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Abstract
We consider the problem of measuring the efficiency of decision-making units with 
a ratio-based model. In this perspective, we introduce a framework for robustness 
analysis that admits both interval and ordinal performances on inputs and outputs. 
The proposed methodology exploits the uncertainty related to the imprecise data 
and all feasible input/output weight vectors delimited through linear constraints. 
We offer methods for verifying the robustness of three types of outcomes: efficiency 
scores, efficiency preference relations, and efficiency ranks. On the one hand, we 
formulate mathematical programming models to compute the extreme, necessary, 
and possible results. On the other hand, we incorporate the stochastic analysis driven 
by the Monte Carlo simulations to derive the probability distribution of different 
outcomes. The framework is implemented in R and made available on open-source 
software. Its use is illustrated in two case studies concerning Chinese ports or indus-
trial robots.

Keywords Data Envelopment Analysis · Imprecise performances · Robustness 
analysis · Monte Carlo simulation · Open-source software

1 Introduction

Data Envelopment Analysis (DEA) measures the relative efficiency of Decision 
Making Units (DMUs) (Cooper et al. 2014). The standard Charnes-Cooper-Rhodes 
(CCR) model used in DEA generalizes the single output/input productivity meas-
ure (Farrell 1957) by transforming the characterization of each DMU in terms of 
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multiple desired outputs and multiple input factors (Charnes et  al. 1978). Specifi-
cally, the efficiency is quantified as a ratio between a single virtual output and a 
single virtual input (Salo and Punkka 2011). When evaluating the efficiency of each 
DMU, the weights involved in the definition of efficiency measure are selected to 
identify the most advantageous scenario. This means that an efficiency score of a 
given DMU is maximized subject to both the constraint that all DMUs can have 
scores lesser or equal to the unity and the feasibility of input/output weights. As a 
result, DEA generates relative efficiency measures, which depend on the set of ana-
lyzed DMUs, leading to the identification of the so-called efficient frontier (Charnes 
et al. 1994). The units that lie on the frontier attain the score of one. In contrast, the 
units with a score lesser than one are below the efficient frontier, hence being classi-
fied as inefficient.

The main advantages of DEA derive from its following features (Charnes et al. 
1994). First, DEA conducts a detailed analysis of performance measures for each 
DMU instead of focusing on the population averages. This allows for understanding 
the status of efficiency for individual observations. Moreover, in the case of inef-
ficiency, one could identify its sources and point out the desired modifications of 
inputs and/or outputs for projecting the DMU onto the efficient frontier (see Apa-
ricio et  al. 2007; Chen and Wang 2020; Wu et  al. 2018). Second, DEA does not 
involve any assumption about the functional form, hence not relating the independ-
ent and dependent variables (i.e., inputs and outputs) in any specific way. In turn, it 
evaluates each DMU relative to other DMUs, while not requiring any prior specifi-
cation of weights. Finally, a great advantage of DEA lies in its simplicity and gen-
erality. It captures the efficiency in utilizing the inputs to produce the outputs, all 
expressed in various units, with a single, easily interpretable performance measure.

For the last forty years, many extensions of DEA have been proposed (see 
Cook and Seiford 2009; Emrouznejad and Yang 2018). The traditional DEA mod-
els assumed that the consumed inputs and produced outputs could be precisely 
expressed with numerical values on a ratio scale. However, in many real-world 
problems, this is not possible for a few reasons (see Aparicio et al. 2019; Cooper 
et  al. 1999; Shokouhi et  al. 2010). These reasons include inexact specification of 
inputs and outputs, the uncertainty of data used to compute the consumed inputs 
or desired outputs, subjectivity involved in this process, and high costs in terms of 
time or financial resources needed for conducting the accurate measurements (Cor-
rente et al. 2017). As a result, the measurements of inputs and outputs often remain 
imperfect. This, in turn, requires methodological developments that could handle 
such uncertain or inaccurate evaluations.

In the context of DEA, two types of imperfect inputs and outputs received par-
ticular attention (Liu et  al. 2013). On the one hand, the basic idea to capture the 
uncertainty is using an imprecise evaluation in terms of the interval of possible val-
ues. On the other hand, ordinal assessments can be considered. The latter is helpful 
if only qualitative information is available, some binary features are involved in the 
analysis, or it is possible to obtain the ranking of units in terms of some input or out-
put instead of precise quantitative measurements.

To handle the imprecision of inputs and outputs, Cooper et al. (1999) proposed 
Imprecise DEA (IDEA), where precise performance values were replaced with 
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intervals. This methodology has been further revised and enriched in different ways. 
For example, Kim et al. (1999) accounted for strong and weak ordinal relations as 
well as ratio interval data. Furthermore, Despotis and Smirlis (2002) dealt with 
transforming the interval performances into precise ones, incorporating them into 
a standard DEA model to optimize the computational performance of the problem. 
Moreover, Zhu (2003) developed a linear programming model handling strong ordi-
nal inputs and outputs. Also, Ebrahimi and Khalili (2018) proposed the models—
incorporating preference information—that find the most preferred DMU and rank 
other efficient DMUs. The DEA models handling imprecise data have been success-
fully used in the telecommunication sector (Cooper et al. 2001), machinery industry 
(Kao and Liu 2005), wheat farming (Hadi-Vencheh and Matin 2011), port efficiency 
assessment (Zahran et al. 2020), and healthcare (see Azadi and Saen 2013; Karsak 
and Karadayi 2017).

In the traditional DEA and IDEA methods, only the most favorable input/output 
weight vector is considered when evaluating each DMU’s performance. This may 
be criticized for a few reasons. First, choosing the individual weight vector for each 
DMU makes the comparison of efficiencies questionable due to the non-uniqueness 
of the most advantageous weight vectors and lack of a common basis to analyze the 
attained scores (Lahdelma and Salminen 2006). Second, such an analysis is focused 
on a minimal set of scenarios while ignoring other feasible weight vectors that could 
provide helpful information on the variety of efficiency scores (Salo and Punkka 
2011). Third, the efficient frontier, which forms the basis for evaluating the DMUs, 
requires prior assumptions of the return-to-scale. Besides, it strongly depends on the 
set of considered DMUs (see Zhu 1996; Seiford and Zhu 1998). Fourth, using a 
single efficiency measure that divides the DMUs into efficient and inefficient ones 
offers too limited capabilities for discriminating between the units (see Adler et al. 
2002; Hosseinzadeh Lotfi et  al. 2013). All these drawbacks motivated the devel-
opment of robustness analysis methods, which quantify the stability of efficiency 
results for different feasible weight vectors. Given imprecise inputs and outputs, the 
need to include uncertainties when working out the results is even more evident. 
The robust conclusions should be valid in all or most scenarios (see Kadziński and 
Tervonen 2013; Liang et al. 2020), with a scenario being equivalent to a set of pos-
sible values for data of the problem and the efficiency model parameters.

Some essential methodological advancements oriented toward robustness analy-
sis for IDEA have been proposed over the last two decades. In particular, Despo-
tis and Smirlis (2002) derived the optimistic and pessimistic efficiency scores for 
each DMU. Both are computed with the most favorable weight vectors for a given 
unit while assuming the most and the least advantageous scenarios for the inputs 
and outputs. Based on these results, the units can be divided into three groups: effi-
cient in the most pessimistic scenario, inefficient even in the most optimistic sce-
nario, and an intermediate class including DMUs with unitary optimistic efficiency 
and pessimistic efficiency lesser than one. This classification was further analyzed 
in Jahanshahloo et al. (2004) to consider the “radius of stability”. For each DMU, 
it is defined with a pair of values, � and � , indicating, respectively, a decrease of 
the upper bounds of input and output intervals and an increase of the respective 
lower bounds for which the efficiency class remains unchanged. Furthermore, Kao 
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(2006) proposed mathematical models for computing the optimistic and pessimis-
tic efficiency scores in the presence of both interval and ordinal inputs and outputs. 
A similar aim of deriving an efficiency interval for each DMU—though in differ-
ent settings—was considered in Ebrahimi and Toloo (2020) and Park (2007). Also, 
in this context, Ebrahimi et  al. (2021) and Toloo et  al. (2021) accounted for the 
dual-role factors, which can be interpreted as input and output at the same time. 
In turn, Haghighat and Khorram (2005) proposed non-linear models for deriving 
the maximal and minimal numbers of efficient units when the input and output per-
formances are given as intervals. The Monte Carlo simulation was incorporated 
into the stochastic DEA to derive the distribution of efficiency scores in the setting 
where inputs and outputs were expressed as intervals formed by values gathered in 
different years (Kao and Liu 2009). Dehnokhalaji et  al. (2022) proposed a robust 
optimization framework for performance measurement and cross-efficiency inspired 
ranking of DMUs. An additive value DEA model was considered in Gouveia et al. 
(2013) to construct the efficiency intervals and find the maximal percentage toler-
ance by which one could deteriorate the inputs or outputs of a given DMU so that 
it remains efficient. Finally, Azizi et  al. (2015) proposed a slack-based method to 
find the optimistic and pessimistic efficiency intervals for DMUs for DEA involv-
ing imprecise data. Specifically, two classifications of DMUs into efficient and inef-
ficient units were proposed considering the optimistic and pessimistic settings. In 
addition, the procedures for obtaining an overall interval score as well as construct-
ing a complete ranking of DMUs were introduced.

The most important contribution of this paper consists of proposing a rich 
framework for robustness analysis in the context of imprecise inputs and outputs. 
As opposed to the existing approaches that extend IDEA, our methodology consid-
ers uncertainty related to the interval or ordinal data and all feasible weight vectors 
simultaneously. In particular, we propose tools for analyzing the robustness of three 
types of outcomes: efficiency scores, efficiency preference relations, and efficiency 
ranks.

On the one hand, we derive extreme, robust results using dedicated mathematical 
programming models exploiting all scenarios involving imprecise input/output data 
and feasible weight vectors. We show how to compute the extreme efficiency scores 
and ranks and verify the truth or falsity of the necessary and possible efficiency pref-
erence relations (Kadziński et al. 2017). The efficiency bounds and ranking intervals 
reveal the pessimistic and optimistic performance of each unit (Salo and Punkka 
2011). In turn, the two relations focus on the pairwise comparisons that need to be 
validated for all or at least one feasible scenario (Kadziński et al. 2017).

On the other hand, we implement the stochastic analysis to derive the distribu-
tion of different measures and results (Lahdelma and Salminen 2006). We employ 
the Monte Carlo simulations to analyze a sufficiently large and representative set of 
feasible weight vectors and input/output performances consistent with the imprecise 
information. For this purpose, we apply a suitably adjusted Hit-And-Run algorithm 
(see Ciomek and Kadziński 2021; Tervonen et al. 2013). The outcomes are quanti-
fied through Efficiency Acceptability Interval Indices, Efficiency Rank Acceptability 
Indices, and Pairwise Efficiency Outranking Indices (see Lahdelma and Salminen 
2006; Kadziński et al. 2017). The stochastic indices capture the shares of feasible 



1 3

Exact and stochastic methods for robustness analysis in the… Page 5 of 34 22

scenarios that guarantee a given score or rank to a particular DMU or confirm that 
one DMU is at least as good as the other. Also, we estimate the expected efficiency 
scores and ranks for all DMUs. These measures can be the basis for constructing 
a complete ranking of DMUs based on the robust outcomes derived from analyz-
ing feasible weights, inputs, and outputs. From the methodological perspective, the 
proposed methodology can be seen as an extension and adjustment of an integrated 
framework for robustness analysis proposed in Kadziński et al. (2017) to the case of 
imprecise (interval or ordinal) evaluations.

We also present open-source software that implements the proposed framework 
for robustness analysis. The software consists of modules available on the diviz plat-
form (Meyer and Bigaret 2012). These modules accept the specification of linear 
constraints concerning the weights related to inputs and outputs. Moreover, they 
have been designed to admit their combination into complex algorithmic workflows. 
The latter can be employed to share the methodological developments and results of 
case studies among users.

Finally, we illustrate the use of both the framework for robustness analysis and 
software in real-world studies concerning efficiency analysis of Chinese ports (Jiang 
et al. 2021) and industrial robots (Saen 2006). The units are described in terms of 
precise, interval, and ordinal factors. These examples demonstrate the practical use-
fulness of robust results concerning scores, ranks, and pairwise preference relations. 
Also, we emphasize the complementarity of exact and stochastic results. Moreover, 
we demonstrate that both the space of feasible weight vectors as well as imprecise 
input and output performances influence the robustness of attained efficiency results.

The remainder of the paper is organized in the following way. In Sect. 2, we dis-
cuss the proposed methods for robustness analysis within the scope of Imprecise 
Data Envelopment Analysis. In Sect. 3, we present the algorithmic modules imple-
menting the proposed methodological framework on the diviz platform. Section 4 is 
devoted to an illustrative case study concerning the efficiency analysis of Chinese 
ports. The results of the study on industrial robots are reported in the e-Appendix 
(supplementary material available online). Section 5 concludes the paper and out-
lines avenues for future work.

2  Robustness analysis for Imprecise Data Envelopment Analysis

2.1  Notation and basic concepts

The following notation is used in the paper:

• D = {DMU1,… ,DMUK} —a set of considered DMUs, where K is the number 
of DMUs ( K = |D|);

• xm—m-th input, m ∈ {1,… ,M};
• yn—n-th output, n ∈ {1,… ,N};
• PI, II and OI—subsets of precise, interval, and ordinal inputs, respectively;
• PO, IO and OO—subsets of precise, interval, and ordinal outputs, respectively;
• xmo—the value of m-th input consumed by DMUo ∈ D , m ∈ PI ∪ OI;
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• yno—the value of n-th output produced by DMUo ∈ D , n ∈ PO ∪ OO;
• [xmo∗, x

∗
mo
]—an interval value of m-th input of DMUo , m ∈ II;

• [yno∗, y
∗
no
]—an interval value of n-th output of DMUo , n ∈ IO;

• Xmo—the value of vm ⋅ xmo for ordinal inputs, m ∈ OI;
• Yno—the value of un ⋅ yno for ordinal outputs, n ∈ OO;
• v = {v1,… , vM} —a vector of input weights;
• u = {u1,… , uN} —a vector of output weights;
• �, �—values representing the minimal ratios between the successive values of 

ordinal inputs and ordinal outputs, 𝜂, 𝜒 > 1 (in this paper, we set � = � = 1.1);
• Sv = {v = (v1,… , vM)

T ≠ 0 | v ≥ 0,Avv ≤ 0} and S
u
= {u = (u

1
,… , u

N
)T ≠ 0 |

u ≥ 0,A
u
u ≤ 0}—spaces of feasible input and output weights, respectively; Av 

and Au are matrices of coefficients involved in the linear constraints on weights 
derived from the user’s preferences.

To illustrate the notation, let us refer to an example presented in Table 1, which 
is derived from Despotis and Smirlis (2002). The set of DMUs is composed of 
five units, D = {D1,D2,D3,D4,D5} . They consume two inputs—one precise 
( PI = {i1} ) and the other interval ( II = {i2} ), and produce two outputs—one 
precise ( PO = {o1} ) and the other ordinal ( OO = {o2} ). The weights associated 
with the inputs are denoted by v1 and v2 , and the respective weights for the out-
puts are u1 and u2 . When it comes to unit D1 , its precise input is x11 = 100 and 
the interval input is [x21∗, x∗21] = [0.6, 0.7] . The respective outputs are y11 = 2000 
and y21 = 4 . The latter will be represented in the following mathematical mod-
els as Y21 = y21 ⋅ u2 , and the following order Y24 < Y22 < Y25 < Y21 < Y23 will be 
maintained.

In what follows, we discuss the methods for robustness analysis in the con-
text of Imprecise DEA. They can be divided into two subgroups. One of them 
is devoted to the exact analysis using linear programming techniques. In con-
trast, the other aims to estimate some stochastic acceptability indices through the 
Monte Carlo simulations. The analysis is conducted given all feasible efficiency 
scenarios, where each scenario corresponds to a specific, admissible realization 
of both weights and performances on inputs and outputs.

Table 1  Example set of 
Decision Making Units 
involving imprecise data

DMU
o

i
1
 (precise) i

2
 (interval) o

1
 (precise) o

2
 (ordinal)

D
1

100 [0.6, 0.7] 2000 4
D

2
150 [0.8, 0.9] 1000 2

D
3

150 [1.0, 1.0] 1200 5
D

4
200 [0.7, 0.8] 900 1

D
5

200 [1.0, 1.0] 600 3
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2.2  Exact robustness analysis with linear programming

In this section, we discuss how to derive exact robust outcomes using mathematical 
programming. These results capture the extreme cases observed for all feasible effi-
ciency scenarios (u, v, x, y) defined by the sets of admissible weights as well as values 
of inputs and outputs. They concern the following three perspectives: scores, ranks, and 
pairwise preference relations. We refer to the concepts of extreme scores and ranks and 
the necessary and possible preference relations that have been introduced in the litera-
ture. However, the models for their computation that are presented in this section are 
original and specifically adjusted to the context of IDEA.

To conduct a robustness analysis given interval inputs and outputs, we need to con-
sider the most and the least advantageous (i.e., optimistic and pessimistic) scenarios for 
each DMU. On the one hand, the optimistic scenario for DMUo is realized by assuming 
that its inputs are the least possible and its outputs are the greatest admissible by the 
specified intervals. In contrast, for the remaining units, both the inputs and outputs are 
the least advantageous, i.e.:

On the other hand, the pessimistic scenario for DMUo is realized by assuming that 
its imprecise inputs and outputs are replaced with the least favorable values. For the 
remaining DMUs, the minimal inputs and the maximal outputs are considered, i.e.:

When the dataset involves the ordinal factors, the products vm ⋅ xmk or un ⋅ ynk are 
replaced by one variable, respectively, Xmk or Ynk . Additionally, the constraints 
respecting the character of ordinal evaluations need to be included in the model. 
In particular, the constraints imposing a strong ordinal relation should not take an 
additive form, e.g., X2 ≥ X1 + � , where � is a small positive constant. In turn, as the 
original ordinal evaluations xmk and ynk are transformed into variables Xmk or Ynk 
involving multiplication by a common weight ( vm and un ), the ratios of subsequent 
Xmk or Ynk values needs to be greater than one, i.e.:

where 𝜒 , 𝜂 > 1 (Zhu 2003).

(1)xmk =

{
xmk∗, if m = o,

x∗
mk
, otherwise,

(2)ynk =

{
y∗
nk
, if n = o,

ynk∗, otherwise.

(3)xmk =

{
x∗
mk
, if m = o,

xmk∗, otherwise,

(4)ynk =

{
ynk∗, if n = o,

y∗
nk
, otherwise.

(5)
{

� ⋅ Yni ≤ Ynj, (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

� ⋅ Xmi ≤ Xmj, (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,
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Following (Zhu 2003), we consider the efficiency of DMUo defined as a ratio of a 
single virtual output to a single virtual input:

where yno ∈ [yno∗, y
∗
no
] for n ∈ IO and xmo ∈ [xmo∗, x

∗
mo
] for m ∈ II . The virtual out-

put and input aggregate multiple outputs or inputs while ensuring that each relevant 
factor contributes to an overall measure of efficiency. Please note that the contribu-
tions from these factors are dimensionless. This is due to multiplying the precise 
and imprecise performances by the weights and using dedicated components for the 
ordinal factors. Still, their major role is to maintain the desired relationships between 
the efficiencies of various units implied by their input and output values. In fact, the 
above expression ensures that Eo does not deteriorate if one (i) increases the output 
values or decreases the input values in DMUo or (ii) decreases the output values 
or increases the input values in other DMUs. At the same time, this representation 
eliminates the scale transformations (Zhu 2003), reducing the computational burden 
in applications.

2.2.1  Extreme efficiency scores

When it comes to the efficiencies, for each DMUo , we determine the maximal E∗
o
 and 

minimal Eo∗ scores that it can attain for at least one feasible scenario (see Despotis 
and Smirlis 2002; Kadziński et al. 2017; Kao 2006). To find the greatest (optimistic) 
efficiency score for DMUo , the following Linear Programming (LP) model needs to 
be solved:

Model (7) is equivalent to the classical CCR model for DEA with imprecise data. 
It finds the most favorable weight vector for DMUo in its best input/output sce-
nario and the worst possible scenarios for the remaining DMUs. The space of vari-
ables is composed of the following weights: vm for n ∈ PI ∪ II , Xmk for m ∈ OI 
and DMUk ∈ D , un for n ∈ PO ∪ IO and Ynk for n ∈ OO and DMUk ∈ D . It is con-
strained so that the virtual input of DMUo is equal to one ( [E∗ − C1] ), the efficiency 
scores for all DMUs are not greater than one ( [E∗ − C2] and [E∗ − C3] ), the monoto-
nicity relations derived from the analysis of ordinal inputs and outputs are preserved 
( [E∗ − C4] and [E∗ − C5] ), and the constraints on the admissible values of input and 
output weights are satisfied ( [E∗ − C6] ). The last three constraints are present in all 

(6)Eo =

∑
n∈PO unyno +

∑
n∈IO unyno +

∑
n∈OO Yno∑

m∈PI vmxmo +
∑

m∈II vmxmo +
∑

m∈OI Xmo

(7)

Maximize: E∗
o
=

∑
n∈PO

unyno +
∑
n∈IO

uny
∗
no
+

∑
n∈OO

Yno

s.t. [E∗ − C1]
∑

m∈PI

vmxmo +
∑
m∈II

vmxmo∗ +
∑

m∈OI

Xmo = 1,

[E∗ − C2]
∑

n∈PO

unyno +
∑
n∈IO

uny
∗
no
+

∑
n∈OO

Yno ≤ 1,

[E∗ − C3]
∑

n∈PO

unynk +
∑
n∈IO

unynk∗ +
∑

n∈OO

Ynk ≤
∑

m∈PI

vmxmk +
∑
m∈II

vmx
∗
mk

+
∑

m∈OI

Xmk , k = 1,… ,K; k ≠ o,

[E∗ − C4] �Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

[E∗ − C5] �Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

[E∗ − C6] (v, u) ∈ (Sv , Su).
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following LP models. The optimal value of E∗
o
 is between zero and one. The DMUs 

with optimal E∗
o
= 1 are considered as efficient.

The minimal (pessimistic) efficiency score for DMUo using the CCR model with 
imprecise information can be derived by solving the following Mixed-Integer Linear 
Programming (MILP) model:

The above model allows for finding the least favorable weight vector for DMUo in 
terms of its efficiency while considering the worst possible scenario for DMUo and 
the best admissible scenarios for the remaining units DMUk , k = 1,… ,K and k ≠ o . 
Under these conditions, we constrain the space of feasible solutions by imposing—
without loss of generality—that the virtual input of DMUo equals one ( [E∗ − C1] ), 
assuming that at least one unit is efficient (its efficiency score must be greater than 
or equal to one; [E∗ − C2]–[E∗ − C5] ), preserving the ordinal factors’ monotonicity 
( [E∗ − C6]–[E∗ − C7] ), and satisfying the pre-defined constraints on the admissible 
values of input and output weights ( [E∗ − C8] ). Apart from the weights already con-
sidered in model (7), we include the binary variables bk ∈ {0, 1} , k = 1,… ,K . The 
optimal value of Eo∗ is between zero and one. Overall, [Eo∗,E

∗
o
] can be deemed as an 

efficiency interval (Salo and Punkka 2011).
Note that C is a large positive constant. Irrespective of which DMUo is con-

sidered, it is sufficient that C > max
DMU

l
,DMU

k
∈D{max{maxm∈PI{xmk∕xml},

max
m∈II{xmk∗∕x

∗
ml
}, if OI ≠ � ∶ �K}} . It is so because to minimize Eo∗ , the 

solver also minimizes Ek for k = 1,… ,K . Since constraint [E∗ − C1] imposes 
∑

m∈PI vmxmo +
∑

m∈II vmx
∗
mo

+
∑

m∈OI Xmo = 1 , then for k = 1,… ,K , C is greater 
than 

∑
m∈PI vmxmk +

∑
m∈II vmxmk∗ +

∑
m∈OI Xmk . Consequently, when binary vari-

able bk equals 0 for k = 1,… ,K , constraint [E∗ − C2] (when k = o ) or constraint 
[E∗ − C3] (when k = 1,… ,K , k ≠ o ) is satisfied for all values of the variables. How-
ever, constraint [E∗ − C4] imposes that at least one bk for k = 1,… ,K is equal to 
one. Then, the respective efficiency Ek is greater or equal to one since the virtual 
output of DMUk is greater or equal to its virtual input.

Illustrative example In Table 2, we present the extreme efficiencies derived for five 
units contained in the illustrative example introduced in Sect. 2.1. They reveal that two 
units ( D1 and D3 ) are efficient, attaining the maximal efficiency score equal to one. The 

(8)

Minimize: Eo∗ =
∑

n∈PO

unyno +
∑
n∈IO

unyno∗ +
∑

n∈OO

Yno

s.t. [E∗ − C1]
∑

m∈PI

vmxmo +
∑
m∈II

vmx
∗
mo

+
∑

m∈OI

Xmo = 1,

[E∗ − C2]
∑

n∈PO

unyno +
∑
n∈IO

unyno∗ +
∑

n∈OO

Yno ≥ 1 − C(1 − bo),

[E∗ − C3]
∑

n∈PO

unynk +
∑
n∈IO

uny
∗
nk
+

∑
n∈OO

Ynk ≥
∑

m∈PI

vmxmk +
∑
m∈II

vmxmk∗ +
∑

m∈OI

Xmk − C(1 − bk), k = 1,… ,K; k ≠ o,

[E∗ − C4]
K∑
k=1

bk ≥ 1,

[E∗ − C5] bk ∈ {0, 1}, k = 1,… ,K,

[E∗ − C6] �Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

[E∗ − C7] �Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

[E∗ − C8] (v, u) ∈ (Sv , Su).
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efficiency intervals are relatively wide and span over the range of over 0.6 for all units. 
For example, the minimal efficiencies of D1 and D3 are, respectively, 0.013 and 0.367.

2.2.2  Extreme efficiency ranks

As far as efficiency ranks are concerned, we determine the best R∗
o
 and the worst Ro∗ 

ranks that are attained by DMUo for at least one feasible scenario (see Kadziński et al. 
2012, 2017; Salo and Punkka 2011). Given a fixed input/output weight vector and pre-
cise feasible performances for DMUo , it attains k-th rank if exactly k − 1 other units 
attain higher efficiency scores than DMUo . To find the minimal (i.e., the best) effi-
ciency rank for DMUo , the following MILP model needs to be solved:

The above model sets the efficiency score of DMUo in its most optimistic reali-
zation equal to one ( [R∗ − C1]–[R∗ − C2] ). For the remaining units, we assume 
their pessimistic realizations ( [R∗ − C3] ) and minimize the number of DMUs 
with efficiency scores greater than for DMUo . This is attained by introducing the 
binary variables bk for each DMUk , k = 1,… ,K , and k ≠ o ( [R∗ − C5] ). When 
the efficiency score of DMUk cannot be lower than or equal to one, then bk is 
set to one, and the respective constraint [R∗ − C4] is always satisfied for all pos-
sible variable values. This is implied by the use of a large positive constant C. 
Analogously to the reasoning for model (8), irrespective of which DMUo is con-
sidered, it is sufficient that C > maxDMUl,DMUk∈D

{max{maxn∈PO{ynk∕ynl}, 
maxn∈IO{ynk∗∕y

∗
nl
}, if OO ≠ � ∶ �K}} . In turn, if the efficiency score of DMUo is 

greater or equal to the efficiency of DMUk , bk is set to zero. Thus, by minimizing the 

(9)

Minimize: R∗
o
= 1 +

K∑
k=1,k≠o

bk

s.t. [R∗ − C1]
∑

n∈PO

unyno +
∑
n∈IO

uny
∗
no
+

∑
n∈OO

Yno = 1,

[R∗ − C2]
∑

m∈PI

vmxmo +
∑
m∈II

vmxmo∗ +
∑

m∈OI

Xmo = 1,

[R∗ − C3]
∑

n∈PO

unynk +
∑
n∈IO

unynk∗ +
∑

n∈OO

Ynk ≤
∑

m∈PI

vmxmk +
∑
m∈II

vmx
∗
mk

+
∑

m∈OI

Xmk + Cbk , k = 1,… ,K; k ≠ o,

[R∗ − C4] bk ∈ {0, 1}, k = 1,… ,K; k ≠ o,

[R∗ − C5] �Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

[R∗ − C6] �Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

[R∗ − C7] (v, u) ∈ (Sv , Su).

Table 2  Exact robust results 
derived with mathematical 
programming for the illustrative 
example

DMU
o

Extreme scores Extreme 
ranks

Robust relations

E
∗
o

E
o∗ R

∗
o

R
o∗ D

1
D

2
D

3
D

4
D

5

D
1

1.000 0.013 1 2 N N P N N
D

2
0.723 0.011 2 5 N P P P

D
3

1.000 0.367 1 4 P P N P N
D

4
0.751 0.010 2 5 P P N P

D
5

0.637 0.012 3 5 P P N
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sum of bk , k = 1,… ,K , and k ≠ o , we can obtain the best possible rank of DMUo . 
The optimal value of R∗

o
 is between one and K.

The worst (i.e., the maximal) possible rank of DMUo can be computed with 
the following MILP model:

The above model maximizes the number of DMUs with efficiency scores greater 
or equal to DMUo . Again, we assume that the efficiency of DMUo is equal to one 
( [R∗ − C1]–[R∗ − C2] ). However, at this time, we consider the pessimistic realization 
of DMUo . Then, we introduce the constraints imposing that the efficiencies of the 
remaining DMUs in their optimistic realizations are not lower than one ( [R∗ − C3] ). 
The component C ⋅ (1 − bk) included in the respective constraint implies that the 
latter can be violated. If binary variable bk ( [R∗ − C4] ) is equal to one, constraint 
[R∗ − C3] holds, whereas for bk = 0—it is satisfied for any variables’ values. Note 
that C should be set similarly as for model (8). When maximizing the sum of bk , 
k = 1,… ,K , and k ≠ o , we minimize the number of DMUs for which constraint 
[R∗ − C3] is violated. Thus, the sum of bk increased by one corresponds to the worst 
possible rank of DMUo . The optimal value of Ro∗ is between one and K.

Illustrative example The extreme ranks for the illustrative example introduced 
in Sect. 2.1 are presented in Table 2. The efficient units attain the first rank in 
the best case. Although the minimal efficiency of D1 is worse than for D3 , in the 
worst case its rank can drop only to the second position ( R1∗ = 2 ), whereas D3 
can be ranked even fourth ( R3∗ = 4 ) in the most pessimistic scenario. The inef-
ficient units can be ranked second ( D2 and D4 ) or third ( D5 ) in the best case, 
while all are ranked at the bottom in the least advantageous scenario.

2.2.3  Necessary and possible efficiency preference relations

When it comes to the stability of comparisons observed for pairs of DMUs given 
all feasible scenarios, we consider the necessary ( ≿N

E
 ) and possible ( ≿P

E
 ) efficiency 

preference relations (see Greco et al. 2008; Kadziński et al. 2017). They are defined 
in the following way:

• DMUo is necessarily preferred to DMUl ( DMUo ≿
N
E
DMUl ) if DMUo attains at 

least as good efficiency as DMUl for all feasible scenarios defined by the sets of 
admissible weights, as well as values of inputs and outputs, or, equivalently, if 

(10)

Maximize: Ro∗ = 1 +
K∑

k=1,k≠o

bk

s.t. [R∗ − C1]
∑

n∈PO

unyno +
∑
n∈IO

unyno∗ +
∑

n∈OO

Yno = 1,

[R∗ − C2]
∑

m∈PI

vmxmo +
∑
m∈II

vmx
∗
mo

+
∑

m∈OI

Xmo = 1,

[R∗ − C3]
∑

m∈PI

vmxmk +
∑
m∈II

vmxmk∗ +
∑

m∈OI

Xmk ≤
∑

n∈PO

unynk +
∑
n∈IO

uny
∗
nk
+

∑
n∈OO

Ynk + C(1 − bk), k = 1,… ,K; k ≠ o,

[R∗ − C4] bk ∈ {0, 1}, k = 1,… ,K; k ≠ o,

[R∗ − C5] �Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

[R∗ − C6] �Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

[R∗ − C7] (v, u) ∈ (Sv , Su).
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for all feasible weight vectors the efficiency of DMUo in its pessimistic realiza-
tion is not worse than the efficiency of DMUl in its optimistic realization;

• DMUo is possibly preferred to DMUl ( DMUo ≿
P
E
DMUl ) if DMUo attains at least 

as good efficiency as DMUl for at least one feasible scenario defined by the sets 
of admissible weights, as well as values of inputs and outputs, or, equivalently, 
if for at least one feasible weight vector the efficiency of DMUo in its optimistic 
realization is not worse than the efficiency of DMUl in its pessimistic relations.

To verify the truth of the necessary efficiency preference relation DMUo ≿
N
E
DMUl 

for pair (DMUo,DMUl) , we need to solve the following LP model:

The above model finds the minimal efficiency score of DMUo in its pessimistic reali-
zation while assuming that the efficiency of DMUl in its optimistic realization is 
equal to one. If the obtained optimal value of Eo∗ is greater than or equal to one, then 
for all weight vectors ( u, v ), the efficiency of DMUo is not worse than efficiency of 
DMUl , i.e., DMUo ≿

N
E
DMUl . Otherwise, not(DMUo ≿

N
E
DMUl).

The following LP model allows verifying the truth of the possible efficiency pref-
erence relation DMUo ≿

P
E
DMUl for pair (DMUo,DMUl):

The above model computes the maximal efficiency of DMUo in its optimistic reali-
zation while assuming that the efficiency of DMUl in its pessimistic realization is 
equal to one. If the optimal value of E∗

o
 is greater than or equal to one, then there 

exists at least one weight vector (u, v) for which the efficiency of DMUo is not worse 
than efficiency of DMUl , i.e., DMUo ≿

P
E
DMUk . Otherwise, not(DMUo ≿

P
E
DMUl).

Illustrative example The necessary and possible relations for the illustrative exam-
ple are presented in Table 2. Note that the necessary relation is transitive and implies 
the truth of the possible relation. Let us observe that unit D1 is necessarily preferred 
to the three inefficient units ( D2 , D4 , and D5 ), whereas D3 is robustly at least as 
good only when compared to D5 . The efficient units are incomparable in terms of 
the necessary relation while being possibly preferred over each other. The inefficient 
units are not preferred over any other unit for all feasible scenarios. However, they 

(11)

Minimize: Eo∗ =
∑

n∈PO

unyno +
∑
n∈IO

unyno∗ +
∑

n∈OO

Yno

s.t.
∑

m∈PI

vmxmo +
∑
m∈II

vmx
∗
mo

+
∑

m∈OI

Xmo = 1,

∑
n∈PO

unynl +
∑
n∈IO

uny
∗
nl
+

∑
n∈OO

Ynl =
∑

m∈PI

vmxml +
∑
m∈II

vmxml∗ +
∑

m∈OI

Xml ,

�Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

�Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

(v, u) ∈ (Sv , Su).

(12)

Maximize: E∗
o
=

∑
n∈PO

unyno +
∑
n∈IO

uny
∗
no

+
∑

n∈OO

Yno

s.t.
∑

m∈PI

vmxmo +
∑
m∈II

vmxmo∗ +
∑

m∈OI

Xmo = 1,

∑
n∈PO

unynl +
∑
n∈IO

unynl∗ +
∑

n∈OO

Ynl =
∑

m∈PI

vmxml +
∑
m∈II

vmx
∗
ml

+
∑

m∈OI

Xml ,

�Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

�Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

(v, u) ∈ (Sv , Su).
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are possibly preferred over each other (e.g., D2 ≿
P
E
D4 and D4 ≿

P
E
D2 ). Moreover, D2 

and D4 are at least as good as D3 for at least one feasible scenario, whereas none of 
the inefficient units attains the score of D1 for any feasible setting.

2.3  Stochastic analysis with the Monte Carlo simulation

In this section, we discuss how to derive stochastic outcomes using the Monte Carlo 
simulation. These results capture the share or distribution of feasible efficiency sce-
narios (u, v, x, y) that confirm a given outcome referring to the attained scores or 
ranks, or the truth of pairwise preference relation.

To conduct such a stochastic analysis, we need to sample a representative sub-
set of all feasible efficiency scenarios. This requires the assumption about the prob-
ability distributions of the joint density function of the feasible input/output weight 
vectors and the precise performances within the specified interval values on vari-
ous inputs and outputs (Lahdelma and Salminen 2006). In general, the proposed 
approach can be used with any arbitrarily selected distribution. However, when the 
expert does not impose the parameter distribution, we assume the uniform distribu-
tion of weights and performances (see Kadziński et al. 2017; Lahdelma and Salm-
inen 2001).

To simulate the feasible efficiency scenarios, we need to derive the weights and 
performances from the feasible space. For sampling weights from the uniform dis-
tribution, we use the Hit-And-Run (HAR) algorithm (Tervonen et al. 2013). Since it 
requires the space of sampling to be bounded, we perform normalization of possible 
input/output weights:

When it comes to sampling the performances, a dedicated treatment has been 
designed to deal with the interval and ordinal factors. For the interval inputs and 
outputs, for each DMUo , we randomly select the exact values from the intervals 
[xmo ∗, x

∗
mo
] or [yno ∗, y∗no] using HAR. Regarding dealing with the ordinal factors, we 

adopt the SMAA-O approach (Lahdelma et al. 2003). Specifically, we assume that a 
function simulating some ordinal inputs or outputs is increasing. We assume that the 
exact values corresponding to the ordinal performances are drawn from the [0, 1] 
interval without losing generality. Hence we randomly choose a set of K numbers 
from this range. The obtained values are sorted and considered as a single sample 
of precise performances of DMUs consistent with the order imposed by the original 
ordinal performances (e.g., a unit with the worst ordinal output or the best ordinal 
input is assigned the least precise value).

The samples concerning the weights and the input and output values are put 
together to simulate the feasible efficiency scenarios. For each of them, we com-
pute the efficiencies for all DMUs. The results obtained for all sampled scenarios are 
summarized in stochastic acceptability indices concerning scores, ranks, and pair-
wise relations. Since their values are approximated using the Monte Carlo simulation 

(13)
N∑

n=1

un =

M∑

m=1

vm = 1.
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rather than computed exactly through analytical methods, we consider the estima-
tions of the true indices in practice. However, with a sufficiently large number of 
samples, such values can be estimated up to a pre-defined accuracy (Tervonen and 
Lahdelma 2007).

2.3.1  Distribution of efficiency scores

The Efficiency Acceptability Interval Index EAII(DMUo, bi) is defined as the 
share of feasible scenarios for which the efficiency score of DMUo is contained in 
the sub-interval bi ⊂ [0, 1] , where i = 1,… ,B , and B is the number of efficiency 
sub-intervals considered in the analysis. By default, the sub-intervals are assumed 
to be disjoint and to span over the same widths. Note that for each DMUo ∈ D , ∑B

i=1
EAII(DMUo, bi) = 1 . Moreover, by analyzing the scores obtained by DMUo , 

we may compute an expected efficiency (denoted by EEo ) as an average of efficien-
cies derived for all sampled scenarios. Such efficiency may be used to impose a 
complete ranking on the set of DMUs (Labijak-Kowalska and Kadziński 2021).

Illustrative example In Table  3, we present the estimates of EAIIs computed 
based on 10,000 samples derived with the Monte Carlo simulation for the illus-
trative example introduced in Sect.  2.1. We have selected five buckets ( B = 5 ), 
and hence the considered sub-intervals are [0,  0.2], (0,  2,  0.4], … , (0.8,  1.0]. 
The most probable efficiency ranges for D1 and D2 are, respectively, (0.8,  1.0] 
( EAII(D1, (0.8, 1.0]) = 0.958 ) and (0.2,  0.4] ( EAII(D2, (0.2, 0.4]) = 0.716 ). On the 
other extreme, the estimated probability of D1 attaining an efficiency score lower 
than 0.2 or D2 attaining a score greater than 0.6 is zero. However, the analysis of 
extreme efficiency scores presented in Sect. 2.2.1 reveals that it is possible. None-
theless, when combining this information with the analysis of EAIIs, we know that 
such a scenario is improbable. As far as expected efficiencies are concerned, they 
impose the following ranking on the set of DMUs: D1 ≻ D3 ≻ D2 ≻ D5 ≻ D4 , hence 
allowing discrimination between both efficient and inefficient units.

In the e-Appendix, we present a detailed step-by-step description of calculat-
ing the EAIIs and other stochastic measures for the considered example. To make 
the description self-contained and its size reasonable, we use only ten samples as 
opposed 10,000 samples considered in the main paper.

2.3.2  Efficiency rank acceptability indices

Efficiency Rank Acceptability Index ERAI(DMUo, r) for DMUo ∈ D and a specific 
rank r ∈ {1, 2,… ,K} is defined as the share of feasible scenarios for which DMUo 
is placed at the r-th position in the ranking imposed by the efficiency scores of all 
DMUs in D . Note that for each DMUo ∈ D , 

∑K

r=1
ERAI(DMUo, r) = 1 . These sto-

chastic indices can be used to approximate an expected efficiency rank (denoted by 
ERo ) for DMUo in the following way: ERo =

∑K

r=1
r ⋅ ERAI(DMUo, r) (Ang et  al. 

2021). Similar to the expected efficiencies, the expected efficiency ranks can be used 
to order the units from the best to the worst.
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Illustrative example The rank acceptabilities for the illustrative examples are pre-
sented in Table 3. Based on the derived samples’ analysis, only D1 and D3 can be 
ranked in the first two positions. However, the probability of D1 being ranked at the 
top is higher than for D3 ( ERAI(D1, 1) = 0.83 > ERAI(D3, 1) = 0.17 ). Even though 
the minimal rank for D3 indicated that it could be ranked fourth in the most pessimis-
tic case, the analysis of ERAIs suggests that the scenarios for which it drops out of 
the top two are very unlike. The distribution of ranks for D5 confirms that it is ranked 
fourth for half of the scenarios. Further, the probabilities of attaining the third and 
fifth positions by D5 are equal to, respectively, 34% and 16% . The expected efficiency 
ranks impose the following order on the set of DMUs: D1 ≻ D3 ≻ D2 ≻ D5 ≻ D4 . 
Even though it exploits the ordinal results (i.e., ranks) rather than cardinal ones (i.e., 
efficiencies), this ranking is the same as when considering the expected efficiencies.

2.3.3  Pairwise efficiency outranking indices

The Pairwise Efficiency Outranking Index PEOI(DMUo,DMUl) is defined as 
the share of feasible scenarios for which DMUo is at least as efficient as DMUl . 
Note that for (DMUo,DMUl) ∈ D ×D , 0 ≤ PEOI(DMUo,DMUl) ≤ 1 and 
0 ≤ PEOI(DMUo,DMUl) + PEOI(DMUl,DMUo) ≤ 2.

Illustrative example The PEOIs derived for the illustrative example are presented 
in Table 3. Note that when for the pairs for which the necessary relation holds (e.g., 
(D1,D2) and (D3,D5) ), PEOI is equal to one, whereas for the pairs for which the 
possible relation is false (e.g., (D2,D1) and (D5,D1) ), PEOI is zero. The analysis of 
PEOIs is the most informative for pairs that are not related by the necessary relation. 
For example, the share of scenarios for which D1 attains higher efficiency than D3 
is five times greater than the share for which the inverse relation holds. In the same 
spirit, D2 is more efficient than D5 for twice as many scenarios as D5 being more 
favorable than D2 . Having compared D3 with D2 or D4 using the exact robust analy-
sis methods, we know that these pairs are not related by ≿N

E
 . However, PEOIs indi-

cate that the scenarios for which D2 and D4 are strictly better than D3 are extremely 
limited ( PEOI(D2,D3) = 0 and PEOI(D4,D3) = 0).

To demonstrate the impact that joint consideration of variable weights and impre-
cise inputs and outputs has on the obtained robust results, in the e-Appendix, we 
reconsider the illustrative example. Specifically, we analyze five scenarios while 
replacing performances on a single or two imprecise factors with the respective pre-
cise data. For each scenario, we discuss the six types of results. In this way, we 
demonstrate that imprecision of inputs and outputs contributes to the uncertainty of 
efficiency outcomes in the same way as the multiplicity of weights associated with 
these factors.
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3  Implementation on the diviz platform

Diviz is an open-source platform that allows designing and executing algorithmic 
workflows implementing operational research methods (Meyer and Bigaret 2012). 
The software consists of two major components: i) a Java client, which allows users 
to design workflows using existing computational and graphical modules, and ii) 
servers, where the computations are performed and the results are generated. The 
greatest number of contributions on diviz concern Multiple Criteria Decision Analy-
sis (MCDA) (see Cinelli et al. 2022; Greco et al. 2016). All diviz modules take input 
data and produce outputs in XMCDA, a dedicated XML-based format.

3.1  Implemented modules

All methods for robustness analysis in Imprecise DEA have been implemented in 
R and made available on the diviz platform as independent modules (web services). 
Their source code is available at https:// github. com/ alabi jak/ diviz_ DEA/ tree/ master/ 
Impre ciseD EACCR. They can be used individually or combined into complex work-
flows. Each module accepts five input files:

• units containing information about the considered DMUs;
• inputs/outputs listing information on the inputs and outputs and their scales 

(quantitative or qualitative (ordinal));
• performance providing information on the DMUs’ precise performances or, if 

the problem involves interval inputs and outputs, the minimal performances of 
DMUs;

• max performance is an optional file used in case the interval inputs/outputs are 
considered; it defines the DMUs’ maximal performances;

• weights constraints is an optional file containing linear constraints on the weights 
of inputs and outputs, defining the space of feasible weight vectors.

The modules admit the specification of some additional parameters. The most 
important ones are samplesNo indicating the number of samples derived with the 
Monte Carlo simulation realized with the HAR algorithm and tolerance (in %) used 
to convert the precise performances into interval ones. For example, a precise value 
x is transformed into the interval [(1 − tolerance) ⋅ x;(i + tolerance) ⋅ x].

The following modules for robustness analysis in IDEA have been implemented 
on diviz:

• ImpreciseDEA-CCR_efficiencies computes the minimal and maximal efficiencies 
( E∗ and E∗ ) for each DMU using linear programming techniques;

• ImpreciseDEA-CCR_extremeRanks computes the best and the worst efficiency 
ranks ( R∗ and R∗ ) for each DMU using MILP;

• ImpreciseDEA-CCR_preferenceRelations verifies the truth of the necessary and 
possible efficiency preference relations for all pairs of DMUs using linear pro-
gramming;

https://github.com/alabijak/diviz_DEA/tree/master/ImpreciseDEACCR
https://github.com/alabijak/diviz_DEA/tree/master/ImpreciseDEACCR
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• ImpreciseDEA-CCR-SMAA_efficiencies computes the efficiency distribution, the 
extreme efficiency scores observed in the analyzed sample of feasible scenarios, 
and an expected efficiency for each DMU, using the HAR algorithm; it addition-
ally requires specification of the number of buckets as a method parameter;

• ImpreciseDEA-CCR-SMAA_preferenceRelations computes PEOIs for all pairs of 
DMUs using HAR;

• ImpreciseDEA-CCR-SMAA_ranks computes ERAIs for all DMUs and ranks, 
extreme efficiency ranks observed in the analyzed sample of feasible scenarios, 
and an expected rank for each DMU using HAR.

The structures of two exemplary modules, ImpreciseDEA-CCR_efficiencies 
and ImpreciseDEA-CCR-SMAA _efficiencies, are presented in Figs.  1 and 2, 
respectively. They perform computations according to the methods presented in 
Sects. 2.2.1 and 2.3.1, respectively.

The implemented modules can be combined into an algorithmic workflow with 
other available computational or visualization modules. Such a workflow can be 
easily exported and shared with other users. Moreover, the infrastructure of diviz 
allows storing the history of past executions, which is very useful when compar-
ing the results for different settings (e.g., with and without preference information 
specified by the user). The workflow designed to obtain the results for the case 
study discussed in Sect. 4 is graphically presented in Fig. 3.

4  Illustrative case study

To illustrate the practical usefulness of the proposed framework, we performed the 
robustness analysis for two studies concerning 27 industrial robots and 17 Chinese 
ports. The former is based on data derived from Saen (2006), and the detailed results 
are given in the e-Appendix. The latter builds on data from Jiang et  al. (2021), 

Fig. 1  The structure of the diviz module which computes the extreme efficiency scores for each DMU 
using MILP for the Imprecise DEA model
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and the outcomes are reported in this section. The workflows and input data in the 
XMCDA format (ver. 2) for both studies are available at https:// github. com/ alabi jak/ 
diviz_ DEA/ tree/ master/ Impre ciseD EACCR.

The ports are described in terms of two precise inputs (labor population and 
energy consumption), two desirable outputs (cargo throughput—precise and 
employee satisfaction—ordinal), and one undesirable output (water pollutants—
interval). Following (Jiang et al. 2021), the latter factor is treated as an input dur-
ing the analysis. To obtain the same magnitude for all precise and interval factors, 
we used the mean normalization before running the methods (see Sarkis 2007; 
Tomaževič et  al. 2016; Widiarto and Emrouznejad 2015). The performances of 
ports on all inputs and outputs are presented in Table 4.

In what follows, we discuss the results of robustness analysis considering the 
three perspectives: efficiency scores, efficiency ranks, and preference relations. The 
values of stochastic acceptability indices are estimated based on the 10,000 sam-
pled feasible scenarios. To illustrate that the methods can handle linear weight con-
straints, we assess water pollutants as less important factor than the other two inputs, 
i.e., uwp ≤ ulp and uwp ≤ uec , where uwp, ulp, uec are, respectively, weights assigned 
to water pollutants, labor population, and energy consumption. Moreover, we intro-
duce two other constraints preventing the overwhelming role of any input, i.e., 
wlp ≤ wec + wwp and wec ≤ wlp + wwp.

4.1  Efficiency scores

Figure 4 presents the extreme efficiency scores ( E∗ and E∗ ) for all DMUs. Regard-
ing the maximal (optimistic) efficiencies, they indicate six efficient ports (Yingkou, 
Tianjin, Yantai, Ningbo-zhoushan, Fuzhou, and Shantou) with E∗ = 1 . Among the 

Fig. 2  The structure of the diviz module which computes the Efficiency Acceptability Interval Indices, 
observed extreme efficiency scores, and expected efficiency for each DMU using the Imprecise DEA 
model and the Monte Carlo simulation

https://github.com/alabijak/diviz_DEA/tree/master/ImpreciseDEACCR
https://github.com/alabijak/diviz_DEA/tree/master/ImpreciseDEACCR
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inefficient ports, the best efficiency is attained by Fangcheng (0.909) and Zhanjiang 
(0.887). On the other extreme, there are two ports with maximal efficiency scores 
lower than 0.6 (Shanghai (0.539) and Qinhuangdao (0.598)). When analyzing the 
minimal (pessimistic) efficiencies, the most advantageous port is Ningbo-zhoushan 
(0.158). The minimal efficiency scores of all other ports are significantly lower 
(close to zero).

In general, the efficiency intervals are relatively wide. For this reason, analyz-
ing the distribution of efficiency scores is desirable. In Table 5, we present the 
Efficiency Acceptability Interval Indices, while assuming B = 10 sub-intervals 
from [0, 0.1] to (0.9, 1.0]. When it comes to the efficient ports, the greatest EAII 
for the best interval is attained by Tianjin (EAII(Tianjin, (0.9, 1.0]) = 57.3% ) 
and Yantai (EAII(Yantai, (0.9, 1.0]) = 68.3% ). Only three other ports attained 
an efficiency greater than 0.9 for at least one sample, but the respective EAIIs 
are significantly lower ( 16.8% for Shantou and less than 9% for others). Inter-
estingly, Fuzhou—deemed efficient—has not achieved an efficiency score in the 
best interval for any weight sample. Obviously, such scores are feasible (as con-
firmed with the analysis of exact extreme scores), but EAIIs indicate that they 
are improbable.

For some ports, the analysis of EAIIs allows indicating the most probable 
ranges of efficiencies even if the efficiency intervals are relatively wide. For 
example, the efficiency score for Yantai is in the best three buckets for 98.6% 
of feasible scenarios, with the vast majority ( 68.3% ) in the last bucket. In the 
same spirit, the efficiency score of Qinhuangdao is between 0.2 and 0.4 for 
89.8% of feasible scenarios, and there is no sample for which its efficiency is 
greater than 0.5. However, there is also a group of ports with efficiency scores 
strongly dependent on the selected weight and performance vectors. For exam-
ple, for Shantou, EAIIs greater than 16% are attained for the two very different 
intervals, (0.9, 1] and (0.3, 0.4]. Also, for this port and eight buckets represent-
ing efficiency scores between 0.2 and 1.0, EAIIs are greater than zero. Similarly, 
Fuzhou has a positive share of feasible scenarios for nine sub-intervals.

Fig. 3  The diviz workflow used to perform the efficiency analysis for a case study (see Sect. 4)
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The distribution of efficiency scores can be translated into a single, eas-
ily understandable measure, i.e., expected efficiency (see Fig.  4). These scores 
impose a complete order on the set of ports. Yantai is the best, with an expected 
efficiency of 0.930. This means it is either efficient or very close to being effi-
cient for most feasible scenarios. The other two ports in the top three are Tianjin 
(0.877) and Yingkou (0.768). Dalian attains the next highest expected efficiency. 
Even though it is inefficient, it is ranked better in terms of EE than the remaining 
three efficient ports (Ningbo-zhoushan, Fuzhou, and Shantou). The three ports 
with the least expected efficiencies are Shenzhen (0.376), Shanghai (0.334), and 
Qinhuangdao (0.307).

4.2  Efficiency ranks

The extreme efficiency ranks ( R∗ and R∗ ) for all ports are presented in Fig.  5. 
Only the six ports deemed as efficient have the best rank equal to one. Further-
more, the inefficient units with relatively high maximal efficiency scores attain 
the best rank equal to two (see Dalian, Rizhao, Zhanjiang, and Fangcheng). Only 
one additional inefficient port (Lianyungang) is ranked at the podium in the best 
case. Four ports are always ranked outside the top five (see Shanghai, Xiamen, 

Table 4  Input and output values for considered Chinese ports (for employee satisfaction, 1 and 17 indi-
cate, respectively, the worst and the best ordinal performances)

Port Inputs Outputs Undesirable output

Labor population Energy 
consump-
tion

Cargo throughput Employee 
satisfac-
tion

Water pollutants

Dalian 0.961 0.997 1.255 15 [1.137, 1.421]
Yingkou 0.641 1.093 1.012 16 [0.796, 1.023]
Qinhuangdao 1.827 0.406 0.537 9 [0.455, 0.682]
Tianjin 1.022 0.533 1.583 15 [1.251, 1.706]
Yantai 0.208 0.798 0.763 15 [0.569, 0.853]
Qingdao 1.686 1.701 1.438 15 [1.137, 1.706]
Rizhao 0.763 0.830 1.006 9 [0.910, 1.137]
Shanghai 2.524 2.811 1.854 11 [1.706, 2.161]
Lianyungang 0.574 0.721 0.577 9 [0.455, 0.682]
Ningbo-zhoushan 1.895 2.533 2.651 17 [1.990, 2.843]
Fuzhou 0.434 0.465 0.417 6 [0.341, 0.455]
Xiamen 0.980 0.600 0.601 6 [0.398, 0.569]
Shantou 0.601 0.141 0.143 11 [0.284, 0.398]
Shenzhen 0.989 0.444 0.615 1 [0.512, 0.625]
Guangzhou 1.096 1.499 1.502 6 [1.706, 1.990]
Zhanjiang 0.353 0.971 0.736 6 [0.569, 0.682]
Fangcheng 0.447 0.456 0.307 6 [0.341, 0.512]
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Shenzhen, and Guangzhou). The least advantageous among them is Shanghai 
because even in the optimistic scenario, as many as 7 other ports attain higher 
efficiency ( R∗ = 8).

The most preferred ports in terms of the worst efficiency ranks are Yantai 
( R∗ = 7 ) and Yingkou ( R∗ = 11 ). When it comes to other efficient ports, their 
ranks drop to 14-th (for Tianjin), 16-th (for Ningbo-zhoushan and Fuzhou), or 
17-th (for Shantou) positions in the most pessimistic case. Hence the ranks of 
Shantou range between the most extreme possible ones. In general, for 13 out of 
17 ports, the pessimistic rank is lower than 15-th. Among them, six inefficient 
ports (Qinhuangdao, Shanghai, Xiamen, Shenzhen, Guangzhou, and Fangcheng) 
are ranked at the bottom in the least advantageous scenario.

Since the rank intervals for all ports are broad, we have estimated Efficiency 
Rank Acceptability Indices (see Table  6). They reveal the distribution of ranks 
attained by each DMU across the feasible weight and performance vectors. Four 
of six efficient ports attained the top position for at least one feasible scenario. 
For Yantai, this occurs for 58.9% of samples, Tianjin and Shantou are ranked at 
the top for similar shares of scenarios ( 19.6% and 15.3% , respectively), whereas 
for Yingkou, the ERAI for the first position is significantly lesser ( 6.2% ). Regard-
ing the remaining efficient ports, Ningbo-zhoushan attained at most second rank, 
and Fuzhou was at most third for relatively negligible shares of feasible scenarios.

For many ports, it is possible to indicate a single rank or a relatively narrow range 
of ranks attained for the vast majority of feasible scenarios. For example, Yingkou 
is ranked third for more than 60% scenarios, Yantian is ranked in the top three for all 
sampled scenarios, and Dalian is placed between fourth and sixth for more than 85% 
scenarios. Some other ports attain a more extensive range of ranks for a significant 

Fig. 4  Graphical representation of extreme efficiency scores and expected efficiencies for seventeen ports
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share of feasible scenarios. For example, Shantou has non-zero ERAI for all ranks, 
with the acceptability indices ranging from 1.2% to 18.6% . Furthermore, Rizhao and 
Lianyungang have ERAIs greater than 10% for five consecutive ranks. Also, the anal-
ysis of ERAIs leads to identifying some ranks which are feasible according to the 
exact robustness analysis while being less probable, as confirmed by the stochas-
tic analysis conducted with the Monte Carlo simulation. For example, Qinhuang-
dao could be ranked fifth in the best case, but the probabilities of ranks above 8 are 
already close to zero. In the same spirit, Tianjin could be ranked 14-th in the worst 
case, but the shares of scenarios ranking it worse than 9 are negligible. In general, 
the analysis of ERAIs points out the ports for which the attained ranks are rather sta-
ble, or the ranks’ variability is great. This means that their position strongly depends 
on the particular scenario (weights and performances).

ERAIs can be transformed into expected ranks that allow ordering the ports from 
the best to the worst (see Fig.  5). In particular, for Yantai, ER is equal to 1.438, 
which confirms its superiority over the remaining ports. The following two positions 
are attained by Tianjin (2.827) and Yingkou (2.918). Even though Dalian is ineffi-
cient, its expected rank is better than those attained by the remaining three efficient 
ports. Qinhuangdao, Shanghai, and Shenzhen attain the worst expected ranks. They 
confirm that these three ports are placed at the bottom for most feasible scenarios.

4.3  Preference relations

The third analyzed perspective concerns the stability of efficiency-based pairwise 
preference relations. In Table 7, we present the matrix summarizing the truth of the 
necessary (N) and possible (P) preference relations. First, let us note that the nec-
essary relation is reflexive, which is confirmed with “N” on the main diagonal of 
Table 7. Furthermore, the necessary relation holds for 20 pairs involving different 

Fig. 5  Graphical representation of extreme efficiency ranks and estimated expected ranks (note that the 
closer to the bottom of the figure, the better the ranks)
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ports. This means that for all feasible scenarios, one port attains efficiency at least 
as good as the other port, confirming the robustness of its advantage. For example, 
Tianjin is necessarily preferred to Qingdao, Guangzhou, and Shanghai.

The necessary relation can be presented graphically using the Hasse diagram (see 
Fig. 6). Such a diagram does not represent the truth of relations that can be derived 
from the transitivity. For example, since Dalian is necessarily preferred to Qingdao, 
and Qingdao is necessarily preferred to Shanghai, Dalian is also preferred to Shang-
hai. Note that no other port is necessarily preferred over six efficient ports. However, 
there are also four inefficient (Dalian, Rizhao, Shenzhen, and Fangcheng) for which 
there does not exist any other port confirming its necessary advantage over them.

The port which proves its robust superiority over the greatest number of other 
ports is Yantai. It is necessarily preferred over seven other ports. An interesting 
situation can be observed for Fuzhou and Shantou. Although they are efficient, 
they are not necessarily preferred over any other port. The latter (i.e., no outgo-
ing arc) also holds for seven other ports. Among them, Shanghai and Guangzhou 
are necessarily worse than the most significant number of other ports (6 and 5, 
respectively). The necessary relation graph suggests the improvement paths that 
inefficient ports can follow to improve their efficiency gradually. For example, 
for Shanghai, we can construct the following example paths: Shanghai–Qing-
dao–Dalian or Shanghai–Qingdao–Yingkou. Alternatively, it can directly learn 
from Ningbo-zhoushan.

Regarding the possible preference relation (see Table 7), let us emphasize that 
the necessary relation implies the truth of the possible one. However, the lat-
ter one holds also for pairs that are not related by the necessary preference. For 
example, all efficient ports are incomparable in terms of the necessary relation. 
This means there is at least one feasible scenario for which one port is preferred 
to the other and at least one feasible scenario for which this relation is inverse 
(e.g., Yingkou and Tianjin). Such a situation also occurs for pairs of inefficient 
ports (e.g., Dalian and Rizhao or Qingdao and Guangzhou). When the possible 
relation for a given pair of ports is false (e.g., (Qingdao, Dalian) or (Shanghai, 
Qingdao)), then one port is less efficient than the other for all feasible scenarios.

When the necessary relation is true or the possible relation is false, a pair of ports 
is compared in the same way for all feasible scenarios. However, when the ports 
are incomparable in terms of the necessary relation, it is interesting to analyze the 
shares of feasible scenarios that rank one of the ports at least as good as the other. 
Pairwise Efficiency Outranking Indices capture such shares (see Table 8).

For some pairs, these indices confirm the superiority of one port over the other. 
For example, PEOI(Yingkou, Zhanjiang) = 0.995 and PEOI(Rizhao, Qinhuang-
dao) = 0.999 indicate that one port is at least as efficient as the other for over 99% 
scenarios, and the inverse relation is extremely unlike with PEOIs close to zero. For 
some other pairs, the PEOIs indicate that the shares of scenarios confirming the 
advantage of either port over another are very similar (e.g., PEOI(Shanghai, Qin-
huangdao) = 0.506 and PEOI(Qinhuangdao, Shanghai) = 0.494 or PEOI(Shenzhen, 
Qinhuangdao) = 0.540 and PEOI(Qinhuangdao, Shenzhen) = 0.460 ). For these 
pairs, the indication of a more preferred port strongly depends on the selected 
weights and performance vectors.
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5  Conclusions and future work

We have introduced a rich framework for robustness in the context of Imprecise Data 
Envelopment Analysis. The proposed methods are applicable in the context of three 
major types of uncertainty that occur in real-world decision problems (Pelissari 
et al. 2021). First, we consider ambiguity in the input and output performances that 
could be interpreted differently due to their ordinal or interval character. Second, we 
account for stochasticity by considering discrete and continuous probability distribu-
tions. Third, we deal with partial information on the input and output weights by 
exploiting the space of feasible weights delimited with a set of linear constraints. 
In this way, the proposed approaches for robustness analysis can be applied to real-
world problems for which it is difficult to express the knowledge or collect precise 
data, the variables are unquantifiable, some errors in measurements occur, or the 
users are not able or willing to express their complete preferences (see Dehnokhalaji 
et al. 2022; Pelissari et al. 2021).

When considering the stability of results that can be attained for the pos-
sible performances and weights, we focus on three types of efficiency-based out-
comes: scores, preference relations, and ranks. On the one hand, the mathematical 

Fig. 6  The Hasse diagram representing the necessary efficiency preference relation
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programming models compute the extreme efficiency scores and ranks and verify 
the truth of the necessary and possible preference relations. These outcomes reveal 
each DMU’s performance for the most and the least advantageous scenarios and col-
late the efficiencies of all pairs of DMUs for all or at least one feasible scenario. 
Thus, they offer an exact perspective on the DMUs’ performance. On the other 
hand, we incorporate the stochastic analysis driven by the Monte Carlo simulations 
to derive the probability distribution of different outcomes and expected results. 
These stochastic outcomes complement the exact results derived using mathematical 
programming. They also provide means for analyzing trends or some prevailing sce-
narios and imposing the ranking on the set of DMUs in the line of expected scores 
or ranks. Above all, such various outcomes have not been offered by any previous 
IDEA method.

The practical usefulness of the proposed framework has been illustrated in real-
world case studies concerning the evaluation of Chinese ports (Jiang et al. 2021) and 
industrial robots (Saen 2006). The data sets involved precise, interval, and ordinal 
factors. The results were computed with modules implemented in R and available 
on the diviz platform (Meyer and Bigaret 2012). They incorporate MILP solver and 
advanced sampling techniques.

The main limitations of the proposed framework are three-fold. First, when the 
number of units runs over a few hundred, the linear programs are too big and too 
many, posing a significant problem for contemporary solvers. This is particularly 
true for results such as extreme ranks that are established using binary variables. 
Moreover, for such big data problems, the robust results, such as the ranking induced 
by the necessary preference relation, cannot be presented to the user because of their 
high complexity. Then, it is more beneficial to refer to complete orders of units 
based on expected efficiencies or ranks. Still, let us emphasize that large scale-
applications are less common in DEA. Second, the results of the stochastic analysis 
depend on the assumed distribution of weights and performances within the inter-
vals as well as the hypotheses made when representing the ordinal performances. 
Clearly, the developed framework is applicable with other types of distributions than 
uniform and arbitrary performance ranges from which the ordinal performances 
could be sampled. These choices may affect the values of stochastic acceptabilities. 
Also, whichever assumptions are made, even if the indices can be estimated within 
the acceptable error bound, they are not accurate. Third, we accounted for the stand-
ard imprecision types considered in IDEA, including interval and ordinal perfor-
mances. As proved by a comprehensive review by Pelissari et al. (2021), uncertain 
performances can also be modeled differently. The most popular approaches for this 
purpose include fuzzy numbers, non-uniform probabilistic distributions, evidential 
reasoning, and grey numbers. Their combinations with DEA have gained in popular-
ity in recent years. Hence adopting the framework for robustness analysis to their 
context remains an appealing direction for future research.

We develop the methods introduced in this paper in the following directions. 
First, we adapt them to hierarchical structures of inputs and outputs. In this way, the 
robustness of efficiency outcomes given imprecise performances can be investigated 
at the comprehensive and local levels (Shen et al. 2013). The latter corresponds to a 
more elementary perspective or particular sub-area of DMUs’ functioning. Indeed, 
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the hierarchical structure is helpful for decomposing complex decision problems 
into smaller, manageable sub-problems. This is particularly useful in scenarios 
with high numbers of inputs and outputs, which often happens in medicine, energy, 
banking, and finances. Moreover, we design the Multiple Objective Optimization 
algorithms to determine different scenarios of improvements (i.e., reductions of con-
sumed resources or increases of produced results) required for attaining or maintain-
ing a particular target. These targets refer to many robust results, e.g., being neces-
sarily ranked in the top three or attaining an efficiency score of at least 0.7 for all 
feasible scenarios (Ciomek et al. 2018). Moreover, the proposed framework offers 
flexibility to the Decision Maker, who can indicate which factors should be modi-
fied and to which extent. The obtained solutions reflect the trade-offs between modi-
fications needed on various factors. Their analysis may lead to selecting the most 
preferred solution to be implemented in practice. Finally, we develop the methods 
for robustness analysis in the context of value-based DEA (see Gouveia et al. 2008; 
Labijak-Kowalska et al. 2023). This model is based on concepts from Multiple Cri-
teria Decision Analysis, allowing the incorporation of managerial preferences on 
different levels. In this regard, the uncertainty is related to performances, weights, 
and the shape of value functions for inputs and outputs. However, the output types 
produced by these methods are similar to those discussed in this paper.
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