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Abstract
We consider the problem of allocating divisible/indivisible goods to agents accord-
ing to agents’ ordinal preferences. Hashimoto et al. [15] provided a nonalgorithmic 
and axiomatic characterization of well-studied probabilistic serial (PS) mecha-
nism. Recently, Fujishige et  al. [12] generalized the PS mechanism where goods 
are enlarged from a fixed set to a family of sets which is a polytope defined by 
a system of linear inequalities associated with submodular functions. The above 
extended PS (EPS) greatly improved the flexibility of allocations. Based on these 
two results, in this paper, we investigate the nonalgorithmic and axiomatic charac-
terization of EPS. We show that the EPS rule is the only mechanism satisfying the 
ordinal fairness and a newly defined non-wastefulness. The submodularity plays a 
crucial role in our arguments.

Keywords Probabilistic serial · Submodular functions · Ordinal fairness · Non-
wastefulness

1 Introduction

We study the problem of allocating divisible/indivisible goods among agents. Vari-
ous studies have been conducted on this subject. Over the last decade, many stud-
ies treated fair assignments over indivisible goods; see a recent survey paper [1] for 
more details. However, after a seminal paper by Bogomolnaia and Moulin [6] intro-
ducing the PS mechanism, various extensions and characterizations of PS have been 
proposed. Refer to recent papers and references therein [2, 3] for more details, and 
see [14] for general problems.
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The following two types of research on PS are related to our work: 

1. Recently, Fujishige et al. [12, 13, 18] proposed an extended PS (EPS) mechanism 
which enlarged the points (i.e., the goods with fixed quotas) to polytopes of good 
resources called base polyhedra defined in Sect. 2.

2. Approximately 10 years after Bogomolnaia and Moulin’s paper, a completely 
nonalgorithmic characterization of PS was presented by Hashimoto et al. [15].

In this paper, we generalize the characterization of PS by Hashimoto et al. [15] to 
the EPS allocation mechanism [12]. Precisely:

We used two concepts, ordinal-fairness and non-wastefulness  to characterize 
EPS. We keep the same definition of ordinal fairness as the one given in [15], 
and redefined the non-wastefulness in a simple form. Therefore, the difference 
between PS and EPS can be viewed as the difference between the two non-
wasteful concepts. Submodularity, the property of tight sets given in Proposi-
tion 1 plays a crucial role in the proofs associated with the non-wastefulness.

Although we assume a submodularity in our problem, the resource space is a pol-
ytope defined by a system of linear inequalities including many special cases. The 
results provide possibilities for further research, e.g., Doğan et al. [9] showed that 
some of their results used the ordinal-fairness. Refer to our papers [11–13, 18] for 
what the generalization means about EPS.

Here are some related works of literature.
Bogomolnaia and Moulin [6] proposed the well-studied PS mechanism. A funda-

mental property of the assignments obtained using the PS mechanism is the ordinal 
efficiency with respect to agents’ preferences, along with envy-freeness and weak 
strategy-proofness. Since then, PS has been extended or generalized to various set-
tings, see, e.g., [2, 3, 14].

We enlarged the fixed quotas of goods to polytopes such that the quotas of goods 
vary [12, 18], and we also include the layer structure in [7], as pointed in [12, 18]. 
Comparing the allocation problems in [6, 15], our setting is multi-unit demands 
with submodular constraints on goods, which change the weak-strategyproof into a 
weaker concept called Nash equilibrium; see [12] for more details.

Furthermore, e.g., Chatterji and Li [8] treated the assignments of bundles. The 
mechanism is equivalent to PS under a restricted domain. Preferences are defined 
over bundles of goods with fixed quota for each good, which differs from our set-
ting, polytopes, defined later.

After a decade of elusiveness, as indicated in [5], nonalgorithmic, axiomatic char-
acterization was provided in [15], followed by a leximin characterization given in [4].

Our result is based on that of Hashimoto et al. [15], which is a redefinition of PS. 
Precisely, Hashimoto et  al. provided two characterizations. Meanwhile, our work 
is a generalization of the first one1 which includes a new concept ordinal fairness 

1 The second is characterized by sd-efficient, sd-envy-free, and weakly invariant.
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defined later. Besides, the axiomatic characterization proposed in [15] significantly 
depends on the fixed quotas of goods.

Heo and Yilmaz [17] generalized the characterization in [15] to weak preferences 
[17]. The mechanism with weak preferences and submodular constraints on goods 
has been completed by Sano and Zhan [18]. We restrict ourselves to the assignment 
problem with strict preferences in our characterization.

The following example shows the difference between PS and EPS, what agents 
can obtain when fixed quotas of goods are released, and related characterization.

Example 1 Consider three agents {1, 2, 3} and three goods {e1, e2, e3} , respectively, 
and let the quota of each good be 1. Suppose that the agents’ preferences are as 
follows:

i.e., agents 1 and 2 prefer e1 to e2 to e3 , and agent 3 prefers e3 to e1 to e2 . Here is an 
assignment:

where each entry P(i, j) of P means the proportion of good ej that agent i obtained.
Next, suppose that the resource of goods is formalized as2

where xp ∈ ℝ
3 is a vector, and each component of xP(ei) (i ∈ {1, 2, 3}) is the column 

sum of P. We can obtain the following assignment:

Although the total resource is 3 in both cases, the resource associated with (2) is 
more flexible than fixed quota 1. Agents 1 and 2 obtain 1, more portion of their 

1 e1 e2 e3
2 e1 e2 e3
3 e3 e1 e2

(1)

xP(ei) + xP(ej) ≤ 2 for i, j ∈ {1, 2, 3},

xP(e1) + xP(e2) + xP(e3) ≤ 3,

(2)

2 This can be formulated as a submodular rank function as follows:

.

𝜌(X) =

{
2 if |X| = 1

|X| if |X| > 1
(∀X ⊆ {e1, e2.e3}).
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most preferred good e1 in (2), comparing 1
2
 in (1). Assignments of (1) and (2) are 

computed from PS and EPS, respectively.

The rest of this article is organized as follows. Section 2 introduces the model, 
notations, and preliminary results. Section  3 describes the EPS mechanism. Sec-
tion 4 gives the definitions of non-wastefulness and ordinal fairness. The main theo-
rem is presented in Sect. 5. Section 6 gives the concluding remarks.

2  The Model

Let N = {1, 2,… , n} be a set of agents and E be a set of goods. Each good e ∈ E 
is considered as a type of goods and the number of available goods e can be more 
than one. Each agent i ∈ N wants to obtain a certain amount of goods, denoted by 
d(i) ∈ ℤ>0 . The vector � = (d(i) ∣ i ∈ N) ∈ ℤ

N
>0

 is called the demand (upper bound) 
vector.3

Suppose that each agent i ∈ N has an ordinal preference

where {ei
1
,… , ei

m
} = E . Let L denote the profile of preferences Li (i ∈ N).

The resource space of goods is defined as a polytope {x ∈ ℝ
m
≥0

∣ Ax ≤ �} , where 
A is a nonnegative k × m matrix, and � is a k-dimensional vector. By a slight abuse 
of notation, we also use (A,�) to denote a set of solutions induced by a system of 
linear inequalities.

For a given economy (N,E,L, �, (A,�)) , denoted by RA, a random assignment, 
also called an expected allocation, is a nonnegative matrix P ∈ ℝ

N×E
≥0

 satisfying 

 (i) 
∑

e∈E P(i, e) ≤ d(i) for all i ∈ N  
 (ii) 

∑
i∈N Pi ∈ {x ∈ ℝ

m ∣ Ax ≤ �},

where Pi is the ith row vector of P, representing the probability of goods allocated to 
the agent i.

Note that 
∑

i∈N Pi is a vector xP ∈ ℝ
m , each element of xP associated with a column 

sum of P, denoted as xP(e) for e ∈ E . Hence, we have 
∑

i∈N Pi = (xP(e) ∣ e ∈ E) = xP.
Next, we give a further definition of (A,�).
Given a set function � ∶ 2E → ℝ , the family of sets of goods is a polytope 

�(𝜌) ⊂ ℝ
E satisfying

where x(X) =
∑

e∈X x(e).

(3)Li ∶ ei
1
≻i ⋯ ≻i e

i
m
,

(4)�(𝜌) = {x ∈ ℝ
E ∣ x(X) ≤ 𝜌(X), ∀X ⊆ E}.

3 Refer to Remark 1 after (6), the definition B(�).
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To get desirable properties, we assume that � satisfies the following submodular 
inequalities

and � is non-decreasing, i.e., �(X) ≤ �(Y) if X ⊆ Y  with �(�) = 0 . Polytope �(�) 
associated with a pair (E, �) called a submodular system satisfying these conditions 
is a polymatroid and � is a rank function. Note that polymatroid �(𝜌) ⊂ ℝ

E
≥�

 . See 
[10] for more details about submodular functions.

Next, assume that goods are in high demand and the resource is completely allo-
cated. In other words, the total goods assigned are on the maximal vectors of �(�) 
satisfying

We call B(�) in (6) the base polyhedron of the submodular system (E, �) , and 
B(�) ≠ �.

In what follows, we treat assignment problem �� = (N,E,L,� = (d(i) ∣ i ∈ N), (E, �)).

Remark 1 We have the following relation between rank function � and base polyhe-
dron B(�) [10, 12].

By the assumption of demand upper bound � satisfying 
∑

i∈N d(i) ≥ �(E) , from (6) 
and (7), we obtain output xP ∈ B(�) while maximizing � in P(�) during the execu-
tion of EPS defined in the next section.

Here are some economic properties related to submodularity. If we rewrite (5) as

inequalities (8) is called “diminishing return” or economies of scale/scope. Prop-
erty (8) allows goods with higher preferences to share more portion of total goods 
than those with lower preferences since more preferred goods were chosen earlier, as 
shown in Example 1 of the introduction, where submodularity acts on goods. When 
assigning lectures to professors, submodularity implies higher specialities bringing 
higher effects [16].

The following proposition is fundamental in the theory of submodular functions 
and optimizations.

Proposition 1 Given a vector x ∈ �(�) and X, Y ⊆ E , if we have x(X) = �(X) and 
x(Y) = �(Y) , then x(X ∪ Y) = �(X ∪ Y) and x(X ∩ Y) = �(X ∩ Y) . That is, the x-tight 
sets are closed with respect to the set union and intersection.

For any e ∈ E , define �e to be the unit vector in ℝE such that �e(f ) = 1 if f = e 
and �e(f ) = 0 if f ∈ E ⧵ {e}.

(5)�(X) + �(Y) ≥ �(X ∪ Y) + �(X ∩ Y), ∀X, Y ∈ 2E,

(6)B(�) = {x ∈ ℝ
E ∣ x ∈ �(�), x(E) = �(E)}.

(7)𝜌(X) = max{x(X) ∣ x ∈ B(𝜌)} (∀X ⊆ E).

(8)�(X) − �(X ∩ Y) ≥ �(X ∪ Y) − �(Y), ∀X,Y ∈ 2E,
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For each x ∈ P(x) , by Proposition 1, there exists a unique maximal x-tight set, 
denoted by sat(x), which is equal to the union of all tight sets for x. The function sat: 
P(�) → 2E is called the saturation function.

Later, we use the following notation in the newly non-wastefulness. For x ∈ B(�) 
and e ∈ sat(x) , define

which is called the dependence function for (E, �) . It is known that [10, Chap. 2]

Using Proposition 1, we have x(dep(x, e)) = �(dep(x, e)).

We will repeat chains in the sequel. It is essential to know [10, 12, Sec. 7] that 
for ∀x ∈ B(�) , the family of tight sets {X ⊆ E ∣ x(X) = 𝜌(X)} is completely deter-
mined by a maximal chain:

where x(Ŝi) = 𝜌(Ŝi) for i = 0, 1,… , p.

Let T̂i = Ŝi ⧵ Ŝi−1 for i = 1,… , p , then {T̂1,… , T̂p} form a partition of E. By 
the maximal chain, we mean that for each X ⊆ E with x(X) = �(X) , we have 
X = T̂

𝓁1
∪⋯ ∪ T̂

𝓁k
 , 1 ≤ 𝓁1 ≤ ⋯ ≤ 𝓁k ≤ p.

In the following, we write one element set {e} as e for simplicity.

3  Extended PS Mechanism

Fix a random assignment problem �� = (N,E,L, �, (E, �)) . A mechanism is a map-
ping from �� into allocation P ∈ ℝ

N×E
≥0

 meeting some requirements.
As mentioned earlier, EPS is an extension of the standard PS mechanism of [6], 

which was proposed by Fujishige et al., and for more details, the reader can refer to [12].
Recall that for each i ∈ N , agent i’s preference is given by Li in (3), and 

L = (Li ∣ i ∈ N) . Based on the collection (a multiset) of the first (most favorite) ele-
ments ei

1
 for all agents i ∈ N , define a nonnegative integral vector b(L) ∈ ℤ

E
≥0

 by

where we may have ei
1
= e

j

1
 for distinct i, j ∈ N and d(i) is the integral demand upper 

bound of agent i ∈ N.
During the execution of the following algorithm, the current lists Li ( i ∈ N ) may 

get shorter because of removal of exhausted goods. Also note that Sp is the set of 
types of goods saturated at stage p.

Algorithm I Extended Probabilistic Serial Algorithm (EPS) [3, 12] 

(9)dep(x, e) = {e� ∈ E ∣ ∃𝛼 > 0 ∶ x + 𝛼(𝜒e − 𝜒e� ) ∈ B(𝜌)},

(10)dep(x, e) =
⋂

e∈X ⊆E

{X ∣ x(X) = 𝜌(X)}.

(11)Ĉ ∶ S0 = � ⊂ Ŝ1 ⊂ ⋯ ⊂ Ŝp = E,

(12)b(L) =
∑

i∈N

d(i)�ei
1

,
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Input:  A random assignment problem �� = (N,E,≻,�, (E, 𝜌)).
Output:  An expected allocation P ∈ ℝ

N×E
≥0

.
Step 0:  For each i ∈ N put xi ← � ∈ ℝ

E (the zero vector), and put S0 ← ∅.

  Put p ← 1 , x∗ ← � , and �0 ← 0.

Step 1:  For current (updated) L = (Li ∣ i ∈ N) , using b(L) in (12), compute 

  For each i ∈ N put xi ← xi + (�p − �p−1)d(i)�ei
1

.

  Put x∗ ← x∗ + (�p − �p−1)b(L) and Sp ← sat(x∗).

Step 2:  Put T ← Sp ⧵ Sp−1.

  Update Li by removing all elements of T from current Li (i ∈ N).

Step 3:  If 𝜌(Sp) < 𝜌(E) , then put p ← p + 1 and go to Step 1.

  Otherwise ( �(Sp) = �(E) ) put P(i, e) ← xi(e) for all i ∈ N and e ∈ E.

  Return P.

 When Algorithm I terminates, we obtain a chain:

satisfying �(St) = xP(St) for all 0 ≤ t ≤ p . Chain (14) is a subchain of the maximal 
chain of xP defined in (11).

Remark 2 Recall that agent i ∈ N can be viewed as d(i) subagents, and each suba-
gent eats goods at unit speed. As in paper [6], the parameter t in (13) can be consid-
ered as time. The monotonic assumption of � implies that the agents eat at nonnega-
tive consecutive time intervals.

Fix a preference profile L = (Li ∣ i ∈ N) . Given two assignments P and Q, 
recall that Pi = (P(i, e) ∣ i ∈ N) and Qi = (Q(i, e) ∣ i ∈ N) . We say that Pi stochasti-
cally dominates (sd) Qi , denoted by Pi ⪰sd

i
Qi , if 

∑�

1
P(i, ei

�
) ≥

∑�

1
Q(i, ei

�
) for all 

� = 1,… ,m . We say that Q is stochastically dominated by P if we have Pi ⪰sd
i
Qi 

for all i ∈ N and P ≠ Q . An assignment P is ordinally efficient if P is not stochasti-
cally dominated by any other allocation.

(13)�p = max{t ≥ �p−1 ∣ x
∗ + (t − �p−1)b(L) ∈ P(�)}.

(14)C ∶ � = S0 ⊂ S1 ⊂ ⋯ Sp = E
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An allocation P is normalized sd-envy-free if for all i, j ∈ N  , 1

d(i)
Pi ⪰sd

i

1

d(j)
Pj.

Theorem 2 (Theorems 5.1 and 5.2 [12]) Algorithm I computes an expected alloca-
tion that is ordinally efficient and normalized envy-free.

Example 2 Suppose N = {1, 2, 3, 4} and E = {a, b, c, g} . The preference profile is 
given as follows,

The demand upper bound vector is given by � = (4, 2, 1, 1) ∈ ℤ
N
>0

 , and the submod-
ular function � on E is defined by

Each good in E can be interpreted as a shop in a tenant, where the value of � repre-
sents the area. Here, The total area is eight. To keep diversity, the area of each shop 
is at most four, while the popular shop can also get larger portions of the area.

The following matrix P is an assignment obtained using EPS.

After Step 1, agents 3 and 4 get 4
7
 of their best goods, agent 2 gets 2 × 4

7
 , and agent 

1 gets 4 × 4

7
 . At Step 2, they get the remaining goods. The (maximal) set of goods 

exhausted at steps 1 and 2 of EPS are {a} and {a, b, c, g} , respectively.
Using the same B(�) in (16), if we change the preference profile (15) by swapping 

goods a and g while keeping the others, we obtain an assignment P as follows,

Now good g, instead of a, shares a portion 4 from the total resources 8 to suffi-
ciently satisfy agents’ preferences.

(15)

1 a ≻1 b ≻1 c ≻1 g

2 a ≻2 c ≻2 b ≻2 g

3 a ≻3 c ≻3 g ≻3 b

4 b ≻4 a ≻4 g ≻4 c

(16)𝜌(X) =

{
4|X| if |X| ≤ 2

8 if |X| > 2
(∀X ⊆ E).

(17)

(18)
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4  Non‑wastefulness and Ordinal Fairness

Two concepts, namely, non-wastefulness and ordinal fairness, are essential for char-
acterizing the EPS mechanism introduced in Sect. 3.

Let �� = (N,E,L, �, (E, �)).

Definition 1 A random assignment P is non-wasteful at L if ∀(i, e) ∈ N × E such 
that P(i, e) > 0 , we have:

Recall that dep(xP, e�) is also a well-define xP-tight set, i.e., x
P
(dep(x

P
, e�)) = �(dep

(x
P
, e�)) as indicated in (10).

Compared with the case of PS where each good e ∈ E with a fixed quota qe , the 
non-wastefulness at L is ∀e� ≻i e such that P(i, e) > 0 , we have xP(e�) = qe� . Our def-
inition is also simple despite the bind being a set function.

To understand definition (19) further, let us define a notation on triple (Li, e,Pi) as

Then, for any good e ∈ E with P(i, e) > 0 , we can see that all e� ∈ E satisfying 
e′ ≻i e are in a saturated set W(Li, e,Pi) which does not include good e from follow-
ing facts. 

 (i) e ∉ W(Li, e,Pi),
 (ii) {e� ∣ e� ≻i e} ⊆ W(Li, e,Pi)),
 (iii) xP(W(Li, e,Pi)) = �(W(Li, e,Pi))

We have: (i) follows from the definitions of non-wasteful and W . (ii) follows from 
e� ∈ dep(xP, e

�) . Since dep(xP, e�) is a xP-tight set, we obtain (iii) by Proposition 1. 
All W(Li, e,Pi) form a chain of xP-tight sets with P(i, e) > 0 because this is an induc-
tive property on preferences for each pair (i, e) ∈ N × E.

Proposition 3 Algorithm I computes an expected allocation P̂ that is non-wasteful.

Proof Suppose that P̂ is not non-wasteful. Then, by the definition, there exists i ∈ N , 
e ∈ E , and �P(i, e) > 0 such that

By the definition of dep function (9), there exists 𝜖 > 0 , and the vector 
x
P̂
+ �(�e� − �e) ∈ B(�) . Then, we can obtain a new assignment P̂′ by replacing 

P̂�(i, e) = P̂(i, e) − � , P̂�(i, e) = P̂(i, e�) + � , and keeping other entries the same as 
those of P̂ . Assignment P̂′ sd-dominates P̂ . This contradicts the ordinal efficiency of 
EPS by Theorem 2.

(19)e ∉ dep(xP, e
�) ∀e� ≻i e.

(20)W(Li, e,Pi) ≡
⋃

e�≻ie

dep(xP, e
�).

(21)e ∈ dep(x�P, e
�) ∀e� ≻i e.
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Recall that dep(x
P̂
, e�) is a well-defined x

P̂
-tight set by Proposition 1 because of 

submodularity.   ◻

Let U(Li, e) ≡ {e� ∈ E ∣ e� ⪰i e} be the upper contour set of good e at ≻i . For an 
assignment P, let F(Li, e,Pi) be the probability that agent i is allocated at least as 
good as e under Pi which satisfies

we call F(Li, e,Pi) agent i’s (normalized) surplus at e under Pi.

Definition 2 An assignment P is ordinally fair4 at L if ∀i, j ∈ N, e ∈ E such that 
P(i, e) > 0 , we have:

As mentioned in the introduction, ordinal fairness in Definition 2 is the same as the 
one in [15], which defines a fair property. From (23), we obtain that for any ordi-
nally fair assignment, agents must share the same surplus value if they have a posi-
tive probability on the same good.5

Example 2, continues For assignment (17), we have F(L1, a,P1) = F(L2, a,P2) = F

(L3, a,P3) = 4∕7 . All of the remaining F(Li, e,Pi) are 1.

The following Proposition 4 follows from [15]. It gives a relation with the chain 
(14) of EPS, and we provide its proof for completeness.

Proposition 4 Algorithm I computes an expected allocation P̂ that is ordinally fair.

Proof For the chain (14) obtained after Algorithm  I, denote ΔSt = St ⧵ St−1 
( 1 ≤ t ≤ p).

Suppose P(i, e) > 0 , e = ei
1
∈ ΔSt at Step t for agent i, then each agent j has 

e
j

1
= e� ⪰j e in current Lj . We have e� ∈ ΔSt or e� ∈ St+� , where � > 1 . In the former 

case, we have both e, e� ∈ ΔSt . Hence, F(Li, e, P̂i) = F(Lj, e, P̂j) . In the latter case, 
we have

where the first inequality from e ∈ ΔSt and e� ∈ St+� , the second one from e� ⪰j e . 
Both cases mean

(22)F(Li, e,Pi) =
1

d(i)

∑

e�∈U(Li,e)

P(i, e�), ∀(i, e) ∈ N × E,

(23)F(Li, e,Pi) ≤ F(Lj, e,Pj).

(24)F(Li, e, �Pi) < F(Lj, e�, �Pj) ≤ F(Lj, e, �Pj),

4 According to [15], “ordinal fairness encompasses Pareto efficiency and envy-freeness ... with perfectly 
divisible goods.”
5 Heo and Yilmaz [17] indicate that non-wastefulness and ordinal fairness are two independent proper-
ties, i.e., there are assignments satisfying only one of them, respectively, and their setting is a special 
case of ours.
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Since t, i, and j are arbitrary, and St , ΔSt , and St+� (� > 1) include all goods, i.e., (25) 
is satisfied by ∀e ∈ E and ∀i, j ∈ N . Hence, P̂ is ordinally fair.   ◻

Example 2 continues Assignment (17) can only have two values of F(Li, e,Pi) . It is 
easy to check that Proposition 4 is satisfied since (17) is obtained using the EPS. 
The smaller values of F(Li, a,Pi) with P(i, a) > 0 are equal.

5  Main Results

We now state our main characterization of the EPS mechanism. The proof follows 
closely to that of Theorem 1 given by [15]. However, we give the proofs related to 
non-wastefulness for completeness.

Theorem 5 A mechanism is ordinally fair and non-wasteful if and only if it is EPS.

The “if” part of Theorem 5 has been proved by Propositions 3 and 4. Hence, we 
will show the converse. The main difference from [15] is the non-wastefulness asso-
ciated with submodularity.

We need some notations.
Fix an assignment P. For all e ∈ E , define

we get different values 𝜋1 < ⋯ < 𝜋p of � with 1 ≤ p ≤ m . Grouping goods satisfying

we obtain a partition {T1,… , Tp} of E. Moreover, let �s = T1 ∪⋯ ∪ Ts with �0 = �.
For each ēs ∈ E ⧵ �s−1 , define

as the set of agents who prefer ēs most in the complement of set �s−1 . Additionally, if 
ēs ∈ Ts , we denote above ēs as ēTs.

Lemma 6 is about the ordinal fairness, and its proof is similar to that of Theo-
rem 1 (Steps 1 and 2) [15].

Lemma 6 If P is an ordinally fair assignment, we have:

(25)F(Li, e, P̂i) ≤ F(Lj, e, P̂j), ∀e ∈ ΔSt (t ≥ 1),∀i, j ∈ N.

(26)𝜋(e) = min
i∈N

F(≻i, e,P
i),

(27)Ts(e) = {e ∈ E ∣ �(e) = �s},

(28)Ns(ēs) = {i ∈ N ∣ ēs ⪰i e
�,∀e� ∈ E ⧵ �s−1}

(29)P(k, ēTs) = 0 if k ∉ Ns(ēTs),

(30)F(≻i, ēTs ,P
i) = 𝜋(ēTs), ∀i ∈ Ns(ēTs).
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Note that there is no corresponding part of Lemma 7 in the paper [15] since the 
non-wastefulness is simple for each good with a fixed quota.

Lemma 7 If P is a non-wasteful assignment, then

Proof We prove it by induction. This is true for �0 = � . Assuming that it is true for 
∀t < s , we show that it is true for s.

First, we show

For a contradiction, suppose ∃ê ∈ dep(xP, es) such that ê ∈ E ⧵ �s . Let ê ∈ Tt with 
t > s.

If there exists i ∈ N such that P(i, ê) > 0 and es ≻i ê , by the definition of non-
wastefulness, we have ê ∉ dep(xP, es), which is a contradiction to the assumption. 
Otherwise, for all P(i, ê) > 0 , we have ê ≻i es . By the definition of (22) and (26), we 
obtain another contradiction of t > s.

Since es ∈ dep(xP, es) and from (32), we obtain

From definition Ts ∪ �s−1 = �s and (33), we get

Now, by the inductive assumption xP(�s−1) = �(�s−1) , xP(dep(xP, es)) = �(dep

(x
P
, e

s
)) , and Proposition 1, we have (31), this ends the proof.   ◻

From Lemmas 6 and 7, we have: If P is an ordinally fair and non-wasteful assign-
ment, then

The rest of the proof of Theorem 5 can be shown in a very similar way as Steps 4 
and 5 in [15]. (Arguments that do not use non-wastefulness can be extended, these 
are omitted.)

Let P̂ represent the random assignment obtained from EPS. We prove it by 
induction.

Suppose that for ∀t < s , (i) ∀ēTt ∈ Tt and ∀i ∈ Nt(ēTt ) , we have F(Li, ē
T
t

,Pi) = F

(Li, ē
T
t

, �Pi) = 𝜋(ē
T
t

) , (ii) ∀ēTt ∈ Tt and ∀k ∉ Nt(ēTt ) , we have P(k, ēTe ) = �P(k, ēTe ) = 0 . 
The inductive assumption holds trivially for s = 1 . We prove that they hold for Step 
s and thus P = EPS.

By the same arguments as that given in [15], we can show at Step s of EPS,

(31)xP(�s) = �(�s) ∀s = 1,… , p.

(32)dep(xP, es) ⊆ �s ∀es ∈ Ts.

(33)Ts ⊆
⋃

es∈Ts

dep(xP, es) ⊆ �s.

(34)�s−1

⋃

es∈Ts

dep(xP, es) = �s.

(35)
∑

ēTs∈Ts

∑

j∈N

P(j, ēTs) =
∑

T̄es∈Ts

∑

j∈Ns(ēTs )

P(j, ēTs) = 𝜌(�s) − 𝜌(�s−1), 1 ≤ s ≤ p.
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Now, we show that for each ēTs ∈ Ts and j ∈ Ns(ēTs) , we have 𝜋(ēTs) = F(Lj, ēTs ,
�Pj) 

and �P(k, ēTs) = 0 ∀k ∉ Ns(ēTs) . Proving the first claim is sufficient since ēTs cannot be 
allocated to agent k in this case.

Suppose for a contradiction that there exists ēs ∈ Ts and i ∈ Ns(ēTs) , 
F(Li, ēTs ,P

i) = 𝜋(ēTs) < F(Li, ēTs ,
�Pi) . Then,

where the strict inequality follows from (36), Lemma 6, the supposition, and 
P(j, ēTs) =

�P(j, ēTs) for all ēTs ∈ Ts, j ∈ Ns(ēTs ) by the inductive assumption. 
Therefore,

this contradicts 
∑

i∈N Pi ∈ B(�) if s = p , violates Lemma 7. Hence, P coincides with P̂ .  
 ◻  

6  Concluding Remarks

We considered the problem of allocating a family of good sets to agents using 
agents’ ordinal preferences.

– We provide a new definition of non-wastefulness given in (19), despite the con-
straints are defined on the sets of goods. From Lemma 6, and the ordinal fairness 
in (23), we obtain the original form of submodular constraints on sets shown in 
Lemma 7. We adapted the arguments by Hashimoto et al. [15], and submodular-
ity plays a central role in our setting.

– The main result is given in Theorem 5, a simple nonalgorithmic redefinition, or 
characterization of the EPS mechanism developed by Fujishige et al. [12]. The 
EPS mechanism greatly increases the flexibility of assignments.

The leximin maximization, a characterization given in [4], can also be extended 
to the EPS mechanism for a random assignment with a family of good sets, as shown 
in [11, 18].

(36)F(Li, ēTs ,
�Pi) ≥ 𝜋(ēTs) ∀ēTs ∈ Ts, ∀i ∈ Ns(ēTs).

∑

ēTs∈Ts

∑

j∈Ns(ēTs )

P(j, ēTs) =
∑

ēTs∈Ts

∑

j∈Ns(ēTs )

{
F(Lj, ēTs ,P

j) −
∑

e�≻j ēTs

P(j, e�)
}

<
∑

ēTs∈Ts

∑

j∈Ns(ēTs )

{
F(Lj, ēTs ,

�Pj) −
∑

e�≻j ēTs

�P(j, e�)
}

=
∑

ēTs∈Ts

∑

j∈Ns(ēTs )

�P(j, ēTs ) = 𝜌(�s) − 𝜌(�s−1),

∑

t≤s

∑

ēTt∈Tt

∑

j∈Nt(ēTt )

P(j, ēTt ) < 𝜌(T1 ∪⋯ ∪ Ts) = 𝜌(�s),
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Recently, the related simultaneous eating mechanism (which is a mechanism pre-
sented in Sect.  3 with different agents’ eating speed) is also generalized on poly-
topes [3]. The unified characterization here will provide a clue for further research 
in these assignment problem.
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