
Annals of Operations Research
https://doi.org/10.1007/s10479-023-05280-y

ORIG INAL RESEARCH

IDILIM: incident detection included linear management using
connected autonomous vehicles

Ilgin Gokasar1 · Alperen Timurogullari1 · Sarp Semih Ozkan1 ·
Muhammet Deveci2,3

Accepted: 7 March 2023
© The Author(s) 2023

Abstract
Autonomous vehicle advancements and communication technologies such as V2V, V2I, and
V2X have enabled the development of connected and autonomous vehicles. Because CAVs
are directly effective in traffic, their application in traffic management and incident manage-
ment appears promising. They can immediately begin regulating traffic and acting as sensors
due to their connectivity to the infrastructure. This research proposes Incident Detection
Included Linear Management (IDILIM), a CAV-based incident management algorithm that
regulates CAV and traffic speeds based on dynamic and predicted shockwave speeds. The
SUMO simulations are carried out on a 10.4-km-long, three-lane facility with 21 sensors
every 500 m. In the scenarios, three traffic demands, eleven CAV penetration rates, and vary-
ing incident locations, duration, and lanes are used. A total of 20 simulation seeds are used
in each scenario. The proposed algorithm necessitates the use of a reliable traffic predic-
tion model. Convolutional Neural Networks, a deep learning algorithm with high estimation
accuracy, are used in the prediction model. IDILIM uses the highly accurate traffic prediction
output of the Pix-to-Pix model as input at 3-min intervals. Shockwave speed is calculated
using model outputs and fed to CAVs. To compare with IDILIM, variable speed limits (VSL)
are also modeled. When compared to uncontrolled base scenarios, IDILIM reduced density
values greater than 35 veh/km in the critical region by 89.32%. In the same scenario, VSL
management decreased by only 52.43%.
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1 Introduction

The current development studies on connected vehicles are mainly focused on transmitting
data between vehicles and infrastructure (Chou et al., 2009; Zhao et al., 2016). These commu-
nication technologies are calledV2V (vehicle-to-vehicle) andV2I (vehicle-to-infrastructure).
The objective behind this communication is to transmit data such as stationary or slow vehi-
cle warnings, emergency vehicle warnings, and road works warnings to the onboard units
(OBU), which are embedded in the connected vehicles, to increase the awareness of the
drivers (Yang et al., 2014). The data is sent from the roadside units (RSU) utilizing connec-
tion technologies such as dedicated short-range communications (DSRC) and 5G technology
(Dey et al., 2016; Ndashimye et al., 2017). These advanced technologies are promising in
terms of being useful in the development of connected and autonomous vehicles since with
the transmitted traffic information, which can be sent to autonomous vehicles through RSUs,
CAVs can be used in managing traffic. Since CAVs are active agents in the traffic flow, the
implementation of traffic management systems, which are based on the usage of CAVs, has
significant potential.

Advancements in connected and autonomous vehicles and the concept of utilizing these
vehicles in traffic and traffic management systems have attracted the attention of various
studies. Through the conducted studies, various benefits of this integration have been proven
and brought to the literature. One improvement of these systems is that they reduce traffic
densities at both the overall network and at the site of incidents (Gokasar et al., 2022a, 2022b).
Another improvement is that CAV-enabled incident management algorithms reduce travel
time, average stop delay, vehicle stops, fuel consumption, and carbon emission (Farrag et al.,
2020). All these benefits considered, connected autonomous vehicles will be implemented
into incident management algorithms as soon as they are ready to be deployed in real-world
traffic flows.

Another research area that has attracted the attention of researchers is deep learning and
machine learning subjects.With the development of communication technologies in vehicular
systems, data transmission is made possible. This concept enabled connected vehicles to be
used as sensors in traffic (Emami et al., 2020). Thus, traffic data such as density, speed, and
flow can be collected via the connected vehicles. These data have the potential to be used
in prediction algorithms, which are modelled using deep learning models (He et al., 2020).
The output of these models is the future state of the traffic based on the current conditions.
When traffic and incidents are managed using predicted future traffic data, congestion that
will occur in the future can be foreseen and CAV-enabled traffic and incident management
algorithms can be deployed before the congestion becomes too severe. By implementing
such systems, the effect of incident-induced shockwaves can be mitigated to a great extent
(Wismans et al., 2019).

In this study, a novel traffic management method, namely IDILIM, is proposed. In this
method, a prediction model named Pix-to-Pix is used, which uses Convolutional Neural
Networks (CNN) and Conditional Generative Adversarial Networks (cGAN), to predict the
future state of the traffic. The collected traffic data is transformed into traffic heatmaps and
is given as input to the prediction model. The output of the model is the heatmap of the
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next 3 min. Thus, the traffic data for the next 3 min are received using the prediction model.
Using the predicted traffic data, the shockwave speed of 2 min later is calculated and given
as input to the traffic management system. CAVs are instructed to make their speeds equal
to the calculated shockwave speed. Implementation of this management method reduces the
traffic flow into the area at which the effects of the shockwave are seen. This makes the
discharge from the critical region easier and more efficient and decreases the density values
in the incident region.

The proposed traffic management method is novel and advanced. There is a scarcity of
research on the operation of connected autonomous vehicles in combination with models
that make predictions through deep learning algorithms and use the predicted data to manage
traffic more efficiently. In this context, IDILIM is an innovative and effective method brought
to the literature by this study.

2 Literature review

Even though vehicular communication is fairly new, there are studies in the literature inves-
tigating faster and more efficient data transmission technologies. For instance, in a different
study, the use of 5G in V2I (vehicle-to-infrastructure) technology for the precise and accu-
rate localization of vehicles is investigated (del Peral-Rosado et al., 2016). According to this
study, 5G is promising in means of this implementation. In another study, the feasibility
of LTE and mmWave communication technologies are investigated (Giordani et al., 2019).
Results indicate that LTE is promising in terms of robust and fair connection and mmWave is
considerable in the future’s high throughput demands of emerging automotive applications.
Considering the advancements in communication and autonomous vehicle technologies, it
is not far from today that connected and autonomous vehicles will be a part of real-world
traffic flow.

In addition to the developments in communication and autonomy technologies, due to
the fast increase in urban population and traffic volumes in metropolitan regions, traffic and
incident management have gained high importance (Djahel et al., 2015). This increased the
number of studies regarding traffic and incident management in the literature. In a different
study, simulations of the Variable Speed Limits (VSL) incident management algorithm are
conducted (Dia et al., 2008).Results of the simulation study show that there is an improvement
of 11% in traffic efficiency and an improvement in traffic safety due to the homogenization
of the traffic flow in high-speed regions. In another study, an incident management frame-
work named STIMF (Smart traffic incident management framework) is proposed (Farrag
et al., 2021). In the context of this framework, different incident management algorithms
are simulated based on the detected incident, and a fuzzy-logic inference system is used to
recommend the most effective incident management method based on the current incident
conditions.

In light of the advancement in connected autonomous vehicles and the need for incident
management applications, researchers have shifted their focus on integrating CAVs into
incident management algorithms. In a different study, simulation studies of the integration
between Car2X communication technologies and traffic incident management systems are
conducted (Farrag et al., 2020). Results indicate a decrease of 6% in travel time, 9% in average
stopdelay, 27% invehicle stops, and16% in fuel consumption and carbonmonoxide emission.
In a study, a novel incident management algorithm, namely SWSCAV, which utilizes CAVs
in incident management, is proposed (Gokasar et al., 2022a, 2022b). Results demonstrate a
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decrease in density values over 38 veh/km/lane and 28 veh/km/lane in the critical region of
the incident by 12.68% and 8.15% respectively. It is stated that even at low CAV percentage
rates, the proposed algorithm can reduce density values throughout the network.

Even though CAV-enabled traffic incident management demonstrates promising improve-
ments, there are studies in the literature to develop these incidentmanagement systems further.
One example is the combination of deep learning algorithms with traffic incident manage-
ment methods. The main approach to using deep learning is in the incident detection side
of the management systems. In a different study, Convolutional Neural Networks (CNN),
which is a deep learning algorithm, is utilized in incident detection (Zhu et al., 2018). Results
of the studies show a higher detection rate and lower false positive rate compared with the
traditional incident detection algorithms, which use deep learning methods. In another study,
Generative Adversarial Network (GAN) is used to expand the size of incident data and bal-
ance datasets, and a temporal and spatially stacked autoencoder (TSSAE) is used to detect
incidents (Li et al., 2020). The results of the study indicate that the proposed method out-
performs some of the traditional benchmark models. In a different study, a novel fuzzy deep
learning-based incident management method is proposed (El Hatri & Boumhidi, 2018). This
method utilizes a Stacked Auto-Encoder (SAE), and the results of the study show an increase
in the detection rate and a decrease in the false alarm rate.

Through the conducted literature survey, it is seen that many of the deep learning-based
incident management algorithms focus on the incident detection of the traffic network. In this
study, the proposed incident detectionmethod, namely IDILIM, utilizesCNNandConditional
GAN (cGAN) networks in the process of predicting future conditions of the traffic and
providing estimated inputs for the method, which is a unique contribution to the literature.
Also, there is a lack of studies on CAV-enabled incident detection algorithms. IDILIM also
utilizes CAVs in the process of managing traffic. Therefore, this study is unique in terms of
the used technologies and the provided improvements.

3 Theory

3.1 Pix2Pix cGAN algorithm and traffic heatmap analogy

Pix2Pix is aCNN (ConvolutionalNeuralNetwork) based cGAN (ConditionalGeneralAdver-
sarial Network) type that can take an image as an input and obtain another image with the
same dimensions. The reason why it was preferred in this study is that the distribution of the
average speed, density, and flow values, which are the basic parameters of the traffic, in the
time–space plane has a similar feature to a single-layer picture matrix. As seen in Fig. 1, the
location and time values correspond to the x and y coordinates in the picture matrices, and
the intensity value of the traffic at that moment and location corresponds to the color values.

Another reason for choosing a CNN-based system is that the sliding window system is
suitable for predicting the behavior of traffic. In a scenario where we assume that the sliding
window is 2 × 2, the values of the parameter at that location and at the previous location at
the instant and at the previous measurement times are used for the estimation of the traffic
parameter at any location in the future. In traffic systems, each of these values is highly
dependent on the other.

The Pix2Pix architecture consists of two different mechanisms. The mechanism that
works first creates the estimated heatmap from the traffic heatmap taken as input, and the
second mechanism tests whether this heatmap is derived. These are called generator and
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Fig. 1 Density heatmap

discriminator, respectively. As with almost most GAN systems, the generator tries to trick
the discriminator. The cGAN uses the following function to calculate the loss:

LcGAN (G, D) = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z))] (1)

In Eq. (1), x is the traffic heatmap segment matrix, z is the random noise vector, and y
is the heatmap segment from the estimated 3 min later. G is the generator function and D is
the discriminator function. G(x,z) tries to approach y in each iteration. In other words, the
loss between the G(x,z) function and the estimated heatmap is tried to be minimized. In this
way, it will be more likely to fool D, which is the discriminator function. The classical L1
distance is used to train the generator function (2).

LL1(G) = Ex,y,z[||y − G(x, z)||1] (2)

Thus, the final function, which aims to achieve the minimum error of the generator mech-
anism and the maximum accuracy of the discriminator function, is as follows:

G∗ = argmin
G

max
D

LcGAN (G, D) + λLL1(G) (3)

CNN architecture has been tested with 16 different architectures. The architecture with
the least loss has 1-64-64-128 neuron orientation, a 4 × 4 frame size, and no dropout. In
Fig. 2, the traffic density heat map estimated by the Pix2Pix algorithm is shown. The left-
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Fig. 2 The traffic density heat map estimated by the Pix2Pix algorithm

most image is the input heatmap image, the image in the middle is the target image and the
right-most image is the predicted density heatmap image.

In the image below, the input density heatmap, expected output heatmap, and predicted
heatmap is given in the time–space plane, from left to right, respectively. The intensity
increases as the colors change from blue to yellow.

3.2 IDILIM: incident detection included linear management

Autonomous and connected vehicle technologies are rapidly evolving. One positive aspect
of these technologies is that they provide the location, duration, and status information to
be transmitted to vehicles in short periods. This information is obtained by processing data
collected by other vehicles, mobile devices, sensors, cameras, and infrastructure on vehicles
or at the source. In connected vehicle technologies, any information or data can now be
provided from vehicle to vehicle, from vehicle to infrastructure, and from vehicle to any
information source.

A world where information flow being so fast makes it possible to manage traffic more
reactively and dynamically. In one study, the position and speed dynamics of the shock wave
are processed and speed and position information are transmitted to the vehicles (Gokasar
et al., 2022a, 2022b). In this system, traffic heat maps for a certain period were estimated
by processing instant traffic data. With the assistance of these heat maps, the limit of the
shock wave after a certain time was obtained and its speed was found, and the vehicles that
were behind a constant distance with the downstream limit of the shock wave were managed.
This management was again achieved by giving a constant shock wave speed. In this study,
instead of giving the shock wave speed and distance directly to the vehicles, it is aimed to
keep these two values dynamic.

Shock wave speed (w) is the rate at which the shock wave propagates per unit of time.
Free flow speed (v) is the speed at which vehicles move at their desired speed without being
affected. In this study, an uninterrupted road network is used to maintain free flow speed.
In this road network, sensors placed at intervals of 500 m perform the task of collecting,
processing, and transmitting data.

The working principle of the proposed system is given in Fig. 3. The main principle of
this system is to ensure that the place where the shock wave limit will reach after 3 min does
not disturb the continuity of the vehicles in the free flow. To achieve this, firstly, the situation
of the traffic and shock wave after 3 min is estimated with the Pix2Pix algorithm. The shock
wave speed after 3 min will be determined with the predicted heat maps thanks to Pix2Pix.
The shock wave speed of predicted heatmaps is calculated as follows:

w = qs − qs−1

ks − ks−1
(4)
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Fig. 3 The illustration of IDILIM

where qs is the instantaneous flow value at location s, qs−1 is the instantaneous flow at
location s − 1, which is 500 m behind s, ks is the instantaneous density at location s, ks−1 is
the instantaneous density at location s − 1.

To reduce the impact of shock wave propagation on the continuity of the vehicles’ motion,
each vehicle will reduce its speed by the shock wave speed. That is, each vehicle will reduce
its speed to (instantaneous speed - shock wave speed) after receiving the command.

Not only the shock wave speed but also the shock wave location will be determined
by the estimated algorithm. From the shock wave location determined according to this
estimation, the distance control distance equal to the distance that the vehicles would reach
with reduced speed was selected. The reason for this is to prevent the system’s effectiveness
from decreasing by starting the system from a back distance. Therefore, the control distance,
which is the distance that the vehicles will take,

Xcontrol = (V f ree f low − w)t (5)

where Xcontrol is the predicted control distance of the traffic, V f ree f low is free flow speed
of the traffic, w is the predicted shockwave speed, t (the control time) is the desired time
interval for control.

In this system, the t-value computation involves some steps. In the system that operates
every 15 s, the shock wave speed may fluctuate continuously and/or losses may occur due to
sensor frequency. Therefore, it would not be correct to take 180 s directly. Therefore, with
the help of the 3-min heatmap, the amount of shock wave propagation will be obtained and
the duration will be determined accordingly. The t value is calculated as follows:

t = dsw
ωavg

(6)

where dsw = 3 min, the shockwave boundary position change, ωavg = 3-min-average shock-
wave speed. Since the data is collected every 15 s, the average shockwave speed will be the
average of 12-time intervals. The instantaneous shock wave speed can be an outlier value so
the average shock wave speed is used to reduce the effect of this outlier. During the simu-
lation, the shock wave speed is limited to 5 km/h as the lower limit and free flow speed as
the upper limit not to get affected by the possible low data quality of real-life applications or
outliers. t = the control time.

In this study, there are some assumptions made while modeling IDILIM. These assump-
tions are listed below.

• Connected autonomous vehicles can continuously receive information from the infrastruc-
ture and know their location clearly and accurately at all times.

123



Annals of Operations Research

• Connected autonomous vehicles implement the instructions given to themwithin the scope
of IDILIM in the fastest way.

• Connected autonomous vehicles reduce their speed linearly.When the speed of the vehicles
is equal to the shockwave speed, the speed of the connected autonomous vehicles is fixed.

• The measured instantaneous and location-dependent traffic density data show wave char-
acteristics.

• Vehicles never increase their speed above the maximum speed threshold. At the same time,
when a directive is sent to the connected autonomous vehicles to reduce their speed below
10 km/h, the connected autonomous vehicles do not comply with this directive.

3.3 Variable speed limits

Variable speed limits (VSL) is a real-time traffic management method. By implementing this
method, the aim is to reduce the speed of vehicles with the speed limits reflected on the
electronic traffic boards behind the area where traffic congestion is present. By regulating
vehicle speeds and reducing them to the desired speed limit, the number of vehicles arriving
at the incident area. In this way, the intensity of traffic congestion due to incidents can
be reduced and the control of these traffic congestions and the evacuation process after
the incident becomes more efficient. At the same time, by reducing vehicle speeds, sharp
deviations in vehicle speeds are prevented and more stable speeds are obtained.

In Fig. 4, there is an illustration of VSL traffic management applied on a 4-lane highway
with 3 lanes open to traffic. Within the scope of the application, it is expected that the speed
of the vehicles will be reduced to 60 km/h.

Some variables need to be determined and assigned values for the modeling of the VSL
management method in the SUMO simulation environment. These variables are listed as
follows:

• Control Distance (meters): The distance between the incident location and the electronic
traffic board reflecting the VSL speed instructions.

• Compliance Rate: The rate at which autonomous and human-driven vehicles comply with
the target speed shown on the VSL boards.

• Target Speed (km/h): The speed limit at which vehicle speeds are requested to be reduced
within the scope of the VSL application

The electronic traffic board reflecting the VSL target speed is located as far as the control
distance from the incident area.Human-driven and autonomousvehicles complywith theVSL

Fig. 4 Illustration of VSL traffic management applied on a 4-lane highway (TRUMM, 2010)
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Table 1 VSL variables used in
simulation studies Variables Values

VSL control distance (meters) 1000

Target speed (km/h) 50

Autonomous vehicle compliance rate 1.0

Human-driven vehicle compliance rate 0.5

Fig. 5 Illustration of VSL board location

system at different rates. The variables of the VSL modeled in the simulation environment
and the values assigned to these variables are available in Table 1.

One electronic traffic board is used in VSL simulation scenarios. TheVSL board is located
1000 m behind the incident location. An illustration of the VSL board location is available in
Fig. 5. The yellow lines represent the sensors and the distance between each sensor is 500 m.
The blue block represents the incident location.

The assumptionsmadewhile integrating the VSLmanagementmethod into the simulation
environment are as follows:

• The VSL application is activated 300 s after the incident. At the same time, the VSL
application continues for 300 s after the incident is completely removed from the network.

• Drivers can see electronic traffic boards from 30 m away. After seeing the boards, they
decide on complying or not complying with the VSL guidelines within a maximum of 2 s.

• Driverswho complywith theVSLdirective reduce their speed to the target speed as quickly
as possible.

• Connected autonomous vehicles comply with VSL directives 100%, while human-driven
vehicles comply with 50%.

• The same target speed value is reflected for each lane on the electronic traffic board.

3.4 Standard normal deviation (SND) incident detection algorithm

For incidentmanagement systems towork, an incidentmust be detected first. In the simulation
study, the SND incident detection algorithm is used.

Standard Normal Deviation (SND) is a statistical incident detection algorithm that uses
the parameter mean value and standard deviation calculated over historical traffic data. The
algorithm is created by placing the mean value and standard deviation of a traffic parameter,
which will be strongly affected by an incident, calculated over the normal flow of traffic into
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Table 2 Mean density, standard
deviation, and SND threshold
values

Mean density value
(veh/km)

Standard
deviation

SND threshold
value

6.01 5.03 4.5

the SND as given in Eq. (7).

SND = x( j, t) − x( j, t)

s
> TSND (7)

x( j, t): The value of the traffic parameter at position j and at time t, x( j, t): The average
value of the traffic parameter at position j and time t, s: The standard deviation of the traffic
parameter at position j and time t, TSND: The threshold value of the SND algorithm.

The traffic parameter used in the SND algorithm is the traffic density. By using the density
data obtained as a result of the simulation studies, the mean density value, standard deviation,
and SND threshold value are obtained. These values are available in Table 2.

4 Methodology

Simulation studies are conducted using SUMO traffic simulation software. SUMO is an open-
source simulation program. Simulations are done using TraCI (Traffic Control Interface),
which is a python programming library connected with SUMO (Wegener et al., 2008). The
usage of python in the simulation studies is an advantageous aspect due to providing numerous
possibilities in the scenario set.

4.1 Simulation network

SUMO has an integrated network editing program named “NetEdit”. Using this application,
an uninterrupted traffic facility is constructed, which is shown in Fig. 6.

As seen in Fig. 6, the main road length of the constructed uninterrupted road network
is 10 km and there are 200 m of entrance and exit zones at the beginning and end of the
network. The leading and trailing 200 m of extra roads are the warm-up and cooldown parts
of the simulation. Vehicle accelerations and decelerations in those areas can be deceiving.
Thus in the analysis part, those parts of the network are not considered. When all parts are
considered, the total length of the road network becomes 10.4 km. There are 21 sensors in
total along the network. Data collection is done using these sensors. There is a distance of
500 m between each sensor. The road network continues with 3 lanes along the entire road
length. The lane width is fixed and is 3.2 m.

Fig. 6 Simulation network
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Table 3 Variables of scenarios
Variable Value

CAV percentage [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Traffic demand [1200, 1350, 1500]

Incident location (m) rand(4500, 8000)

Incident duration (s) rand(600, 1500)

Incident lane Right, middle, left

4.2 Simulation scenarios

In the process of constructing the scenarios, which are to be simulated, different incident
scenarios are created. Initially, the variables to be used in simulation studies were determined,
namely location, duration, lane of the incident, CAV percentage, and traffic demand. The
variables and their values are given in Table 3.

Considering the variables given in Table 3, there are 33 different scenarios in the simula-
tions made over the road network, with 11 percent of autonomous vehicles and 3 different
traffic demands. Each scenario is run with 20 different seeds. Within each seed, the accident
location, duration, and lane changes. Since the seed set is kept constant throughout the study,
each 20 different incident scenarios are simulated using different traffic demands and CAV
percentages. Thus, the effect of the management algorithm on different incident scenarios in
different traffic demands and autonomous vehicle percentages can be examined.

Scenarios are simulated using the SUMO traffic simulation software for 90 min. In the
process of analyzing the collected data, the data corresponding to the first 15 and the last
15 min are removed from the data set. The reason for this is that the first 15 min and the
last 15 min are considered warm-up and cool-down intervals. Since the analysis of the data
obtained in these intervals does not give meaningful results, it is excluded from the data set.

4.3 Vehicle typemodelling

In the simulation studies carried out on the SUMO Traffic Simulation software, two different
vehicle types are defined as human-driven and autonomous vehicles. The factor that makes
these vehicle types different from each other is the characteristic features assigned to the
vehicles. Characteristics of human-driven and autonomous vehicles are given in Table 4.

4.4 Simulation integration

For the integration studies carried out, initially, the systems that will provide input to incident
detection and management algorithms should be established. The systems created in this
direction are explained below.

4.4.1 Data storage system

Since the created traffic parameter estimation models predict the next 3 min of traffic using
the data of the past 3 min, the traffic parameter data of the past 3 min should be stored during
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Table 4 Characteristics of
human-driven and autonomous
vehicles

Autonomous Human-driven

Acceleration (m/s2) 2.6 2.7

Deceleration (m/s2) 4.5 4.5

Length (m) 4.5 4.5

Max. speed (m/s) 30 30

Sigma (Driver imperfection) 0.05 0.4

Speed factor 0.9 0.9

Speed deviation 0.1 0.35

Min. Gap (m) 1.5 1.5

the simulation study. For this reason, in addition to the instantaneous data collected from the
sensors, the past 11 15-s data collected for each sensor needs to be stored.

Thus, 12 empty lists were created per traffic parameter. The following lists can be given
as examples of the lists created. Square brackets indicate that the expressions are lists.

ParameterStorage_Last = []
ParameterStorage _15 = []
ParameterStorage _30 = []
ParameterStorage _45 = []
…
ParameterStorage _165 = []

After the incident detection is done, the traffic parameter prediction model starts working
with the introduction of IDILIM. Since the traffic parameter predictionmodel takes heatmaps
as input, 3-min historical parameter data is transformed into a heatmap and given as input to
the prediction model.

4.4.2 Incident location detection system

VSL traffic management method works by reflecting the target speed value on the electronic
traffic board, which is located as far as the control distance from the incident location. For
this reason, one of the inputs to be given to the VSL traffic management algorithm is the
incident location. Therefore, an incident location detection system has been established to
accurately detect the incident location.

The incident location detection system is integrated with the incident detection algorithm.
The incident detection algorithm used in this study works by taking traffic parameter data
collected separately for each sensor in the last 15 s of every minute as input. The incident
detection algorithm used in this study performs incident presence checks for each sensor.
If an incident presence signal is received from any sensor, this sensor is determined as the
incident location. If the incident detection algorithmdetects incidents in 2 ormore consecutive
sensors, the sensor position that is farthest in the direction of traffic flow is taken as the incident
location.
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4.4.3 Shockwave boundary and shockwave speed detection system

The created shockwave boundary detection system starts to work after the incident is detected
and works in an integrated manner with the incident detection algorithm. The average traffic
data of the last 15 s of every minute is given as input to the incident detection algorithm. The
sensor data collected in the last 15-s time interval is processed within the incident detection
algorithm to determine which sensors give an incident signal. With the obtained sensor list,
the starting location of the shockwave, the ending location, and all sensors between these
two locations are obtained. Among the sensors located within the shockwave boundaries,
the sensor located at the back in the direction of traffic flow determines the rear boundary
of the current shockwave. Thus, at the end of every 1 min, the boundaries of the shockwave
are updated and the shockwave boundary detection system outputs the rear boundary of the
shockwave.

Another output required by the IDILIM is shockwave velocity. After determining the rear
boundary of the shockwave, the shockwave velocity is calculated by using the density and
flow data of the sensor corresponding to the rear boundary and the previous sensor.

4.4.4 Traffic parameter prediction systemwith Pix2Pix prediction model

After incident detection, the traffic parameter prediction system is activated, and the 3-min
historical traffic parameter data kept in the data storage system is converted into a heat map
and given as input to the traffic parameter prediction system.

The traffic parameter prediction system uses the past 3 min of data to predict the data for
the next 3 min and outputs the predicted 3 min of data as a heatmap. The resulting 3-min
traffic heatmaps contain 12 data rows of 15 s of data. After the traffic parameter prediction
model is activated, the 8th row of the predicted 12-row data, which is the last 15 s of the
2nd minute, is given as input to the incident detection algorithms for predicted shockwave
boundary and speed calculations.

4.5 Modeling algorithms in the simulation environment

4.5.1 Standard normal deviation algorithm (SND)

Input

• When the SND algorithm is modeled together with the VSL traffic management method
and integrated into the simulation environment, it uses real-time density data collected
from the sensors as input. 21 average density values collected from the sensors in the last
15 s of every 1 min are given as input to the SND equation given in Eq. 7.

• When the SND algorithm is modeled with the IDILIM and integrated into the simulation
environment, it takes real-time density data as input until incident detection occurs. The
density data of the last 15 s of each minute is given to the SND algorithm. However, after
the incident detection is done, the traffic parameter prediction model starts to work and
the density data for the next 3 min is predicted by using the previous 3 min’ density data.
The storage of the density data of the past 3 min is carried out with the establishment of
the data storage system. The estimated 3-min data consists of 12 15-s rows of data. The
8th data row, which is the density data of the last 15 s of the 2nd minute, is given as input
to the SND algorithm.
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Output

• When the SND algorithm is modeled with the VSL traffic management method, it gives
the incident location as output. To give this output, an incident location detection system
is established and used.

• When the SND algorithm is modeled with the IDILIM, the shockwave rear boundary and
shockwave speed are given as output. To give this output, a shockwave boundary, and
shockwave speed detection system is established and used.

4.5.2 Variable speed limits (VSL)

VSL traffic management method is activated 300 s after the incident detection and takes the
incident location as input. The target speed of 50 km/h is reflected on the electronic traffic
board, which is placed 1000 m behind the detected incident location. Connected autonomous
vehicles comply with the target speed reflected on the board at a rate of 100%, while human-
driven vehicles comply at a rate of 50%. VSL traffic management method stops working
300 s after the incident detection algorithm gives no accident signal.

4.5.3 The proposed method: IDILIM

IDILIM takes the rear boundary of the shockwave and the shockwave speed as inputs. Any
incident detection algorithm modeled with IDILIM gives these data as output and IDILIM
starts managing the traffic using these data. Each connected autonomous vehicle in the region
between the dynamically predicted shockwave rear boundary and the location obtained by
going back from this position by a dynamically calculated control distance reduces its speed
by the shockwave speed.

5 Measure of effectiveness

In this study, the percentage change of density and average speed values are used as the
measures of effectiveness. These values were recorded in every scenario for every sensor
location every 15 s throughout the simulation. However, examining these values on average
throughout the entire simulation will both reduce the probability of seeing the effect of the
traffic management methods used on a percentage basis, and will also create confusion by
showing the instantaneous increases seen in the recovery process that do not affect the flow
and safety of the traffic. For this reason, the changes within the critical region defined by the
authors will be examined. The critical region is the least square that encloses the entire shock
wave in the time–space domain as shown in Fig. 7.

6 Results

In this study, traffic density and average speed values, which are directly proportional to travel
time in traffic, are examined in the performance evaluation stage. It is necessary to investigate
heatmaps to see how the traffic is affected in general. In Fig. 8, two density heatmaps for the
same scenario for IDILIM andVSL implementation.When the density heatmap of IDILIM is
examined, it is seen that the high shockwave speed allowed the front congestion to reach the
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Fig. 7 Critical region illustration on the time–space domain

Fig. 8 Density heatmaps of the same scenario managed by a IDILIM, b VSL
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Table 5 Results of the scenario,which is constructedwith 1500vehicles/lane/hour demand and30%penetration
rate, run with the second seed

Features Base VSL / SND IDILIM /
SND

VSL/SND (%
Change)

IDILIM/SND (%
Change)

In CR, K > 35
(%)

12.57 5.98 1.34 − 52.42 − 89.32

In CR, K > 25
(%)

18.68 9.40 4.15 − 49.67 − 77.77

In CR, Avg.
speed(km/h)

51.88 65.04 50.95 25.35 − 1.78

recovery state more easily as the incident was managed from 4000m away. Thus, loss of time
caused by stop-and-gomotions and small headway timeswas prevented and full recoverywas
achieved despite an incident at 2600th second. The congestion that started with the second
wave of vehicles following this recovery was resolved again before the shockwave went too
far back. Due to the alarm given by the SND algorithm, slight deceleration management was
provided at the 1500th meter of the road network towards the end of the simulation. This
can be solved by further strengthening the SND algorithm or by incident detection methods
provided with different algorithms (Gokasar et al., 2022a, 2022b).

When the scenarios are examined case-by-case, the analogy of each traffic parameter point
falling in the time–space plane of the traffic heatmap to the picture pixels will be used. At
this point, the change in the ratio of pixels with high density in the critical region (CR) to
other pixels will be examined. In Table 5, the results of the scenario, which is constructed
with 1500 vehicles/lane/hour demand and 30% penetration rate, run with the second seed
are given. In this table, the base scenario shows the scenario where the incident occurred but
was not managed. Preliminary simulation studies on the road network show that the critical
density is 35 vehicle/kilometer. In addition, 25 vehicle/kilometer density was also measured
as the traffic density where radical decreases in the speed of the vehicles were observed. In
the base scenario, density values were higher than 35 veh/km in 12.58% of all pixels. This
percentage was reduced by 52.43% by VSL, and an improvement of 89.32% was observed
by IDILIM implementation. Similar rates of decreased behavior were also observed in pixels
with a density higher than 25 veh/km. At average speeds, the VSL method gave slightly
better performance. However, if speeds are not reduced so radically while an incident is
being managed, values such as 51 km/h on average are more robust in terms of safety.

Density-time and average speed-time graphs constructed using the same scenario and seed
are given in Fig. 9. When Fig. 9a is examined, average speed data collected from the sensor
located before the incident location shows that the IDILIM method provides faster recovery.
Also, investigating Fig. 9b, density data regarding the IDILIM method show higher traffic
density values in the recovery phase. Although it seems to contradict the higher average speed
of VSL in Table 5, this is a single sensor data. In other words, since the IDILIM method
reduces the speed of the vehicles, it performed better at the region of the sensor located before
the incident location, which is important for traffic safety and recovery.

In Fig. 10, the time-dependent variation of the average speed data obtained from the
sensor located before the incident location is given by assigning a different PR to each
color. The PR of 40% in VSL and IDILIM methods requires very low-speed reduction
during traffic management. In another study, it was observed that a 40% penetration rate
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Fig. 9 a Average Speed vs. Time, b Density vs. Time plots of traffic management methods

yielded much better results when managing traffic with autonomous vehicles (Gokasar et al.,
2022a, 2022b). In the VSL system, the recovery speed is the factor that makes the difference
according to the percentage of autonomous vehicles, while the time required for management
and the management time in the IDILIM method makes the difference. As the penetration
rate increased, the velocities decreased much later, remained low for longer, but recovered
faster.

7 Conclusion

Connected autonomous vehicles have become one of the most trending topics in recent years.
The reason for this is not only their ability to make autonomous decisions but also the high
speed and range of receiving and transmitting the information. In light of this information,
the traffic data that the vehicles can give from their location and the fast response times of
these vehicles, and the ability to process and apply the incoming information, can be used
to manage the traffic more accurately and regularly. In addition, vehicles can be routed not
only with instant data but also with processed traffic data and the data of the future status of
the predicted traffic. In this study, high-accuracy traffic forecast data is provided by another
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Fig. 10 Average Speed vs. Time graphs according to penetration rates for a IDILIMmethod and bVSL incident
management method

trending topic, Pix2Pix cGAN. Another important point of this study is IDILIM, which is a
state-of-art traffic management method on how vehicles can be managed in a system where
autonomous vehicles know their instantaneous location information and speed. A traffic
network was established where the data was taken discretely from the sensors, and from this
network, the vehicles were informed about how they should control their speed in a certain
range of the road network. As the discreteness of the data decreases, the system will be able
to make much more accurate estimates and measurements. Vehicles that know their position
and speed have also taken action in line with this information. The SND algorithm, on the
other hand, was used in the detection of statistically unusual situations, and it was used in
functions such as determining the shockwave limit, incident detection and triggering the
actions of autonomous vehicles. Although the vehicles react quickly, the traffic forecasting
algorithms enable the vehicles to take action according to the situation after 2 min, not the
instantaneous state of the traffic, for the whole system to react faster and without loss. At this
point, the analogy of the parameter illustration of the traffic in the time–space plane with a
single-layered and pixel-based picture is used. In this way, Pix2Pix, a CNN-based cGAN,
has significantly increased the performance of the system.
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Hence, the cGAN-supported IDILIM method was compared with VSL, which is a very
common and universal traffic management method. Although it does not contribute to the
average speed as much as VSL, it has a high contribution to traffic density, early recovery of
the incident, and traffic safety. In this system, inwhich vehicles aremanaged from the rear and
with less loss, both the travel time of the vehicles is noticeably reduced and the safety is greatly
increased. The proposed new method, IDILIM, provides more secure management with a
different traffic behavior in terms of recovery and traffic management. The most important
factors that provide this are that it is a dynamic system, and it progresses by making accurate
traffic forecasts with high-accuracy CNN-based cGAN. The limitations of this study are the
assumptions given throughout the study and the large sensor range. As time progresses, the
data collected from the sensors will be collected from the vehicles, and much more accurate
results can be obtained with more homogeneous and densely distributed data sources.

Funding This study is supported by the Scientific and Technological Research Council of Turkey (TUBITAK
1001) under grant number 120M574.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual participants included in the study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Chou, C. M., Li, C. Y., Chien, W. M., & Lan, K. C. (2009). A feasibility study on vehicle-to-infrastructure
communication: WiFi vs. WiMAX. In 2009 tenth international conference on mobile data management:
systems, services and middleware. https://doi.org/10.1109/mdm.2009.127

del Peral-Rosado, J. A., Lopez-Salcedo, J. A., Sunwoo Kim, & Seco-Granados, G. (2016). Feasibility study of
5G-based localization for assisted driving. In 2016 international conference on localization and GNSS
(ICL-GNSS). https://doi.org/10.1109/icl-gnss.2016.7533837

Department of Transport and Main Roads. (2010). Traffic and road use management manual (TRUMM).
Queensland, Australia.

Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network – Performance
evaluation. Transportation Research Part c: Emerging Technologies, 68, 168–184. https://doi.org/10.
1016/j.trc.2016.03.008

Dia, H., Gondwe, W., & Panwai, S. (2008). Traffic impact assessment of incident management strategies. In
2008 11th international IEEE conference on intelligent transportation systems. https://doi.org/10.1109/
itsc.2008.4732621

Djahel, S.,Doolan,R.,Muntean,G.M.,&Murphy, J. (2015).ACommunications-orientedperspective on traffic
management systems for smart cities: Challenges and innovative approaches. IEEE Communications
Surveys & Tutorials, 17(1), 125–151.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/mdm.2009.127
https://doi.org/10.1109/icl-gnss.2016.7533837
https://doi.org/10.1016/j.trc.2016.03.008
https://doi.org/10.1109/itsc.2008.4732621


Annals of Operations Research

El Hatri, C., & Boumhidi, J. (2018). Fuzzy deep learning based urban traffic incident detection. Cognitive
Systems Research, 50, 206–213. https://doi.org/10.1016/j.cogsys.2017.12.002

Emami, A., Sarvi, M., & Bagloee, S. A. (2020). Short-term traffic flow prediction based on faded memory
Kalman Filter fusing data from connected vehicles and Bluetooth sensors. SimulationModelling Practice
and Theory, 102, 102025. https://doi.org/10.1016/j.simpat.2019.102025

Farrag, S.G.,Outay, F.,Yasar,A.U.H., Janssens,D.,Kochan,B.,& Jabeur,N. (2020). Toward the improvement
of traffic incident management systems using Car2X technologies. Personal and Ubiquitous Computing,
25(1), 163–176. https://doi.org/10.1007/s00779-020-01368-5

Farrag, S. G., Sahli, N., El-Hansali, Y., Shakshuki, E. M., Yasar, A., & Malik, H. (2021). STIMF: A smart
traffic incident management framework. Journal of Ambient Intelligence and Humanized Computing,
12(1), 85–101. https://doi.org/10.1007/s12652-020-02853-8

Giordani, M., Zanella, A., & Zorzi, M. (2019). LTE andmillimeter waves for V2I communications: An end-to-
end performance comparison. In 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring).
https://doi.org/10.1109/vtcspring.2019.8746487

Gokasar, I., Timurogullari, A., Deveci, M., & Garg, H. (2022a). SWSCAV: Real-time traffic management
using connected autonomous vehicles. ISA Transactions. https://doi.org/10.1016/j.isatra.2022.06.025

Gokasar, I., Timurogullari, A., Ozkan, S. S., Deveci, M., & Lv, Z. (2022b). MSND: Modified standard normal
deviate incident detection algorithm for connected autonomous and human-driven vehicles in mixed traf-
fic. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/tits.2022.3190667

He, Y., Wu, P., Li, Y., Wang, Y., Tao, F., & Wang, Y. (2020). A generic energy prediction model of machine
tools using deep learning algorithms. Applied Energy, 275, 115402. https://doi.org/10.1016/j.apenergy.
2020.115402

Li, L., Lin, Y., Du, B., Yang, F., & Ran, B. (2020). Real-time traffic incident detection based on a hybrid deep
learningmodel. Transportmetrica a: Transport Science, 18(1), 78–98. https://doi.org/10.1080/23249935.
2020.1813214

Ndashimye, E., Ray, S. K., Sarkar, N. I., & Gutiérrez, J. A. (2017). Vehicle-to-infrastructure communication
over multi-tier heterogeneous networks: A survey. Computer Networks, 112, 144–166. https://doi.org/
10.1016/j.comnet.2016.11.008

Wegener, A., Piórkowski, M., Raya, M., Hellbrück, H., Fischer, S., & Hubaux, J. P. (2008). TraCI. In Pro-
ceedings of the 11th communications and networking simulation symposium on—CNS ’08. https://doi.
org/10.1145/1400713.1400740

Wismans, L. J. J., Palm, H., Zwijnenberg, H., & Wieme, E. (2019). Traffic state prediction services for
automated driving and traffic management. European Transport Conference. https://ris.utwente.nl/ws/
portalfiles/portal/141830910/Traffic_State_Prediction_Services_Wismans_et_al_ETC2019_V1_00.pdf

Yang, Q., Wang, L., Xia, W., Wu, Y., & Shen, L. (2014). Development of on-board unit in vehicular ad-hoc
network for highways. In 2014 international conference on connected vehicles and expo (ICCVE). https://
doi.org/10.1109/iccve.2014.7297589

Zhao, J., Chen, Y., & Gong, Y. (2016). Study of connectivity probability of vehicle-to-vehicle and vehicle-
to-infrastructure communication systems. In 2016 IEEE 83rd Vehicular Technology Conference (VTC
Spring). https://doi.org/10.1109/vtcspring.2016.7504493

Zhu, L., Guo, F., Krishnan, R., & Polak, J. W. (2018). A deep learning approach for traffic incident detection
in urban networks. In 2018 21st international conference on intelligent transportation systems (ITSC).
https://doi.org/10.1109/itsc.2018.8569402

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.cogsys.2017.12.002
https://doi.org/10.1016/j.simpat.2019.102025
https://doi.org/10.1007/s00779-020-01368-5
https://doi.org/10.1007/s12652-020-02853-8
https://doi.org/10.1109/vtcspring.2019.8746487
https://doi.org/10.1016/j.isatra.2022.06.025
https://doi.org/10.1109/tits.2022.3190667
https://doi.org/10.1016/j.apenergy.2020.115402
https://doi.org/10.1080/23249935.2020.1813214
https://doi.org/10.1016/j.comnet.2016.11.008
https://doi.org/10.1145/1400713.1400740
https://ris.utwente.nl/ws/portalfiles/portal/141830910/Traffic_State_Prediction_Services_Wismans_et_al_ETC2019_V1_00.pdf
https://doi.org/10.1109/iccve.2014.7297589
https://doi.org/10.1109/vtcspring.2016.7504493
https://doi.org/10.1109/itsc.2018.8569402

	IDILIM: incident detection included linear management using connected autonomous vehicles
	Abstract
	1 Introduction
	2 Literature review
	3 Theory
	3.1 Pix2Pix cGAN algorithm and traffic heatmap analogy
	3.2 IDILIM: incident detection included linear management
	3.3 Variable speed limits
	3.4 Standard normal deviation (SND) incident detection algorithm

	4 Methodology
	4.1 Simulation network
	4.2 Simulation scenarios
	4.3 Vehicle type modelling
	4.4 Simulation integration
	4.4.1 Data storage system
	4.4.2 Incident location detection system
	4.4.3 Shockwave boundary and shockwave speed detection system
	4.4.4 Traffic parameter prediction system with Pix2Pix prediction model

	4.5 Modeling algorithms in the simulation environment
	4.5.1 Standard normal deviation algorithm (SND)
	4.5.2 Variable speed limits (VSL)
	4.5.3 The proposed method: IDILIM


	5 Measure of effectiveness
	6 Results
	7 Conclusion
	References


