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Abstract

We consider the problem of measuring the efficiency of decision-making units with
a ratio-based model. In this perspective, we introduce a framework for robustness
analysis that admits both interval and ordinal performances on inputs and outputs.
The proposed methodology exploits the uncertainty related to the imprecise data
and all feasible input/output weight vectors delimited through linear constraints.
We offer methods for verifying the robustness of three types of outcomes: efficiency
scores, efficiency preference relations, and efficiency ranks. On the one hand, we
formulate mathematical programming models to compute the extreme, necessary,
and possible results. On the other hand, we incorporate the stochastic analysis driven
by the Monte Carlo simulations to derive the probability distribution of different
outcomes. The framework is implemented in R and made available on open-source
software. Its use is illustrated in two case studies concerning Chinese ports or indus-
trial robots.

Keywords Data Envelopment Analysis - Imprecise performances - Robustness
analysis - Monte Carlo simulation - Open-source software

1 Introduction

Data Envelopment Analysis (DEA) measures the relative efficiency of Decision
Making Units (DMUs) (Cooper et al. 2014). The standard Charnes-Cooper-Rhodes
(CCR) model used in DEA generalizes the single output/input productivity meas-
ure (Farrell 1957) by transforming the characterization of each DMU in terms of
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multiple desired outputs and multiple input factors (Charnes et al. 1978). Specifi-
cally, the efficiency is quantified as a ratio between a single virtual output and a
single virtual input (Salo and Punkka 2011). When evaluating the efficiency of each
DMU, the weights involved in the definition of efficiency measure are selected to
identify the most advantageous scenario. This means that an efficiency score of a
given DMU is maximized subject to both the constraint that all DMUs can have
scores lesser or equal to the unity and the feasibility of input/output weights. As a
result, DEA generates relative efficiency measures, which depend on the set of ana-
lyzed DMUs, leading to the identification of the so-called efficient frontier (Charnes
et al. 1994). The units that lie on the frontier attain the score of one. In contrast, the
units with a score lesser than one are below the efficient frontier, hence being classi-
fied as inefficient.

The main advantages of DEA derive from its following features (Charnes et al.
1994). First, DEA conducts a detailed analysis of performance measures for each
DMU instead of focusing on the population averages. This allows for understanding
the status of efficiency for individual observations. Moreover, in the case of inef-
ficiency, one could identify its sources and point out the desired modifications of
inputs and/or outputs for projecting the DMU onto the efficient frontier (see Apa-
ricio et al. 2007; Chen and Wang 2020; Wu et al. 2018). Second, DEA does not
involve any assumption about the functional form, hence not relating the independ-
ent and dependent variables (i.e., inputs and outputs) in any specific way. In turn, it
evaluates each DMU relative to other DMUs, while not requiring any prior specifi-
cation of weights. Finally, a great advantage of DEA lies in its simplicity and gen-
erality. It captures the efficiency in utilizing the inputs to produce the outputs, all
expressed in various units, with a single, easily interpretable performance measure.

For the last forty years, many extensions of DEA have been proposed (see
Cook and Seiford 2009; Emrouznejad and Yang 2018). The traditional DEA mod-
els assumed that the consumed inputs and produced outputs could be precisely
expressed with numerical values on a ratio scale. However, in many real-world
problems, this is not possible for a few reasons (see Aparicio et al. 2019; Cooper
et al. 1999; Shokouhi et al. 2010). These reasons include inexact specification of
inputs and outputs, the uncertainty of data used to compute the consumed inputs
or desired outputs, subjectivity involved in this process, and high costs in terms of
time or financial resources needed for conducting the accurate measurements (Cor-
rente et al. 2017). As a result, the measurements of inputs and outputs often remain
imperfect. This, in turn, requires methodological developments that could handle
such uncertain or inaccurate evaluations.

In the context of DEA, two types of imperfect inputs and outputs received par-
ticular attention (Liu et al. 2013). On the one hand, the basic idea to capture the
uncertainty is using an imprecise evaluation in terms of the interval of possible val-
ues. On the other hand, ordinal assessments can be considered. The latter is helpful
if only qualitative information is available, some binary features are involved in the
analysis, or it is possible to obtain the ranking of units in terms of some input or out-
put instead of precise quantitative measurements.

To handle the imprecision of inputs and outputs, Cooper et al. (1999) proposed
Imprecise DEA (IDEA), where precise performance values were replaced with
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intervals. This methodology has been further revised and enriched in different ways.
For example, Kim et al. (1999) accounted for strong and weak ordinal relations as
well as ratio interval data. Furthermore, Despotis and Smirlis (2002) dealt with
transforming the interval performances into precise ones, incorporating them into
a standard DEA model to optimize the computational performance of the problem.
Moreover, Zhu (2003) developed a linear programming model handling strong ordi-
nal inputs and outputs. Also, Ebrahimi and Khalili (2018) proposed the models—
incorporating preference information—that find the most preferred DMU and rank
other efficient DMUs. The DEA models handling imprecise data have been success-
fully used in the telecommunication sector (Cooper et al. 2001), machinery industry
(Kao and Liu 2005), wheat farming (Hadi-Vencheh and Matin 2011), port efficiency
assessment (Zahran et al. 2020), and healthcare (see Azadi and Saen 2013; Karsak
and Karadayi 2017).

In the traditional DEA and IDEA methods, only the most favorable input/output
weight vector is considered when evaluating each DMU’s performance. This may
be criticized for a few reasons. First, choosing the individual weight vector for each
DMU makes the comparison of efficiencies questionable due to the non-uniqueness
of the most advantageous weight vectors and lack of a common basis to analyze the
attained scores (Lahdelma and Salminen 2006). Second, such an analysis is focused
on a minimal set of scenarios while ignoring other feasible weight vectors that could
provide helpful information on the variety of efficiency scores (Salo and Punkka
2011). Third, the efficient frontier, which forms the basis for evaluating the DMUs,
requires prior assumptions of the return-to-scale. Besides, it strongly depends on the
set of considered DMUs (see Zhu 1996; Seiford and Zhu 1998). Fourth, using a
single efficiency measure that divides the DMUs into efficient and inefficient ones
offers too limited capabilities for discriminating between the units (see Adler et al.
2002; Hosseinzadeh Lotfi et al. 2013). All these drawbacks motivated the devel-
opment of robustness analysis methods, which quantify the stability of efficiency
results for different feasible weight vectors. Given imprecise inputs and outputs, the
need to include uncertainties when working out the results is even more evident.
The robust conclusions should be valid in all or most scenarios (see Kadzinski and
Tervonen 2013; Liang et al. 2020), with a scenario being equivalent to a set of pos-
sible values for data of the problem and the efficiency model parameters.

Some essential methodological advancements oriented toward robustness analy-
sis for IDEA have been proposed over the last two decades. In particular, Despo-
tis and Smirlis (2002) derived the optimistic and pessimistic efficiency scores for
each DMU. Both are computed with the most favorable weight vectors for a given
unit while assuming the most and the least advantageous scenarios for the inputs
and outputs. Based on these results, the units can be divided into three groups: effi-
cient in the most pessimistic scenario, inefficient even in the most optimistic sce-
nario, and an intermediate class including DMUs with unitary optimistic efficiency
and pessimistic efficiency lesser than one. This classification was further analyzed
in Jahanshahloo et al. (2004) to consider the “radius of stability”. For each DMU,
it is defined with a pair of values, @ and g, indicating, respectively, a decrease of
the upper bounds of input and output intervals and an increase of the respective
lower bounds for which the efficiency class remains unchanged. Furthermore, Kao
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(2006) proposed mathematical models for computing the optimistic and pessimis-
tic efficiency scores in the presence of both interval and ordinal inputs and outputs.
A similar aim of deriving an efficiency interval for each DMU—though in differ-
ent settings—was considered in Ebrahimi and Toloo (2020) and Park (2007). Also,
in this context, Ebrahimi et al. (2021) and Toloo et al. (2021) accounted for the
dual-role factors, which can be interpreted as input and output at the same time.
In turn, Haghighat and Khorram (2005) proposed non-linear models for deriving
the maximal and minimal numbers of efficient units when the input and output per-
formances are given as intervals. The Monte Carlo simulation was incorporated
into the stochastic DEA to derive the distribution of efficiency scores in the setting
where inputs and outputs were expressed as intervals formed by values gathered in
different years (Kao and Liu 2009). Dehnokhalaji et al. (2022) proposed a robust
optimization framework for performance measurement and cross-efficiency inspired
ranking of DMUs. An additive value DEA model was considered in Gouveia et al.
(2013) to construct the efficiency intervals and find the maximal percentage toler-
ance by which one could deteriorate the inputs or outputs of a given DMU so that
it remains efficient. Finally, Azizi et al. (2015) proposed a slack-based method to
find the optimistic and pessimistic efficiency intervals for DMUs for DEA involv-
ing imprecise data. Specifically, two classifications of DMUs into efficient and inef-
ficient units were proposed considering the optimistic and pessimistic settings. In
addition, the procedures for obtaining an overall interval score as well as construct-
ing a complete ranking of DMUs were introduced.

The most important contribution of this paper consists of proposing a rich
framework for robustness analysis in the context of imprecise inputs and outputs.
As opposed to the existing approaches that extend IDEA, our methodology consid-
ers uncertainty related to the interval or ordinal data and all feasible weight vectors
simultaneously. In particular, we propose tools for analyzing the robustness of three
types of outcomes: efficiency scores, efficiency preference relations, and efficiency
ranks.

On the one hand, we derive extreme, robust results using dedicated mathematical
programming models exploiting all scenarios involving imprecise input/output data
and feasible weight vectors. We show how to compute the extreme efficiency scores
and ranks and verify the truth or falsity of the necessary and possible efficiency pref-
erence relations (Kadziniski et al. 2017). The efficiency bounds and ranking intervals
reveal the pessimistic and optimistic performance of each unit (Salo and Punkka
2011). In turn, the two relations focus on the pairwise comparisons that need to be
validated for all or at least one feasible scenario (Kadzinski et al. 2017).

On the other hand, we implement the stochastic analysis to derive the distribu-
tion of different measures and results (Lahdelma and Salminen 2006). We employ
the Monte Carlo simulations to analyze a sufficiently large and representative set of
feasible weight vectors and input/output performances consistent with the imprecise
information. For this purpose, we apply a suitably adjusted Hit-And-Run algorithm
(see Ciomek and Kadziriski 2021; Tervonen et al. 2013). The outcomes are quanti-
fied through Efficiency Acceptability Interval Indices, Efficiency Rank Acceptability
Indices, and Pairwise Efficiency Outranking Indices (see Lahdelma and Salminen
2006; Kadziriski et al. 2017). The stochastic indices capture the shares of feasible
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scenarios that guarantee a given score or rank to a particular DMU or confirm that
one DMU is at least as good as the other. Also, we estimate the expected efficiency
scores and ranks for all DMUs. These measures can be the basis for constructing
a complete ranking of DMUSs based on the robust outcomes derived from analyz-
ing feasible weights, inputs, and outputs. From the methodological perspective, the
proposed methodology can be seen as an extension and adjustment of an integrated
framework for robustness analysis proposed in Kadzifiski et al. (2017) to the case of
imprecise (interval or ordinal) evaluations.

We also present open-source software that implements the proposed framework
for robustness analysis. The software consists of modules available on the diviz plat-
form (Meyer and Bigaret 2012). These modules accept the specification of linear
constraints concerning the weights related to inputs and outputs. Moreover, they
have been designed to admit their combination into complex algorithmic workflows.
The latter can be employed to share the methodological developments and results of
case studies among users.

Finally, we illustrate the use of both the framework for robustness analysis and
software in real-world studies concerning efficiency analysis of Chinese ports (Jiang
et al. 2021) and industrial robots (Saen 2006). The units are described in terms of
precise, interval, and ordinal factors. These examples demonstrate the practical use-
fulness of robust results concerning scores, ranks, and pairwise preference relations.
Also, we emphasize the complementarity of exact and stochastic results. Moreover,
we demonstrate that both the space of feasible weight vectors as well as imprecise
input and output performances influence the robustness of attained efficiency results.

The remainder of the paper is organized in the following way. In Sect. 2, we dis-
cuss the proposed methods for robustness analysis within the scope of Imprecise
Data Envelopment Analysis. In Sect. 3, we present the algorithmic modules imple-
menting the proposed methodological framework on the diviz platform. Section 4 is
devoted to an illustrative case study concerning the efficiency analysis of Chinese
ports. The results of the study on industrial robots are reported in the e-Appendix
(supplementary material available online). Section 5 concludes the paper and out-
lines avenues for future work.

2 Robustness analysis for Imprecise Data Envelopment Analysis
2.1 Notation and basic concepts
The following notation is used in the paper:

e D={DMU,,..., DMUy}—a set of considered DMUs, where K is the number
of DMUs (K = |DJ);

x,—m-th input,m € {1, ... ,M};

y,—mn-thoutput,n € {1,...,N};

PI, Il and OI—subsets of precise, interval, and ordinal inputs, respectively;

PO, 10 and OO—subsets of precise, interval, and ordinal outputs, respectively;
X,,,—the value of m-th input consumed by DMU, € D, m € PI U OI,
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¢ y,,—the value of n-th output produced by DMU, € D,n € PO U OO,;
o [X,04> X, }—an interval value of m-th input of DMU,, m € II;

®  [¥,0x, Y, }—an interval value of n-th output of DMU,, n € I0;

e X, ,—the value of v, - x,,, for ordinal inputs, m € OI,

e Y, —the value of u, - y,, for ordinal outputs, n € OO0;

o v={v,...,vy}—a vector of input weights;

o u={u,...,uy}—a vector of output weights;

L]

n, y—values representing the minimal ratios between the successive values of
ordinal inputs and ordinal outputs, #, y > 1 (in this paper, we setn = y = 1.1);

o S,={v=0,....y)’ #0|v>0,A,y<0} and S, = {u=(u;,...,uy)" #0|

u>0,A,u < 0}—spaces of feasible input and output weights, respectively; A,
and A, are matrices of coefficients involved in the linear constraints on weights
derived from the user’s preferences.

To illustrate the notation, let us refer to an example presented in Table 1, which
is derived from Despotis and Smirlis (2002). The set of DMUs is composed of
five units, D = {D,,D,,D;,D,,Ds}. They consume two inputs—one precise
(PI = {i;}) and the other interval (/I = {i,}), and produce two outputs—one
precise (PO = {0,}) and the other ordinal (OO = {0,}). The weights associated
with the inputs are denoted by v; and v,, and the respective weights for the out-
puts are u; and u,. When it comes to unit D,, its precise input is x;; = 100 and
the interval input is [x,,,x5,] = [0.6,0.7]. The respective outputs are y,;; = 2000
and y,; =4. The latter will be represented in the following mathematical mod-
els as Y,; =y, - u,, and the following order Y,, < Y,, < Y,5 < Y,; < Y,; will be
maintained.

In what follows, we discuss the methods for robustness analysis in the con-
text of Imprecise DEA. They can be divided into two subgroups. One of them
is devoted to the exact analysis using linear programming techniques. In con-
trast, the other aims to estimate some stochastic acceptability indices through the
Monte Carlo simulations. The analysis is conducted given all feasible efficiency
scenarios, where each scenario corresponds to a specific, admissible realization
of both weights and performances on inputs and outputs.

E::;:OHE&ZI;I:}; ISJer:i?sf DMU, i (precise) i, (interval) o0, (precise) 0, (ordinal)
involving imprecise data D, 100 [0.6,0.7] 2000 4

D, 150 [0.8,0.9] 1000 2

D, 150 [1.0, 1.0] 1200 5

D, 200 [0.7,0.8] 900 1

Dy 200 [1.0, 1.0] 600 3
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2.2 Exact robustness analysis with linear programming

In this section, we discuss how to derive exact robust outcomes using mathematical
programming. These results capture the extreme cases observed for all feasible effi-
ciency scenarios (u, v, X, y) defined by the sets of admissible weights as well as values
of inputs and outputs. They concern the following three perspectives: scores, ranks, and
pairwise preference relations. We refer to the concepts of extreme scores and ranks and
the necessary and possible preference relations that have been introduced in the litera-
ture. However, the models for their computation that are presented in this section are
original and specifically adjusted to the context of IDEA.

To conduct a robustness analysis given interval inputs and outputs, we need to con-
sider the most and the least advantageous (i.e., optimistic and pessimistic) scenarios for
each DMU. On the one hand, the optimistic scenario for DMU,, is realized by assuming
that its inputs are the least possible and its outputs are the greatest admissible by the
specified intervals. In contrast, for the remaining units, both the inputs and outputs are
the least advantageous, i.e.:

Xpiews I M =0,
X, = .
mk { x* . otherwise, M
mk
_ y:k, ifn=o,
Yk { Vuks» Otherwise. @

On the other hand, the pessimistic scenario for DMU,, is realized by assuming that
its imprecise inputs and outputs are replaced with the least favorable values. For the
remaining DMUs, the minimal inputs and the maximal outputs are considered, i.e.:

x* o ifm=o,
= 3)
X,s> Otherwise,

| Y ifn =0,
Yk = { ¥, otherwise. @

When the dataset involves the ordinal factors, the products v, - x,,, or u, -y, are
replaced by one variable, respectively, X,, or Y,.. Additionally, the constraints
respecting the character of ordinal evaluations need to be included in the model.
In particular, the constraints imposing a strong ordinal relation should not take an
additive form, e.g., X, > X + €, where € is a small positive constant. In turn, as the
original ordinal evaluations x,, and y,, are transformed into variables X, or Y,
involving multiplication by a common weight (v,, and u,,), the ratios of subsequent
X, orY,, values needs to be greater than one, i.e.:

X . Yni S Ynj? (1’1) € {(laj) : yni Synj}? ne 007 5
N X < Xpjo () € 1G)) X < X} m € O )

m

where y, n > 1(Zhu 2003).
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Following (Zhu 2003), we consider the efficiency of DMU , defined as a ratio of a
single virtual output to a single virtual input:

E = ZnePO UnYno + Znelo UnYno + Zneoo Yno (6)
0 =
ZmePI VimXmo + Zmel[ VinXmo + ZmGOI Xmo

where y,, € [y, Y5, ] for n € I0 and x,,, € [x,,,,,x; | for m € II. The virtual out-
put and input aggregate multiple outputs or inputs while ensuring that each relevant
factor contributes to an overall measure of efficiency. Please note that the contribu-
tions from these factors are dimensionless. This is due to multiplying the precise
and imprecise performances by the weights and using dedicated components for the
ordinal factors. Still, their major role is to maintain the desired relationships between
the efficiencies of various units implied by their input and output values. In fact, the
above expression ensures that £, does not deteriorate if one (i) increases the output
values or decreases the input values in DMU, or (ii) decreases the output values
or increases the input values in other DMUSs. At the same time, this representation
eliminates the scale transformations (Zhu 2003), reducing the computational burden
in applications.

2.2.1 Extreme efficiency scores

When it comes to the efficiencies, for each DMU,, we determine the maximal £* and
minimal E,, scores that it can attain for at least one feasible scenario (see Despotis
and Smirlis 2002; Kadziriski et al. 2017; Kao 2006). To find the greatest (optimistic)
efficiency score for DMU.,, the following Linear Programming (LP) model needs to
be solved:

aximize: E* = , *
Maximize: E} = 3 3,0+ X Y, + X ¥y,
nero nelo né00

st. [E*=Cl] 2 Vo + X Vo ¥ X Xy =1,
= mell meol
[E* - C2] 2 Yt Xy, + XY, <1,
nEPO nelo €00
[E" - (3] Y oYt X Ut X Y S X Vi X VXt X X k=1,....K k#o,
nEPO nelo €00 mePl mell meol
[E* - C4] Y <Y, @.)) €{G.)) * vy £y} n € 00,
[E* - C5] X < X, @) € {G.)) © %, <X, m € OI
[E* - C6] ) €,.5,).

@)
Model (7) is equivalent to the classical CCR model for DEA with imprecise data.
It finds the most favorable weight vector for DMU, in its best input/output sce-
nario and the worst possible scenarios for the remaining DMUs. The space of vari-
ables is composed of the following weights: v,, for n € PIUII, X, for m € OI
and DMU, € D, u, forn € POU IO and Y, for n € OO and DMU, € D. It is con-
strained so that the virtual input of DMU,, is equal to one ([E* — C1]), the efficiency
scores for all DMUs are not greater than one ([E* — C2]and [E* — C3]), the monoto-
nicity relations derived from the analysis of ordinal inputs and outputs are preserved
(E* — C4]and [E* — C5]), and the constraints on the admissible values of input and
output weights are satisfied ([E* — C6]). The last three constraints are present in all
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following LP models. The optimal value of E” is between zero and one. The DMUs
with optimal E? = 1are considered as efficient.

The minimal (pessimistic) efficiency score for DMU , using the CCR model with
imprecise information can be derived by solving the following Mixed-Integer Linear
Programming (MILP) model:

Minimize: E,, = ¥ Y5+ X Yu+ X Yo
nePO nelo n€00

st. [E,=Cl] X Vo + X Vot X Xy =1
mePl mell meol
lE, - C2] T UYpot X UVpoet X Y,y 21-C(=b,),
nePo nelo né0o
[E, - C3] Doyt X uVut X Y 2 X VXt X X+ X Xy — CL=by), k=1,....Kik#o,
nEPO nelo = mePl mell meor
[E, - C4] Sh o >1,
=1
[E, — C5] b, €{0,1}, k=1,....K,
[E, - C6] 1Yy <Yy (i) € (o)) ¢ Yo Sy}, n € 00,
[E, - CT] X < Xy (@) €{of) * X < X}, m € O,
[E, — C8] ,u) €(S,,5,)-

®)
The above model allows for finding the least favorable weight vector for DMU, in
terms of its efficiency while considering the worst possible scenario for DMU, and
the best admissible scenarios for the remaining units DMU,, k=1, ...,K and k # o.
Under these conditions, we constrain the space of feasible solutions by imposing—
without loss of generality—that the virtual input of DMU, equals one ([E, — C1]),
assuming that at least one unit is efficient (its efficiency score must be greater than
or equal to one; [E, — C2HE, — C5]), preserving the ordinal factors’ monotonicity
(E, — C6HE, — CT]), and satisfying the pre-defined constraints on the admissible
values of input and output weights ([E, — C8]). Apart from the weights already con-
sidered in model (7), we include the binary variables b, € {0,1}, k=1, ...,K. The
optimal value of E,,, is between zero and one. Overall, [E,,, E] can be deemed as an
efficiency interval (Salo and Punkka 2011).
Note that C is a large positive constant. Irrespective of which DMU, is con-
sidered, it is sufficient that C > maxpyy, pyy,ep{max{max,,cp{ X, /%t

maxme,,{xmk*/x;]}, ifOI #@ : nX}}. It is so because to minimize E,,, the
solver also minimizes E, for k=1,...,K. Since constraint [E, — C1] imposes
Domert Varkmo + 2omen VmXey + 2omeor Xmo = 1, then for k=1,...,K, C is greater
than Y, p VXt + DLomerr VinXmks + Domeor Xmi- Consequently, when binary vari-
able b, equals O for k =1, ..., K, constraint [E, — C2] (when k = 0) or constraint

[E, — C3](whenk =1,...,K, k # 0) is satisfied for all values of the variables. How-
ever, constraint [E, — C4] imposes that at least one b, for k =1,...,K is equal to
one. Then, the respective efficiency E, is greater or equal to one since the virtual
output of DMU, is greater or equal to its virtual input.

Lllustrative example In Table 2, we present the extreme efficiencies derived for five
units contained in the illustrative example introduced in Sect. 2.1. They reveal that two
units (D, and D) are efficient, attaining the maximal efficiency score equal to one. The
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Tabile 2 Eixact robust re.sults DMU, Extreme scores Extreme  Robust relations

derived with mathematical ranks

programming for the illustrative

example EY E, R: R, D D, Dy D, D;s
D, 1.000 0.013 1 2 N N P N N
D, 0723 0011 2 5 N P P P
D, 1.000 0367 1 4 P P N P N
D, 0751 0.010 2 5 P P N P
D 0.637 0012 3 5 P P N

efficiency intervals are relatively wide and span over the range of over 0.6 for all units.
For example, the minimal efficiencies of D, and D; are, respectively, 0.013 and 0.367.

2.2.2 Extreme efficiency ranks

As far as efficiency ranks are concerned, we determine the best R* and the worst R,
ranks that are attained by DMU,, for at least one feasible scenario (see Kadziriski et al.
2012, 2017; Salo and Punkka 2011). Given a fixed input/output weight vector and pre-
cise feasible performances for DMU,, it attains k-th rank if exactly k — 1 other units
attain higher efficiency scores than DMU,. To find the minimal (i.e., the best) effi-

ciency rank for DMU.,, the following MILP model needs to be solved:
K
Minimize: R=1+ Y b
k=1 ko
st IR =Cll % uy,+ By, + T Yy =1
nePoO

[R*=C2] ¥ v,x,,+ Z VoXpos + Z Xpo =1,

mePI €0l

[R*=C3]1 Y uyu+ Zu,,y,,h+ > Vu <X, xk+ZL X+ 2 X, + Cby, k=1,....K;k#o,
n€PO nelo né00 = mepr meo.

[R* — C4] b, €{0,1}, k=1,....K;k#o,

[R* - C5] 2V <Yy @) € {G.)) * yu Sy} n € 00,

[R* - C6] X S Xjs @) € {G) & Xy S x5}, m € OI,

[R* - CT] V) € (S,.5,).

The above model sets the efficiency score of DMU,, in its most optimistic reali-
zation equal to one ([R* — C1HR* — C2]). For the remaining units, we assume
their pessimistic realizations ([R* — C3]) and minimize the number of DMUs
with efficiency scores greater than for DMU,. This is attained by introducing the
binary variables b, for each DMU,, k=1,...,K, and k # o ([R* — C5]). When
the efficiency score of DMU, cannot be lower than or equal to one, then b, is
set to one, and the respective constraint [R* — C4] is always satisfied for all pos-
sible variable values. This is implied by the use of a large positive constant C.
Analogously to the reasoning for model (8), irrespective of which DMU,, is con-
sidered, it is sufficient that C > maxpyy, DMUAeD{max{max,,epo{ynk/ Yt }s
max,ejo{ Yo /Y5 ), if OO # @ 0 X)) In turn, if the efficiency score of DMU,, is
greater or equal to the efficiency of DMU,, b, is set to zero. Thus, by minimizing the
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sum of b, k=1,...,K, and k # o, we can obtain the best possible rank of DMU,,.
The optimal value of R” is between one and K.

The worst (i.e., the maximal) possible rank of DMU, can be computed with
the following MILP model:

K
Maximize: R,=1+ Y b
k=1kzo
st R, =Cll ¥ uy,+ Xty + X ¥, =1,
nePo nelo €00
R, =C2 3 Vuky+ X Vi, + X Xy =1
mePl mell meol
R, =C3] 3 v+ X Ve + X X S X Y+ Xty + X Yo+ CU=by), k=1...Kk#o,
mePI mell meol nePO nelo n€00
[R, — C4] b, €{0,1}, k=1,....K:k#o,
[R, — C5] 2V <Y, @) €{G)) + Y Sy} n € 00,
[R, - C6] Xy < Xijs @) € {G.)) & Xy S X}, m € O,
[R, - CT] Mu) €(S,.5,).

(10
The above model maximizes the number of DMUs with efficiency scores greater
or equal to DMU,. Again, we assume that the efficiency of DMU,, is equal to one
(R, — C1HR, — C2]). However, at this time, we consider the pessimistic realization
of DMU,. Then, we introduce the constraints imposing that the efficiencies of the
remaining DMUs in their optimistic realizations are not lower than one ([R, — C3]).
The component C - (1 — b,) included in the respective constraint implies that the
latter can be violated. If binary variable b, ([R, — C4]) is equal to one, constraint
[R, — C3] holds, whereas for b, = 0—it is satisfied for any variables’ values. Note
that C should be set similarly as for model (8). When maximizing the sum of b,,
k=1,...,K, and k # o, we minimize the number of DMUs for which constraint
[R, — C3]is violated. Thus, the sum of b, increased by one corresponds to the worst
possible rank of DMU . The optimal value of R, is between one and K.

Hllustrative example The extreme ranks for the illustrative example introduced
in Sect. 2.1 are presented in Table 2. The efficient units attain the first rank in
the best case. Although the minimal efficiency of D, is worse than for D3, in the
worst case its rank can drop only to the second position (R;, = 2), whereas D,
can be ranked even fourth (R;, = 4) in the most pessimistic scenario. The inef-
ficient units can be ranked second (D, and D,) or third (Ds) in the best case,
while all are ranked at the bottom in the least advantageous scenario.

2.2.3 Necessary and possible efficiency preference relations

When it comes to the stability of comparisons observed for pairs of DMUs given
all feasible scenarios, we consider the necessary (zg) and possible (zg) efficiency
preference relations (see Greco et al. 2008; Kadziniski et al. 2017). They are defined
in the following way:

e DMU, is necessarily preferred to DMU, (DMU, 2z DMU)) if DMU,, attains at
least as good efficiency as DMU, for all feasible scenarios defined by the sets of

admissible weights, as well as values of inputs and outputs, or, equivalently, if
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for all feasible weight vectors the efficiency of DMU,, in its pessimistic realiza-
tion is not worse than the efficiency of DMU, in its optimistic realization;

e DMU, is possibly preferred to DMU, (DMU,, zz DMU,) if DMU,, attains at least
as good efficiency as DMU, for at least one feasible scenario defined by the sets
of admissible weights, as well as values of inputs and outputs, or, equivalently,
if for at least one feasible weight vector the efficiency of DMU, in its optimistic

realization is not worse than the efficiency of DMU; in its pessimistic relations.

To verify the truth of the necessary efficiency preference relation DMU,, z’g’ DMU,
for pair (DMU,,, DMU,), we need to solve the following LP model:

Minimize: E,, = Y Y+ 2 Updnos + 2 Yoo
nePoO nelo n€eoo

st X Vo + XV, ¥ X Xy =1,
mePI mell meol
oYyt Xwyyt X Yy = XXyt XVt X X
nePo nelo neoo mePl mell meol
2V <Yy @) € {@))  Yu Sy}, n € 00,
nXpi < Xy @.)) € {G)) X S X}, m € OI,
w,u) €(S,,S,).

1D
The above model finds the minimal efficiency score of DMU , in its pessimistic reali-
zation while assuming that the efficiency of DMU, in its optimistic realization is
equal to one. If the obtained optimal value of E_, is greater than or equal to one, then
for all weight vectors (u, v), the efficiency of DMU,, is not worse than efficiency of
DMU,, i.e., DMU, %Y DMU,. Otherwise, no(DMU,, %Y DMU)).
The following LP model allows verifying the truth of the possible efficiency pref-
erence relation DMU, %2 DMU, for pair (DMU,, DMU,):

0o ~E
imize: E* = , "
Maximize: Ef = Y u,y,,+ 2 4,y + X Y,
nePO nelo n€00

st 2 Vo X Vs + 5 Xy =1,
mePl mell meol

- «
DUVt X Yt X Yy = X Xyt X v+ X Xy,
PO nelo neoo mePI mell meol

ne

WY <Y, () € {G)) = ¥y V), n € 00,
nX,

mi

<X,

mj>

,u) €(S,,S,).

(i) € () © X5 < X5}, mE O,

(12)
The above model computes the maximal efficiency of DMU,, in its optimistic reali-
zation while assuming that the efficiency of DMU, in its pessimistic realization is
equal to one. If the optimal value of E? is greater than or equal to one, then there
exists at least one weight vector (u, v) for which the efficiency of DMU,, is not worse
than efficiency of DMU,, i.e., DMU, %% DMU,. Otherwise, not(DMU, %% DMU)).
Lllustrative example The necessary and possible relations for the illustrative exam-
ple are presented in Table 2. Note that the necessary relation is transitive and implies
the truth of the possible relation. Let us observe that unit D, is necessarily preferred
to the three inefficient units (D,, D,, and Ds), whereas Dj; is robustly at least as
good only when compared to Ds. The efficient units are incomparable in terms of
the necessary relation while being possibly preferred over each other. The inefficient
units are not preferred over any other unit for all feasible scenarios. However, they
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are possibly preferred over each other (e.g., D, 52 Dyand D, z’; D,). Moreover, D,
and D, are at least as good as D; for at least one feasible scenario, whereas none of
the inefficient units attains the score of D, for any feasible setting.

2.3 Stochastic analysis with the Monte Carlo simulation

In this section, we discuss how to derive stochastic outcomes using the Monte Carlo
simulation. These results capture the share or distribution of feasible efficiency sce-
narios (u,v,X,y) that confirm a given outcome referring to the attained scores or
ranks, or the truth of pairwise preference relation.

To conduct such a stochastic analysis, we need to sample a representative sub-
set of all feasible efficiency scenarios. This requires the assumption about the prob-
ability distributions of the joint density function of the feasible input/output weight
vectors and the precise performances within the specified interval values on vari-
ous inputs and outputs (Lahdelma and Salminen 2006). In general, the proposed
approach can be used with any arbitrarily selected distribution. However, when the
expert does not impose the parameter distribution, we assume the uniform distribu-
tion of weights and performances (see Kadzinski et al. 2017; Lahdelma and Salm-
inen 2001).

To simulate the feasible efficiency scenarios, we need to derive the weights and
performances from the feasible space. For sampling weights from the uniform dis-
tribution, we use the Hit-And-Run (HAR) algorithm (Tervonen et al. 2013). Since it
requires the space of sampling to be bounded, we perform normalization of possible
input/output weights:

N M
D=y v, =1 (13)

n=1 m=1

When it comes to sampling the performances, a dedicated treatment has been
designed to deal with the interval and ordinal factors. For the interval inputs and
outputs, for each DMU,, we randomly select the exact values from the intervals
[X0 *, X, 101 [,, *,y, Jusing HAR. Regarding dealing with the ordinal factors, we
adopt the SMAA-O approach (Lahdelma et al. 2003). Specifically, we assume that a
function simulating some ordinal inputs or outputs is increasing. We assume that the
exact values corresponding to the ordinal performances are drawn from the [0, 1]
interval without losing generality. Hence we randomly choose a set of K numbers
from this range. The obtained values are sorted and considered as a single sample
of precise performances of DMUs consistent with the order imposed by the original
ordinal performances (e.g., a unit with the worst ordinal output or the best ordinal
input is assigned the least precise value).

The samples concerning the weights and the input and output values are put
together to simulate the feasible efficiency scenarios. For each of them, we com-
pute the efficiencies for all DMUs. The results obtained for all sampled scenarios are
summarized in stochastic acceptability indices concerning scores, ranks, and pair-
wise relations. Since their values are approximated using the Monte Carlo simulation
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rather than computed exactly through analytical methods, we consider the estima-
tions of the true indices in practice. However, with a sufficiently large number of
samples, such values can be estimated up to a pre-defined accuracy (Tervonen and
Lahdelma 2007).

2.3.1 Distribution of efficiency scores

The Efficiency Acceptability Interval Index EAII(DMU,,b;) is defined as the
share of feasible scenarios for which the efficiency score of DMU, is contained in
the sub-interval b; C [0, 1], where i = 1,...,B, and B is the number of efficiency
sub-intervals considered in the analysis. By default, the sub-intervals are assumed
to be disjoint and to span over the same widths. Note that for each DMU, € D,
Zf:l EAII(DMU,, b;) = 1. Moreover, by analyzing the scores obtained by DMU,,,
we may compute an expected efficiency (denoted by EE,) as an average of efficien-
cies derived for all sampled scenarios. Such efficiency may be used to impose a
complete ranking on the set of DMUs (Labijak-Kowalska and Kadziriski 2021).

Lllustrative example In Table 3, we present the estimates of EAIls computed
based on 10,000 samples derived with the Monte Carlo simulation for the illus-
trative example introduced in Sect. 2.1. We have selected five buckets (B =5),
and hence the considered sub-intervals are [0, 0.2], (0, 2, 0.4], ..., (0.8, 1.0].
The most probable efficiency ranges for D; and D, are, respectively, (0.8, 1.0]
(EAII(D;,(0.8,1.0]) = 0.958) and (0.2, 0.4] (EAII(D,,(0.2,0.4]) = 0.716). On the
other extreme, the estimated probability of D, attaining an efficiency score lower
than 0.2 or D, attaining a score greater than 0.6 is zero. However, the analysis of
extreme efficiency scores presented in Sect. 2.2.1 reveals that it is possible. None-
theless, when combining this information with the analysis of EAIIs, we know that
such a scenario is improbable. As far as expected efficiencies are concerned, they
impose the following ranking on the set of DMUs: D, > D; > D, > D5 > D,, hence
allowing discrimination between both efficient and inefficient units.

In the e-Appendix, we present a detailed step-by-step description of calculat-
ing the FAIIs and other stochastic measures for the considered example. To make
the description self-contained and its size reasonable, we use only ten samples as
opposed 10,000 samples considered in the main paper.

2.3.2 Efficiency rank acceptability indices

Efficiency Rank Acceptability Index ERAI(DMU ,, r) for DMU,, € D and a specific
rank r € {1,2,...,K} is defined as the share of feasible scenarios for which DMU,
is placed at the r-th position in the ranking imposed by the efficiency scores of all
DMUs in D. Note that for each DMU, € D, Zf=1 ERAI(DMU,,r) = 1. These sto-
chastic indices can be used to approximate an expected efficiency rank (denoted by
ER,) for DMU, in the following way: ER, = Zle r- ERAI(DMU,,r) (Ang et al.
2021). Similar to the expected efficiencies, the expected efficiency ranks can be used
to order the units from the best to the worst.
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Hllustrative example The rank acceptabilities for the illustrative examples are pre-
sented in Table 3. Based on the derived samples’ analysis, only D, and D; can be
ranked in the first two positions. However, the probability of D, being ranked at the
top is higher than for D; (ERAI(D,, 1) = 0.83 > ERAI(D;,1) = 0.17). Even though
the minimal rank for D5 indicated that it could be ranked fourth in the most pessimis-
tic case, the analysis of ERAIs suggests that the scenarios for which it drops out of
the top two are very unlike. The distribution of ranks for D5 confirms that it is ranked
fourth for half of the scenarios. Further, the probabilities of attaining the third and
fifth positions by Ds are equal to, respectively, 34% and 16%. The expected efficiency
ranks impose the following order on the set of DMUs: D, > D; > D, > D5 > D,.
Even though it exploits the ordinal results (i.e., ranks) rather than cardinal ones (i.e.,
efficiencies), this ranking is the same as when considering the expected efficiencies.

2.3.3 Pairwise efficiency outranking indices

The Pairwise Efficiency Outranking Index PEOI(DMU,,DMU,) is defined as
the share of feasible scenarios for which DMU, is at least as efficient as DMU,.
Note that for (DMU,,DMU)) € DxD, 0< PEOI(DMU, DMU;) <1 and
0 < PEOI(DMU,,DMU,) + PEOI(DMU,,DMU,) < 2.

Hllustrative example The PEOIs derived for the illustrative example are presented
in Table 3. Note that when for the pairs for which the necessary relation holds (e.g.,
(D, D,) and (D5, Ds)), PEOI is equal to one, whereas for the pairs for which the
possible relation is false (e.g., (D,,D;) and (Ds, D,)), PEOI is zero. The analysis of
PEOIs is the most informative for pairs that are not related by the necessary relation.
For example, the share of scenarios for which D, attains higher efficiency than D;
is five times greater than the share for which the inverse relation holds. In the same
spirit, D, is more efficient than D5 for twice as many scenarios as D5 being more
favorable than D,. Having compared D; with D, or D, using the exact robust analy-
sis methods, we know that these pairs are not related by zg . However, PEOIs indi-
cate that the scenarios for which D, and D, are strictly better than D5 are extremely
limited (PEOI(D,, D;) = 0 and PEOI(D,, D;) = 0).

To demonstrate the impact that joint consideration of variable weights and impre-
cise inputs and outputs has on the obtained robust results, in the e-Appendix, we
reconsider the illustrative example. Specifically, we analyze five scenarios while
replacing performances on a single or two imprecise factors with the respective pre-
cise data. For each scenario, we discuss the six types of results. In this way, we
demonstrate that imprecision of inputs and outputs contributes to the uncertainty of
efficiency outcomes in the same way as the multiplicity of weights associated with
these factors.
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3 Implementation on the diviz platform

Diviz is an open-source platform that allows designing and executing algorithmic
workflows implementing operational research methods (Meyer and Bigaret 2012).
The software consists of two major components: i) a Java client, which allows users
to design workflows using existing computational and graphical modules, and ii)
servers, where the computations are performed and the results are generated. The
greatest number of contributions on diviz concern Multiple Criteria Decision Analy-
sis (MCDA) (see Cinelli et al. 2022; Greco et al. 2016). All diviz modules take input
data and produce outputs in XMCDA, a dedicated XML-based format.

3.1 Implemented modules

All methods for robustness analysis in Imprecise DEA have been implemented in
R and made available on the diviz platform as independent modules (web services).
Their source code is available at https://github.com/alabijak/diviz_DEA/tree/master/
ImpreciseDEACCR. They can be used individually or combined into complex work-
flows. Each module accepts five input files:

e ynits containing information about the considered DMUs;

e inputs/outputs listing information on the inputs and outputs and their scales
(quantitative or qualitative (ordinal));

e performance providing information on the DMUs’ precise performances or, if
the problem involves interval inputs and outputs, the minimal performances of
DMUs;

e max performance is an optional file used in case the interval inputs/outputs are
considered; it defines the DMUs’ maximal performances;

e weights constraints is an optional file containing linear constraints on the weights
of inputs and outputs, defining the space of feasible weight vectors.

The modules admit the specification of some additional parameters. The most
important ones are samplesNo indicating the number of samples derived with the
Monte Carlo simulation realized with the HAR algorithm and folerance (in %) used
to convert the precise performances into interval ones. For example, a precise value
x is transformed into the interval [(1 — folerance) - x;(i + tolerance) - x].

The following modules for robustness analysis in IDEA have been implemented
on diviz:

e ImpreciseDEA-CCR_efficiencies computes the minimal and maximal efficiencies
(E* and E,) for each DMU using linear programming techniques;

o [mpreciseDEA-CCR_extremeRanks computes the best and the worst efficiency
ranks (R* and R,) for each DMU using MILP;

e ImpreciseDEA-CCR_preferenceRelations verifies the truth of the necessary and
possible efficiency preference relations for all pairs of DMUs using linear pro-
gramming;
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o ImpreciseDEA-CCR-SMAA_efficiencies computes the efficiency distribution, the
extreme efficiency scores observed in the analyzed sample of feasible scenarios,
and an expected efficiency for each DMU, using the HAR algorithm; it addition-
ally requires specification of the number of buckets as a method parameter;

o ImpreciseDEA-CCR-SMAA_preferenceRelations computes PEOISs for all pairs of
DMUs using HAR;

o ImpreciseDEA-CCR-SMAA_ranks computes ERAIs for all DMUs and ranks,
extreme efficiency ranks observed in the analyzed sample of feasible scenarios,
and an expected rank for each DMU using HAR.

The structures of two exemplary modules, ImpreciseDEA-CCR_efficiencies
and ImpreciseDEA-CCR-SMAA _efficiencies, are presented in Figs. 1 and 2,
respectively. They perform computations according to the methods presented in
Sects. 2.2.1 and 2.3.1, respectively.

The implemented modules can be combined into an algorithmic workflow with
other available computational or visualization modules. Such a workflow can be
easily exported and shared with other users. Moreover, the infrastructure of diviz
allows storing the history of past executions, which is very useful when compar-
ing the results for different settings (e.g., with and without preference information
specified by the user). The workflow designed to obtain the results for the case
study discussed in Sect. 4 is graphically presented in Fig. 3.

4 lllustrative case study

To illustrate the practical usefulness of the proposed framework, we performed the
robustness analysis for two studies concerning 27 industrial robots and 17 Chinese
ports. The former is based on data derived from Saen (2006), and the detailed results
are given in the e-Appendix. The latter builds on data from Jiang et al. (2021),

iny: units ImpreciseDEA-CCR_efficiencies

param;: use maximal performance table,

iny: inputs and outputs—> ——out;: minimal efficiency—

default: yes
ing: performance table param;: use weight constraints,
——— (minimal or exact — | default: no
performances) paramys: performance tolerance (t),
default: 0
i ; xij = [(1-0) x5, (1) x;] —out,: maximal efficiency—
_ ing(opt)maximal | vi = [(-0-y5 (140-y;]

performance table

computation procedure:
- E for all DMU,

ins: (opt) linear constraints___| E.” for all DMU
— - Ly o

on weights

Fig. 1 The structure of the diviz module which computes the extreme efficiency scores for each DMU
using MILP for the Imprecise DEA model
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ing: units——{  ImpreciseDEA-CCR-SMAA _efficiencies

param;: use maximal performance table, | out: eficiency acceptability*

—iny,: inputs and outputs—s default: yes interval indices
param,: use weight constraints,
default: no
ing: performance table | Param;: performance tolerance (t),
— (minimal or exact — default: 0 . . .
performances) paramy: number of samples (weights and outy: maximal efficiency
performances), — in the sample

default: 100
params: number of efficiency buckets,

iny: (opt) maximal default: 10
performance table computation procedure: |_outs: minimal efficiency
- EAIIs for all DMU, in the sample

. ) |- E,” for all DMU,
_ins: (opt) linear constraints,| _ E, for all DMU,

on weights - >
EE, for all DMU, —out,: expected efficiency—>

Fig.2 The structure of the diviz module which computes the Efficiency Acceptability Interval Indices,
observed extreme efficiency scores, and expected efficiency for each DMU using the Imprecise DEA
model and the Monte Carlo simulation

and the outcomes are reported in this section. The workflows and input data in the
XMCDA format (ver. 2) for both studies are available at https://github.com/alabijak/
diviz_DEA/tree/master/Imprecises DEACCR.

The ports are described in terms of two precise inputs (labor population and
energy consumption), two desirable outputs (cargo throughput—precise and
employee satisfaction—ordinal), and one undesirable output (water pollutants—
interval). Following (Jiang et al. 2021), the latter factor is treated as an input dur-
ing the analysis. To obtain the same magnitude for all precise and interval factors,
we used the mean normalization before running the methods (see Sarkis 2007;
Tomazevi¢ et al. 2016; Widiarto and Emrouznejad 2015). The performances of
ports on all inputs and outputs are presented in Table 4.

In what follows, we discuss the results of robustness analysis considering the
three perspectives: efficiency scores, efficiency ranks, and preference relations. The
values of stochastic acceptability indices are estimated based on the 10,000 sam-
pled feasible scenarios. To illustrate that the methods can handle linear weight con-
straints, we assess water pollutants as less important factor than the other two inputs,
ie. u,, <u, and u,, <u,., where u,,, u,, u, are, respectively, weights assigned
to water pollutants, labor population, and energy consumption. Moreover, we intro-
duce two other constraints preventing the overwhelming role of any input, i.e.,
Wi SWee + Wy, and w,, S wy, +w,,,.

4.1 Efficiency scores
Figure 4 presents the extreme efficiency scores (E* and E,) for all DMUs. Regard-
ing the maximal (optimistic) efficiencies, they indicate six efficient ports (Yingkou,

Tianjin, Yantai, Ningbo-zhoushan, Fuzhou, and Shantou) with E* = 1. Among the
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Fig.3 The diviz workflow used to perform the efficiency analysis for a case study (see Sect. 4)

inefficient ports, the best efficiency is attained by Fangcheng (0.909) and Zhanjiang
(0.887). On the other extreme, there are two ports with maximal efficiency scores
lower than 0.6 (Shanghai (0.539) and Qinhuangdao (0.598)). When analyzing the
minimal (pessimistic) efficiencies, the most advantageous port is Ningbo-zhoushan
(0.158). The minimal efficiency scores of all other ports are significantly lower
(close to zero).

In general, the efficiency intervals are relatively wide. For this reason, analyz-
ing the distribution of efficiency scores is desirable. In Table 5, we present the
Efficiency Acceptability Interval Indices, while assuming B = 10 sub-intervals
from [0, 0.1] to (0.9, 1.0]. When it comes to the efficient ports, the greatest EAII
for the best interval is attained by Tianjin (EAII(Tianjin, (0.9, 1.0]) = 57.3%)
and Yantai (EAII(Yantai,(0.9,1.0]) = 68.3%). Only three other ports attained
an efficiency greater than 0.9 for at least one sample, but the respective EAIIs
are significantly lower (16.8% for Shantou and less than 9% for others). Inter-
estingly, Fuzhou—deemed efficient—has not achieved an efficiency score in the
best interval for any weight sample. Obviously, such scores are feasible (as con-
firmed with the analysis of exact extreme scores), but EAIls indicate that they
are improbable.

For some ports, the analysis of EAIls allows indicating the most probable
ranges of efficiencies even if the efficiency intervals are relatively wide. For
example, the efficiency score for Yantai is in the best three buckets for 98.6%
of feasible scenarios, with the vast majority (68.3%) in the last bucket. In the
same spirit, the efficiency score of Qinhuangdao is between 0.2 and 0.4 for
89.8% of feasible scenarios, and there is no sample for which its efficiency is
greater than 0.5. However, there is also a group of ports with efficiency scores
strongly dependent on the selected weight and performance vectors. For exam-
ple, for Shantou, EAIIs greater than 16% are attained for the two very different
intervals, (0.9, 1] and (0.3, 0.4]. Also, for this port and eight buckets represent-
ing efficiency scores between 0.2 and 1.0, EAIIs are greater than zero. Similarly,
Fuzhou has a positive share of feasible scenarios for nine sub-intervals.
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Table 4 Input and output values for considered Chinese ports (for employee satisfaction, 1 and 17 indi-
cate, respectively, the worst and the best ordinal performances)

Port Inputs Outputs Undesirable output
Labor population Energy Cargo throughput Employee ~ Water pollutants
consump- satisfac-
tion tion
Dalian 0.961 0.997 1.255 15 [1.137, 1.421]
Yingkou 0.641 1.093 1.012 16 [0.796, 1.023]
Qinhuangdao 1.827 0.406 0.537 9 [0.455, 0.682]
Tianjin 1.022 0.533 1.583 15 [1.251, 1.706]
Yantai 0.208 0.798 0.763 15 [0.569, 0.853]
Qingdao 1.686 1.701 1.438 15 [1.137, 1.706]
Rizhao 0.763 0.830 1.006 9 [0.910, 1.137]
Shanghai 2.524 2.811 1.854 11 [1.706, 2.161]
Lianyungang 0.574 0.721 0.577 9 [0.455, 0.682]
Ningbo-zhoushan 1.895 2.533 2.651 17 [1.990, 2.843]
Fuzhou 0.434 0.465 0.417 6 [0.341, 0.455]
Xiamen 0.980 0.600 0.601 6 [0.398, 0.569]
Shantou 0.601 0.141 0.143 11 [0.284, 0.398]
Shenzhen 0.989 0.444 0.615 1 [0.512, 0.625]
Guangzhou 1.096 1.499 1.502 6 [1.706, 1.990]
Zhanjiang 0.353 0.971 0.736 6 [0.569, 0.682]
Fangcheng 0.447 0.456 0.307 6 [0.341, 0.512]

The distribution of efficiency scores can be translated into a single, eas-
ily understandable measure, i.e., expected efficiency (see Fig. 4). These scores
impose a complete order on the set of ports. Yantai is the best, with an expected
efficiency of 0.930. This means it is either efficient or very close to being effi-
cient for most feasible scenarios. The other two ports in the top three are Tianjin
(0.877) and Yingkou (0.768). Dalian attains the next highest expected efficiency.
Even though it is inefficient, it is ranked better in terms of EE than the remaining
three efficient ports (Ningbo-zhoushan, Fuzhou, and Shantou). The three ports
with the least expected efficiencies are Shenzhen (0.376), Shanghai (0.334), and
Qinhuangdao (0.307).

4.2 Efficiency ranks

The extreme efficiency ranks (R* and R,) for all ports are presented in Fig. 5.
Only the six ports deemed as efficient have the best rank equal to one. Further-
more, the inefficient units with relatively high maximal efficiency scores attain
the best rank equal to two (see Dalian, Rizhao, Zhanjiang, and Fangcheng). Only
one additional inefficient port (Lianyungang) is ranked at the podium in the best
case. Four ports are always ranked outside the top five (see Shanghai, Xiamen,
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Fig.4 Graphical representation of extreme efficiency scores and expected efficiencies for seventeen ports

Shenzhen, and Guangzhou). The least advantageous among them is Shanghai
because even in the optimistic scenario, as many as 7 other ports attain higher
efficiency (R* = 8).

The most preferred ports in terms of the worst efficiency ranks are Yantai
(R, =7) and Yingkou (R, = 11). When it comes to other efficient ports, their
ranks drop to 14-th (for Tianjin), 16-th (for Ningbo-zhoushan and Fuzhou), or
17-th (for Shantou) positions in the most pessimistic case. Hence the ranks of
Shantou range between the most extreme possible ones. In general, for 13 out of
17 ports, the pessimistic rank is lower than 15-th. Among them, six inefficient
ports (Qinhuangdao, Shanghai, Xiamen, Shenzhen, Guangzhou, and Fangcheng)
are ranked at the bottom in the least advantageous scenario.

Since the rank intervals for all ports are broad, we have estimated Efficiency
Rank Acceptability Indices (see Table 6). They reveal the distribution of ranks
attained by each DMU across the feasible weight and performance vectors. Four
of six efficient ports attained the top position for at least one feasible scenario.
For Yantai, this occurs for 58.9% of samples, Tianjin and Shantou are ranked at
the top for similar shares of scenarios (19.6% and 15.3%, respectively), whereas
for Yingkou, the ERAI for the first position is significantly lesser (6.2%). Regard-
ing the remaining efficient ports, Ningbo-zhoushan attained at most second rank,
and Fuzhou was at most third for relatively negligible shares of feasible scenarios.

For many ports, it is possible to indicate a single rank or a relatively narrow range
of ranks attained for the vast majority of feasible scenarios. For example, Yingkou
is ranked third for more than 60% scenarios, Yantian is ranked in the top three for all
sampled scenarios, and Dalian is placed between fourth and sixth for more than 85%
scenarios. Some other ports attain a more extensive range of ranks for a significant
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share of feasible scenarios. For example, Shantou has non-zero ERAI for all ranks,
with the acceptability indices ranging from 1.2% to 18.6%. Furthermore, Rizhao and
Lianyungang have ERAIs greater than 10% for five consecutive ranks. Also, the anal-
ysis of ERAIs leads to identifying some ranks which are feasible according to the
exact robustness analysis while being less probable, as confirmed by the stochas-
tic analysis conducted with the Monte Carlo simulation. For example, Qinhuang-
dao could be ranked fifth in the best case, but the probabilities of ranks above 8 are
already close to zero. In the same spirit, Tianjin could be ranked 14-th in the worst
case, but the shares of scenarios ranking it worse than 9 are negligible. In general,
the analysis of ERAIs points out the ports for which the attained ranks are rather sta-
ble, or the ranks’ variability is great. This means that their position strongly depends
on the particular scenario (weights and performances).

ERAIs can be transformed into expected ranks that allow ordering the ports from
the best to the worst (see Fig. 5). In particular, for Yantai, ER is equal to 1.438,
which confirms its superiority over the remaining ports. The following two positions
are attained by Tianjin (2.827) and Yingkou (2.918). Even though Dalian is ineffi-
cient, its expected rank is better than those attained by the remaining three efficient
ports. Qinhuangdao, Shanghai, and Shenzhen attain the worst expected ranks. They
confirm that these three ports are placed at the bottom for most feasible scenarios.

4.3 Preference relations

The third analyzed perspective concerns the stability of efficiency-based pairwise
preference relations. In Table 7, we present the matrix summarizing the truth of the
necessary (N) and possible (P) preference relations. First, let us note that the nec-
essary relation is reflexive, which is confirmed with “N” on the main diagonal of
Table 7. Furthermore, the necessary relation holds for 20 pairs involving different
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Fig.5 Graphical representation of extreme efficiency ranks and estimated expected ranks (note that the
closer to the bottom of the figure, the better the ranks)
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ports. This means that for all feasible scenarios, one port attains efficiency at least
as good as the other port, confirming the robustness of its advantage. For example,
Tianjin is necessarily preferred to Qingdao, Guangzhou, and Shanghai.

The necessary relation can be presented graphically using the Hasse diagram (see
Fig. 6). Such a diagram does not represent the truth of relations that can be derived
from the transitivity. For example, since Dalian is necessarily preferred to Qingdao,
and Qingdao is necessarily preferred to Shanghai, Dalian is also preferred to Shang-
hai. Note that no other port is necessarily preferred over six efficient ports. However,
there are also four inefficient (Dalian, Rizhao, Shenzhen, and Fangcheng) for which
there does not exist any other port confirming its necessary advantage over them.

The port which proves its robust superiority over the greatest number of other
ports is Yantai. It is necessarily preferred over seven other ports. An interesting
situation can be observed for Fuzhou and Shantou. Although they are efficient,
they are not necessarily preferred over any other port. The latter (i.e., no outgo-
ing arc) also holds for seven other ports. Among them, Shanghai and Guangzhou
are necessarily worse than the most significant number of other ports (6 and 5,
respectively). The necessary relation graph suggests the improvement paths that
inefficient ports can follow to improve their efficiency gradually. For example,
for Shanghai, we can construct the following example paths: Shanghai—Qing-
dao-Dalian or Shanghai—Qingdao—Yingkou. Alternatively, it can directly learn
from Ningbo-zhoushan.

Regarding the possible preference relation (see Table 7), let us emphasize that
the necessary relation implies the truth of the possible one. However, the lat-
ter one holds also for pairs that are not related by the necessary preference. For
example, all efficient ports are incomparable in terms of the necessary relation.
This means there is at least one feasible scenario for which one port is preferred
to the other and at least one feasible scenario for which this relation is inverse
(e.g., Yingkou and Tianjin). Such a situation also occurs for pairs of inefficient
ports (e.g., Dalian and Rizhao or Qingdao and Guangzhou). When the possible
relation for a given pair of ports is false (e.g., (Qingdao, Dalian) or (Shanghai,
Qingdao)), then one port is less efficient than the other for all feasible scenarios.

When the necessary relation is true or the possible relation is false, a pair of ports
is compared in the same way for all feasible scenarios. However, when the ports
are incomparable in terms of the necessary relation, it is interesting to analyze the
shares of feasible scenarios that rank one of the ports at least as good as the other.
Pairwise Efficiency Outranking Indices capture such shares (see Table 8§).

For some pairs, these indices confirm the superiority of one port over the other.
For example, PEOI(Yingkou, Zhanjiang) = 0.995 and PEOI(Rizhao, Qinhuang-
dao) = 0.999 indicate that one port is at least as efficient as the other for over 99%
scenarios, and the inverse relation is extremely unlike with PEOISs close to zero. For
some other pairs, the PEOIs indicate that the shares of scenarios confirming the
advantage of either port over another are very similar (e.g., PEOI(Shanghai, Qin-
huangdao) = 0.506 and PEOI(Qinhuangdao, Shanghai) = 0.494 or PEOI(Shenzhen,
Qinhuangdao) = 0.540 and PEOI(Qinhuangdao, Shenzhen) = 0.460). For these
pairs, the indication of a more preferred port strongly depends on the selected
weights and performance vectors.
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Fig.6 The Hasse diagram representing the necessary efficiency preference relation

5 Conclusions and future work

We have introduced a rich framework for robustness in the context of Imprecise Data
Envelopment Analysis. The proposed methods are applicable in the context of three
major types of uncertainty that occur in real-world decision problems (Pelissari
et al. 2021). First, we consider ambiguity in the input and output performances that
could be interpreted differently due to their ordinal or interval character. Second, we
account for stochasticity by considering discrete and continuous probability distribu-
tions. Third, we deal with partial information on the input and output weights by
exploiting the space of feasible weights delimited with a set of linear constraints.
In this way, the proposed approaches for robustness analysis can be applied to real-
world problems for which it is difficult to express the knowledge or collect precise
data, the variables are unquantifiable, some errors in measurements occur, or the
users are not able or willing to express their complete preferences (see Dehnokhalaji
et al. 2022; Pelissari et al. 2021).

When considering the stability of results that can be attained for the pos-
sible performances and weights, we focus on three types of efficiency-based out-
comes: scores, preference relations, and ranks. On the one hand, the mathematical
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programming models compute the extreme efficiency scores and ranks and verify
the truth of the necessary and possible preference relations. These outcomes reveal
each DMU’s performance for the most and the least advantageous scenarios and col-
late the efficiencies of all pairs of DMUs for all or at least one feasible scenario.
Thus, they offer an exact perspective on the DMUs’ performance. On the other
hand, we incorporate the stochastic analysis driven by the Monte Carlo simulations
to derive the probability distribution of different outcomes and expected results.
These stochastic outcomes complement the exact results derived using mathematical
programming. They also provide means for analyzing trends or some prevailing sce-
narios and imposing the ranking on the set of DMUs in the line of expected scores
or ranks. Above all, such various outcomes have not been offered by any previous
IDEA method.

The practical usefulness of the proposed framework has been illustrated in real-
world case studies concerning the evaluation of Chinese ports (Jiang et al. 2021) and
industrial robots (Saen 2006). The data sets involved precise, interval, and ordinal
factors. The results were computed with modules implemented in R and available
on the diviz platform (Meyer and Bigaret 2012). They incorporate MILP solver and
advanced sampling techniques.

The main limitations of the proposed framework are three-fold. First, when the
number of units runs over a few hundred, the linear programs are too big and too
many, posing a significant problem for contemporary solvers. This is particularly
true for results such as extreme ranks that are established using binary variables.
Moreover, for such big data problems, the robust results, such as the ranking induced
by the necessary preference relation, cannot be presented to the user because of their
high complexity. Then, it is more beneficial to refer to complete orders of units
based on expected efficiencies or ranks. Still, let us emphasize that large scale-
applications are less common in DEA. Second, the results of the stochastic analysis
depend on the assumed distribution of weights and performances within the inter-
vals as well as the hypotheses made when representing the ordinal performances.
Clearly, the developed framework is applicable with other types of distributions than
uniform and arbitrary performance ranges from which the ordinal performances
could be sampled. These choices may affect the values of stochastic acceptabilities.
Also, whichever assumptions are made, even if the indices can be estimated within
the acceptable error bound, they are not accurate. Third, we accounted for the stand-
ard imprecision types considered in IDEA, including interval and ordinal perfor-
mances. As proved by a comprehensive review by Pelissari et al. (2021), uncertain
performances can also be modeled differently. The most popular approaches for this
purpose include fuzzy numbers, non-uniform probabilistic distributions, evidential
reasoning, and grey numbers. Their combinations with DEA have gained in popular-
ity in recent years. Hence adopting the framework for robustness analysis to their
context remains an appealing direction for future research.

We develop the methods introduced in this paper in the following directions.
First, we adapt them to hierarchical structures of inputs and outputs. In this way, the
robustness of efficiency outcomes given imprecise performances can be investigated
at the comprehensive and local levels (Shen et al. 2013). The latter corresponds to a
more elementary perspective or particular sub-area of DMUS’ functioning. Indeed,
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the hierarchical structure is helpful for decomposing complex decision problems
into smaller, manageable sub-problems. This is particularly useful in scenarios
with high numbers of inputs and outputs, which often happens in medicine, energy,
banking, and finances. Moreover, we design the Multiple Objective Optimization
algorithms to determine different scenarios of improvements (i.e., reductions of con-
sumed resources or increases of produced results) required for attaining or maintain-
ing a particular target. These targets refer to many robust results, e.g., being neces-
sarily ranked in the top three or attaining an efficiency score of at least 0.7 for all
feasible scenarios (Ciomek et al. 2018). Moreover, the proposed framework offers
flexibility to the Decision Maker, who can indicate which factors should be modi-
fied and to which extent. The obtained solutions reflect the trade-offs between modi-
fications needed on various factors. Their analysis may lead to selecting the most
preferred solution to be implemented in practice. Finally, we develop the methods
for robustness analysis in the context of value-based DEA (see Gouveia et al. 2008;
Labijak-Kowalska et al. 2023). This model is based on concepts from Multiple Cri-
teria Decision Analysis, allowing the incorporation of managerial preferences on
different levels. In this regard, the uncertainty is related to performances, weights,
and the shape of value functions for inputs and outputs. However, the output types
produced by these methods are similar to those discussed in this paper.
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