine the instantaneous arrival rate at time ¢ for a time-varying Poisson process (Ross,
2013) . Let A be the average number of unscheduled arrivals per day. Therefore,

At) = Ap(1).

To generate the arrival times for an inhomogeneous Poisson process, Lewis’ thinning
algorithm is applied (Lewis & Shedler, 1979) . Table 9 shows the required parameter
values for each donor centre. In addition, each donor centre only accepts unscheduled donors
between the earliest and last appointment times listed in Table 1.
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Table9 Parameters of generating

unscheduled donor arrival times Parameter N v *
for each donor centre Melbourne CBD 3438 1933.23 6
Gosford 640 2480.98 2
Townsville 1485 1686.74 4
Warrnambool 798 1839.22 2

Table 10 Proportions of each blood collection type of unscheduled donors

Collection type Whole blood Plasma Single-dose platelets Double-dose platelets
Melbourne 0.5136 0.4660 0.0034 0.0170

Gosford 0.6360 0.364 - -

Townsville 0.1610 0.839 - -

Warrnambool 0.7260 0.274 - -

Table 11 Parameters of the normal distributions for needle-in and needle-out times in minutes

Needle-in Needle-out
Whole blood Plasma Platelets Whole blood Plasma Platelets

Mean 5 10 15 5 5 10
Standard deviation 0.5 1 1.5 0.5 0.5 1

4.1.6 Blood collection types for unscheduled donors

For each donor centre, we randomly generated blood collection types of unscheduled donors
according to the proportions of each blood collection type of unscheduled donors as shown
in Table 10.

4.1.7 Needle-in and needle-out times

The needle-in and needle-out times of all four donor centres were randomly generated from
a normal distribution, where the parameters mean and standard deviation were suggested by
ARCL with respect to each collection type as shown in Table 11 since data is unavailable.
4.1.8 Resting times on the couch and resting times at the refreshment area

The resting times on the couch and at the refreshment area were randomly generated from
normal distributions. We decided the value of the parameter mean according to the informa-
tion given by (Lovelace-Tozer, 2018) . The standard deviations were assumed as shown in
Table 12 since data is unavailable.

4.1.9 Activity durations

The durations for registration, completing the questionnaire, assessment, whole blood collec-

tion, plasma collection, and single-dose and double-dose platelet collection can be determined
by randomly generated realisations from their fitted distributions in Table 3.
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Table 12 Parameters of the

L . Resting time on the Resting time at
normal distributions for resting .
R couch refreshment area
times on couch and at
refreshment area in minutes Mean 10 15
Standard deviation 1 2
Input | | Simulation | | Output

Fort=12,..,T

Add the donor to
L, and remove
from Ly

Is t = arrival _time
of the 1st donor
inLy?

Ly: future donor list
L, = @: current donor list

Generate donors with
appointments, add them to Ly

Generate no-shows, remove

them from L, -
Wait times at

Reception
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Generate walk-ins, add them
Needle-in

to Lo
Is resource * at next .
stage available? Total wait time

Order donors in Ly by arrival
Staff utilisation

times N
Join the queue and Join/Stay at the
wait stage

Physical resource information

*: human (if
required) and
physical
resources

i ; { i

Staff configuration

Fig.6 Diagram of the simulation model

4.2 The integrated model

We developed a comprehensive discrete event simulation model for each donor centre that
represents the entire functioning of a donor centre over a typical weekday. Once we generated
the donor attributes for each donor, the simulation model was developed as follows. Donors
start their donation process according to their arrival time. Next, a queue is implemented for
donors to proceed with their registration only when a receptionist is available. Donors start
the questionnaire at the end of the registration. Then, donors wait in the queue for assessment
until a staff member becomes available. At the blood collection stage, the simulation model
checks the availability of a nurse, a couch, and a collection machine for starting the needle-in
and then starts the blood collection. When the machine stops the blood collection, the donor
must wait for needle-out if all the staff members are busy with the other donors. Except for
the needle-in queue, which gives priority to the first donor in the line where the next available
machine fits his collection type, all queues follow the first-in-first-out policy. Finally, donors
spend their resting time on the couch and at the refreshment area sequentially. Figure 6
illustrates the simulation model.
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Table 13 Available physical resources of each donor centre

Physical resource Melbourne Gosford Townsville ‘Warrnambool
# Registration desks 3 2 2 2
# Interview rooms 10 4 2 3
# Couches 28 9 12 5
# Whole blood machines 7 6 2 5
# Plasma machines 21 6 13 5
# Platelets machines 6 - - -

Source: Australian Red Cross Lifeblood

According to Table 13, each donor centre has two to three registration desks, while the
number of interview rooms varies between two and four. The Townsville donor centre has two
whole blood collection machines since only 9.3% of whole blood donors were scheduled per
day. Furthermore, there are 13 plasma collection machines and 12 couches at the Townsville
donor centre, which is a higher number considering the number of scheduled appointments
due to the fact that plasma collection takes longer than whole blood collection and also
because there are many more scheduled plasma donors.

5 Minimum staffing problem

We specify the minimum staffing problem in Sect.5.1 and our method of determining the
minimum staffing requirement during a typical weekday of the Melbourne CBD donor centre
in Sect.5.2. We will test the applicability of the same model to the other three donor centres
in Sect.6.3.

5.1 Problem statement and mathematical model

The minimum staffing problem considered in this study is to determine the number of staff
required at each key stage of blood donation over a weekday such that the average waiting
time of donors does not exceed some pre-defined target, denoted by wy4,ger- The objective
of the problem is to minimise the total number of staff hours required. We partition the
time horizon of a day into H half-hour intervals, & € {1,2, ..., H}, and account for three
key stages, j € {1, 2, 3}, registration, assessment, and blood collection, which require the
attendance of staff. We note that the time horizon should be longer than the opening time
of the donor centre since donors may be served at various stages after the centre closes. We
letx = {x;5,j € {1,2,3},h € {1,2,..., H}}, where x; j is the number of staff at stage
Jj in half-hour slot &, to represent a staff configuration. Furthermore, we let w,,¢ (X) denote
the average donor waiting time for a given configuration X. The mathematical model of the
problem can be formulated as

3 H
mxin fix) = szj’h (H

J=1h=1
s.t. wavg(x) = Wrarget 2)
Xmin,j = Xj,h = Xmax, | Vhe{l,2,...,H}. 3)
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The objective function (1) is the total working hours of staff. Constraint (2) ensures the
waiting time target is met. Constraint (3) specifies the range of the decision variable x; j.
The lower bound Xy, ; is generally 1 during the opening hours of the center, and can be set
to 0 after the opening hours. On the other hand, the upper bound xpp, j can be determined by
the physical resource limit; e.g., if there are 7 interview rooms, then the maximum number
of staff at the interview stage can be set to 7.

Given the donation process is complex and so are the operations in the donor center, it
is difficult to derive an analytical form of wgyg(X). Therefore, we apply the Monte Carlo
simulation developed in the previous section to generate a large number (D) of scenarios,
each with a probability of 1/D, and approximate the mean of the average waiting time. One
simulation corresponds to one scenario or one day of the operation of the donor center. To
simplify the constrained model above so that we can develop a search algorithm to solve it,
we convert constraint (2) to a penalty term with a penalty coefficient & >> 0 in the objective
function, namely, & (Wapg (X) — Wrarger) ™ With (z)T = zif z > 0 and ()T = 0 otherwise.
The final formulation is given as follows.

3 H |2 +
mxin Z ij,h +a <D 21: wavg,i(x) - wtargel) 4
i=

j=1h=1

where wgy, ; (X) is the average donor waiting time in the ith scenario (simulation) for a given
x. The range constraint (3) can be realised by appropriately setting the search space of x of
the search algorithm. The penalty term will guide the search and must be zero for the final
solution found by the search algorithm in order to guarantee feasibility.

5.2 Methodology

We propose an adapted simulated annealing algorithm integrated with the Monte Carlo sim-
ulation, developed in Sect.4, to solve the minimum staffing problem discussed above. The
inputs of the adapted simulated annealing algorithm are the maximum temperature 7},
minimum temperature 7,;,, annealing constant a and the number of simulation replications
parameter D.

Figure 7 shows the flowchart of the simulation-based simulated annealing algorithm
(SBSA). The inputs of the SBSA include Xpew, Xcurrent, and x* be the new, current, and
current best staff configurations (solutions), respectively. As shown in Fig. 7, this flowchart
has two loops. The inner loop includes the donor flow simulation with respect to a given
staff configuration Xpew, and it yields the average waiting time wgyg (Xnew) and further the
value of the objective function (4) after repeating the simulation D times. The outer loop
represents the simulated annealing algorithm. Initially, the algorithm generates the new staff
configuration Xpew randomly, restricted to the available physical resources in each stage, such
that Xin,j < Xj n < Xmax, j- Furthermore, the objective function values of the current staff
configuration Xcyrrent and current best staff configuration x* are set to be infinity (100,000 is
chosen as “infinity”). This ensures the initial Xpew becomes both the current and the current
best staff configurations during the first iteration of the outer loop. Furthermore, the current
temperature 7 is initially set as the maximum temperature T}y -

The outer loop compares the objective function values of the new and current configura-
tions. If f(xneyw) is lower, then it is accepted. Otherwise, it is accepted with a probability p
determined by
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Inputs
a: annealing constant, D: number of simulation replications, Tmax, Tmin
Initialisation

randomly generate Xpew. f(Xcurrent) = f(x*) =100,000, T=Tmgx, i=1
T

' Inner 10

- - - uter loo|

Donor flow simulation with respect to Xpew, loop P
obtain Wavg,i(xnew) -

’Calculate Wavg(Xnew): f(Xnew), seti =1 ’
I

R g T

No Set temperature
p = exp(-( f(Xnew) - f(Xcurrent) / T) T=al
r = random (0,1)

Yes

Generate the new solution
Xnew = NeighbourSearch(X¢yrrent)

Xcurrent = Xnew

f(Xcurrent) = f(Xnew)

-
X = Xcurrent
*

f(x') = f(Xcurrent)

No

{Return the optimal solution X and f(x*)}

Fig.7 Flowchart of the simulation-based simulated annealing algorithm

p=exp ((_(f(xnew) - f(xcurrent))> 5)

T

The accepted configuration then becomes the current configuration Xcurrent, and the cur-
rent best configuration x* is updated if the current solution is better. Next, the simulated
annealing algorithm generates a new configuration based on the updated current configura-
tion (or the same current configuration if Xpew 1S rejected), utilising the NeighbourSearch
(NS) algorithm, which is explained in the next sub-section. These steps are repeated until
the current temperature 7 reaches its minimum 7,,;,, a parameter close to zero. In each
iteration, T is multiplied by the cooling constant a, a parameter close to one,” to generate
the temperature for the next iteration. Most importantly, the initial temperature 7, should
be large enough to explore a large number of configurations.

2 Typically in the range from 0.9 to 0.99.
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5.3 NeighbourSearch (NS) algorithm

Due to the large solution space of this problem, the simulated annealing algorithm needs to
move systematically through it to seek the optimal staff configuration. It requires a neigh-
bourhood search method that generates new staff configurations efficiently and effectively.

The idea behind the proposed NS algorithm is to include both random and informed
searches. The informed searches aim to allocate more staff to the stage and/or time slot
where (donor) congestion occurs and remove staff where redundancy occurs. To quantify the
congestion/redundancy, we define the staff occupancy level as the fraction of time that staff
are occupied.

We define binary variable y; ; .4 and have y; ; , 4 = 1 torepresentif all the staff allocated
to attend stage j € {1,2,3}atthel € {1,2,...,30}th minute of time slot € {1, 2, ..., H}
of day d € {1,2, ..., D} are busy. Then, the occupancy status of a time slot is represented
by another binary variable z , 4 defined based on y; ; 5 4 as

30
Zyj,l,h,d

Zjhd =41 gf =1 - -y (6)

0, otherwise

where y is a parameter between zero and one. Namely, if more than 80% of minutes (y = 0.8)
in the Ath half-hour of (j, &) slot are fully occupied, the slot is considered as busy (or
highly occupied). The sample average, denoted by o; 5, is the average over the D scenar-
ios/simulations.

A threshold is required to decide whether o 1, is high or low and then help to adjust x; 5 in
Xcurrent accordingly to generate Xpew. Let ¢ be the parameter occupancy threshold. Suppose
we have the current solution Xeurrent = {X1,1, X1,2,--.,Xj s, ..., X3 g} in our simulated
annealing algorithm, and the corresponding average occupancy is o ;. Then the new solution,
new’ x;’l,ezw’ new

Xpew = {X] ey x;’f,;”, ..., X3%'}, is generated based on the following formula.

s

xjpn+ 1, ifojp,>v¥% and Xx;; < Xpax,j
ew .
Xip =yXjin—1, ifojp, =0 and Xx;; > Xpin,j 7)
Xjhs otherwise

When o} j, is higher than the occupancy threshold v/, the new staff configuration will have
one extra staff member in the (j, ) slot compared to the current solution. If the average
occupancy is low, o , = 0, the new solution will have one member fewer in the (j,h) slot.
Otherwise, the staff number allocated to the slot remains unchanged. We remark thato; , = 0
implies z; . = 0 Vd € D. If for at least one day, the slot is busy, 21321 y > 0.8 x 30 and
hence z; j,4, then reducing the staff allocation will not occur. When updating staff, we need
to consider the staff limitations as well.

Algorithm 1 presents the NS algorithm, which generates a new staff configuration Xpew
based on the current solution Xcyrrent - Initially, it updates the new configuration by assigning
the current configuration and then calculates o ;, with respect to Xcurrent- Next, it performs
three operations as follows. The first operation (from line 3-20) is the informed search, which
adjusts the solution based on Equation (7). The other two operations are random searches,
and one of them is performed at a time. The second (from line 19-27) swaps staff numbers
from two (j, ) slots, and the third (from line 25-33) operation randomly selects a stage j’
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Algorithm 1 NeighbourSearch

Input: Xcyrrent, Xmax,j> Xmin, j
Output: Xpew

1: Initialization: Xpew <— Xcurrent
2: calculate 0; 5 for Xcurrent

> Operation 1: adjusting staff allocation according to Equation (7)
3: for all element j € {1, 2, 3} do
4 randomly generate an integer » in the interval [0,H]
5:  if n > 0 then
6 randomly generate a list “index" of n unique integers from the interval [1,H]
7 for all element /1 € index do
8

ifoj 4, > Y% and x;‘fh“’ < Xmax,j then

9: x;.’"’h"’ <« x;.’f’hw +1

10: else

11: ifo;, =0 and x;’fh"’ > Xmin,j then

12: x;.’f'h"’ <« x;.’f'h"’ -1

13: end if

14: end if

15: end for

16:  endif

17: end for

18: randomly generate an integer “swapping" in the interval [0,1]
19: if swapping = 1 then > Operation 2: swapping two staff numbers
20:  randomly choose a stage jj

21: randomly choose two different time slots /27 and Ao

. new
22:  temp <« X,

. new new
;i x{lﬂz’lﬁz <X

DX < temp ' ' B
25: else > Operation 3: replacing a staff number
26:  randomly choose stage j’

27:  randomly choose time slot 4’

28: randomly generate an integer B from the interval [min(x}'ﬁf’, x;?flz", e x;?fl;;), max(x;?,‘:‘l”, x}?,‘:‘z", s x;?,‘:l;;)]
29: x’/’ef B
30: end if

and a time slot 4" and randomly sets the number of staff members for the (j’, h’) slot subject
to the current values of x/ j, Vh.

6 Numerical results

Focusing on the Melbourne CBD donor centre, we determine the parameters of the SBSA
algorithm in Sect. 6.1 and then obtain the minimum staffing requirements in Sect. 6.2. Next,
using the same parameters, we further investigate our SBSA algorithm under different sce-
narios in Sect. 6.3 and also test the applicability of the model to the other three donor centres
in Sect. 6.4.

The model was implemented in Python (3.8.6). Experiments were carried out on SPAR-
TAN (Lafayette et al., 2016) with one CPU. We designed our experiments to provide
pragmatic support for our method and to find the minimum staffing requirement of the donor
centre.

@ Springer



Annals of Operations Research

Table 14 Testing for the number

of replications of the simulation ;?Iﬁ:r?rgjlgsgp utational eAr\r/ziage relative
25 15.87 6.5%
50 28.01 1.5%
75 41.15 1.4%
100 53.76 -

6.1 Parameter selection for the SBSA algorithm

In this section, we determine the parameters of the SBSA algorithm, focusing on the Mel-
bourne CBD donor centre. We fine-tune key parameters, including the sample size D,
occupancy threshold ¢, maximum temperature 7;,,,, annealing constant a while keeping
parameters Ty, = 0.1, y = 0.8 and @ = 10, 000 fixed so that the simulated annealing
algorithm can run at a reasonable time and still produce optimal/near-optimal solutions. The
waiting time target wyq ger is 6 min as per our explanation in Sect. 1.

Initially, we set the total number of half-hours H = 34 (so the operating duration is
17h). We will then identify the actual operating duration by finding the minimum staffing
requirement. When generating neighbour solutions using Algorithm 1, we set the range of
staff numbers [Xin, j, Xmax, ;] as [1,3], [1,10], and [1,28] for the registration, assessment,
and blood collection stages, respectively. Assuming there must be at least one staff member
available in each stage during all half-hours, the lower limit is set to one. The upper limit is set
to the number of available reception desks, interview rooms, and couches for the registration,
assessment, and blood collection stages, respectively.

We narrow down the range for each stage when generating the initial staff configuration,
which reduces the variability of staff numbers and the run time of the simulated annealing
algorithm. Therefore, x; j, for all (j, h) slots is randomly generated from the intervals [2,3],
[4,9], and [4,8] for the registration, assessment, and blood collection stages, respectively, to
determine the initial Xpew. Furthermore, we always run our SBSA algorithm for ten trials for
our experiments.

6.1.1 Sample size

When using the discrete event simulation for waiting time estimations, simulation error is
involved. Increasing the sample size (number of replications) can reduce this error, however
itis computationally expensive (Nasr & Taaffe, 2013) . To find an appropriate sample size D
that balance the simulation accuracy and the computational efficiency, we experimented sev-
eral cases with different D values in the range [25, 100] and compared them by computing the
relative error of the average waiting times as a percentage with respect to D = 100. Specifi-
cally, we used 100 randomly generated staff configurations where each staff configuration is
denoted by xj such that {i = 1, 2, ..., 100} and their average waiting times wgyg, p (Xj) were
determined by repeating the simulation model for D times. Then, we calculate the average
relative error as

100
Average relative error = Z

i=1

| Wavg, D=100 (x1) — Wavg,D (x)]
Wavg, D=100 (Xl)

%o )
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Fig.8 Occupancy threshold versus objective function value with 7,4y = 50, 000 and ¢ = 0.8

Table 15 Annealing schedules Schedule 1 5 3 4 5 6
a 0.8 0.9 0.8 0.9 0.9 0.9
Timax 50,000 50,000 10,000 10,000 5,000 250

In addition, we determined the average computational time in each scenario of D as shown
in Table 14. The relative error when D = 25 is comparatively higher, even though it saves
more than 37 hours of run time. Moreover, D = 75 has the smallest relative error, but only
marginally better than D = 50. However, the computational time of D = 75 is significantly
longer than D = 50. Hence we choose D = 50 for our experiments.

6.1.2 Occupancy threshold

For each ¥ = [1, 20], we chose the staff configuration that has the minimum objective
function value among results of the ten trials. Figure 8 shows the objective function values
of those optimal staff configurations with ¥. In the interval 1 < ¢ < 5, we can see that the
objective function values are small and generally insensitive to the choice of ¢. Additionally,
the resulting average waiting times do not exceed the waiting time target. When ¢ > 5, the
objective function values dramatically increase. Therefore, the following experiments were
conducted for 1 < ¢ < 5.

6.1.3 Annealing schedules

Table 15 summarises the parameters for each annealing schedule in terms of the annealing
constant a and the maximum temperature 75,4y

For each annealing schedule, and each occupancy threshold ¥ = [1, 5], we executed the
simulated annealing algorithm for ten trials and reported the minimum objective function
values and the computational times. We calculated the average and standard deviation of
computational time for each annealing schedule using the computational times of ten trials.
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Table 16 The average and standard deviation of computational times (in hours) of all annealing schedules for
each occupancy threshold ¢ = [1, 5]

Tnax-a Y =1 v =2 =3 v=4 v =5

50,000, 0.8 24.17£1.43 23.75£1.33 25.17£1.76 23.50£1.93 24.03 £ 1.61
50,000, 0.9 49.65 £ 2.26 47.61 £0.46 47.93 £0.83 48.68 = 1.99 48.19 £1.22
10,000, 0.8 15.14 £2.31 1478 £ 1.74 15.38 £2.77 14.27 £2.69 13.77 £ 1.94
10,000, 0.9 42.54 £2.80 4211 £1.55 46.73 £2.12 42.68 £2.58 44.86 +2.00
5,000, 0.9 46.15 =+ 1.69 40.47 £2.00 45.24 £2.03 40.62 £ 1.75 39.03 £1.89
250, 0.9 29.06 £ 2.67 26.10 £2.70 27.70 £1.93 30.85£2.11 24.98 £2.30

460
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Average objective function value

400
0 1 2 3 4 5 6

Occupancy threshold

Fig.9 Occupancy threshold versus average objective function value with 7,4 = 10, 000 and a = 0.8

The minimum objective function values of different annealing schedules are similar, rang-
ing from 410 to 422. Therefore, we look at their computational time performance in order
to choose the best annealing schedule. Table 16 present the average and standard deviation
of the run times (in hours) for all annealing schedules under each occupancy threshold. The
annealing schedules (7;,,,x = 50, 000, a = 0.8) and (7T;,,,x = 10,000, a = 0.8) are com-
putationally less expensive than the rest of the schedules since they run for a small number
of iterations (outer loop of the simulated annealing algorithm). As we mentioned above, the
objective function values are relatively stable. Hence, we selected (7,4 = 10, 000,a = 0.8)
as the annealing schedule for our method since it has the lowest computational requirement
with low variability over all occupancy thresholds.

So far we have identified a suitable range for v, and we next need to choose the best
value of ¢ from that range. We calculated the average objective function value from ten
trials of the simulated annealing algorithm for each i with respect to the annealing schedule
(Tax = 10,000, a = 0.8). As shown in Fig.9, the lowest average objective function value
with a small variability is obtained by ¢ = 2. Hence, we set ¢ = 2 for the simulations in
the remaining of the section.
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Fig. 10 Minimum staffing requirement with their average utilisation over the day—registration stage

6.2 Minimum staffing requirement

We input the parameters T,,;, = 0.1, « = 10,000, Tpar = 10,000, a = 0.8, D =
50 and ¥ = 2 into our SBSA algorithm to determine the minimum staffing requirement.
Furthermore, we always run our SBSA algorithm for ten trials and choose the optimal staff
configuration that has the minimum objective function value among the them.

Figures 10, 11 and 12 show the number of staff required in each (j, /) slot of the optimum
staff configuration. The average number of staff members utilised to serve donors in each
slot with respect to the best staff configuration was computed. Figures 10, 11 and 12 show
the average staff utilisation with respect to the minimum staffing requirement, while the error
bars represent the standard deviations. Although we set H = 34 at the beginning, we remove
the final few half-hours where their utilisation is zero and staffing demand is only one, which
is the lower limit of the number of staff. Hence, the optimal operating duration for each stage
is determined as shown in Figs. 10, 11 and 12.

According to Fig. 10, the registration stage requires three receptionists during the first
12h after opening the donor centre, and only one staff member is enough in the subsequent
hour. This result is sensible since there is no donor arrival after 12h from the beginning.
Furthermore, after 13 h, we do not need any staff at reception as all donors have finished their
registration by the 13th hour.

The minimum number of staff required at the assessment stage is shown in Fig. 11. During
the first half-hour of the day, only three staff members are needed to serve the donors who
finish the registration and questionnaire. Next, it requires seven or eight staff members, which
is much more than that at the registration stage since the assessment duration is longer than
the registration duration. Furthermore, in the middle of the day (from the second half-hour
to the 23rd half-hour), the range of average staff is much smaller. Similarly, we can see this
feature in the collection stage. In the assessment and collection stages, staff are required
for 28 and 30 half-hours, respectively. At the collection stage, the first half-hour requires
only one staff member since it takes some time for donors to start blood collection after
their arrival, and the second half-hour requires only four staff. Because the needle-in and
needle-out times are shorter than the assessment times, only five to six nurses are needed at
the blood collection stage during the day, except for the first and last three hours. In all three
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Fig. 12 Minimum staffing requirement with their average utilisation over the day—collection stage

stages, the minimum staffing requirement is reduced to the lower bound of staff during the
final hours. Considering the above results, the minimum staffing requirements are sensibly
compliant with the donation process.

Almost all half-hours are utilised more than 70% on average in each stage. The final three
half-hours of each stage are less utilised, and they are very close to zero. The error bars show
the spread of staff utilisation around the average staff utilisation. Specifically, we noticed
that the minimum staffing requirement at the registration has small variation in the average
number of recipients and also small error bars of utilisation. Therefore, it is important to
check for the need for more reception desks at the registration stage, and we will investigate
this in the next sub-section.

The total working hours is 196.5 resulting in an average waiting time of 5.99 min, very
close to the target. The waiting time distribution is positively skewed, as shown in Fig. 13,
and the standard deviation is 7.42 min. Recalling Sect. 3.2, all activity durations are positively
skewed with long tails, which leads to a positively skewed waiting time distribution. This
simulation-based approach could be easily adapted to account for other key performance
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Fig. 13 Waiting time distribution of the Melbourne CBD donor centre under the optimal staffing configuration

indicators. For example, given that the waiting time distribution is right-skewed, the ARCL
could consider the median or 90th percentile of the waiting time as a key performance
indicator. In that case, one simply needs to calculate the median, or 90th percentile, of the
waiting time from the simulations.

6.3 Other applications of the SBSA approach

In this section, we further investigated the applications of our adapted simulated anneal-
ing algorithm that is integrated with simulation using new benchmarks. We keep using the
parameters T;,;,, = 0.1, « = 10, 000, T;q = 10,000, a = 0.8, y = 0.8 and ¢ = 2 fixed.
Again, we repeated the simulated annealing algorithm ten times and obtained the rounded
average staff and its average waiting time for the following investigations.

The first scenario that we investigate is to assess the impact of the physical resources appro-
priately to investigate the changes in total staff and the average waiting time. As discussed
in the previous subsection, the registration stage is a bottleneck in the donation process
due to the limited number of reception desks. So we increased the number of reception
desks and compared the resulting average waiting time and minimum staff working hours in
Table 17. The waiting time target is still 6 min, and when the number of desks is equal to or
greater than 3, this target is achievable. The findings indicate that when there are 4 reception
spaces available, compared to the current practice, the average waiting time reduces by 14.4 s
(approximately 4%) and the total working hours grow. Moreover, the standard deviation is
significantly reduced from 7.42 min to 6.30 min. However, having more reception desks does
not significantly improve the waiting time or standard deviation but raises the total working
hours. So, if Lifeblood wishes to improve the waiting time and/or reduce the variance in
waiting time, increasing the reception spaces is an effective solution.

Furthermore, we discovered that if the maximum staff at the registration stage is reduced to
two, it is impossible to keep the average waiting time below the target. We did not investigate
the effects of varying the numbers of interview rooms, couches, and collection machines
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Table 17 Information on average waiting time, its standard deviation, and total working hours under different
numbers of reception spaces

Number of spaces Total working hours Wgyg (mMin) Standard deviation (min)
3 196.5 5.99 7.42
4 200.5 5.75 6.30
5 205.5 5.72 6.36
6 207.0 5.69 6.25
7 208.0 5.68 6.02

Table 18 Information of average waiting time, its standard deviation and total working hours under different
waiting time targets

Wrarget (Min) Total working hours Wavg (Min) Standard deviation (min)
5 217.0 4.90 5.77
6 196.5 5.99 742
7 194.5 6.70 7.16
8 183.0 7.82 8.59
9 176.5 8.80 9.67

Table 19 Total staff, average waiting times and its standard deviations when increasing the registration duration

Percentage of increment Total working hours Wayg (Min) Standard deviation (min)
5 209.0 6.00 7.01
10 214.5 6.20 7.56

since they are already more than the minimum staffing requirement. That is to say, there
exists some redundancy in terms of physical resources at the interview and blood collection
stages. In the case of establishing a new donor center or having a major update for an existing
one, our model and solution approach can be utilised to find the optimal resource allocation.

The second investigation that we conducted was the impact of different waiting time on
the total working hours. As shown in Table 18, as the target increases, the total working hours
of the resulting minimum staffing requirements decrease. Having a closer look at the result,
to reduce the current waiting time target by 1 min requires an extra 20.5h (approximately
10.4%), while to loosen the target by 1 min merely saves 2h (approximately 1%). The average
waiting times are always close to their target waiting times. This demonstrates that the
annealing schedule (7,4, = 10, 000, a = 0.8) we chose is effective in other benchmarks as
well.

Finally, we tested the effect of increased registration, assessment, and collection durations
separately by some percentage to test the effect on total working hours and average waiting
time of the minimum staffing requirements. When the registration duration is extended by
10% or more, it is impossible to meet the target waiting time as shown in Table 19. When
the percentage of the increment is 5%, the average waiting time is 6 min. This result is align
with the previous observation that the reception stage is the bottleneck stage.

Table 20 shows that the minimum staffing requirement is increased rapidly when assess-
ments are prolonged. Furthermore, it is impossible to meet the 6-min target if the average
assessment time is incremented by 40% or more.
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Table 20 Total working hours, average waiting times and its standard deviations when increasing the assess-
ment duration

Percentage of increment Total working hours Wayg (Min) Standard deviation (min)
5 202.0 6.00 6.82
10 207.5 591 6.76
15 214.0 5.98 6.74
20 220.0 5.97 6.74
30 228.0 5.98 6.78
40 231.5 6.09 7.24

Table 21 Total staff working hours, average waiting times and its standard deviation when increasing the
collection duration

Percentage of increment Total working hours Wayg (Min) Standard deviation (min)
5 205.5 6.00 6.89
10 213.5 6.00 7.03
15 221.0 6.00 7.18
20 226.0 6.12 7.93

According to Table 21, we can extend the collection durations by up to 15% and still
meet the target waiting time. The standard deviations increase as the average waiting time
increases, as shown in Tables 19, 20 and 21. It seems that the standard deviation is not
sensitive to the increment in assessment duration compared to the collection duration.

6.4 Other donor centres

Previously, we tested our simulation-based simulated annealing algorithm using several sce-
narios for the Melbourne CBD donor centre. In this section, we test the ability of our method
to be applied to the Gosford, Townsville, and Warrnambool donor centres.

Similar to the Melbourne CBD donor centre, the operating durations of the Gosford,
Townsville, and Warrnambool donor centres are partitioned into half-hour periods, and so
we can find the required staff numbers for each half-hour slot of each key stage. We utilised
our adapted simulated annealing algorithm with the same parameters determined in Sect. 5.
The initial staff configurations are generated at random from the intervals [1,2], [1,2], and
[1,3] for the registration, assessment, and blood collection stages, respectively, for all three
donor centres. When generating neighbour solutions using Algorithm 1, the bounds for the
number of staff members at each stage are set similarly to the Melbourne case study.

For the optimal solutions found by the SBSA algorithm, the average waiting times at the
Gosford, Townsville, and Warrnambool donor centres are 5.95 £ 7.12, 5.98 &£ 8.00, and
5.98 £ 7.79 min, respectively. The standard deviations are greater than the average due to
the skewness of the waiting time distribution, as we discussed in Sect.6.2. Compared to
the Melbourne CBD donor center, the waiting time deviations of the other three centres are
almost similar.

The summary of the minimum staffing requirements is given in Table 22. Similar to the
results for the Melbourne center, it indicates that employees are allocated a few extra hours
following the last appointment time of each donor centre. For example, the registration stage
of the Gosford donor centre requires staff for 13 h. Considering that registration durations are
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Table 22 Summary of the

minimum staffing requirements Donor centre Key stage Total working hours
for all four donor centres Registration 37.0
Melbourne Assessment 93.5
Collection 66.0
Registration 20.0
Gosford Assessment 29.0
Collection 24.5
Registration 22.5
Townsville Assessment 25.5
Collection 34.5
Registration 15.0
Warrnambool Assessment 22.0
Collection 20.0

produced from positively skewed probability distributions, they can be longer than 30 min.
Therefore, it must be attended for an additional hour beyond the final appointment time.

According to Table 22, all the centres except Townsville dedicated more staff hours to the
assessment stage than the other stages because the assessment takes longer than registration
and the total time for needle-in and needle-out tasks.

“Appendix B” shows the minimum staffing requirements for each key stage for all three
donor centres. Each graph depicts the average number of staff (rounded up), average staff
utilisation, and the standard deviations (error bars) in each slot. The staff utilisation level
is constantly high except at the start and end of the day. The high utilisation level suggests
that the minimum staffing requirements found by the SBSA algorithm have provided near-
optimal solutions for all three donor centres. Overall, the Townsville donor centre needs 85.5
total working hours, while the Gosford and Warrnambool donor centres need 75.5 and 57
total working hours, respectively, to serve all donors with an average waiting time of fewer
than 6 min during a typical day.

7 Conclusions and future research

To summarise, we started this study by understanding Australian Red Cross Lifeblood donor
centres’ donor arrival process, blood donation process, available resources, and sources of
uncertainty in the donation process. Then, we discussed the importance of voluntary donors
and the effect of donor satisfaction on the donor return rate. The key performance indicator,
Time-to-Couch, is directly affected by long waiting times and, consequently, influences
donor satisfaction. The demand for staff is inconsistent throughout the day, and fulfilling
that demand ensures a smooth donor flow. Therefore, we introduced a simulation-based
optimisation approach for determining the minimum staffing requirement in each key stage
for a typical day.

First, we fitted probability distributions to data on the durations of registration, assessment,
and questionnaire completion, as well as the collection of each blood product at all four donor
centres. Second, a discrete event simulation model was developed to represent the entire
functioning of a donor centre during a typical day, and it was used to obtain the average
waiting times of each donor centre by changing the parameter values. Third, we modified
a simulation-based simulated annealing algorithm for the Melbourne CBD donor centre
together with a neighbour solution generation algorithm to determine the minimum staffing
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requirement throughout the day. Next, we further investigated our method using different
benchmarks from the Melbourne CBD donor centre. Last, we tested the applicability of our
method by applying it to the Gosford, Townsville, and Warrnambool donor centres.

With regard to our contribution to the literature, no study exists that considers a complicated
arrival process that is affected by appointment-based arrivals, earliness, tardiness, no-shows,
and random arrivals. A key aspect of our method is that it avoids using an analytical model
of the system, which may not only be too complicated but also analytically challenging.
Therefore, we were able to develop a comprehensive simulation model to represent the
entire donation process of a blood donor centre by considering all the sources of uncertainty.
There are no studies that we could find that used a simulation-based simulated annealing
algorithm for determining the minimum staffing requirement. To improve the efficiency of
the simulated annealing algorithm, we introduced a novel method called the NS algorithm
that seeks neighbouring staff configurations based on staff occupancy levels. Our method for
detecting bottleneck/under-utilised staff slots using the average full occupancy levels plays a
key role in this study. Therefore, our study filled many gaps in the literature and contributed
novel approaches.

The existing data on registration and assessment durations includes some waiting time that
is impossible to eliminate. Since the objective function of the simulated annealing algorithm
does not include any service durations but only the average waiting time and total number
of staff, we do not expect a significant deviation in the minimum staffing requirement from
the actual one. To determine the minimum staffing requirement, we experimented with the
most suitable parameters in the simulated annealing algorithm. However, in the process of
calculating the average full occupancy of a given half-hour, we imposed an 80% threshold to
indicate whether a half-hour is fully occupied or not on a given day, as per Equation (6). This
occupancy threshold must be a parameter that can be adjusted appropriately, but we did not
explore it due to a high computational expense in the simulation model. However, we believe
80% 1is a reasonable value according to the minimum staffing requirements determined in
Sect.5.

Any service centre can apply our method of calculating average full occupancy levels and
utilising it to detect slots with a bottleneck or under-utilised staff. Since our simulation-based
simulated annealing algorithm is computationally expensive, it is better to determine a more
efficient way of generating the minimum staffing requirements. One possibility is applying
a machine learning model such as neural networks (De Angelis et al., 2003) .

Our model is very close to the real donor centre environment. However, we did not consider
non-collection activities that staff perform, such as data entry and preparing machines. We
did not consider donor adverse events, and donor deferrals in our simulation model due to
their small probabilities. Recalling Sect. 1, these factors can be the main reasons for having
skewed distributions for activities such as registration, assessment, and collection. Hence, it
is not mandatory to consider them separately.

Most importantly, our next step is to determine the optimal shift schedule that satisfies
the minimum staffing requirements determined by this study for each donor centre. For
that, an integer programming problem can be developed that fulfills all Australian labour
standards, which are slightly different from one state to another. This optimal shift schedule
will maintain staff satisfaction by allocating rest and meal breaks to shifts while minimising
staff non-utilised time.

The numerical results based on the four Australian Red Cross Life donor centres demon-
strate that the proposed SBSA algorithm can be adapted to any donor centre to determine
the minimum staffing requirement. Since these staffing demands ensure the donor waiting
time target is met for each donor centre, they have the potential to improve donor satisfaction
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and streamline the donor flow. The ability of this method to distribute the necessary number
of employees at each stage will reduce work-related stress for employees and increase staff
satisfaction. Furthermore, since we have minimised the total number of working hours, there
is a potential to reduce costs. This study has been able to make a good contribution to fill-
ing gaps in the literature on the optimisation of time-dependent queueing systems. Finally,
based on the overall outcomes, we can conclude that this method has the capacity to improve
healthcare management in Australia because it offers a practical solution to efficiently reduce
waiting times for donors and ensure a sustainable blood supply.
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Appendix A: Fitting probability distributions

Given the number of phases, we used the mapfit R package to fit Coxian phase-type distri-
butions to the data. It returns information about the fitted distribution, including the number
of EM algorithm iterations, the convergence status of the EM algorithm, the AIC, and the
log-likelihood value. The AIC value decreases as the number of phases increases, and it
begins to rise after a certain number of phases, after which the remaining phases are no
longer tested. We chose the distribution that has the minimum AIC value as the best-fitted
Coxian distribution. We followed the same process to select the number of components when
fitting mixture distributions using mixR R package.

Kolmogorov-Smirnov (KS) test is a non-parametric test that is used to determine if a
sample comes from a population with a particular distribution. In this study, the false-positive
rate of the KS test is set at 0.01, and if the KS test’s p-value is higher than that, we do not
have sufficient data to reject the null hypothesis (the data follow a specified distribution).

A.1: Registration duration

See Table 23.
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Table 23 The AIC, log-likelihood and the KS-test’s p-values of the Coxian distributions fitted to registration
duration data in each donor centre where the selected models are highlighted

# Phases # Iterations Log-likelihood AIC KS test p-value

Melbourne CBD donor centre

35 427 —322,726.1 645,590.1 0.1076
36 430 —322,725.6 645,593.3 0.1070
37 650 —322,660.4 645,466.9 0.1300
38 639 —322,659.2 645,468.4 0.1305
Gosford donor centre

7 966 —53,291.1 106,608.1 0.4079
8 1687 —53,287.1 106,604.3 0.7917
9 1484 —53,284.6 106,603.2 0.9140
10 270 —53,283.9 106,605.8 0.9140
Townsville donor centre

6 1047 —18,589.9 37,201.9 0.0073
7 872 —18,567.4 37,160.8 0.2566
8 1233 —18,560.9 37,1519 0.7669
9 1303 —18,560.4 37,154.8 0.7695
Warrnambool donor centre

5 715 —15,354.7 30,727.4 0.0634
6 1867 —15,325.2 30,672.4 0.1128
7 3242 —15,320.9 30,667.9 0.1238
8 2021 —15,321.1 30,672.2 0.1246

A.2: Questionnaire completion duration

As shown in Tables 24 and 25 gamma, log-normal, Weibull, and Coxian phase-type distri-
butions were unable to satisfy the KS test for the questionnaire completion duration data of
the Melbourne CBD donor centre. Therefore, we selected the 98-phase Coxian distribution
that has the smallest AIC value among all the distributions. Figure 14 shows a histogram of
the empirical data on questionnaire completion duration at the Melbourne CBD donor centre
overlaid with the 98-phase Coxian distribution. It indicates that the fit is poor. According to
Okamura (2022), over-fitting can occur when mapfit package is used to estimate phase-type
distribution parameters with high orders. The KS test might not be satisfied even though this
98-phase Coxian distribution was converged. The questionnaire completion duration data of
the other three donor centres were well-fitted by Coxian phase-type distributions.

Table 24 Information about gamma, log-normal, and Weibull distributions fitted to questionnaire filling dura-
tion data in Melbourne CBD donor centre

Distribution Parameter MLEs AIC BIC KS test p-value
Gamma G =1.1719, B=13485 148,932.8 148,951.6 <0.0001
Log-normal a=1.7892, & =0.6360 675,826 675,845.4 <0.0001
Weibull A =0.8804, k=1.0282 150123.8 150142.6 <0.0001
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Table 25 The AIC, log-likelihood and the KS-test’s p-values of the Coxian distributions fitted to the ques-
tionnaire completion duration data in each donor centre where the selected models are highlighted

# Phases # Iterations Log-likelihood AIC KS test p-value

Melbourne CBD donor centre

96 9221 —62,435.7 125,253.5 <0.0001
97 11,618 —62,431.9 125,249.9 <0.0001
98 10,753 —62,410.8 125,211.6 <0.0001
99 10,010 —62,410.2 125,214.4 <0.0001
Gosford donor centre

26 8251 —22,895.1 45,892.2 0.0661
27 8332 —22,893.2 45,892.4 0.0854
28 11,130 —22,890.0 45,890.1 0.0942
29 8348 —22,889.1 45,892.2 0.1003
Townsville donor centre

17 3290 —5412.4 10,890.9 0.6812
18 2993 —5411.1 10,892.2 0.6988
19 2969 —5404.3 10,882.6 0.7653
20 2804 —5402.9 10,883.8 0.7674
Warrnambool donor centre

13 5520 —869.5 1788.9 0.1336
14 6048 —867.0 1788.1 0.1338
15 6502 —864.2 1786.2 0.1343
16 6629 —864.0 1790.0 0.1346
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Fig. 14 Histogram and fitted 98-phase Coxian distribution for the data on questionnaire completion duration
of the Melbourne CBD donor centre
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A.3: Assessment duration

See Table 26.

Table26 The AIC, log-likelihood and the KS-test’s p-values of the Coxian distributions fitted to the assessment
duration data in each donor centre where the selected models are highlighted

# Phases # Iterations Log-likelihood AIC KS test p-value

Melbourne CBD donor centre

41 1711 —415,618.8 831,399.6 0.8772
42 984 —415,559.1 831,284.4 0.9867
43 952 —415,557.1 831,284.3 0.9875
44 918 —415,555.3 831,284.5 0.9875
Gosford donor centre

16 1330 —59,956.2 119,974.4 0.6349
17 3249 —59,940.0 119,946.0 0.9955
18 2548 —59,939.6 119,949.3 0.9977
19 1433 —59,938.8 119,951.6 0.9985
Townsville donor centre

9 4642 —23,934.5 47,903.1 0.4227
10 1427 —23,931.0 47,900.1 0.6254
11 647 —23,928.3 47,898.7 0.9908
12 1274 —23,928.3 47,902.7 0.9980
Warrnambool donor centre

14 1840 —30,815.1 61,684.3 0.1235
15 3566 —30,804.8 61,667.6 0.2364
16 2209 —30,801.6 61,665.2 0.3853
17 1880 —30,800.6 61,667.1 0.4303

A.4: Whole blood collection duration

See Table 27.
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Table 27 The number of components, AIC, BIC, log-likelihood and the KS-test’s p-values of the mixture
distributions fitted to the whole blood collection duration data in each donor centre where the selected models

are highlighted

Distribution # Components Log-likelihood AIC BIC p-value
Melbourne CBD donor centre

Gamma mixture 4 —41,988.4 83,998.8 840,85.7 <0.001
Gamma mixture 5 —41,969.7 83,967.6 84,078.2 0.0879
Gamma mixture 6 —41,970.1 83,974.2 84,108.6 0.0879
Normal mixture 5 —41,981.5 83,990.9 84,101.6 0.06379
Weibull mixture 7 —41,476.0 82,992.0 83,150.0 0.0014
Gosford donor centre

Gamma mixture 3 —17,904.7 35,825.5 35,882.7 < 0.001
Gamma mixture 4 —17,893.7 35,809.4 35,888.1 0.0750
Gamma mixture 5 —17,894.0 35,816.0 35,916.2 0.0321
Normal mixture 3 —17,916.2 35,848.6 35,905.8 0.1379
Weibull mixture 7 —17,513.2 35,066.5 35,209.7 0.0456
Townsville donor centre

Gamma mixture 3 —783.1 1582.9 1620.6 0.0029
Gamma mixture 4 —772.8 1567.6 1610.9 0.1379
Gamma mixture 5 —768.4 1569.9 1626.3 0.1620
Normal mixture 4 —772.5 1567.1 1610.4 0.04556
Weibull mixture 3 —663.4 1342.9 1374.4 <0.0001
Warrnambool donor centre

Gamma mixture 6 —12,419.4 24,8727 24,987.2 <0.001
Gamma mixture 7 —12,411.8 24,863.7 24,998.3 0.075
Gamma mixture 8 —12,410.1 24,866.2 25,021.1 0.0638
Normal mixture 7 —10,486.9 21,013.8 21,148.5 0.0124
Weibull mixture 9 —10,978.0 22,008.1 22,183.2 <0.0001

A.5: Plasma collection duration

See Table 28.
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Table 28 The number of components, AIC, BIC, log-likelihood and the KS-test’s p-values of the mixture
distributions fitted to the plasma collection duration data in each donor centre where the selected models are
highlighted

Distribution # Components Log-likelihood AIC BIC p-value

Melbourne CBD donor centre

Normal mixture 5 —72,678.3 145,384.1 145,557.6 0.0010
Normal mixture 6 —72,635.1 145,304.2 145,438.6 0.1191
Normal mixture 7 —72,737.9 145,515.7 145,673.8 0.1379
Gamma mixture 13 —72,677.2 145,430.5 145,730.8 0.7823
Weibull mixture 11 —72,609.5 145,283.0 145,535.9 0.238
Gosford donor centre

Normal mixture 6 —30,841.1 61,716.2 61,836.9 0.0268
Normal mixture 7 —30,826.3 61,692.6 61,834.5 0.0750
Normal mixture 8 —30,825.5 61,697.0 61,860.3 <0.001
Gamma mixture 8 —30,920.9 61,887.9 62,051.2 0.305
Weibull mixture 9 —30,855.5 61,763.8 61,947.7 0.0750
Townsville donor centre

Normal mixture 4 —36,848.2 73,692.1 73,800.2 <0.001
Normal mixture 5 —36,823.5 73,675.2 73,776.3 0.3431
Normal mixture 6 —36,811.1 73,740.5 73,791.5 0.4002
Gamma mixture 5 —36,875.4 73,778.9 73,879.9 0.305
Weibull mixture 4 —36,862.3 73,746.6 73,826.1 0.1191
Warrnambool donor centre

Normal mixture 2 —22.124.7 44,024.8 44,071.1 <0.001
Normal mixture 3 —21,995.0 44,006.1 44,059.7 0.2700
Normal mixture 2 —21,900.3 44,030.4 44,099.6 0.3017
Gamma mixture 3 —22,006.2 44,028.5 44,082.1 0.7319
Weibull mixture 10 —21,910.0 43,878.1 44,072.6 0.4282

A.6: Single-dose platelets collection duration

See Table 29.

Table 29 The number of components, AIC, BIC, log-likelihood and the KS-test’s p-values of the mixture
distributions fitted to single-dose platelets collection duration data in Melbourne CBD donor centres where
the selected models are highlighted

Distribution # Components Log-likelihood AIC BIC p-value
Gamma mixture 4 —3044.8 6111.6 6163.4 <0.001
Gamma mixture 5 —3039.5 6107.0 6172.9 0.4282
Gamma mixture 6 —3032.0 6098.0 6178.1 0.5089
Normal mixture 5 —3041.2 6110.6 6176.5 0.1191
Weibull mixture 13 —3003.4 6082.9 6261.8 0.1025
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A.7: Double-dose platelets collection duration

See Table 30.

Table 30 The number of components, AIC, BIC, log-likelihood and the KS-test’s p-values of the mixture
distributions fitted to double-dose platelets collection duration data in the Melbourne CBD donor centres

where the selected models are highlighted

Distribution # Components Log-likelihood AIC BIC p-value
Normal mixture 4 —8600.8 17,223.7 17,285.5 0.1826
Normal mixture 5 —8578.7 17,185.3 17,264.1 0.238
Normal mixture 6 —8590.1 17,214.2 17,309.8 0.3063
Gamma mixture 4 —8622.1 17,266.2 17,328.1 0.3431
Weibull mixture 8 —8590.0 17,226.1 17,355.3 0.3842
Appendix B: Minimum staffing requirements
B.1: Gosford donor centre
See Figs. 15, 16 and 17.
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Fig. 15 Minimum staffing requirement with their utilisation over the day—registration stage
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Fig. 16 Minimum staffing requirement with their utilisation over the day—assessment stage
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Fig. 17 Minimum staffing requirement with their utilisation over the day—collection stage

B.2: Townsville donor centre

See Figs. 18, 19 and 20.
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Fig. 18 Minimum staffing requirement with their utilisation over the day—registration stage

—&—Number of staff —— Average utilisation

3
=
g2
s
(o)
g
[
€
51
z
0
o o o o o o o o o o o o o
S © © ©9 © © © © © o © ©o o
N~ [ce] » o ~ N [32] <t w [{e] N~ (o] D
= -~ -~ = s L -~ ~ = L
Time of the day

Fig. 19 Minimum staffing requirement with their utilisation over the day—assessment stage
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Fig.20 Minimum staffing requirement with their utilisation over the day—collection stage

Warrnambool donor centre

See Figs. 21, 22 and 23.
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Fig.21 Minimum staffing requirement with their utilisation over the day—registration stage
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Fig. 23 Minimum staffing requirement with their utilisation over the day—collection stage
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