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Abstract
E-commerce constitutes a system for the online purchase and sale of services and 
commodities. This theoretical article investigates the manufacturer handling strategy 
which occurs in online shopping, in a centralized or decentralized channel under the 
wholesale price contract. The retailer’s optimal order quantity, price, and the man-
ufacturer’s wholesale price are derived assuming additive uncertainty in demand. 
The possibility of negative demand realizations, which may occur in adverse market 
circumstances, is verified in the investigated models. It was proved that the imposi-
tion of the non-negativity prerequisite on demand is vital to obtain complete results. 
The non-negativity constraint in this study incorporates consumer’s returns handling 
costs which is different than the previously used constraint. As an extension of the 
additive case, the model with iso-elastic demand is discussed. The theoretical analy-
sis is enriched with numerical examples.

Keywords  Supply chain management · Returns handling · Additive demand · 
E-commerce

1  Introduction

Recently, e-commerce has become an intrinsic part of the global retail structure. The 
retail market has undergone considerable changes motivated by the emergence of the 
Internet and the ever-present digitization of the modern life. Convenience, simplic-
ity, information and time-efficiency of online shopping constitute properties appre-
ciated by consumers [9]. The lack of geographical borders, optimized information 
and flow of goods, lower advertising and transaction costs are beneficial for busi-
nesses [51]. The number of online buyers has been steadily growing along with rap-
idly increasing global internet access and introduction of online solutions. In 2020, 
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the year of the pandemic, over 2 billion people purchased merchandise and services 
online, and during the same year, e-retail sales exceeded $4.2 trillion worldwide 
and are foreseen to reach $6.54 trillion in 2023. Retail e-commerce traffic peaked 
at a record 22 billion monthly visits, with an immeasurably high demand for daily 
use products such as groceries, clothing and technical items. It is suspected that by 
2040, 95% of retail purchases are likely to be made online and as a consequence, 
traditional retail may be hardly found (!) [10, 21]. The huge spike in total retail sales 
can come as a surprise taking into account the Covid-19 negative impact on in-store 
shopping. However, the growth in retail mainly originated from digital sales [4].

Offline sales are more sensitive to adverse market circumstances than e-com-
merce, but the wide swings in demand in online purchasing have also been observed 
recently [24]. Market fluctuations impacted by public trends, politics, terrorism, 
wars and currency devaluation will ultimately influence e-commerce [42]. E-busi-
ness will also be affected by the variations of the global economy and consumer 
preferences [32]. Recently, massive-scale disruptions in the e-commerce industry 
caused by the Russo-Ukrainian war have been noted [8, 23].

The flood of returns constitutes a vital problem of e-commerce. It is definitely 
more serious than in the case of traditional sales. Research shows that online orders 
are returned by shoppers more than three times as frequently as when the same 
goods are purchased offline. The impact of returns handling in e-commerce is still 
underestimated [35]. The development of a suitable approach to returns has been 
a growing challenge for retailers and manufacturers [14]. It should be highlighted 
that one of the most common reason for returning online purchases in the U.S.A. is 
"Don’t like the items" which constitutes 37.7% of returns [27]. Consumers in numer-
ous industries have a legal right to return their purchased products to original manu-
facturers or retailers for any reason [28]. False Failure Returns (FFR) are defined as 
returns of goods that have neither functional nor cosmetic defects [13]. It has been 
established that FFR constitute a major part of product returns [45, 50].

Motivated by the facts given above, the present article investigates the wholesale 
price contract with consumer returns caused by the mismatch when products fail to 
satisfy consumers’ expectations. We consider the reverse channel structure strategy 
in which the manufacturer handles and collects returns by itself and the exchange 
for a new variant of a product is allowed [39]. The manufacturer returns handling is 
especially suitable to e-commerce when the retailer is responsible for selling and the 
manufacturer provides after-sales service. For instance, if the consumer is not satis-
fied with mobile devices, e.g. Nokia and HTC mobiles purchased in the1stshop.com 
(n.d.) and YHD.com (n.d.), they can be returned and exchanged for a new product 
from the manufacturer’s local service stations. Similarly, if the consumer is unsatis-
fied with a Haier air conditioner purchased in Jingdong Mall the consumer return 
and exchange option is open in local after-sales service centers [25]. The whole-
sale price contract is used here, despite the fact that it cannot coordinate the supply 
chain, because of its simplicity and the fact that it is a commonplace practice in e.g. 
electronics [17], agriculture industry [26], and also used by large online retailers, 
e.g. Amazon [43].

Summarizing, we propose a general mathematical model to determine the optimal 
price and product quantity in purchasing under the return policy which according 
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to the arguments may be of interest to electronic commerce. We extend the model 
of the wholesale price contract with returns introduced by Liu et al. [25]. In com-
parison with [25], the retail price is endogenous in our model and the stochastic 
demand is additive. This kind of demand is characterized by the fact that there exists 
an option that the actual demand is negative in adverse market conditions. The aim 
of the article is to modify the classical additive demand imposing on it the non-
negativity constraint, and then obtain optimal solutions for centralized and decen-
tralized channels. The main conclusion of this study is such that, in some cases, the 
optimal retail price is so high that the demand in the classical form may be negative. 
As a consequence, imposing the non-negativity assumption on demand is required 
to ensure the completeness of the considerations and avoid suboptimal solutions. As 
an extension, we give the respective results for the multiplicative demand. Illustra-
tive numerical calculations were executed by means of the Mathematica software. 
It should also be noted that the solutions of the problem under the retailer returns 
handling strategy can be obtained in a similar way as those of the problem under the 
manufacturer handling strategy considered in this article.

2 � Literature

The present study refers to returns handling strategies and Operations Research 
problems associated with the non-negative demand. The subsequent paragraphs pre-
sent the review of the recent literature concerning the above subjects.

2.1 � Returns handling strategy in the supply chain

Several articles assume that the consumer accepts the refund when the product mis-
match occurs [12, 16]. In the model of Davis et al. [12], the profitability of money-
back guarantee for a particular product is assessed by estimating salvage values of 
returned commodities, the probabilities of mismatching and transaction costs of 
returns. Hsiao and Chen [16] compare the profitability of two pervasively adopted 
return policies–money-back guarantee and hassle-free policies. The researchers 
who consider a consumer return policy in the case of the mismatch with permit-
ted exchange are Ferguson et  al. [13]; Ofek, Katona, and Sarvary [38]; Shulman, 
Coughlan, and Savaskan [30]. Ofek et al. [30] study how the physical store assis-
tance level and the retailer’s pricing strategy change with the bonus in the online 
outlet in monopoly and duopoly settings. In some works, the manufacturer is respon-
sible for handling inventory returns [25, 36, 38]. Shulman et al. [38] examine how 
the return penalty is affected by the choice of managing returns by the manufacturer 
or by the retailer. They argue that the manufacturer may earn more by accepting 
returns even if the retailer has a more efficient outlet for salvaging goods. J. Shi and 
Xiao [36] develop a game model of a vendor managed inventory supply chain to 
study the manufacturer’s consumer returns policy and the retailer’s store assistance 
service decision. They explore the effects of the supply chain decentralization and 
service subsidy rate on the returns policy. Liu et al. [25] explore returns handling 
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strategies by means of the newsvendor framework. The authors focus on the reverse 
supply chain with demand uncertainty and provide an optimal order quantity in the 
model with the retailer or manufacturer returns handling strategy. They assume that 
the demand is price-free. Recently, the relationship between data-driven machine 
learning and cognitive decision-making algorithms as regards returns handling in 
e-commerce has been considered [15, 18, 19, 29]. It has been proved that becoming 
familiar with actual reasons for returns and with customer profitability through arti-
ficial intelligence gives opportunities to reduce online returns and their costs.

Our work extends the model of Liu et al. [25] for the manufacturer returns han-
dling by adding price as a decision variable and considering price-dependent 
demand.

2.2 � Supply chain management under the non‑negative additive demand

The problem of the theoretically negative realized demand in supply chain models 
is investigated in [5, 6, 20, 22]. Krishnan [20] emphasizes that the non-negativity 
assumption should be taken into account if the demand is in the additive form in 
order to provide the generality of the study. If the non-negativity constraint is not 
applied, the solution to the problem may become suboptimal. However, the non-
negativity condition yields complications with the sufficiency of the first order 
conditions in a monopoly and the existence of equilibrium in an oligopoly. These 
threats have often been disregarded in existing research studies. Kyparisis and Kou-
lamas [22] examine the price-setting newsvendor problem under the non-negative 
demand and prove that the issue always has an optimal solution, even in negative 
market circumstances. Bieniek [6] investigates a two-stage vendor managed con-
signment inventory contract with a similar restriction imposed on demand and dem-
onstrates that the retailer’s expected profit does not have to be concave, but the prob-
lem always has at least one optimal solution. The newsvendor problem with barter 
exchange and the mean-variance newsvendor problem under demand non-negativity 
are considered in Bieniek [5] and Bieniek [7], respectively.

In this study, the additive stochastic demand is considered and therefore, in gen-
eral, it may achieve negative values in its classical form. We offer the complete solu-
tion to the wholesale price contract with the manufacturer handling and additive 
demand which extends the considerations given in Liu et al. [25].

3 � General problem statement

We consider a supply chain with a manufacturer and a retailer with the availability 
of consumer returns. The manufacturer sells a new product to a consumer with the 
help of the retailer. The manufacturer accepts the consumer’s returns and, moreover, 
the consumer has the right to exchange the returned item for a new variant of the 
product. Model parameters and decision variables are listed in Table 1 and Basic 
assumptions in Table 2.
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We emphasize that the retail price is endogenous which is different than in [25] 
where price was assumed to be exogenous. The consumer’s taste is denoted by 
the mismatch rate. It is presumed that the returns come back to the manufacturer. 
Thereafter, the returned product can be resold as a new one through inspecting or 
repackaging. The consumer’s returns handling cost includes e.g. the customer’s 
reverse shipping fee, trip cost, time cost, and depends on the speed of response or 
convenience for consumer returns.

Let us define the price-dependent stochastic demand by X(p, �) , where p is the 
price and � is the uncertainty parameter. The uncertainty is mainly included in the 

Table 1   Model parameters and 
notation

Decision vari-
ables

p Retail price per unit
Q Order quantity
z Inventory factor
w Manufacturer’s wholesale price per unit
Notation
c Unit production cost
hm Manufacturer’s unit handling cost
hc Consumer’s average returns handling cost
p + �hc Full price incurred by the consumer for a unit
� ∈ [0, 1) Mismatch rate
� Random variable with expectation � , variance 

Var(𝜀) < ∞,
cdf F and continuously differentiable pdf f with 

support [A, B]
h(z) Failure rate, h(z) = f (z)

F̄(z)
 , F̄(z) = 1 − F(z)

g(z) Generalized failure rate g(z) = zh(z)

D̄(p, 𝛼) Expected demand
X(p, �) Stochastic demand
a, b Demand parameters
�(z) �(z) = ∫ B

z
(z − �)f (�)d� , z ∈ [A,B]

Λ(z) Λ(z) = ∫ z

A
(z − �)f (�)d� , z ∈ [A,B]

Table 2   Basic assumptions
F is IFR (additive case)
F is IGFR (multiplicative case)
� = 0 (WLOG), A < 0 and B > 0 (additive case)
� = 1 (WLOG), 0 ≤ A < B (multiplicative case)
Salvage value is equal = 0 (for simplicity)
A + a − bc − b𝛼(hc + 2hm) > 0 (additive case)

c + 𝛼hm < p ≤ B+a−b𝛼hc

b
 (additive case)
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deterministic demand in the additive or multiplicative way. The additive stochas-
tic demand is presented as

and the multiplicative one as

where D̄(p, 𝛼) is the expected demand which is decreasing with the mismatch rate 
[30, 44].

First, the additive demand case is considered with

The realization of demand X(p∗, �) = a − b(p∗ + �hc) + � , where p∗ is the optimal 
price, can be negative if p∗ > pmax,

and large negative � [20]. Thus, in this case, it is assumed that there is zero demand 
and we are going to use

[22] instead of the demand in the classical form (1). If p >
B+a−b𝛼hc

b
 then 

a − b(p + 𝛼hc) + 𝜀 < 0 for any realization of � . Therefore, the considerations are 
confined to p ≤ B+a−b�hc

b
.

The problem of demand negativity is different in nature than the bullwhip 
effect which describes how small fluctuations in demand at the retail level can 
cause progressively larger fluctuations in demand at the wholesale, distributor 
and manufacturer levels. This effect with regard to supply chain contracts have 
recently been studied in [1, 2, 48, 49].

As an extension to the additive case, optimization with the multiplicative 
demand in the form (2) with

is conducted.
In the centralized channel, the manufacturer and the retailer co-operate and 

take a decision jointly. The central decision-maker decides retail price p and order 
quantity Q to maximize the total profit of the supply chain. Under the manufac-
turer handling, the expected profit is given by

In the decentralized supply chain, optimal decisions are made by the manufacturer 
and retailer independently maximizing their expected profits. The sequence of 

(1)X(p, 𝜀) = D̄(p, 𝛼) + 𝜀

(2)X(p, 𝜀) = D̄(p, 𝛼)𝜀,

D̄(p, 𝛼) = a − b(p + 𝛼hc), a, b > 0.

(3)pmax =
A + a − b�hc

b

(4)X+(p, �) = (a − b(p + �hc) + �)+

(5)D̄(p, 𝛼) = a(p + 𝛼hc)
−b, a > 0, b > 1,

(6)Πc(p,Q) = (p − �hm)Emin{Q,X(p, �)} − cQ.
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events is as follows. First, the manufacturer establishes the wholesale price and then, 
the retailer sets the retail price and order quantity.

We provide basic formulations of the expected profit functions of parties using the 
newsvendor framework. The manufacturer’s expected profit can be written as

and the retailer’s expected profit is given by

4 � Supply chains under the additive demand

In this section, we thoroughly analyze the existence of the negative additive actual 
demand in the studied centralized and decentralized supply chains. In the models 
X+(p, �) given by (4) is applied instead of X(p, �).

4.1 � Centralized supply chain under the additive demand

We investigate the maximization problem

in two cases: of always non-negative realizations of the additive demand and of 
possibly negative ones. Defining an inventory factor by z = Q − D̄(p, 𝛼) , where 
z ∈ [A,B] [31], we obtain the expected profit equal to

4.1.1 � Non‑negative additive demand realizations in the centralized channel

In this case, we have (a − b(p + �hc) + �)+ = a − b(p + �hc) + � for p ≤ pmax and any 
actual value of � ∈ [A,B] . Hence, since Emin{z, �} = �(z) , the expected profit is given 
by

We optimize

Πm(w ∣ p,Q) = (w − c)Q − �hmEmin{Q,X(p, �)},

Πr(p,Q ∣ w) = pEmin{Q,X(p, �)} − wQ.

(7)
max

c + �hm ≤ p ≤ B+a−b�hc

b
,

A ≤ z ≤ B

Πc(p, z) = (p − �hm)Emin{Q,X+(p, �)} − cQ

Πc(p, z) = (p − �hm)Emin{z + a − b(p + �hc), (a − b(p + �hc) + �)+}

− c(z + a − b(p + �hc)).

Πc(p, z) = (p − �hm)(�(z) + a − b(p + �hc)) − c(z + a − b(p + �hc)).

(8)
max

c + �hm ≤ p ≤ pmax,

A ≤ z ≤ B

Πc(p, z)



	 M. Bieniek 

1 3

using the backward induction method [47] by first finding the optimal pc(z) for any 
given z, and then optimizing Πc(pc(z), z) over z to discover zc . We gain

by Basic assumptions, and d
2Πc(p,z)

dp2
= −2b < 0 . Then, from dΠc(p,z)

dp
= 0 we see that 

the unique maximum is equal to

It is important to establish whether pc(z) belongs to the interval [c + �hm, pmax] . We 
relegate the proofs of the lemmas and theorems to the Appendix.

Lemma 1  Under Basic assumptions 

1.	 pc(z) ≥ c + �hm;
2.	 pc(z) is an increasing and concave function of z ∈ [A,B].

In view of the lemma, we cannot guarantee that pc(z) ≤ pmax . In this section we 
concentrate on prices not larger than pmax and because of that we define the hedged 
optimal price by

[33], with z0 ∈ [A,B] such that

if 2A + a − bc − b𝛼(hm + hc) < 0 and z0 = B , otherwise. In order to optimize 
Πc(pc(z), z) , at the beginning, we redefine the objective function to

where Πc2(z) = (pmax − �hm)(�(z) − A) − c(z − A) . It should be stressed that Πc(z) is 
a continuous piecewise nonlinear function which by Lemma 1 consists of one or two 
pieces. Then, the first derivative of the objective function is

dΠc(p, z)

dp
= −2bp + 𝜇(z) + a + bc + b𝛼(hm − hc),

dΠc(p, z)

dp
∣p=c+𝛼hm> A + a − bc − b𝛼(hc + hm) > 0,

(9)pc(z) =
�(z) + a + bc + b�(hm − hc)

2b
.

𝛽c(z) =

{
pc(z) for z ≤ z0,

pmax for z > z0

�(z0) = 2A + a − bc − b�(hm + hc)

(10)Πc(z) = Πc(𝛽c(z), z) =

{
Πc1(z) = Πc(pc(z), z) for z ≤ z0,

Πc2(z) = Πc

(
pmax, z

)
for z > z0,

Π
�

c
(z) =

{
Π

�

c1
(z) = (pc(z) − 𝛼hm)F̄(z) − c for z ≤ z0,

Π
�

c2
(z) = (pmax − 𝛼hm)F̄(z) − c for z > z0,
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which is smooth by taking the left and right derivatives at z = z0 (at the point for 
which pc(z0) = pmax ). Then, the second derivative is equal to

We get the following useful lemma.

Lemma 2  Under Basic assumptions, function Πc1 is first increasing and then con-
cave on [z1,B] for some z1 ∈ [A,B] . Moreover, Πc2 is increasing-decreasing and 
concave on [A, B].

Consequently, we get the following theorem.

Theorem 1  Under Basic assumptions, the problem defined by (8) has a unique opti-
mal solution 

1.	 (pc(zc1), zc1) , where pc(z) is defined by (9) and zc1 solves (pc(z) − 𝛼hm)F̄(z) − c = 0 
if F̄(z0) <

c

pmax−𝛼hm
;

2.	 (pmax, zc2) , where pmax is defined by (3) and zc2 solves (pmax − 𝛼hm)F̄(z) − c = 0 if 
F̄(z0) >

c

pmax−𝛼hm
.

4.1.2 � Negative additive demand realizations in the centralized channel

In this case, p > pmax and it is possible that the realized value of demand defined by 
(1) is negative. Therefore, now

and we solve the optimization problem

In general, the derivations are mathematically complicated because of the form of 
�(z) . However, we can write it in a closed form for certain particular distributions, 
i.e. uniform, and gamma with specific parameters. Nevertheless, the issue still cre-
ates computational problems even for precise �(z) . However, we can establish the 
existence of a solution.

Theorem  2  The problem defined by (11) has an optimal solution which can be 
unique if Π̂c(p, z) is concave with respect to p on the set [pmax,

B+a−b�hc

b
].

Π
��

c
(z) =

{
Π

��

c1
(z) = p

�

c
(z)F̄(z) − (pc(z) − 𝛼hm)f (z) for z ≤ z0,

Π
��

c2
(z) = −(pmax − 𝛼hm)f (z) for z > z0.

Π̂c(p, z) = (p − 𝛼hm)(𝜇(z) − 𝜇(b(p + 𝛼hc) − a)) − c(z + a − b(p + 𝛼hc)),

(11)
max

pmax ≤ p ≤ B+a−b𝛼hc

b
,

b(p + 𝛼hc) − a ≤ z ≤ B

Π̂c(p, z).
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4.1.3 � Overall solution to the centralized channel under the additive demand

We conclude that the overall solution to the problem (7) is determined by

4.2 � Decentralized supply chain under the additive demand

Now, we investigate the optimization problem for the decentralized channel in the two 
previously examined cases: if the actual additive demand is non-negative and if it could 
be negative.

4.2.1 � Non‑negative additive demand realizations in the decentralized channel

For p ≤ pmax we have the expected profits given by

and

The backward induction method proposed by Zabel [47] will be used. First, we solve 
the retailer maximization problem

for a given wholesale price w. Namely, we determine the optimal pd for any given z, 
and then optimize Πr(pd(z), z ∣ w) over z to find zd . We get

d2Πr(p,z∣w)

dp2
< 0 , dΠr(p,z∣w)

dp
∣c+𝛼hm> A + a − bc − b𝛼(2hm + hc) > 0 by Basic assumptions 

which means that the function Πr is concave and increasing at the beginning with 
respect to p. The first order condition dΠr(p,z∣w)

dp
= 0 gives

It is important to establish if pd(z) is hedged in the interval [c + �hm, pmax].

max

⎧
⎪⎪⎨⎪⎪⎩

max
c + 𝛼hm ≤ p ≤ pmax,

A ≤ z ≤ B

Πc(p, z), max

pmax ≤ p ≤ B+a−b𝛼hc

b
,

b(p + 𝛼hc) − a ≤ z ≤ B

Π̂c(p, z)

⎫
⎪⎪⎬⎪⎪⎭

.

Πm(w ∣ p, z) = (w − c)(a − b(p + �hc) + z) − �hm(a − b(p + �hc) + �(z)),

Πr(p, z ∣ w) = p(a − b(p + �hc) + �(z)) − w(a − b(p + �hc) + z).

(12)
max

c + �hm ≤ p ≤ pmax,

A ≤ z ≤ B

Πr(p, z ∣ w)

dΠr(p, z ∣ w)

dp
= −2bp + a + bw − b�hc + �(z),

(13)pd(z) =
�(z) + a + bw − b�hc

2b
.
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Lemma 3  Under Basic assumptions for a given w

1.	 pd(z) ≥ c + �hm;
2.	 pd(z) is an increasing and concave function of z ∈ [A,B].

In view of the lemma we cannot guarantee that pd(z) ≤ pmax , thus, we define 
the hedged optimal price by

where zd
0
(w) ∈ [A,B] is given by

if 2A + a − b�hc − bw ≤ 0 and zd
0
(w) = B , otherwise. We redefine the objective 

function to

where

Consequently, Πr(z) is a continuous piecewise nonlinear function and its first deriva-
tive is presented as

which implies that it is also smooth. Moreover, by Lemma 3 we observe that �d(z) 
and Πr(z) consists of at most two pieces. The second derivative of Πr(z) is given by

We get the following lemma.

Lemma 4  Under Basic assumptions Πr1 is first increasing and then concave for 
z ∈ [zr1,B] for some zr1 ∈ [A,B] . Πr2 is increasing-decreasing and concave on 
[A, B].

With the help of Lemma 4, we achieve the ensuing theorem.

Theorem 3  Under Basic assumptions, (12) has a unique optimal solution 

𝛽d(z) =

{
pd(z) for z ≤ zd

0
(w),

pmax for z > zd
0
(w),

�(zd
0
(w)) = 2A + a − b�hc − bw

Πr(z) = Π
r
(𝛽d(z), z ∣ w) =

{
Πr1(z) = Πr(pd(z), z) for z ≤ zd

0
(w),

Πr2(z) for z > zd
0
(w),

Πr2(z) = pmax(�(z) − A) − w(z − A).

Π�

r
(z) =

{
Π�

r1
(z) = p

d
(z)F̄(z) − w for z ≤ zd

0
(w),

Π�
r2
(z) = pmaxF̄(z) − w for z > zd

0
(w),

Π��

r
(z) =

{
Π��

r1
(z) = −

f (z)

2b
(𝜇(z) + a + bw − bc𝛼hc) +

F̄2

2b
for z ≤ zd

0
(w),

Π��
r2
(z) = −pmaxf (z) for z > zd

0
(w).
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1.	 (pd(zd1), zd1) , where pd(z) is given by (13) and zd1 solves pd(z)F̄(z) − w = 0 if 
w ∈ B1;

2.	 (pmax, zd2) where pmax is defined by (3) and zd2 solves pmaxF̄(z) − w = 0 if w ∈ B2

,

where B1 = {w ∶ F̄(zd
0
(w)) <

w

pmax

} and B2 = {w ∶ F̄(zd
0
(w)) ≥ w

pmax

}.
Now, let us optimize maxc≤w≤p Πm(w ∣ p, z) . The optimal solution exists accord-

ing to the Extreme value theorem [34]. Our problem is to maximize

The first derivative of Πm(w) is equal to

where

We analytically specify feasible solutions which satisfy the first order condition 
Π�

m
(w) = 0 . Then, an optimal solution is found numerically due to the mathemati-

cal complexity of the problem, namely Πm1 and Πm2 are optimized over B1 and B2 to 
choose optimal wd1 ∈ B1 and wd2 ∈ B2 if they exist. Finally, the optimal wholesale 
price is chosen, w = wd1 if Πm1(wd1) > Πm2(wd2) and w = wd2 , otherwise.

4.2.2 � Negative additive demand realizations in the decentralized channel

In this case, p > pmax and it is possible that the realized value of (1) is negative. 
Consequently,

and

and we solve the maximization problem

Πm(w) =

⎧⎪⎨⎪⎩

Πm1(w ∣ pd1, zd1) = (w − c)(a − b(pd(zd1) + �hc) + zd1)

− �hm(a − b(pd(zd1) + �hc) + �(zd1)) for w ∈ B1,

Πm2(w ∣ pmax, zd2) = (w − c)(zd2 − A) − �hm(�(zd2) − A) for w ∈ B2.

Π�

m
(w) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Π�

m1
(w ∣ pd(zd1), zd1) = a − bpd(zd1) − b𝛼hc + zd1

+
b

2
(𝛼hm − w + c) +

(w − c)(2 − F̄(zd1)) − 𝛼hmF̄(zd1)

2

dzd1

dw
for w ∈ B1,

Π�

m2
(w ∣ pmax, zd2) = zd2 − A +

c

wh(zd2)
−

pmax − 𝛼hm

pmaxh(zd2)
for w ∈ B2,

dzd1

dw
= b

2 − F̄(zd1)

F̄2(zd1) − 2bh(zd1)w
.

Π̂m(w ∣ p, z) = (w − c)(z − b(p + 𝛼hc) + a) − 𝛼hm(𝜇(z) − 𝜇(b(p + 𝛼hc) − a))

Π̂r(p, z ∣ w) = p(𝜇(z) − 𝜇(b(p + 𝛼hc) − a)) − w(z − b(p + 𝛼hc) + a),
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In the decentralized channel, the derivations are also mathematically complicated 
because of the form of �(z) . However, we can solve the problem numerically.

Theorem 4  Under Basic assumptions, the maximization problem defined by (14) has 
a possibly non-unique optimal solution.

The optimal solution can be unique if the quasi-concavity of Πr and Πm can be 
shown and we have the ability to express �(z) in an exact form.

4.2.3 � Overall solution to the decentralized channel under the additive demand

We infer that the decentralized channel problem can be expressed as

where p and z are the solutions to problems (12) and (14), respectively.

4.3 � Numerical examples in the additive case

This section outlines the numerical evidence which illustrates and verifies the 
preceding theoretical analysis. It is assumed that the demand function is given by 
D(p, �) = a − bp + � where � ∼ U[−A,A] which implies that �(z) = (z+A)2

4A
 . The opti-

mal solutions are printed in bold.
First, let us consider the centralized channel with the manufacturer han-

dling strategy. Two sets of model parameters are used and they are specified 
in the tables. The parameters satisfy all of the Basic assumptions. The outcomes 
for the centralized channel are presented in Table  3. For the set of parameters 
(a, b, c,A, �, hc, hm) = (35, 1, 1,−20, 0.1, 7, 3) , we infer that the problem given by (7) 

(14)
max

pmax ≤ p ≤ B+a−b𝛼hc

b
,

b(p + 𝛼hc) − a ≤ z ≤ B

Π̂r(p, z ∣ w), max
c≤w≤p

Π̂m(w ∣ p, z).

max

{
max
w

Πm(w ∣ c + 𝛼hm ≤ p ≤ pmax,A ≤ z ≤ B),

max
w

Π̂m(w ∣ pmax ≤ p ≤
B + a − b𝛼hc

b
, b(p + 𝛼hc) − a ≤ z ≤ B)

}
,

Table 3   Solutions in the 
centralized supply chain 
with the additive demand, 
� ∼ U[A,−A]

(a, b, c,A, �, hc, hm) c + �hm ≤ p ≤ pmax pmax ≤ p ≤ −A+a−b�hc

b

(35, 1, 1,−20, 0.1, 7, 3) pc = 14.7 p̂c = ��.����

zc = 17.1429 ẑc = ��.����

Πc(zc) = 241.429 Π̂c(ẑc) = ���.���

(31, 1, 19,−10, 0.1, 7, 3) pc = ��.���� p̂c = 20.7

zc = −�.���� ẑc = −9.00002

Πc(zc) = �.������ Π̂c(ẑc) = 0.5
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has a unique optimal solution which corresponds to the sub-problem with the pos-
sibly negative additive actual demand. It demonstrates that if we do not impose the 
non-negativity assumption, the solution will be suboptimal. For the next considered 
set of parameters, a unique optimal solution corresponds to the sub-problem with 
always positive additive actual demand.

Next, let us consider the decentralized channel with the manufacturer handling 
strategy and the similar sets of parameters as in the centralized channel. The results 
are specified in Table 4. The conclusions are similar to those described for the cen-
tralized channel. Namely, for the first examined set of parameters the solution can 
be suboptimal if the non-negativity assumption is ensured. The optimal price is in 
the region of high prices which implies that the additive actual demand in the clas-
sical form may be negative. The second set of parameters creates the solutions in 
the region of small prices. All of these imply that the non-negativity prerequisite is 
essential to obtain generalized and correct solutions especially in the case of unfa-
vorable economic conditions.

5 � Extension: model with the multiplicative demand

In this section, we examine supply chains with the multiplicative demand which 
complements the previous considerations.

5.1 � Centralized supply chain under the multiplicative demand

In the centralized channel, the expected profit is given by

after applying inventory factor z = Q

D̄(p,𝛼)
 [31] in (6). Here, D̄(p, 𝛼) is defined by (5). 

The optimization problem

(15)Πc(p, z) = D̄(p, 𝛼)((p − 𝛼hm)(z − Λ(z)) − cz),

Table 4   Solutions in the decentralized supply chain with the additive demand, � ∼ U[A,−A]

(a, b, c,A, �, hc, hm) c + �hm ≤ p ≤ pmax pmax ≤ p ≤ −A+a−b�hc

b

(35, 1, 1,−20, 0.1, 7, 3) pd = 14.7 p̂d = ��.����

zd = −1.88153 ẑd = �.����

wd = 8.04146 ŵd = ��.����

Πm(wd) = 117.77 Π̂m(ŵd) = ���.���

Πr(pd , zd) = 60.3213 Π̂r(p̂d , ẑd) = ��.����

(31, 1, 19,−10, 0.1, 7, 3) pd = ��.���� p̂d = 20.7

zd = −�.����� ẑd = −9.5086

wd = ��.���� ŵd = 20.1913

Πm(wd) = �.������ Π̂m(ŵd) = 0.2457

Πr(pd , zd) = �.����� Π̂r(p̂d , ẑd) = 0.15322
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is solved by first finding the optimal pc(z) for any given z, and then optimizing 
Πc(pc(z), z) over z to determine zc according to the backward induction method [47].

Theorem  5  Under Basic assumptions, the problem defined by (16) has a unique 
optimal solution

and zc given by (pc(z) − 𝛼hm)F̄(z) − c = 0.

5.2 � Decentralized supply chain under the multiplicative demand

In the decentralized channel under the multiplicative demand, the expected profits 
are given by

and

The backward induction method will be employed [47]. First, we solve the retailer 
maximization problem

for a given wholesale price w. We find the optimal pd(z) for any given z, and opti-
mize Πr(pd(z), z) over z to decide zd.

Theorem 6  For a given w under Basic assumptions, the problem defined by (20) has 
a unique optimal solution (pd(zd), zd) , where

and zd solves

Next, we optimize Πm(w) defined by (18) over w provided that the optimal price 
and inventory factor are known. For that reason, our problem is to maximize

(16)
max

c + �hm ≤ p,

A ≤ z ≤ B

Πc(p, z).

(17)pc(zc) =
bczc

(b − 1)(zc − Λ(zc))
+ �

bhm + hc

b − 1
,

(18)Πm(w ∣ p, z) = D̄(p, 𝛼)((w − c)z − 𝛼hm(z − Λ(z))),

(19)Πr(p, z ∣ w) = D̄(p, 𝛼)(p(z − Λ(z)) − wz).

(20)
max

c + �hm ≤ p,

A ≤ z ≤ B

Πr(p, z ∣ w)

(21)pd(z) =
bwz

(b − 1)(z − Λ(z))
+

�hc

b − 1

(22)pd(z)F̄(z) − w = 0.
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where Πm(w) = Πm(w ∣ pd, zd) and (pd, zd) is specified by (21) and (22), respectively. 
The optimal solution always exists according to the Extreme value theorem [34]. We 
obtain the following lemma

Lemma 5  Possible optimal wholesale price wd satisfies the first order condition

where

and (pd, zd) specified by (21) and (22).

Because of the mathematical complexity of (24), the unique solution to problem 
(23), if it exists, can be found numerically.

5.3 � Numerical examples in the multiplicative case

We illustrate and verify the preceding theoretical analysis for the multiplica-
tive demand. It is assumed that the random part of demand follows the IGFR 
uniform distribution on [0,  B]. Let us consider iso-elastic demand function 
D̄(p, 𝜀) = ap−b𝜀 . The values of other parameters are given in Table 5 along with 
numerical results for the centralized and decentralized channel. Obviously, the 
outcomes show that the wholesale price contract does not coordinate the supply 
chain. However, as we explain in the Introduction, it is still quite frequently used 
in practice. The sensitivity analysis with respect to the manufacturer’s handling 
cost is illustrated in figures. The expected profits in both centralized and decen-
tralized channels decrease if the manufacturer’s returns handling cost increases 

(23)max
c≤w≤p

Πm(w),

(24)

zd + (w − c − 𝛼hmF̄(zd))
dzd

dw

(w − c)zd − 𝛼hm(zd − Λ(zd))

−
b2(zd(zd − Λ(zd)) + w(zd − Λ(zd) − zdF̄(zd))

dzd

dw
)

(pd(zd) + 𝛼hc)(b − 1)(zd − Λ(zd))
2

= 0,

dzd

dw
=

(zd − Λ(zd)){(b − 1)(zd − Λ(zd)) − bzdF̄(zd)}

w{bF̄(zd)(zd − Λ(zd) − zdF̄(zd)) − (b − 1)(z − Λ(zd))
2h(zd)}

,

Table 5   Solutions in the 
centralized and decentralized 
supply chain with the 
multiplicative demand

(a, b, c,B, �, hm, hc) Centralized Decentralized

(1, 2, 1, 2, 0.1, 7, 3) pc = 4.9361 pd = 9.7440

zc = 1.5279 zd = 1.3604

wd = 3.1106

Π(zc) = 0.0902 Πm(wd) = 0.0223

Πr(pd , zd) = 0.0447
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(Fig. 1). In the centralized channel the expected profit decreases as the manufac-
turer’s handling cost increases despite the fact that, at the same time, the retail 
price and inventory factor increase (Figs. 2, 3). In the decentralized case, a higher 
manufacturer’s handling cost increases the retail and wholesale prices (Fig.  2) 
and, simultaneously decreases the inventory factor (Fig.  3) which implies the 
lower manufacturer and retailer profits.

Fig. 1   Dependence of profits on the manufacturer unit handling cost in the centralized ( Profitc ) and 
decentralized ( Profitr and Profitm ) channel

Fig. 2   Dependence of prices on the manufacturer unit handling cost in the centralized ( pc ) and decentral-
ized channel ( pd and wd)
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6 � Discussion

Our work extends the model of Liu et  al. [25] for the manufacturer returns han-
dling by adding price as a endogenous variable. In Liu et al. [25], the retail price is 
given in advance and the consumer demand is stochastic and price-free. Compared 
to that work, in this article the demand function is not only stochastic but also line-
arly price-sensitive. Moreover, demand expression incorporates additive uncertainty 
which implies that theoretically demand may take negative values in a disadvan-
tageous market situation. Under these assumptions, we offer the complete solution 
to the wholesale price contract under the manufacturer returns handling strategy 
proposed in Liu et  al. [25]. The study shows that the non-negativity limitation is 
indispensable to avoid suboptimal solutions and to ensure the completeness of the 
discussion. These statements are in line with the results of Kyparisis and Koula-
mas [22], Bieniek [6], Bieniek [5] and Bieniek [7] where other supply chain models 
were studied. Kyparisis and Koulamas [22], Bieniek [5] and Bieniek [7] consider the 
newsvendor problem of various kinds and Bieniek [6] investigates vendor managed 
consignment inventory contract which is similar to this study.

7 � Conclusions

The large volume of online returns has become a massive problem for e-commerce, 
e.g. for some fashion products return rates run at up to 40%. Seeking models regard-
ing the supply chain with returns will remain a matter of urgent concern. In this 
theoretical work, we introduce a mathematical model to determine the optimal price 
and quantity of products in purchasing with returns. We investigate the wholesale 
price contract in the centralized and decentralized channel under the manufacturer 
returns handling strategy which is introduced by Liu et al. [25]. In the centralized 
channel, the decision-maker sets the order quantity and price. In the decentralized 

Fig. 3   Dependence of inventory factors on the manufacturer unit handling cost in the centralized ( zc ) and 
decentralized channel ( zd)
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channel the manufacturer and retailer play a Stackelberg game. First, the manufac-
turer offers a wholesale price and if the retailer accepts the offer, it determines the 
order quantity and price. The additive demand is addressed because it has a particu-
lar trait which is the opportunity that the actual demand records negative values. 
We present optimal solutions for the centralized and decentralized supply chain after 
imposing the non-negativity constraint on demand. The solutions to the problems 
can be suboptimal without this restriction, and for that reason, it is required in order 
to arrive at general findings. As an extension to the reflections on models with the 
additive demand, we study the cases with the multiplicative demand. The numerical 
examples illustrate the theoretical results well. The sensitivity analysis with respect 
to the manufacturer’s handling cost is done for the multiplicative case.

Our exploration may have several managerial implications. The theoretical model 
presented in this article is very general. Since e-commerce suffers from a very large 
volume of cumbersome returns and often uses a wholesale price contract, the model 
may attract e-commerce market participants. Under the additive demand, this paper 
helps online retailers determine the optimal pricing of products with FFR in the case 
of adverse market conditions, i.e. during a war or pandemic. Considering the multi-
plicative demand, this paper gives optimal quantities to retailers and manufacturers 
if FFR exist and if this kind of demand is applied e.g. high-fashion or new products’ 
demand [3], electricity demand [37], demand for air tickets [11].

There are also some limitations of the study. Optimization problems for cen-
tralized and decentralized channels with the non-negativity assumption are math-
ematically complicated and the analytical solutions cannot be specified. Due to this 
mathematical complexity, the design of effective algorithms is needed to explore the 
limits. However, this is outside the scope of this article and can be a subject of future 
studies. Moreover, one can consider the problem of demand non-negativity in other 
contracts between market players as a new direction of research. Finally, specific 
electronic commerce scenarios or organizations can be found in which the results of 
the article would be applicable.

Appendix A

All proofs are based on the methods of calculus and the classical theory of maxima 
[34, 41].

Proof of Lemma 1  By (17) and Basic assumptions we have

which ends the proof of 1. The second formulation of the lemma follows from the 
fact that �(z) is increasing. 	�  ◻

pc(z) ≥ pc(A) ≥
A + a + bc + b�hm − b�hc

2b

= c + �hm +
A + a − bc − b�(hm + hc)

2b
≥ c + �hm,



	 M. Bieniek 

1 3

Proof of Lemma 2  Πc1 is a continuous function with the first derivative 
Π�

c1
(A) = pc(A) − 𝛼hm − c > 0 which proves that it is increasing at z = A . Moreover, 

Π��
c1
(z) < 0 if h(z) > 1

A+a+bc−bc(hm+hc)
 , which by IFR property of distribution F is true 

for some z > z1 , z1 ∈ [A,B] . This means that additionally taking into account the 
Basic assumptions, we get that function Πc1 is concave in interval [z1,B].

Furthermore, the derivatives Π�
c2
(z)(A) = pmax − 𝛼hm − c > 0 and 

Π�
c2
(z)(B) = −c < 0 which means that the function is increasing at z = A and decreasing 

at z = B . Finally, the second derivative Π��
c2
(z) < 0 for any z ∈ [A,B] , which implies that 

the function is concave. The proof is complete. 	� ◻

Proof of Theorem 1  The statements of the theorem follow from Lemma 2 noting that 
Πc(z) is a smooth function and zc1 and zc2 are determined by the first order condition 
Π�

c
(z) = 0 . Let us observe that Πc(z) is increasing in z0 if F̄(z0) >

c

pmax−𝛼hm
 . Therefore, 

in this case the maximum is attained in the interval [z0,B] . Otherwise, the maximum 
is attained in the interval [A, z0) . The proof is complete. 	�  ◻

Proof of Theorem 2  The assertion follows from the Extreme value theorem [34]. 	�  ◻

Proof of Lemma 3  By (13) and Basic assumptions we have

which ends the proof of 1. The second formulation of the lemma follows from the 
fact that �(z) is increasing. 	�  ◻

Proof of Lemma 4  The proof is similar to the proof of Lemma 2. Function Πr1 is con-
tinuous and increasing in z = A because Π�

r1
(A) =

A+a−b𝛼hc−bw

2b
> 0 by the fact that 

w < pmax . Moreover, Π�
r1
(B) = −w < 0 , and by IFR property Π��

r1
< 0 for any z > zr1 , 

which implies the first statement of the lemma. Next, Π�
r2
(A) = pmax − w > 0 , 

Π�
r2
(B) = −w < 0 and Π��

r2
(z) = −pmaxf (z) < 0 , which proves that Πr2(z) is first 

increasing then decreasing and concave. The proof is complete. 	�  ◻

Proof of Theorem  3  The conclusions of the theorem follow from Lemma 4 noting 
that Πr(z) is a smooth function and zd1 and zd2 are determined by the first order con-
dition Π�

r
(z) = 0 . Let us note that Πr(z) is increasing in zd

0
 if w ∈ B1 and decreasing in 

zd
0
 , otherwise, which points out the set to which the maximum belongs. 	� ◻

Proof of Theorem 4  The assertion follows from the Extreme value theorem [34]. 	�  ◻

Proof of Theorem 5  From (15) we have

pd(z) ≥ pd(A)

≥ c + �hm +
A + a − bc + b(w − c) − b�(2hm + hc)

2b
≥ c + �hm,

dΠc(p, z)

dp
=

D̄(p, 𝛼)

p + 𝛼hc
[−(b − 1)(z − Λ(z))p + 𝛼(z − Λ(z))(bhm + hc) + bcz],
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which by the first order condition dΠc(p,z)

dp
= 0 gives the formula for optimal price 

pc(z) given by (17). Let us remark that D̄(p,𝛼)
p+𝛼hc

> 0 . The solution pc(z) is unique since 
the gradient −(b − 1)(z − Λ(z)) < 0 of the linear function of p in square brackets 
which means that it is decreasing. Therefore, dΠc(p,z)

dp
> 0 for p < pc(z) and dΠc(p,z)

dp
< 0 

for p > pc(z) . Next, substituting formula (17) into formula (15) we get 
Πc(pc(z), z) = Πc(z) , which is a continuous and smooth function. Then, the optimal 
solution zc is determined by the first order condition 
Π�

c
(z) = D̄(p, 𝛼)((p − 𝛼hm)F̄(z) − c) = 0 . Furthermore, Π�

c
(z) can be written as

where

Then

and

by Basic assumptions. This implies that H(z) is unimodal, increasing in A since 
H(A) = A(

𝛼

c
(hm + hc) + 1) > 0 and decreasing in B because H(B) = −(b − 1) < 0 . 

Thus, we achieve that zc ∈ [A,B] is a unique maximum. The proof is complete. 	�  ◻

Proof of Theorem 6  Using formula (19) for a given z ∈ [A,B] we have

which by the first order condition dΠr(p,z∣w)

dp
= 0 gives the formula for optimal price 

pd(z) defined by (21). Note that D̄(p,alpha)
p+𝛼hc

> 0 . The solution is unique since the gradi-
ent of a line −(b − 1)(z − Λ(z)) < 0 , and therefore, dΠr(p,z∣w)

dp
> 0 for p < pd(z) , and 

dΠr(p,z∣w)

dp
< 0 for p > pd(z) . Next, substituting expression (21) to formula (19) we get 

Πr(pd(z), z ∣ w) = Πr(z ∣ w) , which is a continuous function of z with the first deriva-
tive equal to Π�

r
(z ∣ w) = D̄(p, 𝛼)(pd(z)F̄(z) − w) . The optimal zd(w) is given by the 

first order condition Π�
r
(z ∣ w) = 0 . Let us note that Π�

r
(z ∣ w) can be written as 

Π�
r
(z ∣ w) =

wD̄(p,𝛼)

z−Λ(z)
H(z) , where

Π�

c
(z) =

cD̄(p, 𝛼)

(b − 1)(z − Λ(z))
H(z),

H(z) = z − bzF(z) +
𝛼

c
(hm + hc)(z − Λ(z))F̄ + (b − 1)Λ(z).

H�(z) = F̄(z)[1 − bzh(z) +
𝛼

c
(hm + hc)F̄(z) −

𝛼

c
(hm + hc)h(z)(z − Λ(z))],

H��(z) ∣H�(z)=0= −F̄(z)[bg�(z) +
𝛼

c
(hm + hc)f (z) +

𝛼

c
(hm + hc)h

�(z)(z − Λ(z))] < 0

dΠr(p, z ∣ w)

dp
=

D̄(p, 𝛼)

p + 𝛼hc
[−(b − 1)(z − Λ(z))p + 𝛼hc(z − Λ(z)) + bcz + bwz],

H(z) = z − bzF(z) + (b − 1)Λ(z) +
𝛼

w
hcF̄(z)(z − Λ(z)).



	 M. Bieniek 

1 3

Then wD̄(p,𝛼)
z−Λ(z)

> 0 , H�(z) = F̄(z)[1 − bzh(z) −
𝛼

w
hch(z)(z − Λ(z)) +

𝛼

w
hcF(z)] and

is negative which means that for any z ∈ [A,B] , such that H�(z) = 0 , the function 
H(z) is concave. Moreover, H(A) = A +

𝛼

w
hcA > 0 implies that H increases in A and 

H(B) = −(b − 1) < 0 implies that H decreases in B. This means that H(z) is uni-
modal and zd(w) ∈ [A,B] is a unique maximum. The proof is complete. 	� ◻
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