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Abstract
Quality control is a crucial activity performed bymanufacturing enterprises to ensure that their productsmeet quality standards
and avoid potential damage to the brand’s reputation. The decreased cost of sensors and connectivity enabled increasing
digitalization of manufacturing. In addition, artificial intelligence enables higher degrees of automation, reducing overall
costs and time required for defect inspection. This research compares three active learning approaches, having single and
multiple oracles, to visual inspection. Six new metrics are proposed to assess the quality of calibration without the need
for ground truth. Furthermore, this research explores whether existing calibrators can improve performance by leveraging
an approximate ground truth to enlarge the calibration set. The experiments were performed on real-world data provided by
Philips Consumer Lifestyle BV. Our results show that the explored active learning settings can reduce the data labeling effort by
between three and four percent without detriment to the overall quality goals, considering a threshold of p = 0.95. Furthermore,
the results show that the proposed calibration metrics successfully capture relevant information otherwise available to metrics
used up to date only through ground truth data. Therefore, the proposed metrics can be used to estimate the quality of models’
probability calibration without committing to a labeling effort to obtain ground truth data.
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dunja.mladenic@ijs.si

1 Jožef Stefan International Postgraduate School, Jamova 39,
1000 Ljubljana, Slovenia

2 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Introduction

Quality control is one of the key parts of the manufactur-
ing process, which comprehends inspection, testing, and
identification to ensure the manufactured products comply
with specific standards and specifications (Kurniati et al.,
2015; Wuest et al., 2014; Yang et al., 2020). For exam-
ple, the inspection tasks aim to determine whether a specific
part features assembly integrity, surface finish, and adequate
geometric dimensions (Newman & Jain, 1995). In addition,
product quality is key to the business since it (i) builds trust
with the customers, (ii) boosts customer loyalty, and (iii)
reinforces the brand reputation.
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One such quality inspection activity is the visual inspec-
tion, considered a bottleneck activity in some instances
(Zheng et al., 2020). Visual inspection is associated with
many challenges. Some visual inspections require a sub-
stantial amount of reasoning capability, visual abilities, and
specialization (Newman&Jain, 1995). Furthermore, reliance
on humans to perform such tasks can affect the scalability
and quality of the inspection. When considering scalabil-
ity, human inspection requires training inspectors to develop
inspection skills; their inspection execution tends to be slower
when compared to machines, they fatigue over time and can
become absent at work (due to sickness or other motives)
(Selvi & Nasira, 2017; Vergara-Villegas et al., 2014). The
quality of inspection is usually affected by the inherent sub-
jectiveness of each human inspector, the task complexity,
the job design, the working environment, the inspectors’
experience, well-being, and motivation, and the manage-
ment’s support and communication (Cullinane et al., 2013;
Kujawińska et al., 2016; See, 2012). Manual visual inspec-
tion’s scalability and quality shortcomings can be addressed
through an automated visual inspection.

Automated visual inspection can be realizedwithMachine
Learning models. Technological advances [e.g., Internet of
Things or Artificial Intelligence (Rai et al., 2021; Zheng et
al., 2021)], and trends in manufacturing [e.g., the Industry
4.0 and Industry 5.0 paradigms (Barari et al., 2021; Rozanec
et al., 2022)] have enabled the timely collection of data
and foster the use of machine learning models to automate
manufacturing tasks while reshaping the role of the worker
(Carvajal Soto et al., 2019; Chouchene et al., 2020). Auto-
mated visual inspection was applied in several use cases in
the past (Beltrán-González et al., 2020; Duan et al., 2012;
Jiang & Wong, 2018; Villalba-Diez et al., 2019). Neverthe-
less, it is considered that the field is still in its early stages
and that artificial intelligence has the potential to revolution-
ize product inspection (Aggour et al., 2019).

While machine learning models can be trained to deter-
mine whether a manufactured piece is defective and do so in
an unsupervised or supervised manner, no model is perfect.
At least three challenges must be faced: (a) how to improve
the models’ discriminative capabilities over time, (b) how to
calibrate the models’ prediction scores into probabilities to
enable the use of standardized decision rules (Silva Filho et
al., 2021), and (c) how to alleviate the manual labeling effort.

This paper presents our approach to addressing these three
challenges as follows. Active learning enhances the classifi-
cation model to address the first challenge. Pool-based and
stream-based settings are compared, considering different
active learning sample query strategies across five machine
learning algorithms. Platt scaling, a popular probability cal-
ibration technique, addresses the second challenge. Finally,
two scenarios were considered when addressing the reduc-
tion of manual labeling effort: (i) manual inspection of cases

where the machine learning model does not predict with
enough confidence and (ii) data labeling to acquire ground
truth data for the model calibration. The first scenario was
addressed by exploring the usage of multiple oracles and soft
labeling to reduce the manual inspection effort. Finally, the
second and third scenarios were addressed by approximat-
ing the ground truth with models’ predictions to calibrate
the model. Furthermore, several novel metrics to measure
the quality of calibration were proposed. The results confirm
that they can measure the quality of such calibration without
needing a ground truth.

This work extends our previous research described in
paperStreamingMachineLearningandOnlineActiveLearn-
ing forAutomatedVisual Inspection (Rožanec et al., 2022). In
that paper, research was performed to measure the impact of
active learning on streaming algorithms. This paper explored
batch and online settings, active learning policies, and ora-
cles. This research overcomes some of the shortcomings of
the previous research. First, it does not only consider the
models’ uncertainty to derive data instances to oracles but
also a certain quality acceptance level. Second, it calibrates
the machine learningmodels so that through probability cali-
bration, they issue probabilities rather than predictive scores.
Third, it increases the amount of data devoted to active learn-
ing to ensure more meaningful results. Finally, it focuses
on batch machine learning models (which achieve a greater
discriminative performance) and studies them in batch and
streaming active learning settings. In addition to the above-
mentioned items, multiple metrics were developed to assess
the calibration quality of a calibrator. The metrics overcome
some shortcomings of widely adopted metrics and enable
measuring calibration quality when no ground truth is avail-
able. The research was performed on a real-world use case
with images provided by Philips Consumer Lifestyle BV cor-
poration. The dataset comprises images regarding the printed
logo on manufactured shavers. The images are classified
into three classes: good prints, double prints, and interrupted
prints.

The Area Under the Receiver Operating Characteristic
Curve [AUC ROC, see (Bradley, 1997)] was used to evalu-
ate the discriminative capability of the classification models.
AUC ROC estimates the quality of the model for all possible
cutting thresholds. It is invariant to a priori class proba-
bilities and, therefore, suitable for classification tasks with
strong class imbalance. Furthermore, given that the models
were evaluated in a multiclass setting, the AUC ROC was
computed with a one-vs-rest strategy. Furthermore, the per-
formance of multiple probability calibration approaches was
measured through the EstimatedCalibration Error (ECE) and
several novel metrics proposed in this research.

This paper is organized as follows. Section“Related
work” describes the current state of the art and related
works. Section“Approximate model’s probabilities calibra-
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tion describes novel metrics proposed for probability calibra-
tion and how calibration methods can leverage approximate
ground truth to enlarge the calibration set. The main novelty
regarding the proposed probabilities calibration metrics is
the ability to measure calibration quality without needing a
ground truth. Section“Use case” describes the use case,while
section“Methodology” provides a detailed description of the
methodology followed. Section“Experiments” describes the
experiments performed, while section“Results and evalua-
tion” presents and discusses the results obtained. Finally,
section“Conclusion” presents the conclusions and outlines
future work.

Related work

This section provides a short overview of three topics rel-
evant to this research: (i) the use of machine learning for
quality inspection, (ii) active learning, and (iii) probabilities
calibration. The following subsections are devoted to each of
them.

Machine learning for quality inspection

A comprehensive and reliable quality inspection is indis-
pensable to the manufacturing process, and high inspection
volumes turn inspection processes into bottlenecks (Schmitt
et al., 2020). Machine Learning has been recognized as a
technology that can drive the automation of quality inspec-
tion tasks in the industry. Multiple authors report applying it
for early prediction of manufacturing outcomes, which can
help drop a product that will not meet quality expectations
and avoid investment in expensive manufacturing stages.
Furthermore, similar predictions can be used to determine
whether the product canbe repaired and therefore avoid either
throwing away a piece to which the manufacturing process
was invested or selling a defective piece with the correspond-
ing costs for the company (Weiss et al., 2016). Automated
visual inspection refers to image processing techniques for
quality control, usually applied in the production line ofman-
ufacturing industries (Beltrán-González et al., 2020). It has
been successfully applied to determine the end quality of
the products. It provides many advantages, such as perform-
ing non-contact inspection that is not affected by the type
of target, surface, or ambient conditions (e.g., temperature)
(Park et al., 2016). In addition, visual inspection systems can
perform multiple tasks simultaneously, such as object, tex-
ture, or shape classification and defect segmentation, among
other inspections. Nevertheless, automated visual inspection
is a challenging task given that collecting the dataset is usu-
ally expensive, and the methods developed for that purpose
are dataset-dependent (Ren et al., 2017).

Jian et al. (2017) considers three approaches that exist
toward automated visual inspection: (a) classification, (b)
background reconstruction and removal (reconstruct and
remove background to find defects in the residual image),
and (c) template reference (comparing a template image with
a test image). Tsai and Lai (2008) describe how TFT-LCD
panels and LCD color filters were inspected by compar-
ing surface segments containing complex periodic patterns.
Lin et al. (2019) describes how defect inspection on LED
chips was automated using deep Convolutional Neural Net-
works (CNN). Kang and Liu (2005) successfully applied
feed-forward networks to detect surface defects on cold-
rolled strips. In the same line, Yun et al. (2014) proposed
a novel defect detection algorithm for steel wire rods pro-
duced by the hot rolling process. Valavanis andKosmopoulos
(2010) comparedmultiplemachine learningmodels (Support
Vector Machine, Neural Network, and K-nearest neighbors
(kNN)) on defect detection in weld images. Park et al. (2016)
developed a CNN and compared it to multiple models (parti-
cle swarm optimization-imperialist competitive algorithm,
Gabor-filter, and random forest with variance-of-variance
features) to find defects on silicon wafers, solid paint,
pearl paint, fabric, stone, and wood surfaces. Furthermore,
Aminzadeh andKurfess (2019) describedhowBayesian clas-
sification enabled online quality inspection in a powder-bed
additive manufacturing setting. Multiple authors developed
machine learning algorithms for visual inspection leverag-
ing feature extraction from pre-trained models (Cohen &
Hoshen, 2020; Li et al., 2021; Jezek et al., 2021).Whilemuch
research was devoted to supervised machine learning meth-
ods, unsupervised defect detection was explored by many
authors, who explored using Fourier transforms to remove
regularities and highlight irregularities (defects) (Aiger &
Talbot, 2012) or employed autoencoders to find how a refer-
ence image differs from the expected pattern (Mujeeb et al.,
2018; Zavrtanik et al., 2021, 2022).

Active learning

Active learning is a subfield of machine learning that studies
how an active learner can best identify informative unlabeled
instances and requests their labels from some oracle. Typical
scenarios involve (i)membership query synthesis (a synthetic
data instance is generated), (ii) stream-based selective sam-
pling (the unlabeled instances are drawn one at a time, and a
decision is made whether a label is requested or the sample is
discarded), and (iii) pool-based selective sampling (queries
samples from a pool of unlabeled data). Among the fre-
quently used querying strategies are (i) uncertainty sampling
(select an unlabeled sample with the highest uncertainty,
given a certain metric, or machine-learning model (Lewis &
Catlett, 1994)), or (ii) query-by-committee [retrieve the unla-
beled sample with the highest disagreement between a set of
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forecasting models (committee) (Cohn et al., 1994; Settles,
2009)] can be found.More recently, new scenarios have been
proposed leveraging reinforcement learning, where an agent
learns to select images based on their similarity, and rewards
obtained are based on the oracle’s feedback (Ren et al., 2020).
In addition, it has been demonstrated that ensemble-based
active learning can effectively counteract class imbalance
through newly labeled image acquisition (Beluch et al.,
2018). While active learning reduces the required volume
of labeled images, it is also essential to consider that it can
produce an incomplete ground truth by missing the annota-
tions of defective parts classified as false negatives and not
queried by the active learning strategy (Cordier et al., 2021).

Active learning was successfully applied in manufactur-
ing, but scientific literature remains scarce on this domain
(Meng et al., 2020). Some use cases include the automatic
optical inspection of printed circuit boards (Dai et al., 2018),
media news recommendation in a demand forecasting set-
ting (Zajec et al., 2021), and the identification of the local
displacement between two layers on a chip in the semicon-
ductor industry (van Garderen, 2018).

Probabilities calibration

Probabilities denote the likelihood that a particular event will
occur and are expressed as a real number between zero and
one (Cheeseman, 1985).Manymachine learningmodels out-
put prediction scores which cannot be directly interpreted
as probabilities. Therefore, such models can be calibrated
(mapped to a known scale with known properties), ensuring
the prediction scores are converted to probabilities. Probabil-
ity calibration aims to provide reliable estimates of the true
probability that a sample is a member of a class of interest.
Such calibration (a) usually does not decrease the classifi-
cation accuracy, (b) enables using provides thresholds on
the decision rules and therefore minimizes the classification
error, (c) ensures decision rules and their maximum poste-
rior probability are fully justified from the theoretical point
of view, (d) can be easily adapted to changes in class and
cost distributions, and therefore (e) is key to decision-making
tasks (Cohen & Goldszmidt, 2004; Song et al., 2021).

The k-class probabilistic classifier is considered well-
calibrated if the predicted k-dimensional probability vector
has a distribution that approximates the distribution of the
test instances. While a single accepted notion of probabilis-
tic calibration exists for binary classifiers, the definition for
multiclass settings hasmultiple nuances. Three kinds of prob-
ability calibration are described in the literature formulticlass
settings: (i) confidence calibration [aims only to calibrate the
classifier’s most likely predicted class (Song et al., 2021)],
(ii) class-wise calibration (attempts to calibrate the scores
for each class as marginal probabilities), and (iii)multi-class
calibration (seeks to create an entire vector of predicted prob-

abilities so that for any prediction vector the proportion of
classes among all possible instances getting the same pre-
diction, are equal to the probabilities for those classes in the
predicted vector).

Multiple probability calibration methods have been pro-
posed in the scientific literature. The post-hoc techniques aim
to learn a calibrationmap for amachine-learningmodel based
on hold-out validation data. In addition, popular calibration
methods for binary classifiers include logistic calibration
(Platt scaling), isotonic calibration, Beta calibration, tem-
perature calibration, and binning calibration.

Empirical binning builds the calibration map by comput-
ing the empirical frequencies within a set of score intervals.
It can therefore capture arbitrary prediction score distribu-
tions (Kumar et al., 2019). Isotonic regression computes
a regression assuming the uncalibrated model has a set of
non-decreasing constant segments corresponding to bins of
varying widths. Given its non-parametric nature, it avoids
a model misfit, and due to the monotonicity assumption,
it can find optimal bin edges. Nevertheless, training times
and memory consumption can be high on large datasets and
give sub-optimal results if the monotonicity assumption is
violated. Platt scaling (Platt, 2000) aims to transform pre-
diction scores into probabilities through a logistic regression
model, considering a uniform probability vector as the target.
While the implementation is straightforward and the training
process is fast, it assumes the input values correspond to a
real scalar space and restricts the calibration map to a sig-
moid shape. Probability calibration trees evolve the concept
of Platt scaling, identifying regions of the input space that
lead to poor probability calibration and learning different
probability calibration models for those regions, achieving
better overall performance (Leathart et al., 2017). Beta cali-
bration was designed for probabilistic classifiers. It assumes
that the scores of each class can be approximated with two
Beta distributions and is implemented as a bivariate logis-
tic regression. Temperature scaling uses a scalar parameter
T > 0 (where T is considered the temperature) to rescale
logit scores before applying a softmax function to achieve
recalibrated probabilities with better spread scores between
zero and one. It is frequently applied to deep learningmodels,
where the prediction scores are frequently strongly skewed
towards one or zero. Furthermore, the method can be applied
to generic probabilistic models by transforming the predic-
tion scores with a logit transform (Guo et al., 2017). This
enables calculating the score against a reference class and
obtaining the ratio against other classes. Nevertheless, the
method is not robust in capturing epistemic uncertainty (Ova-
dia et al., 2019). Finally, the concept of temperature scaling
is extended in vector scaling, which considers that a differ-
ent temperature for each class can be specified, and matrix
scaling, which considers a matrix and intercept parameters
(Song et al., 2021).
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Several metrics and methods were proposed to assess
the quality of the calibration. Reliability diagrams plot the
observed relative frequency of predicted scores against their
values. They, therefore, enable to quickly assess whether the
event happens with a relative frequency consistent with the
forecasted value (Bröcker&Smith, 2007).On the other hand,
validity plots aim to convey the bin frequencies for every bin
and therefore provide valuable information regarding mis-
calibration bounds (Gupta & Ramdas, 2021). Among the
metrics, the binary ECE measures the average gap across
all bins in a reliability diagram, weighted by the number
of instances in each bin, considering the labeled samples of
a test set. In the same line, the binary Maximum Calibra-
tion Error computes the maximum gap across all bins in a
reliability diagram. The Confidence Estimated Calibration
Error measures the average difference between accuracy and
average confidence across all bins in a confidence reliabil-
ity diagram, weighted by the number of instances per bin.
A different approach is followed by the Brier score, which
measures the mean squared difference between the predicted
probability and the actual outcome. While the ECE metric is
widely accepted, research has shown that it is subject to short-
comings (Nixon et al., 2019; Posocco & Bonnefoy, 2021).
One of such shortcomings is that when using fixed calibra-
tion ranges, some bins contain most of the data, resulting in
the metric’s decreased sharpness. Furthermore, ECE is mea-
sured across non-empty bins, failing to account for the overall
distribution of positives across the mean predicted probabili-
ties. Measuring probabilistic calibration remains a challenge
(Nixon et al., 2019).

While many probability calibration methods and metrics
have been developed, most of them were conceived consid-
ering probability calibration must be done based on some
ground truth. Nevertheless, acquiring data for such ground
truth is expensive (requires labeled instances), limits the
amount of data seen to build such a probability calibra-
tion map, and therefore introduces inaccuracies due to the
inherent characteristics of the sample. To address this void,
this research proposes labeling each predicted data instance
according to the predicted class with the highest score or
most likely class if the highest predicted scores are equal.
Assuming the classifier could perform with perfect discrim-
inative power in the best case, such labels would equal the
ground truth. Furthermore, this research proposes metrics
to assess the discrepancy between an ideal probability cal-
ibration scenario and the calibrated classifier to measure
the quality of probability calibration achieved. By doing so,
the calibrators’ quality over time can be measured without
needing any data labeling for such an assessment. Further-
more, it enables exploring approximatemodel’s probabilities
calibration, training a calibrator from a ground truth approx-
imated with predicted labels. This idea is further explained

and developed in section“Approximatemodel’s probabilities
calibration”.

Approximatemodel’s probabilities
calibration

Towards approximate probability calibrationmodels

This research proposesmetrics and an approach to calibrating
machine learning prediction scores to probabilities using a
ground truth approximation. The approach considers build-
ing an initial calibration set, as it is common practice for
probability calibration methods. A calibration set has (a)
several prediction scores used to perform the probability cal-
ibration and (b) the ground truth labels for the corresponding
data instances. Using both, a mapping is created between the
prediction scores and the probability of a class outcome.Nev-
ertheless, the limited amount of data in the calibration set can
impact the fidelity of the calibration. In particular, the dis-
tribution of predictive scores between the calibration set and
the predictions performed in a production environment can
differ.

The final prediction of a calibrated model has at least two
sources of error: (a) the classification model, which does
not perfectly predict the target class, and (b) the probability
calibration technique, which does not produce a perfect prob-
abilistic mapping between the predicted scores and the target
class. While (a) directly affects the refinement loss (loss pro-
duced by assigning the same probability for instances from
different classes), (b) affects the calibration loss (loss due
to the difference between the predicted probabilities and
observed positive instances for such an output). While met-
rics and plots exist to assess the quality of the probability
calibration, such means require a ground truth to evaluate the
probability calibration. While the requirement for a ground
truth allows for an exact estimate of the classifier on that
particular hold-out data, it has at least two drawbacks: (i)
it requires labeling a certain amount of data to perform the
evaluation, and (ii) such data may not be representative of
current or future data distributions observed in a production
environment.

Intuitions behind a calibration without a ground
truth

Current scientific literature considers the quality of a model
calibration can be measured by comparing, given a fixed
class, whether the fraction of positives does correspond to the
predicted mean probability of a given classifier. The fraction
of positives empirically measures the likelihood of positive
class events for the class under consideration within a spe-
cificmeanprobability range (bin). In awell-calibratedmodel,
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Fig. 1 The figure presents two calibration plots. On the left, the cali-
bration plot shows a perfectly calibrated calibrator (where the fraction
of positives for the class under consideration equals the mean predicted

probability). On the right, the same information is presented, but nor-
malizing the values of the plot on the right to ensure the sum of their
values equals one

the likelihood of the occurrence of positive class events in a
particular bin for the class under consideration matches the
mean predicted probability, revealing a linear relationship
between the mean predicted probability and the likelihood
of the occurrence in that bin of the positive class event for
the class considered (see Fig. 1). Furthermore, a perfectly cal-
ibrated classifier is only possible for a binary classification
problem with no class imbalance. Class imbalance or multi-
ple classes introduce distortions regarding the frequencywith
which the positive class is observed within a given predicted
mean probability range compared to the frequency with the
other events occurring within that mean probability range.

For a well-calibrated classifier, each of the predicted
classes is expected to behave as shown in Fig. 1. Therefore,
while class imbalance or a multi-class setting can introduce
distortions to the histogram’s shape, the distance to the ideal
case could be measured by comparing the histogram shape
of a perfectly calibrated model for a given class and the
shape of the histogram in the real-world case under con-
sideration. To estimate how close the histograms are from
each other, optimal transport is used (Peyré et al., 2019; Vil-
lani, 2009). In particular, the Wasserstein distance measures
the distance between the two histogram distributions. We
consider the Wasserstein distance between the histograms
representing the existing calibration and a perfect one. The
distance denotes the improvement opportunity regarding the
specific calibration model to achieve a perfect calibration (or
a desired calibration according to the reference histogram).
Nevertheless, the fraction of positives for a given class cannot

be computed when no ground truth is available. Therefore,
we reframe the problem so that the goodness of a model cal-
ibration can be evaluated even without considering a ground
truth.

Considering the information available in Fig. 1 and a
particular class j , and considering each prediction regard-
ing class j an event x , we are interested on two types
of events: E1 = {x corresponds to bin i}, and E2 =
{x corresponds to class j}. Furthermore, we are interested
in calibrating the model so that the resulting score indicates
p j (E2|E1).

Intuition 1: Considering a perfectly calibrated classifier

Let us consider the case of a perfectly calibrated classi-
fier. Given a perfectly calibrated classifier, the fraction of
positives for a given class must match the mean predicted
probability. The fraction of positives within a certain bin i
can be considered the empirical computation of p j (E2|E1).
E1 and E2 are not independent events, given the prob-
ability of belonging to class j should be higher in bins
representing a higher mean predicted probability. Therefore,

p j (E2|E1) = p j (E2∩E1)

p j (E1)
. Considering a balanced binary

classification problem, the number of predictions issued for
each mean predicted probability range must be equal to ver-
ify the symmetry regarding the fraction of positives observed
in the mean probability ranges for both classes. Fluctuations
regarding the fraction of positives observed in the mean pre-
dicted probability ranges translate into an unequal number of
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predictions in them and directly impact the quality of the cali-
bration.Based on this observation, given the abovementioned

equation, p j (E2|E1) = p j (E2∩E1)

p j (E1)
, p j (E1) is constant, and

can be empirically computed as p j (E1) = 1
# of bins . The

number of predictions for a given class j is computed as the
count of predictions where the highest predicted value was
issued for that class j . While p j (E2 ∩ E1) cannot be com-
puted without ground truth, the expected values that must
be satisfied for each bin for p j (E2|E1) are known. There-
fore, we envision at least two ways to estimate the mismatch
between the ideal case and the case under consideration.
First, the value of p j (E2 ∩ E1) can be inferred based on the
expected p j (E2|E1) for a particular bin and the empirical
computation of p j (E1) to then measure the Wasserstein dis-
tance between the resulting distributions. Second, it could
be estimated by only considering p j (E1) and measuring
the Wasserstein distance between the ideal distribution (an
equal number of predictions per mean predicted probabil-
ity range) and the distribution of predictions obtained from
the calibrated classifier under consideration (number of pre-
dictions per bin, that are empirically measured—usually the
amount of predictions is not equal across bins given the
calibrated classifier’s imperfection). Each class’s calibration
quality could be estimated in both cases by comparing two
histograms: the ideal case and the calibration model under
consideration. The distance between both distributions com-
putes measures how far the particular calibrator is from a
perfectly calibrated case.

While the case above was demonstrated for a balanced
binary classification problem, it approximately holds for
multiclass settings and cases with class imbalance. In these
scenarios, we aim to calibrate each class as perfectly as pos-
sible, even though a perfect calibration cannot be achieved.
Nevertheless, how well-calibrated each class is against the
ideal case can still be assessed by comparing the distribu-
tions described above.

Intuition 2: Considering a perfect classifier

Let us consider the case of a perfect classifier. Given a perfect
classifier, the prediction equals the ground truth regarding a
positive class event for the class under consideration. There-
fore, two scenarios are considered: (a) degrade the classifiers’
performance to achieve a calibrated classifier, or (b) spread
the predicted values within a specific range so that they emu-
late particular calibration. It must be noted that while (a)
can still satisfy the definition of probability considered for
calibration, (b) does not.

For (a), the classifier’s performance must be degraded due
to the inherent definition of probabilities used in this prob-
lem: the calibrationmodelwill ensure a proportion of positive
events regarding a class given a mean predicted probability

bin. Therefore, given n = number of classes, the high-
est predicted value for each class will not issue only data
instances of that class above 1/n. Furthermore, some cases
will be lost under the 1/n threshold.

On the other hand, for (b), the abovementioned equation

p j (E2|E1) = p j (E2∩E1)

p j (E1)
can be considered. It is known that

for a perfect classifier, the following is true: p j (E2) = 0
or p j (E2) = 1. Furthermore, E1 and E2 can be considered
dependent events, given p j (E2) = 0 for bins below a certain
threshold, and p j (E2) = 1otherwise (seeFig. 2). In addition,
the mean predicted probability would not match the fraction
of positives, given the classifier is perfect: each prediction
perfectly identifies the target class. Therefore, this scenario
per se violates the idea behind probabilities calibration. Nev-
ertheless, the best approximation towards Fig. 1 would be to
achieve an increasing number of predictions per mean pre-
dicted probability range (histogram bin) for a specific class.
To avoid degrading the models’ discriminative power, such
a mapping function will not issue scores below 1/n, where
n = number of classes.

Intuitions materialized

From intuitions to approximate calibrators

To perform model calibration, a function that can map the
predictive scores of a machine-learning model to probabil-
ity scores is required. Ideally, such probability scores would
indicate p j (E2|E1). When no ground truth is available, the
intuitions described above can be considered to reproduce
some scenarios where the resulting probability score distri-
bution can be compared against an ideal probability score
distribution. Therefore, we consider labeling the predicted
data instances with the class with the highest predicted score.
In case two classes hold equal scores, we decide on the most
probable one based on the class imbalance observed in the
train test. For balanced datasets, the class can be assigned
randomly, given no other information exists to guide the deci-
sion. The more perfect the classification model, the closer
will the assigned labels be to the ground truth. Given data
instanceswith predicted scores and assigned labels, a calibra-
tor can be fitted to map the classifier’s output to a calibrated
probability.

To realize the abovementioned calibration without ground
truth, at least the following preconditions must be met: (a) no
concept drift exists, (b) no covariate shift exists, and (c) the
values of the features in the production environment remain
within the ranges considered when training the machine
learning model.
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Fig. 2 The figure presents two calibration plots. On the left, the calibration plot shows a perfect binary classifier, while on the right we find a
perfectly calibrated binary classifier

From intuitions to metrics

In Sections “Intuition 1: Considering a perfectly calibrated
classifier” and “Intuition 2: Considering a perfect classi-
fier”, the cases of a perfectly calibrated model and a perfect
classifier were considered. While in the case of a perfect
classifier, a ground truth is not needed (the predicted labels
equal the ground truth), non-perfect classifiers approximate
such a ground truth to a certain degree (measured as the
classifiers’ performance). Furthermore, regardless of the cal-
ibration technique, it was shown that a certain correlation
between the calibration quality and the calibration score dis-
tribution exists. In particular, it was shown that for each class
k a histogram could be computed showing (a) the number of
predictions per bin and (b) the proportion of positive class
occurrences per mean predicted probability bin. Both could
then be compared against ideal cases. A certain advantage
of (a) is that it does not require ground truth or ground truth
approximation to determine whether some bins are under
or over-assigned. While such an imbalance certainly signals
a calibration error, the histogram lack information regard-
ing the composition of each bin. In particular, they provide
no information on whether the positive class occurrences
increase according to the value of the mean predicted prob-
ability bin. This can only be measured in (b), comparing all
cases against an ideal calibration histogram. For multiclass
problems, each class could be compared against such a his-
togram, and the resulting scores averaged (Fig. 3).

To estimate how close a probability calibration method is
w.r.t. the target (ideal) histogram, optimal transport is used

(Peyré et al., 2019; Villani, 2009). In particular, the Wasser-
stein distance between two histogram distributions is consid-
ered: a histogram constructed with the calibrator scores and
a histogram corresponding to the ideal scenario. Based on
them, we propose a metric that can be used to estimate the
quality of calibration of any calibrator given certain ground
truth. We name it Probability Calibration Score (PCS—see
Eq.1). The proposed metrics issue a value between zero
and one: PCS is zero when the model is not calibrated and
one when the model is perfectly calibrated. Furthermore, a
weighted metric variant can also be considered (wPCS—see
Eq.2),where the proportion of each class among the observed
instances weights the Wasserstein distances.

W1(hi , hre f ) is the 1-Wasserstein distance between the
histogram hi and the reference histogram hre f and n is the
number of classes.

PCS =
n∑

i=1

1 − W1(hi , hre f )

n
(1)

W1(hi , hre f ) is the 1-Wasserstein distance between the
histogram hi and the reference histogram hre f and wi is the
weight of a particular class. n indicates the number of classes
under consideration.

wPCS =
n∑

i=1

(
1 − W1(hi , hre f )

) · wi (2)

To ensure the histograms are comparable, they are nor-
malized, ensuring that the sum of their values equals one.
To ensure the Wasserstein distance remains between zero
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Fig. 3 The figure illustrates two sample histograms: the histogram on the left corresponds to some sub-optimally calibrated classifier. In contrast,
the histogram on the right (reference histogram) corresponds to a perfectly calibrated classifier

and one, the distance between both distributions is divided
by the distance measured between the worst-case scenario
and the reference ideal histogram (see Fig. 4). In Fig. 4, we
consider the Wasserstein distance between the case on the
left and the distribution of a Perfect Probability Calibration
Model (PPCM) to be the highest among possible calibration
scenarios.

When assessing the performance of an approximate cal-
ibrated model, two errors must be taken into account: (i)
the classification error, given the classifier does not perfectly
predict the target class (and the ground truth is approximated
with such predictions), and (ii) the probability calibration
technique, which does not produce a perfect probabilistic
mapping between the predicted scores and the (approxi-
mated) target class. Tomeasure (i), we choose the AUCROC
metric, which is not affected by the class imbalance. AUC
ROC can be computed in a multiclass setting with a one-vs-
rest or one-vs-one strategy. We measure it on the test set. We
consider (ii) can bemeasured using theWasserstein distance,
comparing the ideal calibration histogram and a histogram
where the proportion of positive class occurrences (given the
approximate ground truth) is considered per mean predicted
probability bin.

We propose two metrics, which we name Additive Proba-
bility Calibration Score (APCS—see Eq.6) and Multiplica-
tive Probability Calibration Score (MPCS—see Eq.8). Both
summarize the calibrated models’ performance, considering
the classifier’s imperfection (see Eq.3) and the calibration
error incurred due to the lack of ground truth. To ensure
the Wasserstein distance remains between zero and one, we
compute a normalized histogram, ensuring the area of the
entire histogram equals one. The proposed metrics issue a

value between zero and one, and in both cases, the higher the
value, the better the model. Furthermore, we also provide a
weighted version of both metrics (wAPCS (see Eq.7) and
wMPCS (see Eq.9)), which aim to weight the Wasserstein
distance between the normalized histograms obtained from
a calibrator and the ideal histogram with the class weights
(see Eqs. 4 and 5 for APCSW and wAPCSW, and Eqs. 1 and
2 for MPCS and wMPCS).

APCS is zerowhen themodel has no discriminative power
and is not calibrated, and one when the model is perfectly
calibrated and shows no classification error on the test set.
The APCS metric is detailed in Eq.6.

K is used to measure classifiers’ discriminative power.
AUCROCClassi f iertest corresponds to the classifiers’ AUC
ROC measured on the test set.

KAUCROC = |0.5 − AUCROCClassi f iertest | (3)

Component forWasserstein distancemeasurement between
an ideal calibrator and the calibrator under consideration, as
used for the APCS metric.

APCSW = 0.5 · PCS (4)

Component forWasserstein distancemeasurement between
an ideal calibrator and the calibrator under consideration, as
used for the wAPCS metric.

wAPCSW = 0.5 · wPCS (5)

APCS metric definition.

APCS = KAUCROC + APCSW (6)
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Fig. 4 The figure illustrates two sample calibration plots: the calibra-
tion plot on the left corresponds to a calibrated classifier where all
positives were assigned to a zero mean predicted probability (worst-
case scenario). In contrast, the calibration plot on the right (reference

histogram) corresponds to a perfectly calibrated classifier. Both calibra-
tion plots correspond to normalized cases, where the sum of the values
equals one

wAPCS metric definition.

wAPCS = KAUCROC + wAPCSW (7)

On the other hand,MPCS andwMPCS correspond to zero
when (a) the classifiers’ predictive ability is no better than
random guessing or (b) the Wasserstein distance between
histograms is highest (equal to one). Moreover, MPCS and
wMPCS correspond to one when (a) the classifiers’ predic-
tive ability is perfect, and (b) the calibration is perfect w.r.t.
the target histogram h of choice. TheMPCSmetric is detailed
in Eq.8.

MPCS metric definition

MPCS = KAUCROC · PCS (8)

MPCS metric definition

wMPCS = KAUCROC · wPCS (9)

For models’ probability calibration, PCS, APCS, and
MPCS assume an ideal reference histogram. Three his-
tograms are presented in Fig. 5 corresponding to (a) a Perfect
Probability Calibration Model (PPCM), (b) an Almost Per-
fect Probability CalibrationModel (APPCM), and (c) Perfect
Classification with Perfect Confidence (PPwPC).While only
PPCM can be used for strict probability calibration, the other

two reference histograms measure how far the distributions
of the predicted values are from other desired distribution
shapes. In particular, APPCM achieves a similar spread of
predicted probabilities as PPCM but neglects the segment
of predictions below 1/n (with n = number of classes),
where the classifier would become suboptimal. On the other
hand, PPwPC advocates for a classifier where all scores are
pushed toward the highest possible score for a given class.
This research only considers the PPCM reference histogram
to compute the above-described metrics.

Use case

Philips Consumer Lifestyle BV in Drachten, The Nether-
lands, is one of Philips’ biggest development and production
centers in Europe. They use cutting-edge production tech-
nology to manufacture products ceaselessly. One of their
improvement opportunities is related to visual inspection,
where they aim to identify when the company logo is not
properly printed on the manufactured products. They have
multiple printing pad machines, from which the products are
handled and inspected on their visual quality and removed if
any error is detected. Experts estimate that a fully automated
procedure would speed up the process by more than 40%.
Currently, there are two defects associated with the printing
quality of the logo (see Fig. 6): double prints (the whole logo
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Fig. 5 The figure illustrates three histograms that correspond to ideal cases described in this section: Perfect Probability CalibrationModel (PPCM),
Almost Perfect Probability Calibration Model (APPCM), and Perfect Classification with Perfect Confidence (PPwPC)

Fig. 6 The images shown above correspond to three possible classes:
good (no defect), double print (defective), and interrupted print (defec-
tive)

is printed twice with a varying overlap degree) and inter-
rupted prints (the logo displays small non-pigmented areas,
similar to scratches).

Machine learning models can be developed to automate
the visual inspection procedure (Rippel et al., 2021; Zavr-
tanik et al., 2022). However, given that such models are
imperfect, the manual revision can be used as a fallback
to inspect the products about which the uncertainty of the
machine learning model exceeds a certain threshold. Such
decisions can bemade based on simple decision rules, quality
policies, and the probability of obtaining a defective product
given a particular prediction score. Furthermore, products
sent for manual inspection can be prioritized using differ-
ent criteria to enhance the existing defect detection machine
learning model. This research explores the abovementioned
capabilities through multiple experiments, building super-
vised models, leveraging active learning, and comparing six
machine learning algorithms. Furthermore, newmeasures for
probability calibration are explored, and experiments are exe-
cuted to determine whether existing calibration techniques
would benefit from enlarging the calibration set with approx-
imate ground truth. The experiments were conducted on a

dataset of 3518 labeled images, all corresponding to manu-
factured shavers.

Methodology

The research presented in this paper was performed using the
Python language, and open source libraries, such as scikit-
learn (Buitinck et al., 2013) and netcal (Küppers et al., 2020).

Methodological aspects to evaluate active learning
strategies

We frame the automated defect detection as a supervised,
multiclass classification problem. A ResNet-18 model (He
et al., 2016) was used for feature extraction. 512 values long
vectors were extracted for each image obtained from the
average pooling layer. To avoid overfitting, the procedure
suggested by Hua et al. (2005) was followed by selecting the
top K features, with K = √

N , where N is the number of data
instances in the train set. Features’ relevance was assessed
considering the mutual information score, which measures
any relationship between random variables. It is considered
that the mutual information score is not sensitive to feature
transformations if these transformations are invertible and
differentiable in the feature space or preserve the order of the
original elements of the feature vectors (Vergara & Estévez,
2014) (Fig. 7).

To evaluate the models’ and active learning scenarios’
performance, a stratified k-fold cross validation (Zeng &
Martinez, 2000) was applied, considering k=10 based on
recommendations by Kuhn and Johnson (2013). One fold
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Fig. 7 The methodology we followed to train and assess machine learning models and active learning scenarios

Fig. 8 A 10-fold stratified cross-validation was used. The dataset was split for four purposes: train, test, probabilities calibration, and simulate
unlabeled data under an active learning setting

was used for testing (test set), and one for machine learn-
ing models’ probabilities calibration (calibration set). Three
foldswere used to simulate a pool of unlabeled data for active
learning (active learning set), and the rest to train the model
(train set) (see Fig. 8). Samples are selected from the active
learning set to be annotated by the oracle and then added to
the training set, on which the models are retrained. In this
research, two types of oracles were considered: (a) machine
oracles, which can be imperfect, and (b) human annotators
(assumed to be ideal). Fivemachine learning algorithmswere
evaluated: Gaussian Näive Bayes, CART (Classification and
RegressionTrees, similar toC4.5, but it does not compute rule
sets), Linear SVM, kNN, and Multilayer perceptron (MLP).

To evaluate the discriminative power of themachine learn-
ing models and how it is enhanced over time through active
learning, the AUC ROC metric was computed. Given the
multiclass setting, the “one-vs-rest” heuristic was selected,
splitting themulticlass dataset intomultiple binary classifica-
tion problems and computing their average, weighted by the
number of true instances for each class. In addition, to assess
the usefulness of the active learning approaches, the AUC
ROC values obtained by evaluating the model against the
test fold for the first (Q1) and last (Q4) quartiles of instances
queried in an active learning setting were compared. The
amount of manual work saved under each active learning
setting and the soft-labeling approaches’ precision were also
evaluated.

Throughdifferent experiments (detailed in section“Exper-
iments”), a visual inspection pipeline was simulated (see
Fig. 9). First, a stream of images is directed toward the
machine learning model trained to identify possible defects.
Then, based on the prediction score, a decision is made

on whether the manufactured product should remain in the
production line or be deferred to manual inspection. If the
product is unlikely to be defective, such a decision can be
considered a label (it is considered a soft label when not
made by a human annotator). The label is then persisted,
enlarging the existing dataset. The enlarged dataset can be
used to retrain the model and replace the existing one after a
successful deployment.

Methodological aspects to evaluate probability
calibrationmetrics and strategies

wECEmetric definition. n indicates the number of classes
under consideration.

wECE =
n∑

i=1

ECEi · wi (10)

A similar procedure was followed in the previous subsec-
tion to evaluate the proposed probability calibration metrics
and techniques, avoiding the active learning step. Further-
more, a different dataset split was considered (see Fig. 10).
After training the machine learning model and calibrating it
with the calibration set, the non-calibratedmodel was used to
issue a prediction for each instance in the unlabeled data set.
The predicted class is then used to adjust further (train) the
calibrator. While this introduces some noise, we expect that
the better the classification model, the more it would benefit
the calibrator, as explained in section“Approximate model’s
probabilities calibration”. Eleven performance metrics were
measured: AUC ROC, ECE (computed as the ECE for each
class and averaged, assigning the same weight to all classes),

123



Journal of Intelligent Manufacturing

Fig. 9 Expected visual inspection pipeline in a production setting. Multiple active learning strategies were assessed to identify which would drive
the best results

Fig. 10 A 10-fold stratified cross-validation was used. The data was split into train set, test set, calibration set, and unlabeled data. Unlabeled data
was used to simulate a stream of unlabeled data and assess whether a histogram-based calibration method without ground truth can enhance its
performance over time

wECE (computed as the classwise ECE—see Eq.10), PCS,
wPCS, APCSW, wAPCSW, APCS, wAPCS, MPCS, and
wMPCS. AUC ROC measures the discriminative capability
of the model and provides insights into how such capability
is affected by different calibration techniques. ECE evaluates
the expected difference between the accuracy and confidence
of a calibration model. The ECEmetric was used to compare
the calibration quality for the multiple calibration techniques
and the newly proposedPCS,wPCS,APCS,wAPCS,MPCS,
and wMPCSmetrics. Furthermore, given that the newly pro-
posed metrics were built on a similar concept as the ECE
metric, we are interested in how much they capture the same
information. The Kendall τ [see Kendall (1938)] and the
Pearson correlation between ECE and the newly proposed
metrics were measured. The Kendall correlation measures
the ordinal association between two measured quantities. In
this case, it measures to what extent both metrics increase or

decrease, given the predictions for a given machine learning
model and calibrators. The Pearson correlation, on the other
side, was used to assesswhether the correlation betweenmet-
rics was linear.

The metrics were computed on the test set against the
ground truth (class annotations) and the approximate ground
truth (predicted classes). The results were analyzed to under-
stand how well the metrics capture the models’ performance
and calibration when no ground truth is available. Fur-
thermore, the weighted and non-weighted metrics were
compared to understand how class weighting influences the
final score and perception regarding the quality of the cali-
bration.

123



Journal of Intelligent Manufacturing

Experiments

Experimenting with active learning strategies

For this research, two active learning settings were explored
(pool-based and stream-based), using four distinct strategies
to label the queried data instances in an active learning set-
ting. Two strategies were used to select data from the active
learning set under the pool-based active learning setting: (a)
random sampling and (b) instances for which the classifica-
tion model was the most uncertain. The model’s uncertainty
was assessed by considering the highest score for a given
class for a given instance and selecting the instance with the
lowest score among the scores provided for the data instances
in the active learning set. In both cases, data were sampled
until the set’s exhaustion.Under the streaming active learning
setting, a slightly different policy was used. When random
sampling was used, a decision was made whether to keep or
discard the instancewith a probability threshold of 0.5.Under
the highest uncertainty selection criteria, the prediction for
each data instance was analyzed and derived to the oracles
for labeling if it was below a certain confidence threshold (p
= 0.95 or p = 0.99).

Three oracle settings were considered (see Fig. 11): (A)
human labeler as the only source of truth, (B) machine ora-
cle (classifier model) for data instances where the classifier
had a high certainty, and a human labeler otherwise; and (C)
machine oracle (classifier model) for data instances where
the classifier had a high certainty, and requesting an addi-
tional opinion to another machine oracle when uncertain
about the outcome. This second oracle queries the closest
labeled image from three randomly picked images (one per
class). In (C), the machine oracle issues a label only when
both machine oracles are unanimous on the label; otherwise,
the instance labeling is delegated to a human labeler. The
decision regarding which oracle to query was based on the
models’ confidence regarding the outcome and a probability
threshold set based on manufacturing quality policies. It was
assumed that the second machine oracle in (C) is accessible
at a certain cost (e.g., paid external service) and, therefore,
cannot be used for every prediction. Such a service was sim-
ulated by computing the Structural Similarity IndexMeasure
(SSIM) score over the queried image.

Eight scenarios were set up (see Table 1), and experi-
mentedwith twoquality thresholds (0.95 and0.99probability
that the itemcorresponded to a certain class) andfivemachine
learning models. The machine learning models were cali-
brated using a sigmoid model based on Platt logistic model
(Platt, 1999) (see Eq.11).

Platt classifier calibration logistic model. yi denotes the
truth label, and fi denotes the uncalibrated classifier’s pre-
diction for a particular sample. A and B denote adjusted

parameters when fitting the regressor.

P(yi = 1 | fi ) = 1

1 + exp(A fi + B)
(11)

Experiments assessing probability calibration
metrics and techniques

In an automated visual inspection setting, a labeling effort is
required to (a) label data to train and calibrate the machine
learning models and (b) perform a manual inspection when
themodels cannot determine the class of a given data instance
accurately. To understand how the probability calibration
affects the machine learning models, the models’ predictions
were compared against those obtained by (a) not calibrating
themodel (No calibration) and calibrating themodel with (b)
a sigmoid model based on the Platt logistic model (Platt), (c)
temperature scaling (Temperature), and (d) Histogram cali-
bration. Two aspects were considered in the experiments: (i)
how calibration techniques compare against each other and
(ii) whether calibrating a model without a ground truth can
provide comparable results to models calibrated with ground
truth.

Results and evaluation

Results and evaluation of active learning strategies

The active learning strategies were analyzed from two points
of view. First, whether they contributed to better learning
of the machine learning model. Second, how much manual
work could be saved by adopting such strategies.

For the first case, the AUC ROC was measured over
time (see Table 2). In particular, the models’ average perfor-
mance was contrasted when they consumed data within the
Q1 and Q4 of the active learning pool. The best outcomes
were observed for Experiment 2 (highest uncertainty with
human labeler) settings, while the second-best performance
was observed for Experiment 8 (highest uncertainty, with the
machine and human oracles). Overall, it was observed that
the streaming setting had a better average performance when
compared to the pool-based experiments, despite achieving
only the second-best results with Platt scaling. Furthermore,
in two cases, themachine learningmodel degraded its perfor-
mance between Q1 and Q4. This happened for Experiment
3 (p = 0.95) and Experiment 4 (p = 0.95).

Given that (a) in both experiments, a machine oracle
was used, (b) no performance decrease was observed for
p = 0.99, and (c) that the same setting did not affect the
streaming case, wewere tempted to conclude that most likely
the machine oracles mislabeled certain instances, confus-
ing the model when retrained and therefore reducing the
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Fig. 11 Three oracle settings
are explored in this research: A
human annotator, B
soft-labeling with classification
model’s outcomes for instances
with high-confidence scores,
and human annotator for
instances where the model has
low confidence; and C which is
analogous to B, but the machine
oracle takes into account the
classifier’s output score and
whether the predicted class
matches the class with of a
labeled image with the shortest
distance towards the active
sample. In C, the sample is sent
to manual revision if there is a
class mismatch in the machine
oracle. Samples are only
discarded in a streaming setting

Table 1 Proposed experiments to evaluate the best active learning setting regarding how it influences the models’ learning and its impact on the
manual revision workload

Experiment AL setting AL data selection Oracle

1 Pool-based Random sampling Human labeler

2 Pool-based Highest uncertainty Human labeler

3 Pool-based Highest uncertainty Machine Oracle B + Human labeler

4 Pool-based Highest uncertainty Machine Oracle C + Human labeler

5 Stream-based Random sampling Human labeler

6 Stream-based Highest uncertainty Human labeler

7 Stream-based Highest uncertainty Machine Oracle B + Human labeler

8 Stream-based Highest uncertainty Machine Oracle C + Human labeler

Table 2 Mean values for the mean AUC ROC computed across ten folds for five machine learning models

Setup Experiment p=0.95 p=0.99
Q1 Q4 Q1 Q4

Pool-based 1-Random, human oracle 0.8428 0.8612 0.8431 0.8623

2-Uncertainty, human oracle 0.8594 0.8693 0.8594 0.8693

3-Uncertainty, oracle (machine B + human) 0.8398 0.8396 0.8398 0.8398

4-Uncertainty, oracle (machine C + human) 0.8349 0.8348 0.8358 0.8358

Streaming 5-Random, human oracle 0.8460 0.8559 0.8460 0.8559

6-Uncertainty, human oracle 0.8525 0.8647 0.8529 0.8647

7-Uncertainty, oracle (machine B + human) 0.8505 0.8608 0.8529 0.8647

8-Uncertainty, oracle (machine C + human) 0.8550 0.8665 0.8553 0.8668

The results show how different active learning policies influence the models’ learning over time [Q1 (first quartile) vs. Q4 (last quartile)]. Two
probability thresholds (0.95 and 0.99) were considered as a soft labeling cut-off. The best results are bolded, and the second-best ones are displayed
in italics
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model’s performance over time. Nevertheless, further anal-
ysis revealed a small fraction of soft-labeled data and that
most cases were accurately labeled. While soft labeling was
detrimental for the pool-based active learning settings, it led
to superior results in a streaming setting, achieving results
close to the best ones obtained across all experiments.

In Table 3 we report the performance of machine learning
models for Experiment 2 and compare how they performed
after Q1 andQ4 of the active learning pool data was shown to
them.We found that the best performancewas attained by the
MLP, followed by the SVMby at least 0.05AUCROCpoints.
Furthermore, while the MLP increased its performance over
time, the SVM slightly reduced it in Q4. No other model
had a performance decrease over time. Since Experiment
2 only considered a human oracle and the annotations are
accurate, the performance decrease cannot be attributed to
mislabeling. Furthermore, while the model’s discriminative
capacity loss could be attributed to the class imbalance, we
consider this improbable, given that the rest of the models
could better discern among the classes over time. Finally,
the CART model obtained the worst results, which lagged
slightly more than 0.16 AUC ROC points compared to the
best one.

As mentioned at the beginning of this section, another rel-
evant aspect of evaluating active learning strategies is their
potential to reduce data annotation efforts. This could be ana-
lyzed from two perspectives. First, whether the additional
data annotations provide enough knowledge to enhance the
models’ performance significantly. If not, the data annota-
tion can be avoided. Second, a strategy can be devised (e.g.,
a machine oracle) to reduce the manual annotation effort. In
this work, we focused on the second one. Table 4 presents
the results for a cut-off value of p = 0.95. For p = 0.99, no
instances were retrieved and given to machine oracles; there-
fore, no analysis was performed on them. The task required
annotating 2460 samples on average.

When considering the cut-off value of 0.95, it was noticed
that the Platt calibration considered a negligible number of
cases for each experiment. While the quality of the annota-
tions was high, using machine oracles would not strongly
alleviate the manual labeling effort. The highest amount
of soft-labeled instances corresponded to experiments with
streaming settings (Experiment 7 and Experiment 8), which
soft-labeled 4% and 3% of all data instances, respectively.
Furthermore, 96% of samples were correctly labeled in both
cases, meeting the quality threshold of p = 0.95. The decrease
in the amount of soft labeled samples for Experiment 8 was
due to discrepancies between the machine learning model
and the SSIM score. Furthermore, the best machine labeling
quality was achieved when considering Oracle C (unani-
mous vote of two machine oracles). When contrasting with
the AUC ROC results obtained for those experiments, it was
observed that while Experiments 3 and 4 slightly decreased

discriminative power, Experiments 7 and 8 increased their
performance for at least 0.01 AUC ROC points.

Results and evaluation of probability calibration
metrics and techniques

The experiments performed in this research aimed to vali-
date whether themetrics proposed tomeasure the quality of a
calibrator can be used to understand the performance of a cal-
ibrator even when no ground truth is available. Furthermore,
it aimed to validate whether predictions on unlabeled data
could enhance the calibrators’ performance. The results are
presented in Tables 5, 6, and 7. The PCS, APCS, and MPCS
(along with the weighted variants) metrics were computed
considering the PPCM histogram, which denotes a perfect
calibration.

To understand whether the proposed metrics can mea-
sure the calibration quality without ground truth, the Pearson
and Kendall correlations were computed between the ECE,
wECE, APCSW, wAPCSW, PCS, and wPCS metrics (see
Table 5). While ECE and wECE are always computed con-
sidering the ground truth at the test set, PCS, APCSW,
wPCS, and wAPCSW were calculated considering two
cases: ground truth (golden standard) and predicted labels
(approximate ground truth) at the test set. Furthermore,
the correlations between the metrics were evaluated in two
separate moments: after calibrating the models with the
calibration set (CS) and after calibrating the models with
additional samples retrieved from the unlabeled data set
(CS+UD). The results show that the correlation between
ECE, PCS, APCSW, wPCS, and wAPCSW metrics is con-
sistent across all cases. Furthermore, little variation exists
between the values obtained when PCS or wPCS were com-
puted on the ground truth or the approximate ground truth.
While the Pearson correlation decreases after training the
calibrator with predicted labels from the unlabeled data set,
the Kendall correlation grew stronger when PCS or APCSW
were just averaged across classes and not weighted by the
frequency of occurrence of each class.We consider the corre-
lationsmoderate (negative Pearson correlationwasmeasured
between 0.50 and 0.61) or strong (negative Kendall cor-
relation was above 0.33 and slightly below 0.40). Given
the abovementioned results, we consider the PCS, wPCS,
APCSW, and wAPCSW metrics adequately capture infor-
mation conveyed by the ECE metric regardless of the source
of truth used to measure the quality of the calibration. There-
fore, we conclude that PCS, wPCS, APCSW, and wAPCSW
can be used to assess the calibrators’ quality when no ground
truth is available.

Tables 6 and 7, compare the calibrators across multiple
metrics to assess how an approximate calibration affects their
discriminative power (AUC ROC) and whether it helps to
enhance the calibrators’ quality (ECE, PCS, APCS, MPCS,
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Table 3 Mean AUC ROC values computed across ten test folds for five machine learning models

Model Q1 Q4 DS(p=0,95)

MLP 0.9309±0.0004 0.9448±0.0003 Yes

SVM 0.8788±0.0007 0.8767±0.0007 Yes

NB 0.8628±0.0005 0.8675±0.0005 Yes

KNN 0.8575±0.0006 0.8720±0.0006 Yes

CART 0.7669±0.0007 0.7854±0.0008 Yes

The results show how the machine learning models learn over time (Q1 vs. Q4) under the Experiment 2 setting. Furthermore, we analyze if the
differences were statistically significant at a p-value = 0.95 [DS(p = 0.95)]. The best results are bolded, and the second-best results are displayed
in italics

Table 4 Proportion and quality of soft labeling through different settings, considering a predicted probability cut-off value of p = 0.95

Experiment p=0.95
SL (%) SL OK (%) ML SL OK (%) SSIM SL OK (%)

3 0.0077 0.9684 0.0075 NA

4 0.0033 0.9756 0.0050 0.0033

7 0.0413 0.9685 0.0400 NA

8 0.0343 0.9692 0.0483 0.0334

SL (%) denotes the percentage of soft annotated data instances w.r.t. the total, SLOK (%) denotes the percentage of correctly soft annotated instances,
ML SL OK (%) denotes the percentage of soft annotated data instances w.r.t. the total that would be correctly annotated considering the ML model
score, SSIM SL OK (%) denotes the percentage of soft annotated data instances w.r.t. the total that would be correctly annotated considering the
SSIM score

Table 5 The results were obtained for different models and probability calibration techniques

Source of truth Correlation Pearson Kendall
Calibration data CS CS+UD CS CS+UD

Golden standard ECE vs. PCS − 0.6100 − 0.5937 − 0.3360 − 0.3981

wECE vs. wPCS − 0.5113 − 0.5070 − 0.3574 − 0.3525

ECE vs. APCSW − 0.6100 − 0.5939 − 0.3316 − 0.3981

wECE vs. wAPCSW − 0.5112 − 0.5070 0.3574 − 0.3480

Predicted labels ECE vs. PCS − 0.6100 − 0.5937 − 0.3360 − 0.3981

wECE vs. wPCS − 0.5084 − 0.5017 − 0.3360 − 0.3308

ECE vs. APCSW − 0.6100 − 0.5939 − 0.3316 − 0.3981

wECE vs. wAPCSW − 0.5083 − 0.5016 0.3423 − 0.3308

We showPearson andKendall correlation coefficientswhen comparing theECE,APCSW,wAPCSW,PCS, andwPCSmetrics.APCSW,wAPCSW,
PCS, and wPCS are measured considering the ground truth (golden standard) or approximate ground truth (predicted labels). The ECE metric is
always computed considering the ground truth. CS stands for Calibration Set, while CS+UD abbreviates Calibration Set + Unlabeled Data

and their weighted variants). Furthermore, Fig. 12 presents
calibration plots for each calibrator for CS and CS+UD for
visual assessment.

When comparing the calibrators through non-weighted
metrics (see Table 6), we consider the Platt calibrator
achieved the most stable performance. While the measured
quality of calibration slightly decreasedwith the approximate
calibration, it must be noticed that a higher proportion of pos-
itives was allocated at higher scores. Furthermore, while with
the approximate calibration, the model’s overall discrimina-
tive power slightly decreased, it remained superior against
other models (even the not calibrated) by at least 0.02 AUC

ROCpoints. TheHistogramandTemperature calibrators pro-
vide an interesting case, given both had a similar initial (CS)
calibration quality if measured with the ECE, PCS, APCS, or
MPCS metrics. Nevertheless, the metrics at CS+UD showed
discrepancies: while ECE slightly increased for the His-
togram calibrator (showing a worse calibration quality), it
remained the same for the Temperature calibrator. On the
other hand, PCS, APCS, and MPCS decreased (signaling a
worse calibration quality) for both the Histogram and Tem-
perature calibrator. Furthermore, the decrease in the metrics’
values was more pronounced for the Histogram calibrator.
When visually assessing both calibrators, we found that they
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Fig. 12 Eight calibration plots, comparing No calibration, Histogram
calibration, Platt calibration, and Temperature calibration at CS (cali-
brated with the calibration set (ground truth)) and CS + UD (calibrated
with a calibration set and predicted labels over time). The calibration
plots have been adapted, showing normalized values (their sum is one)

rather than the usual fraction of positives on the dependent variable axis.
The x-axis denotes the mean predicted probability for a given class. The
histograms average predictions across classes and calibrated machine
learning models

had a similar initial distribution (CS), but the Histogram cal-
ibrator ended up much more skewed than the Temperature
calibrator at CS+UD. While the ECE metric did not capture
this behavior, it was successfully summarized in the PCS,
APCS, andMPCSmetrics.We found the same patterns could
be observed when analyzing the weighted metrics (see Table
7).

From the results above, we confirm that the proposedmet-
rics can accurately measure the quality of calibration of a
given calibrator when no ground truth is available. Further-
more, the metrics have shown to provide a more accurate
measurement of the calibrators’ quality than ECE, overcom-
ing some of its shortcomings (e.g., providing a more holistic

view of the distribution of positives along the mean predicted
probability, taking into account empty bins).

Our research shows that tracking predictions over time did
not enhance the quality of calibration for any of the methods
involved (Histogram calibration, Platt calibration, or Tem-
perature calibration). Finding accurate calibrationmodels for
probability calibration, given a lack of ground truth, remains
a matter of future work.

Table 6 The results were obtained for different probability calibration techniques

Source of truth AUC ROC ↑ ECE ↓ PCS ↑ APCS ↑ MPCS ↑
Calibration CS CS+UD CS CS+UD CS CS+UD CS CS+UD CS CS+UD

Golden standard None 0.8630 0.8630 0.1090 0.1090 0.7636 0.7636 0.7448 0.7448 0.5647 0.5647

Histogram 0.8432 0.8442 0.1051 0.1084 0.8050 0.6509 0.7458 0.6697 0.5539 0.4507

Platt 0.8907 0.8903 0.0914 0.0955 0.7523 0.7421 0.7669 0.7613 0.5904 0.5820

Temperature 0.8614 0.8609 0.1090 0.1090 0.8073 0.7548 0.7651 0.7383 0.5886 0.5517

Predicted labels None 0.8630 0.8630 0.1090 0.1090 0.7636 0.7636 0.7448 0.7448 0.5647 0.5647

Histogram 0.8432 0.8442 0.1051 0.1084 0.8050 0.6509 0.7458 0.6697 0.5539 0.4507

Platt 0.8907 0.8903 0.0914 0.0955 0.7523 0.7421 0.7669 0.7613 0.5904 0.5820

Temperature 0.8614 0.8609 0.1090 0.1090 0.8073 0.7548 0.7651 0.7383 0.5886 0.5517

PCS, APCS, and MPCS are measured considering the ground truth (golden standard) or approximate ground truth (predicted labels). The AUC
ROC and ECE metrics are always computed considering the ground truth. The best results are bolded
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Table 7 The results were obtained for different probability calibration techniques

Source of truth AUC ROC ↑ wECE ↓ wPCS ↑ wAPCS ↑ wMPCS ↑
Calibration CS CS+UD CS CS+UD CS CS+UD CS CS+UD CS CS+UD

Golden standard None 0.8630 0.8630 0.1457 0.1457 0.7829 0.7829 0.7545 0.7545 0.5801 0.5801

Histogram 0.8432 0.8442 0.1410 0.1449 0.8265 0.6494 0.7565 0.6689 0.5685 0.4505

Platt 0.8907 0.8903 0.1230 0.1285 0.7655 0.7527 0.7735 0.7666 0.6010 0.5902

Temperature 0.8614 0.8609 0.1457 0.1457 0.8232 0.7773 0.7730 0.7496 0.6014 0.5697

Predicted labels None 0.8630 0.8630 0.1457 0.1457 0.7826 0.7826 0.7543 0.7543 0.5799 0.5799

Histogram 0.8432 0.8442 0.1410 0.1449 0.8265 0.6494 0.7565 0.6689 0.5686 0.4505

Platt 0.8907 0.8903 0.1230 0.1285 0.7641 0.7517 0.7728 0.7662 0.5998 0.5894

Temperature 0.8614 0.8609 0.1457 0.1457 0.8230 0.7765 0.7730 0.7492 0.6013 0.5692

wPCS, wAPCS, and wMPCS are measured considering the ground truth (golden standard)or approximate ground truth(predicted labels). The AUC
ROC and wECE metrics are always computed considering the groundtruth. The best results are bolded

Conclusions and future work

This work explored active learning with multiple oracles to
alleviate the manual inspection of manufactured products
and the labeling of inspected products. Our active learning
settings can save up to four percent of the manual inspec-
tion and data labeling load while not compromising on
the quality of the outcome for a quality threshold of p =
0.95. It must be noted that labeling savings depend on the
machine learning model deployed, the acceptance quality
levels, and the quality of the active learning machine oracles
under consideration. Furthermore, multiple probability cali-
bration techniques were compared, and several new metrics
tomeasure the quality of a calibratorwere proposed.Themet-
rics enable measuring the calibrators’ quality even when no
ground truth is available. The experiments demonstrated that
the proposed metrics capture relevant data otherwise sum-
marized in the ECEmetric—a popular metric to measure the
quality of a probability calibration model. Nevertheless, the
behavior of the proposed metrics under concept drift was not
studied yet, and we consider it a matter of future research.

We envision multiple lines of investigation for future
work. Regarding active learning, we are interested in enrich-
ingour current setupby adoptingdifferent strategies to decide
how interesting an upcoming image is (e.g., learning distance
metrics for each class or learning to predict which piece of
data would enhance the classifier the most) and enhancing
the calibration techniques to display the desired behavior for
high-confidence thresholds.Wewill conduct further research
on probabilities calibration to understand how the proposed
metrics behave when concept drift occurs. Finally, we will
explore new approximate probability calibration approaches
leading to enhanced calibratorswhen no ground truth is avail-
able.
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