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Abstract
We present an optimization problem to determine the minimum capital requirement 
for a non-life insurance company. The optimization problem imposes a non-positive 
Conditional Value-at-Risk (CVaR) of the insurer’s net loss and a portfolio perfor-
mance constraint. When expressing the optimization problem in a semiparametric 
form, we demonstrate its convexity for any integrable random variable representing 
the insurer’s liability. Furthermore, we prove that the function defining the CVaR 
constraint in the semiparametric formulation is continuously differentiable when the 
insurer’s liability has a continuous distribution. We use the Kelley-Cheney-Goldstein 
algorithm to solve the optimization problem in the semiparametric form and show 
its convergence. An empirical analysis is carried out by assuming three different 
liability distributions: a lognormal distribution, a gamma distribution, and a mixture 
of Erlang distributions with a common scale parameter. The numerical experiments 
show that the choice of the liability distribution plays a crucial role since marked 
differences emerge when comparing the mixture distribution with the other two dis-
tributions. In particular, the mixture distribution describes better the right tail of the 
empirical distribution of liabilities with respect to the other two distributions and 
implies higher capital requirements and different assets in the optimal portfolios.
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1 Introduction

Establishing an initial capital that insurance companies must hold to protect them-
selves from unexpected events over a fixed period is a primary goal of insurance reg-
ulation. The computation of this initial capital relies on a risk measure. For instance, 
the Solvency II directive (see Directive 2009/138/EC), which regulates the solvency 
capital requirement of the insurance companies in the European Union, adopts 
the Value-at-Risk (VaR) as a risk measure, even if, as evidenced by Artzner et al. 
(1999), it is not a coherent risk measure because it does not fulfil the sub-additivity 
property. Unlike VaR, the Conditional Value-at-Risk (CVaR), or Expected Shortfall, 
adopted by the Swiss Solvency Test (see Federal Office of Private Insurance (FOPI) 
2004), represents a coherent risk measure and, as showed by Artzner (1999) and 
Acerbi and Tasche (2002), it is a more reliable risk measure than the VaR for evalu-
ating the risk of financial positions or computing capital requirements. Supporting 
this evidence, Dhaene et al. (2006) provided a comprehensive analysis of the theo-
retical properties of well-known risk measures that can be applied in the context of 
solvency capital requirements. They also gave special attention to the class of distor-
tion risk measures that includes the CVaR as a particular case, and they investigated 
the relationship between these risk measures and theories of choice under risk.

When connecting minimum capital requirements to risk measures, the standard 
approach consists in investing the minimum capital in a single security, which is 
often a risk-free asset. However, Balbás (2008) showed the non-optimality of such 
a strategy in many important cases, and Farkas et al. (2015) laid out new results for 
risk measures when investing in multiple eligible assets. The assumption of invest-
ing the minimum capital in a portfolio of assets implies the definitions of optimi-
zation problems that employ both the initial capital and portfolio weights as deci-
sion variables. In this sense, Mankai and Bruneau (2012) proposed an optimization 
problem with a CVaR constraint that maximizes the expected return on risk-adjusted 
capital and uses both the initial capital and portfolio weights as decision variables. 
Asimit et  al. (2015) developed an optimization problem that minimizes the initial 
capital and optimally allocate it among the available financial assets under a ruin 
probability constraint. In this research line, Asanga et al. (2014) defined three opti-
mization problems representing a dynamic improvement of the approach developed 
in Asimit et  al. (2015). The first problem uses a ruin probability constraint as in 
Asimit et al. (2015), the second problem a CVaR constraint, and the third problem 
an expected policyholder deficit constraint. All the three problems include a portfo-
lio performance constraint defined as a lower bound on the expected return on capi-
tal (ROC). Kaucic and Daris (2015) proposed an alternative approach to deal with 
multi-objective portfolio optimization problems with chance constraints and applied 
this optimization framework to an EU-based non-life insurance company that tries 
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to minimize the risk of the discrepancy between assets and liabilities. The authors 
adopt shareholders’ capital and investment weights as decision variables.

In the present paper, we focus on the optimization problem with the CVaR 
constraint of Asanga et al. (2014). The standard approach for solving the problem 
relies on a Monte Carlo approximation that leads to a linear programming (LP) 
formulation (see Rockafellar and Uryasev 2000, 2002; Krokhmal et  al. 2002), 
whose solution becomes computationally burdensome when the number of simu-
lations is large. To tackle this issue, Asanga et al. (2014) proposed a semiparamet-
ric formulation showing its convexity when the insurer’s liability is lognormally 
distributed. Deepening this evidence, we find that the CVaR optimization prob-
lem in the semiparametric form is convex for any integrable liability distribution. 
Furthermore, when the insurer’s liability has a continuous distribution, the func-
tion defining the CVaR constraint is continuously differentiable allowing us to 
obtain its gradient. To solve the considered problem, we use the Kelley-Cheney-
Goldstein (KCG) algorithm and show its convergence to an optimal solution.

We apply the CVaR optimization problem assuming three different liability 
distributions: a lognormal distribution, a gamma distribution, and a mixture of 
Erlang distributions with a common scale parameter. The lognormal and gamma 
distributions are unimodal distributions commonly used to describe insurance 
data. However, insurance data often present a multimodal shape and fatter tails 
than lognormal or gamma distributions. Hence, mixtures of Erlang distributions 
with a common scale parameter are more suitable for capturing such features 
(see, e.g., Lee and Lin 2010; Willmot and Lin 2011; Lee and Lin 2012; Verbelen 
et al. 2015). This class of distributions is dense in the space of positive continu-
ous distributions (see Tijms 1994) and hence allows us to approximate any posi-
tive continuous distribution. Moreover, we can easily compute risk measures, 
such as VaR and CVaR, and aggregate risks because mixtures of Erlang distri-
butions with a common scale parameter are closed under convolution and com-
pounding (see Lee and Lin 2010, and the references therein for further properties 
of this class of distributions).

To conduct the numerical experiments, we use the insurer’s liability data set 
danishuni from the R package CASdatasets of Dutang and Charpentier (2020) 
comprising 2167 fire losses from January 1980 to December 1990. We adjust this 
data set using the U.S. inflation to reflect losses from January 2010 to December 
2020. Regarding the assets, we use daily log-returns of the S&P 500 index and two 
exchange-traded funds that track the investment results of U.S. treasury and corpo-
rate bond indices. The numerical experiments show that the choice of the liability 
distribution plays a crucial role, and the most marked differences are between the 
mixture distribution and the other two distributions. Indeed, since the mixture distri-
bution can describe the right tail of the empirical distribution of the insurer’s liabil-
ity better than the other two distributions, it implies higher capital requirements. The 
differences among the three liability distributions depend on the available  liability 
data set. If the empirical distributions are unimodal and with a not-too-fat right tail, 
the differences among the capital requirements computed with the three liability 
distributions are less evident. On the contrary, when the empirical distributions are 
multimodal, or their right tail is fat, mixtures of Erlang distributions with a common 
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scale parameter are more suitable to the scope of capturing accurately the data dis-
tribution, and marked differences in the computed capital requirements arise in com-
parison to the other two distributions. This is a crucial aspect to investigate since, as 
evidenced by Lee and Lin (2010), actuaries often face heavy-tailed and/or irregular 
data.

The paper makes the following contributions. Firstly, we prove that the optimization 
problem in the semiparametric form is convex for any integrable insurer’s liability and 
that the function defining the CVaR constraint under the semiparametric formulation 
is continuously differentiable when the insurer’s liability has a continuous distribution. 
Secondly, we show how to implement the KCG algorithm to solve the optimization 
problem in the semiparametric form, and we prove its convergence to an optimal solu-
tion. Lastly, we are, to the best of our knowledge, the first to use the mixture of Erlang 
distributions to describe the insurer’s liability in the context of capital requirement 
computation.

The rest of the article is organized as follows. In Sect. 2, after recalling the optimi-
zation problem with CVaR constraint and portfolio performance constraint of Asanga 
et  al. (2014), we show how to obtain the semiparametric formulation. Furthermore, 
we derive some theoretical results regarding the optimization problem in the semipa-
rametric form. We conclude Sect. 2 by reporting the KCG algorithm for solving the 
optimization problem in the semiparametric form and giving a proposition that states 
the algorithm convergence. In Sect. 3, we explain the method for generating asset log-
return scenarios that we use in the semiparametric formulation of the optimization 
problem and show the form of the CVaR constraint in relation to the three distributions 
used to model the insurer’s liability. The empirical results with an in-sample and out-
of-sample analysis are shown in Sect. 4. Finally, in Sect. 5, we conclude the article.

2  Optimization with CVaR constraint

Given a probability space (Ω,F,ℙ) and a set T = {0, 1,… , T} of trading dates, we con-
sider a financial market made up of n assets with gross returns over the period [t, t + 1] 
being the components of the random vector Rt+1 = (R1,t+1,… ,Rn,t+1)

� . We denote by 
Ft the historical information on the asset gross return evolution up to time t, that is, 
Ft = �(R1,… ,Rt) , and set ℙt(⋅) = ℙ(⋅|Ft) and Et[⋅] = E[⋅|Ft].

The optimization problem at a generic time t ∈ T  involves a non-life insurance 
company with a one-period setting [t, t + �] , where � is an integer representing the sol-
vency horizon, � ≤ T − t . We denote by pt the premium collected from policyholders 
and available for investment at time t and suppose that the insurer provides a regulatory 
initial capital of size ct , i.e., pt + ct is the total amount that the insurer invests in t. The 
vector xt = (x1,t,… , xn,t)

� contains the portfolio weights at time t, and it satisfies the 
budget constraint 

∑n

i=1
xi,t = 1 with no short sales allowed, i.e., xi,t ≥ 0 , for i = 1,… , n.

The univariate random variable (r.v.) Yt,t+� represents the insurer’s liability over the 
period [t, t + �] , and we assume that the payment of Yt,t+� occurs in t + � . Then, the 
insurer’s net loss over the solvency horizon is
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where Rt,t+� denotes the gross return vector over [t, t + �] with the ith component 
equal to 

∏�

�=1
Ri,t+�.

The optimization problem has the portfolio weights xt and the capital requirement 
ct as decision variables and minimizes ct subject to two key constraints. One constraint 
is the solvency constraint that imposes a non-positive CVaR for Lt,t+� . Given the confi-
dence level � ∈ (0, 1) , the CVaR of Lt,t+� in t is defined as

where

is the VaR of Lt,t+� in t at level � . This definition of CVaR corresponds to that given 
in Kaas et al. (2008), where the name Tail-Value-at-Risk is used instead of CVaR. 
The CVaR of Lt,t+� in t can also be expressed as

where the positive part is defined as (x)+ = max(x, 0) , and it holds the 
characterization

The second constraint is a portfolio performance constraint defined as

where

is the return on capital over the period [t, t + �] and � is the associated lower bound. 
Hence, the optimization problem with CVaR solvency constraint is given by

Lt,t+� = Yt,t+� − (pt + ct)R
�
t,t+�

xt,

CVaR�

t
(Lt,t+�) =

1

1 − � ∫
1

�

VaR
�

t (Lt,t+�) d�,

VaR
�

t (Lt,t+�) = inf
{
l ∈ ℝ ∶ ℙt(Lt,t+� ≤ l) ≥ �

}

CVaR�

t
(Lt,t+�) = VaR�

t
(Lt,t+�) +

1

1 − �
Et

[(
Lt,t+� − VaR�

t
(Lt,t+�)

)
+

]
,

(1)CVaR�

t
(Lt,t+�) = inf

s∈ℝ

{
s +

1

1 − �
Et

[(
Lt,t+� − s

)
+

]}
.

Et[ROCt,t+�] ≥ � ,

ROCt,t+� = −
Lt,t+�

ct

(2)min
ct ,xt

ct

(3)s.t. CVaR�

t
(Lt,t+�) ≤ 0,

(4)Et[ROCt,t+�] ≥ � ,

(5)1�xt = 1, xt ≥ 0, ct ≥ 0,
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where 0 and 1 are vectors of size n with all the elements equal to 0 and 1, respec-
tively, and xt ≥ 0 means that the inequality must hold element-by-element. By equa-
tion (1), Problem (2)−(5) has the equivalent formulation

and the traditional solution method relies upon approximating the conditional expec-
tation of the CVaR constraint with a Monte Carlo-type estimator that leads to an LP 
problem. Indeed, if we generate m scenarios for Yt,t+� and Rt,t+� , namely Yt,t+�(j) and 
Rt,t+�(j) with j = 1,… ,m , conditional on Ft and set zt = (pt + ct)xt , Problem (6)–(9) 
becomes

and it can be linearised by introducing the non-negative variables y = (y1,… , ym)
� as

(6)min
s,ct ,xt

ct

(7)s.t. s +
1

1 − �
Et

[(
Lt,t+� − s

)
+

] ≤ 0,

(8)Et[ROCt,t+�] ≥ � ,

(9)1�xt = 1, xt ≥ 0, ct ≥ 0,

min
s,ct ,zt

ct

s.t. s +
1

m(1 − �)

m∑
j=1

(
Yt,t+�(j) − R�

t,t+�
(j)zt − s

)
+
≤ 0,

1

m

m∑
j=1

(
R�

t,t+�
(j)zt − Yt,t+�(j)

) ≥ �ct,

1�zt = pt + ct, zt ≥ 0, ct ≥ 0,

min
s,ct ,zt

ct

s.t. s +
1

m(1 − �)

m∑
j=1

yj ≤ 0,

yj ≥ Yt,t+�(j) − R�
t,t+�

(j)zt − s, j = 1,… ,m,

1

m

m∑
j=1

(
R�

t,t+�
(j)zt − Yt,t+�(j)

) ≥ �ct

y ≥ 0, 1�zt = pt + ct, zt ≥ 0, ct ≥ 0.
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When m is too large, solving this LP formulation becomes computationally burden-
some, and alternative approaches are necessary. For instance, Asanga et al. (2014) 
proposed the following semiparametric reformulation

where E
(j)
t [⋅] = Et[⋅�Ft

⋁
�
�
{Rt,t+� = Rt,t+�(j)}

�
] and �t,t+� = Et[Yt,t+�] . The 

symbol 
⋁

 denotes the smallest �-algebra containing the two �-algebras Ft and 
�
(
{Rt,t+� = Rt,t+�(j)}

)
 . By defining the function

the CVaR constraint (11) can be equivalently written as g(s, zt) ≤ 0 . Problem (10)−
(13) is convex because g(s, zt) is a convex function. Indeed, for the convexity of 
g(s, zt) , it is sufficient to prove that the function

is convex in the variables s and zt . Since the positive part is a convex function, we 
can easily verify that the function

is convex too. Then, the convexity of (15) follows because we have a convex func-
tion applied to a linear transformation (see, e.g., Theorem 5.7 in Rockafellar 1970).

To solve Problem (10)–(13), we use an iterative algorithm that, at each iteration, 
requires the gradient, or a subgradient, of the current solution for the CVaR con-
straint. Proposition 1 states that the CVaR constraint is continuously differentiable 
and provides the gradient of g(s, zt) if Yt,t+� has a continuous distribution.1

(10)min
s,ct ,zt

ct

(11)s.t. s +
1

m(1 − �)

m∑
j=1

E
(j)
t

[(
Yt,t+� − R�

t,t+�
(j)zt − s

)
+

] ≤ 0,

(12)
1

m

m∑
j=1

R�
t,t+�

(j)zt − �t,t+� ≥ �ct,

(13)1�zt = pt + ct, zt ≥ 0, ct ≥ 0,

(14)g(s, zt) = s +
1

m(1 − �)

m∑
j=1

E
(j)
t

[(
Yt,t+� − R�

t,t+�
(j)zt − s

)
+

]
,

(15)E
(j)
t

[(
Yt,t+� − R�

t,t+�
(j)zt − s

)
+

]

h(j)(l) = E
(j)
t

[(
Yt,t+� − l

)
+

]
,

1 Even though the following result holds under more general dependence structures, we assume that the 
r.v. Y

t,t+� is independent of the �-algebra F
t

⋁
�
�
R

t,t+�

�
.
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Proposition 1 When the r.v. Yt,t+� is continuous with cumulative distribution func-
tion FYt,t+�

 , the function g(s, zt) is continuously differentiable with gradient

where

for j = 1,… ,m.

Proof Since Yt,t+� is a continuous r.v., Lemma 1 of Rockafellar and Uryasev (2000) 
ensures the differentiability of h(j)(l) = E

(j)
t

[(
Yt,t+� − l

)
+

]
 with derivative

Then, the statement of the proposition about the gradient of the function g(s, zt) is 
just a consequence of the classical chain rule of multivariate calculus. The compo-
nents of ∇g(s, zt) are all continuous functions, hence the function g(s, zt) is continu-
ously differentiable.

In general, for any integrable r.v. Yt,t+� , the function g(s, zt) admits the 
subdifferential

where w(j) now represents the subdifferential of the function 
h(j)(l) = E

(j)
t

[(
Yt,t+� − l

)
+

]
 evaluated at point R�

t,t+�
(j)zt + s . Specifically, w(j) is the 

interval [a, b] where

When the distribution of Yt,t+� does not have a probability mass at point 
R�

t,t+�
(j)zt + s , the subdifferential �g(s, zt) is only composed of the gradient ∇g(s, zt) 

with the expression specified in Proposition 2.
To solve Problem (10)−(13), we propose applying the Kelley-Cheney-

Goldstein (KCG) algorithm (see Kelley 1960). We assume that it holds 
(s, zt) ∈ R = {(s�, z�) ∶ |s�| ≤ �, 0 ≤ z�

1
≤ �,… , 0 ≤ z�

n
≤ �} , with 𝜆 > 0 large 

∇g(s, zt) =

⎡
⎢⎢⎢⎢⎣

1 +
1

m(1−�)

∑m

j=1
w(j)

1

m(1−�)

∑m

j=1

�
w(j)

∏�

k=1
R1,t+k(j)

�
⋮

1

m(1−�)

∑m

j=1

�
w(j)

∏�

k=1
Rn,t+k(j)

�

⎤
⎥⎥⎥⎥⎦
,

w(j) = −1 + FYt,t+�
(R�

t,t+�
(j)zt + s),

d

dl
h(j)(l) = −1 + FYt,t+�

(l).

�g(s, zt) =

⎡⎢⎢⎢⎢⎣

1 +
1

m(1−�)

∑m

j=1
w(j)

1

m(1−�)

∑m

j=1

�
w(j)

∏�

k=1
R1,t+k(j)

�
⋮

1

m(1−�)

∑m

j=1

�
w(j)

∏�

k=1
Rn,t+k(j)

�

⎤⎥⎥⎥⎥⎦
,

a = −1 + ℙ(Yt,t+𝜏 < R�
t,t+𝜏

(j)zt + s) and b = −1 + ℙ(Yt,t+𝜏 ≤ R�
t,t+𝜏

(j)zt + s).
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enough, for each feasible point (s, ct, zt) . Then, the KCG algorithm for Problem 
(10)–(13) is Algorithm 1.

Proposition 2 states the convergence of the KCG algorithm for Problem 
(10)–(13).

Proposition 2 Suppose that the feasible set G of Problem (10)–
(13) is nonempty and that there exists a positive number � such that 
(s, zt) ∈ R = {(s�, z�) ∶ |s�| ≤ �, 0 ≤ z�

1
≤ �,… , 0 ≤ z�

n
≤ �} for each (s, ct, zt) ∈ G . 

Furthermore, suppose that there exists a positive number K such that

Let (s0, c0
t
, z0

t
) be an optimal solution to Problem (16)–(19) and (sk+1, ck+1

t
, zk+1

t
) an 

optimal solution to Problem (20)–(24), then the sequence {(sk, ck
t
, zk

t
)} contains a 

subsequence converging to an optimal solution for Problem (10)–(13).

sup{||�|| ∶ � ∈ �g(s, zt), (s, zt) ∈ R} ≤ K.
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Proof Let S0 denote the feasible set of Problem (16)–(19) and Sk+1 the feasible set of 
Problem (20)–(24), then

where G = {(s, ct, zt) ∶ g(s, zt) ≤ 0} , and

because, by definition of subgradient (see, e.g., Section 23 in Rockafellar 1970),

where (sk, zk
t
) ∈ R and �k ∈ �g(sk, zk

t
).

We split the sequence {(sk, ck
t
, zk

t
)} into the two sequences {ck

t
} and {(sk, zk

t
)} . 

Since Sk−1 ⊂ Sk−2 ⊂ ⋯ ⊂ S0 , and the decision variable ct corresponds to the objec-
tive function in Problem (10)–(13), the sequence {ck

t
} is monotone increasing. More-

over, the sequence {ck
t
} is bounded since

and we conclude that {ck
t
} converges to a point c∗ . Hence, if {(sk, zk

t
)} contains a 

subsequence {(skj , zkjt )} converging to a point (s∗, z∗) ∈ G� = {(s, zt) ∶ g(s, zt) ≤ 0} , 
then {(skj , ckjt , z

kj
t )} converges to (s∗, c∗, z∗) that solves Problem (10)–(13). Indeed, 

the point (s∗, c∗, z∗) belongs to G because (s∗, c∗, z∗) ∈ G and it is an accumulation 
point for the compact set S0 , so that (s∗, c∗, z∗) ∈ S0 . Moreover, there could not exist 
another point (s�, c�, z�) ∈ G with c� < c∗ because, otherwise, by the convergence of 
the monotone increasing sequence {ckjt } to c∗ , there would exist an index i such that 
c
kj
t > c′ for each j > i , thus contradicting the relation in (16).

Suppose now that {(sk, zk
t
)} does not have a subsequence converging to a point in 

G′ . Then, there exists an 𝛼 > 0 , independent of k, such that

for h = 0, 1,… , k . If (sk+1, ck+1
t

, zk+1
t

) solves Problem (20)–(24), then

for h = 0, 1,… , k . From the last two relations and the Cauchy-Schwarz inequality, it 
follows that

for h = 0, 1,… , k . Hence, for every subsequence {kj} of indices, we have

G = S0 ∩ G,

(16)G ⊂ Sk+1, ∀k ≥ 0,

g(s, zt) ≥ g(sk, zk
t
) + (�k)�

([
s

zt

]
−

[
sk

zk
t

])
, ∀(s, zt) ∈ R,

0 ≤ ck
t
= 1�zk

t
− pt ≤ n� − pt, ∀k,

g(sh, zh
t
) ≥ �,

g(sh, zh
t
) + (�h)�

([
sk+1

zk+1
t

]
−

[
sh

zh
t

])
≤ 0,

� ≤ g(sh, zh
t
) ≤ (�h)�

([
sh

zh
t

]
−

[
sk+1

zk+1
t

])
≤ K

|||
|||(s

h, zh
t
) − (sk+1, zk+1

t
)
|||
|||,
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that is, {(sk, zk
t
)} does not have any Cauchy subsequence and this aspect contradicts 

that {(sk, zk
t
)} ⊂ R is bounded.

3  Generation of asset log‑return scenarios and liability modelling

To generate asset log-return scenarios, we use a moment-matching method. Given a 
sample of daily log-returns, we compute sample means, standard deviations, skew-
ness, kurtosis, and correlations denoted by � , � , � , � , and � , respectively. Assuming 
independent and stationary increments, we use the following formulae for sample 
statistics referring to a different time scale:

where � is the number of days in the new time scale. Given these target moments and 
correlations, to generate scenarios of log-returns over the period [t, t + �] , we use the 
moment-matching method of Høyland et al. (2003) that ensures the matching of the 
first four moments for the marginal distributions and the matching of all the correla-
tions. If Vt,t+�(j) denotes the jth log-return scenario, then Rt,t+�(j) = exp(Vt,t+�(j)) 
is the jth gross return scenario, where the exponential function is applied element-
by-element. To evidence the differences with respect to the Asanga et  al. (2014) 
approach, in Appendix B, we present an analysis where the generation of monthly 
log-returns is carried out with a multivariate generalized autoregressive conditional 
heteroskedastic (MV-GARCH) model, in particular, with the dynamic conditional 
correlation (DCC) model introduced by Engle (2002).

We model historical insurance data through three different continuous distributions: 
the lognormal distribution, the gamma distribution, and a mixture of Erlang distribu-
tions with a common scale parameter. The first two probability distributions are usu-
ally employed to fit historical data but they are unimodal, while empirical distributions 
show multimodal behaviour and fatter tails. In this sense, mixtures of Erlang distri-
butions with a common scale parameter are more appropriate to capture the shape of 
empirical distributions. Moreover, Tijms (1994) proved that this class of distributions is 
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dense in the space of positive continuous distributions and can be used to approximate 
any positive continuous distribution.

We report in Appendix  A the definitions of the three probability distributions 
applied to describe the insurer’s liability. Here, we express the function g of Eq. (14) as

and give the expression of h(⋅) corresponding to each liability distribution:

• If Yt,t+� is lognormally distributed with parameters � ∈ ℝ and 𝜎 > 0 , then 

 where Φ(⋅) denotes the cumulative distribution function of a standard normal 
distribution;

• If Yt,t+� is gamma distributed with shape parameter 𝛽 > 0 and scale parameter 
𝜃 > 0 , then 

 where FG(⋅;�, �) denotes the cumulative distribution function of a gamma r.v. 
with shape parameter � and scale parameter �;

• if Yt,t+� is a mixture of � Erlang distributions with shape parameters �1,… , �� and 
a common scale parameter 𝜃 > 0 , then 

 where �1,… , �� are the mixture weights, and FG(⋅;�, �) denotes, as before, the 
cumulative distribution function of a gamma distribution with shape parameter � 
and scale parameter �.

g(s, zt) = s +
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4  Empirical analysis

In this section, we present an empirical analysis to show the differences that emerge 
when applying the optimization problem with CVaR constraint of Sect. 2 under the 
three liability distributions considered in Sect. 3. To generate asset log-returns, as 
explained in Sect. 3, we use the moment-matching method of Høyland et al. (2003). 
Similarly to Asanga et al. (2014), we perform both an efficient frontier analysis and 
an out-of-sample analysis. The additional analysis provided in Appendix  B is an 
out-of-sample analysis with a DCC-GARCH model that allows us to investigate if a 
model with time-varying conditional volatilities and correlations (like the one used 
in Asanga et al. 2014) entails significant differences in the capital requirements and 
portfolio allocations with respect to the moment-matching method of Høyland et al. 
(2003).

4.1  Data description

We consider portfolios composed of the S&P 500 index, the iShares Barclays 1-3 
Year Treasury Bond ETF (SHY), and the iShares iBoxx $ Investment Grade Corpo-
rate Bond ETF (LQD).

We download daily adjusted closing prices from January 2010 to December 2020, 
for a total of 2768 observations, and to this aim we use the function getSymbols of 
the R package quantmod of Ryan and Ulrich (2022). As the source database, we 
download the asset prices from the website Yahoo! Finance. Table 1 reports descrip-
tive statistics about the daily log-returns. We observe that S&P 500 has negative 
skewness and that LQD has the largest kurtosis. We split the computed daily log-
returns into two samples, Sample A and Sample B. Sample A contains the observa-
tions from January 2010 to December 2015, that is, over the first six years, and we 
use it for the efficient frontier analysis. Sample B contains the remaining observa-
tions over the last five years, from January 2016 to December 2020, and we use it for 
the out-of-sample analysis.

Regarding the insurer’s liability, we use the data set danishuni of the R package 
CASdatasets of Dutang and Charpentier (2020) that comprises 2167 fire losses in 
millions of Danish krone from January 1980 to December 1990 adjusted for infla-
tion to reflect year-1985 values. We convert these values in millions of U.S. dollars 
according to the exchange rate registered on 31 December 1985, which is 0.11198, 

Table 1  Descriptive statistics about daily log-returns from January 2010 to December 2020 for the assets 
S&P 500, SHY, and LQD

Asset Min. Max. Mean S.D. Skewness Kurtosis

S&P 500 –0.12765 0.08968 0.00043 0.01106 –0.86342 19.33641
SHY –0.00439 0.00544 0.00005 0.00059 0.53278 9.60533
LQD –0.05132 0.07131 0.00024 0.00448 0.32077 58.12501
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aggregate the losses every month, and apply the annual inflation index so that the 
first monthly loss reflects the January 2010 value, the second monthly loss the Feb-
ruary 2010 value, and so on, up to the last monthly loss that reflects the December 
2020 value. Like the asset log-returns, we split these monthly losses into two sam-
ples. Sample A′ consists of monthly losses from January 2010 to December 2015, 
whereas Sample B′ consists of monthly losses from January 2016 to December 
2020. Table 2 reports descriptive statistics for the data set danishuni after the adjust-
ments detailed above.

The choice of a liability data set that spans a period different from that of the 
asset log-returns and quite far in time is mainly due to the lack of data sets made 
available by insurance companies. Our adjustments to the data set danishuni assume 
the independence between liabilities and log-returns. The representativeness of the 
adjusted data set could be limited since there is no evidence that more recent lia-
bility data sets have similar characteristics, but we think that working with simu-
lated losses would be less realistic than using liabilities originated from observed 
data. The period January 2010 - December 2020, chosen to compute the daily log-
returns, has seen a growth of the capital markets if we exclude year 2010 (when 
the sovereign debt crisis in Europe was still ongoing), Black Monday 2011 (which 
refers to the date August 8, 2011, when U.S. and global stock markets crashed in 
the aftermath of the credit rating downgrade of the U.S. sovereign debt by Standard 
and Poor’s), and year 2020 (when the COVID-19 outbreak started). Referring to this 
period, portfolios designed to minimize capital requirements could have significant 
allocations in assets with higher returns. As a consequence, optimal portfolios are 
generally composed of the index S&P 500 and asset LQD, and only in a few cases 
they also include the less risky asset SHY.

4.2  Parameter estimation for the liability distributions

We use the maximum likelihood estimator (MLE) for the three theoretical distribu-
tions considered. While applying the MLE to the lognormal and gamma distribu-
tions is a standard task, it is less straightforward for a mixture of Erlang distribu-
tions with a common scale parameter. To this aim, we use the approach proposed 
by Lee and Lin (2010), who developed a modified expectation-maximization (EM) 
algorithm tailored to the class of mixtures of Erlang distributions with a common 
scale parameter. Their procedure consists of three parts that are the standard EM 
algorithm, a parameter initialisation using the approximation of Tijms (1994), and 
an adjustment and diagnosis of parameters. Table  3 reports the estimation results 
for Sample A′ and, in particular, shows, for each distribution, the estimates with 

Table 2  Descriptive statistics about the data set danishuni of the R package CASdatasets of Dutang and 
Charpentier (2020) after some adjustments to have monthly losses in millions of U.S. dollars and con-
cerning the period January 2010 - December 2020

Min. Max. Mean S.D. Skewness Kurtosis

3.59614 69.15245 13.88274 9.52692 3.50261 19.23287
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the corresponding standard errors in parenthesis, the log-likelihood value at the 
estimated vector of parameters, the Bayesian information criterion (BIC), and the 
Kolmogorov-Smirnov (KS) test. Before applying the MLE to Sample A′ , we use 
the annual inflation index to have losses reflecting monetary amounts for year 2015. 
The p-values of the computed KS statistics are in parentheses, and we observe that 
they do not imply the rejection of any of the three distributions. The modified EM 
algorithm of Lee and Lin (2010) returns a mixture of only two Erlang distributions 
for Sample A′ after adjusting it to have amounts reflecting year-2015 values. The 
gamma distribution fits the sample worse than the other two distributions since it 
has the highest KS statistic, largest negative loglikelihood, and largest BIC. For the 
lognormal distribution and the mixture of two Erlang distributions, we have con-
trasting results because the lognormal distribution has a slightly smaller KS statistic 
but a larger negative loglikelihood. However, the lognormal distribution has a lower 
BIC than the selected mixture of Erlang distributions, due to the fact that the former 
has only two parameters and the latter has five. To investigate further the goodness-
of-fit of the three distributions and examine the differences in fitting the sample, 
in Fig. 1 we display the histogram of the log-transformed data with the three theo-
retical curves. We see that the mixture of two Erlang distributions is the only one to 
admit values as large as the maximum loss in the sample. Indeed, the last rectangle 
on the right side of the histogram corresponds to the highest loss, and only the green 
curve, the one corresponding to the mixture of two Erlang distributions, presents 
density values that take this rectangle into account. The Q-Q plots in Fig. 2 confirm 
this result since the mixture of two Erlang distributions displays right-tail quantiles 
close to the empirical quantile corresponding to the highest loss in the sample.

4.3  CVaR constraint optimization

In this section, we solve the optimization Problem (10)–(13) by Algorithm  1. 
The algorithm has been implemented in the language and environment for statis-
tical computing R, and it uses the function simplex of the R package glpkAPI of 
Gelius-Dietrich (2021) to solve the LP problem at each iteration. The confidence 

Table 3  Parameters estimates of the three distributions taken into account for Sample A′ . The losses in 
Sample A′ are adjusted to reflect year-2015 values. The table reports in parentheses the standard errors 
below the estimates and the p-values below the KS test statistics

Lognormal �̂� �̂� Log L BIC KS test
2.3548 0.5253 225.3566 459.2666 0.0612
(0.0619) (0.0438) (0.9350)

Gamma k̂ �̂� Log L BIC KS test

3.3735 3.6486 231.4724 471.4982 0.1033
(0.5375) (0.6269) (0.3993)

Mixture �̂�
1

�̂�
2

k̂
1

k̂
2

�̂� Log L BIC KS test

0.9861 0.0139 5 33 2.2840 221.7991 464.9815 0.0700
(0.2028) (0.0020) (0.1561) (0.8478)
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level for the CVaR is � = 99% , the standard value imposed by the Swiss Solvency 
Test. In the implementation of Algorithm 1, we set � = 1000 and � = 10E-11 . The 
solvency horizon is � = 21 since the observed losses are on a monthly basis. Simi-
larly to Asanga et al. (2014), we apply the following strategy when solving Problem 
(10)–(13): 

1. Compute the sample statistics needed for the moment-matching method of Høy-
land et al. (2003) and estimate the liability parameters for the three theoretical 
distributions as explained in Sect. 4.2.

2. Apply the expected premium principle to calculate the insurance premium: 
pt = (1 + �)E[Yt,t+�] , where the relative security loading factor � equals 0.1.

3. Generate m = 10000 scenarios Rt,t+�(j) , j = 1,… ,m , for the asset gross returns 
by using the moment-matching method of Høyland et al. (2003) to simulate asset 
log-returns with a monthly time scale and taking the exponential of the simulated 
log-returns.

4. Solve the optimization problem under the three theoretical distributions for the 
insurer’s liability and find the optimal required capital c∗

t
 and optimal portfolio 

allocations x∗
i,t

 , i = 1, 2, 3.

4.3.1  Efficient frontier analysis

We build efficient frontiers by applying the above strategy for different lower levels, 
� , of the expected ROC. To obtain the solution corresponding to the minimum value 
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Fig. 1  Histogram of the log-transformed data for Sample A′ with the addition of the theoretical curves. 
The losses in Sample A′ are adjusted to reflect year-2015 values
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of � , we solve Problem (10)–(13) without the portfolio performance constraint. 
The sample statistics used to generate asset log-returns with the moment-matching 
method of Høyland et al. (2003) are displayed in Table 4, and they are computed 
by applying formulae (26)–(30) to daily log-returns in Sample A with � = 21 . The 
liability parameters are estimated by using Sample A′ and by adjusting the losses in 
order to reflect year-2015 values. These estimates are reported in Table 3.

We analyse the behaviour of the optimal capital required c∗
t
 and optimal portfolio 

allocations x∗
i,t

 , i = 1, 2, 3 , under the three distributions. In Fig. 3, we plot the three 
efficient frontiers and observe that the optimal required capital c∗

t
 differs among the 

three distributions. In particular, the mixture of two Erlang distributions implies lev-
els of c∗

t
 much higher than those of the other two distributions. This result is rea-

sonable because, contrary to the other two distributions, the mixture of two Erlang 
distributions captures better the losses close to the maximum value present in the 
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sample. The liability distribution also has an impact on the expected ROC. We see 
that, under the mixture of two Erlang distributions, the expected ROC values are 
smaller than those obtained under the other two distributions. To complete this effi-
cient frontier analysis, we plot in Fig. 4 the portfolio allocations for the three liability 

Table 4  Sample statistics 
computed with formulae (26)–
(30) using daily log-returns in 
Sample A and � = 21

Asset Mean S.D. Skewness Kurtosis

S&P 500 0.00821 0.04600 –0.09531 3.20161
SHY 0.00068 0.00245 0.02194 3.12684
LQD 0.00446 0.01622 –0.11963 3.10271

Correlation SHY LQD
S&P 500 –0.30348 –0.10616
LQD 0.54418
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distributions. We see that all the three distributions do not provide investment in the 
asset SHY but invest the available capital in the other two assets. Specifically, we 
notice that, as the expected ROC level increases, the S&P 500 allocations increase, 
and the LQD allocations decrease.

4.3.2  Out‑of‑sample analysis

We perform an out-of-sample analysis that relies on a rolling-window approach 
for the asset log-returns and an expanding-window approach for the insurer’s 
losses when accomplishing a new optimization. In this way, we execute an out-of-
sample analysis that differs from Asanga et al. (2014), who apply a rolling-win-
dow approach even for the insurer’s liabilities. We do not exclude any observed 
liability when estimating loss-distribution parameters because we think that large 
losses are rare and a rolling-window approach could underestimate their reap-
pearance. In Appendix  C, we perform an out-of-sample analysis that uses a 
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rolling-window approach for the insurer’s liabilities. This further analysis high-
lights how the large-loss underestimation is concrete when applying a rolling-
window approach.

The rolling-window length corresponds to six years of daily observations. 
Using Samples A and A′ , we first compute the optimal solutions (c∗

t
, x∗

t
) for the 

period [t, t + �] by applying Steps 1-4 detailed above. Then, we build a new sam-
ple for asset log-returns by eliminating the observations of the first month in 
Sample A and including those of the first month in Sample B. In this way, we 
carry out a monthly portfolio rebalancing. Regarding the insurer’s liabilities, we 
build the new sample by not excluding any observation from Sample A′ and 
including the first observation from Sample B′ . Furthermore, we adjust the losses 
of this new sample to reflect values of the year of the last loss, which is 2016 in 
this case. Given the new samples for asset log-returns and losses, we recompute 
the new optimal solutions (c∗

t+�
, x∗

t+�
) for the next period by applying Steps 1-4. 

Repeating the sample and optimization procedures up to the end of Samples B 
and B′ , we end up with the collection of optimal solutions (c∗

t+(�−1)�
, x∗

t+(�−1)�
) , 

� = 1,… ,Ψ , where Ψ is the length of Sample B′ . To avoid optimization prob-
lems with no feasible solution, we do not set a lower bound for the expected ROC. 
Figures 5 and 6 and Table 5 display the results.

Figure  5 shows how the optimal total investment pt + c∗
t
 evolves over time. 

The lognormal and gamma distributions have a very similar evolution even 
though the lognormal distribution usually requires, on any investment date, an 
optimal investment that is larger than that of the gamma distribution. The mix-
ture of Erlang distributions displays an evolution that differs from those of the 
other two distributions. In detail, the optimal total investment is much higher 
on each investment date, and its variation between two consecutive months has 
a more pronounced intensity even though it is in the same direction showed by 
the graphs of the other two distributions. Figure 6 shows the evolutions of the 
optimal allocations x∗

i,t
 , i = 1, 2, 3 . For the lognormal and gamma distributions, 

we observe that the optimal portfolios invest only in the two assets S&P 500 
and LQD. To be precise, there are a few exceptions in 2020. Indeed, there is one 
date where the lognormal distribution invests a small percentage of the optimal 
total investment in the asset SHY and some dates where it is the gamma distri-
bution to put money into the asset SHY. The mixture distribution never invests 
in the asset SHY, and there is a long period of time, from July 2016 to July 
2019, with investments only in the asset S&P 500. These results collide with 
those of Asanga et al. (2014) that instead found, in their out-of-sample analysis, 
significant allocations in the asset SHY. To justify this difference in the results, 
we observe that we work with prices on a different period, use a different loss 
data set, and generate asset log-returns with a different model. We think that 
what makes the real difference in the two experiments is the way of generat-
ing asset log-returns. Asanga et al. (2014) chose to model asset log-returns with 
three MV-GARCH models by ignoring the mean effect present in the models. 
On the contrary, we use a moment-matching method that does not ignore the 
asset means. Likely, this dissimilarity in modelling asset means could be the 
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reason for such different results. To confirm this explanation of the difference 
in the two analyses, we performed some experiments (results are available on 
request) where we generated asset log-returns with a DCC-GARCH model under 
the assumption of zero mean for each asset, and we obtained that most of the 
optimal capital was allocated in the asset SHY.

Table 5 reports some statistics about the realized insurer’s wealth at the end of 
each month from January 2016 to December 2020 under the three liability distri-
butions. That is, the table gives summary statistics for the differences
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where r� is the vector of the realized asset gross returns in the � th month, y� is the 
realized insurer’s liability in the � th month, and z∗

�−1
 is the vector containing the 

optimal amounts invested in each asset at the beginning of the � th month. It is worth 
highlighting that only the mixture distribution ensures a positive insurer’s wealth in 
each month. Indeed, for the other two distributions, there are two dates where the 
insurer’s wealth is negative and the insurer faces bankruptcy.
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Fig. 6  Optimal asset allocations

Table 5  Statistics about the realized insurer’s wealth at the end of each month from January 2016 to 
December 2020

Distribution Min. Max. Mean S.D. Skewness Kurtosis

Lognormal –17.78315 43.62607 29.32046 10.36708 –2.74788 12.96112
Gamma –24.52729 36.87083 23.05091 10.28401 –2.88796 13.69663
Mixture 11.95836 77.69185 64.75780 11.30090 –2.96548 13.97982
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5  Conclusions

In this article, we extend the optimization problem with CVaR constraint of Asanga 
et al. (2014) to any integrable liability distribution. To solve the problem, we pro-
pose applying the Kelley-Cheney-Goldstein algorithm, and we give proof of the con-
vergence of the algorithm. We adopt three distributions for modelling the insurer’s 
liability: the lognormal distribution, the gamma distribution, and a mixture of Erlang 
distribution with a common scale parameter. The results show that the choice of the 
liability distribution has a strong impact on the optimal capital and asset allocations. 
Specifically, the mixture distribution offers a higher protection for what concerns 
our data set of losses since, contrary to the other two distributions, in the out-of-
sample analysis the insurer’s wealth never becomes negative at the end of a month. 
Clearly, this higher protection is at the cost of a greater optimal capital. The optimal 
allocations of our experiments usually do not include the asset SHY, which is the 
least risky because it is a fund investing in Treasury Bonds with a maturity from 1 to 
3 years. When working with the mixture distribution, we often obtain that the opti-
mal investment should be just in the asset S&P 500. Our results differ from those of 
Asanga et al. (2014), who found significant allocations in the asset SHY. This differ-
ence in the results is probably due to the mean effect in modelling asset log-returns 
because the analysis in Asanga et al. (2014) ignores it, whereas our empirical appli-
cation does not. As discussed in Sect. 4.1, the almost total absence of the asset SHY 
in the optimal portfolios is mainly due to the chosen period from January 2010 to 
December 2020, which was a period of growth for capital markets. Hence, optimal 
portfolios minimizing the capital requirement tend to contain significant allocations 
in the assets with higher returns. Different periods characterized by little growth and 
turbulence in the markets, like the one used by Asanga et al. (2014), should return 
optimal portfolios with allocations in the less risky assets.

Future developments of the optimization problem proposed in this article could 
regard its application with other liability distributions and asset log-return mod-
els. For instance, it may be applied in the case of huge losses when the insurer’s 
liability is modelled with a generalized Pareto distribution, which is a distribution 
that finds justification in the Extreme Value Theory (EVT) (see, e.g., Embrechts 
et al. 2013). Regarding the asset log-return models, it would be interesting to con-
sider as future research alternative models like those proposed by Mudry and Par-
aschiv (2016) and Koliai (2016) that use the EVT to model the marginal distribu-
tions of the returns and copula functions to capture the dependence structures. 
Finally, other developments could go towards the definition of multistage models 
that give the possibility of changing the asset allocations at intermediate dates.

Appendix A

In this Appendix, we report the definitions of the three probability distributions 
used to describe the insurer’s liability. 
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Lognormal distribution. 
 The r.v. Y is lognormal distributed with parameters � ∈ ℝ and 𝜎 > 0 if the transfor-
mation X = ln Y is normally distributed with mean � and standard deviation � . Then, 
the density function of Y is given by 

Gamma distribution. 
 The r.v. Y is gamma distributed with shape parameter 𝛽 > 0 and scale parameter 
𝜃 > 0 if it has the density function 

 where Γ(�) denotes the gamma function evaluated at � : 

Mixture of Erlang distributions with a common scale parameter. 
 We recall that an Erlang distribution is a gamma distribution whose shape parameter 
� is a positive integer. The r.v. Y is a mixture of � Erlang distributions with a com-
mon scale parameter 𝜃 > 0 if it has the density function 

 where �1,… , �� are positive real numbers that sum up to 1, and �1,… , �� are posi-
tive integers.

Appendix B

In this appendix, we model daily log-returns as in Asanga et al. (2014), who used the 
class of DCC-GARCH processes introduced by Engle (2002). Asanga et  al. (2014) 
evaluated the performance of the CVaR optimization problem under three multivariate 
GARCH models, i.e., the DCC model of Engle (2002), the conditional constant cor-
relation model of Bollerslev (1990), and a model with uncorrelated assets. Their results 
confirm the superiority of the DCC model of Engle (2002).

According to the DCC model, asset daily log-returns follow the process

where mt+1 is the n-dimensional Ft-measurable conditional mean log-return vec-
tor, and �t+1 = (�1,t+1 … , �n,t+1)

T has a conditionally multivariate normal distri-
bution with mean 0 and covariance matrix Ht+1 , that is, �t+1|Ft ∼ N(0,Ht+1) . The 
DCC structure allows us to separate the dynamics for the time-varying conditional 

fY (y) =
1

y𝜎
√
2𝜋

exp

�
−
(ln(y) − 𝜇)2

2𝜎2

�
, y > 0.

fY (y) =
y𝛽−1e−y∕𝜃

𝜃𝛽Γ(𝛽)
, y > 0,

Γ(�) = ∫
+∞

0

t�−1e−tdt.

fY (y) =

𝜛∑
i=1

𝛼i
y𝛽i−1e−y∕𝜃

𝜃𝛽i(𝛽i − 1)!
, y > 0,

(B1)logRt+1 = mt+1 + �t+1,
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variances of each asset from the dynamics for the time-varying conditional correla-
tion matrix. Specifically, we have

where the elements of the n × n diagonal matrix Dt+1 follow the standard 
GARCH(1,1) processes

The matrix Σt+1 , whose element in the ith row and jth column is 
�ij,t+1 = qij,t+1q

−1∕2

ii,t+1
q
−1∕2

jj,t+1
 , represents the time-varying conditional correlation matrix 

of the log-return vector Rt+1 . The matrix Qt+1 , formed by elements qij,t+1 , for 
i, j = 1,… , n , follows the GARCH(1,1) process specified in (B2), where the process 
ut is the n × 1 vector of devolatilized but correlated innovations (i.e., ui,t = h

−1∕2

i,t
�i,t ), 

and Q is the unconditional covariance matrix of ut . We assume that the conditions 
required for covariance stationarity and positive definiteness of Ht+1 , for any t, are 
satisfied by the univariate GARCH parameters in (B3), �i , �i , and �i , and by the 
DCC parameters in (B2), �1 and �2.

To estimate the parameters of a DCC model, first we need to consider the speci-
fication of the conditional mean vector mt+1 in Eq. (B1). Even though there are 
many ways to accomplish this task, we set mt+1 simply equal to the vector of sample 
means to see how time-varying conditional variances and correlations affect capi-
tal requirements and portfolio allocations in comparison with the moment-matching 
method of Høyland et  al. (2003). For the other model parameters, we follow the 
two-stage maximum likelihood estimator (MLE) algorithm proposed by Engle and 
Sheppard (2001). Then, in the first stage, the univariate GARCH parameters are esti-
mated by maximizing the log-likelihood function

where K is the sample size and the conditional correlation matrix of Rk , Σk , is 
assumed to be the identity matrix. In the second stage, the DCC parameters are 
estimated by maximizing the log-likelihood function (B4) with the correct speci-
fication of Σk . It means that, in the second stage, only the parameters �1 and �2 are 
estimated. To perform this two-stage estimation procedure, we use the function 
dccfit of the R package rmgarch of Ghalanos (2019). Table 6 reports the estimates 
for Sample A. We remark that all the three univariate series display a high degree 
of persistence, being � + � = 0.9599 for S&P 500, � + � = 0.9679 for SHY, and 
� + � = 0.9770 for LQD. A similar persistence level holds for the DCC parameters 
since �1 + �2 = 0.9276.

(B2)

Ht+1 =D
1∕2

t+1
Σt+1D

1∕2

t+1
,

Dt+1 = diag(h1,t+1,… , hn,t+1),

Σt+1 = diag(q
−1∕2

11,t+1
,… , q

−1∕2

nn,t+1
)Qt+1 diag(q

−1∕2

11,t+1
,… , q

−1∕2

nn,t+1
),

Qt+1 = (1 − �1 − �2)Q + �1utu
T
t
+ �2Qt,

(B3)hi,t = �i + �i�
2
t−1

+ �ihi,t−1, i = 1,… , n.

(B4)log L = −
1

2

K∑
k=1

(
log |Hk| + �

T
k
H−1

k
�k

)
,
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In this appendix, we display only the results of the out-of-sample analysis detailed 
in Sect. 4.3.2. To solve Problem (10)–(13), we apply the strategy laid out in Sect. 4.3 
by generating monthly log-return scenarios with a DCC model. Figure 7 displays the 
evolutions of the optimal total investments for the three liability distributions from 
January 2016 to December 2020. We observe that they are very similar to those in 
Fig. 5, where we use the moment-matching method of Høyland et al. (2003). Fig-
ure 8 shows how the portfolio allocations evolve for the three liability distributions. 
As in Fig. 6, we observe that the investment in the asset SHY is almost always zero 
and the mixture of Erlang distributions puts all the total investment into the index 
S&P 500 in many months.

Appendix C

In this appendix, we show an out-of-sample analysis where, as in Asanga et  al. 
(2014), we apply a rolling-window approach to both the asset log-returns and the 
insurer’s losses. Hence, this analysis is different from the out-of-sample analysis in 
Sect. 4.3.2, where we apply an expanding-window approach to the insurer’s losses.

The rolling-window length is six years. We use Samples A and A′ to compute the 
optimal solutions (c∗

t
, x∗

t
) for the period [t, t + �] by applying Steps 1-4 detailed in 

Sect. 4.3. Then, to build the new sample of asset log-returns, we eliminate the obser-
vations in the first month of Sample A and include those in the first month of Sample 
B, while, to build the new sample of losses, we eliminate the first observation in 
Sample A′ and include the first one in Sample B′ . The new sample of losses is 
adjusted to reflect values of the year of the last loss, which is 2016 in this case. 
Observe that we are carrying out a monthly portfolio rebalancing. Given the new 
samples for asset log-returns and losses, we recompute the new optimal solutions 

Table 6  Parameters estimates 
with standard errors in 
parentheses for the DCC-
GARCH model when using 
daily log-returns of the assets 
S&P 500, SHY, and LQD 
observed from January 2010 to 
December 2015 (Sample A)

Estimation stage Model parameters

Univariate Garch Asset � � �

S&P 500 3.95E-06 0.1385 0.8214
(7.84E-06) (0.0241) (0.0645)

SHY 4.66E-09 0.0641 0.9038
(1.92E-07) (0.0137) (0.0205)

LQD 2.74E-07 0.0449 0.9321
(5.71E-07) (0.0201) (0.0216)

DCC �
1

�
2

0.0378 0.8898
(0.0131) (0.0374)
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(c∗
t+�

, x∗
t+�

) for the next period by applying Steps 1-4 of Sect. 4.3. Repeating the sam-
ple and optimization procedures up to the end of Samples B and B′ , we end up with 
the collection of optimal solutions (c∗

t+(�−1)�
, x∗

t+(�−1)�
) , � = 1,… ,Ψ , where Ψ is the 

length of Sample B′ . As in Sect. 4.3.2, to avoid optimization problems with no feasi-
ble solution, we do not set a lower bound for the expected ROC. Figure 9 displays 
the evolution of the optimal total investment pt + c∗

t
 , Fig. 10 the evolutions of the 

optimal total allocations x∗
i,t

 , i = 1, 2, 3 , and Table 7 the statistics about the realized 
insurer’s wealth at the end of each month.

Looking at Fig. 9, we observe that, for all the three distributions, there is a drop 
in optimal total investment around mid-2016. Indeed, a significant loss is no longer 

2016 2018 2020

42
44

46
48

50
Lognormal

Investment Date

O
pt

im
al

 T
ot

al
 In

ve
st

m
en

t

2016 2018 2020

38
40

42
44

Gamma

Investment Date

O
pt

im
al

 T
ot

al
 In

ve
st

m
en

t

2016 2018 2020

76
78

80
82

84

Mixture

Investment Date

O
pt

im
al

 T
ot

al
 In

ve
st

m
en

t

Fig. 7  Optimal total investments pt+(�−1)� + c∗
t+(�−1)�

 , � = 1,… ,Ψ



 A. Staino et al.

1 3

   12  Page 28 of 32

in the sample, and the optimization problems return optimal capital requirements 
smaller than the expanding-window approach. This evidence does not character-
ize Fig.  5, where the expanding-window approach holds this significant loss, and 
the optimization problems provide optimal capital requirements not too different 
from the previous ones. An upward jump occurs in year 2019. Indeed, a significant 
loss has entered the sample so that the optimization problems return higher capital 
requirements. We can also observe the entry of this large loss into the sample in 
Fig. 5, which entails a significant jump for all the three distributions.

Turning our attention to Fig. 10 and looking at the panel of the mixture of Erlang 
distributions, we can observe how the rolling-window approach substantially 
modifies the optimal portfolio allocations with respect to the expanding-window 
approach. Indeed, removing a significant loss from the samples determines opti-
mal portfolios that do not invest, from mid-2016 to the end of 2019, all the capital 
in the index S&P 500 as, on the contrary, displayed in Fig. 6. The rolling-window 
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approach applied to the adjusted data set considerably modifies the realized insurer’s 
wealth obtained with the mixture of Erlang distributions as evidenced by the statis-
tics displayed in Table 7. Indeed, compared with the statistics reported in Table 5, 
the minimum wealth realized with the mixture of Erlang distributions is now nega-
tive like the other two distributions, and it is actually the smallest one. Moreover, the 
standard deviation is higher than the one reported in Table 5 implying that, in this 
case, the realized insurer’s wealth is more dispersed.

The differences between the two out-of-sample analyses show how the mixture 
of Erlang distributions is more effective when fitting data sets including large losses 
and, in this case, it permits to compute accurate capital requirements. Otherwise, in 
the absence of large losses in the data sets, such a mixture could underestimate the 
reappearance of significant losses.
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Table 7  Statistics about the realized insurer’s wealth at the end of each month from January 2016 to 
December 2020

Distribution Min. Max. Mean S.D. Skewness Kurtosis

Lognormal –21.96963 41.81310 25.94025 10.86834 –2.47579 11.58756
Gamma –29.37180 36.64244 19.09946 10.84130 –2.35865 11.20332
Mixture –32.74864 72.90299 32.45823 24.35307 0.22866 2.22001
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