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Abstract
Semantic interoperability establishes intercommunications and enables data sharing across disparate systems. In this study, 
we propose an ostensive information architecture for healthcare information systems to decrease ambiguity caused by using 
signs in different contexts for different purposes. The ostensive information architecture adopts a consensus-based approach 
initiated from the perspective of information systems re-design and can be applied to other domains where information 
exchange is required between heterogeneous systems. Driven by the issues in FHIR (Fast Health Interoperability Resources) 
implementation, an ostensive approach that supplements the current lexical approach in semantic exchange is proposed. A 
Semantic Engine with an FHIR knowledge graph as the core is constructed using Neo4j to provide semantic interpretation and 
examples. The MIMIC III (Medical Information Mart for Intensive Care) datasets and diabetes datasets have been employed 
to demonstrate the effectiveness of the proposed information architecture. We further discuss the benefits of the separation 
of semantic interpretation and data storage from the perspective of information system design, and the semantic reasoning 
towards patient-centric care underpinned by the Semantic Engine.

Keywords Healthcare information systems · Semantic interoperability · Digital healthcare · FHIR · Ostensive approach · 
Graph database · Ontology graph · Knowledge graph

1 Introduction

A health information system (HIS) manages healthcare data 
and supports decision-making in order to improve the qual-
ity of health services. The nature of demands, particularly 
resulting from patient-centred care policies (Stewart, 2001) 
and evidence-based medicine (Sackett, 1997), necessitates 
the efficient management and usage of healthcare resources. 
In view of the benefits provided to healthcare services by 

advances such as sensor-based technology and the ubiq-
uitous computing environments for multiple HIS users, 
including physicians, patients, funders of healthcare, and 
regulatory bodies (He et al., 2019), the HIS faces multiple 
challenges (Haux, 2006). The HIS landscape has signifi-
cantly expanded, with its complexity increasing exponen-
tially; the examination of this fundamental issue in terms 
of HIS architecture, therefore, has great importance. In 
response to increased levels of connectivity and stakeholder 
demand, HISs are evolving into healthcare ecosystems; 
facilities of this nature should have the capacity to deal with 
multiple domains of knowledge (Blobel, 2019), particularly 
heterogeneous data collected by novel medical devices or 
sensors (Kankanhalli et al., 2016).

Interoperability facilitates intercommunication, enabling 
data sharing across disparate information systems (Geraci, 
1990; Mouttham et al., 2012). The diversity of datasets gen-
erated by information obtained from wearable devices, tel-
ehealth, and digital therapeutics (Aungst & Patel, 2020; Li 
et al., 2015) requires exchangeability, not only of the data 
themselves but also of the information they contain. Accord-
ingly, the issue of the interoperability of digital ecosystems 
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is receiving an increasing amount of attention from both 
academia and industry (Grimson et al., 2000).

From information network connectivity to application 
interaction, interoperability can be categorised into three 
forms, specifically: technical, syntactic, and semantic (Joshi 
et al., 2017; Tolk et al., 2007). In the dimensions of technical 
and syntactic interoperability, consensus solutions have, 
to some extent, been developed; for example, information 
exchange protocols such as REST (Resource Representational 
State Transfer) API and unified data formats are, in practice, 
becoming more widely adopted. However, there remain 
significant challenges for semantic interoperability, which 
concerns the capacity of systems to interpret the meaning of 
the exchanged information within ecosystems. Because the 
applications of artificial intelligence, advanced data analytics, 
and wearable technologies are becoming increasingly common 
within healthcare ecosystems, the subject of interaction 
between heterogeneous applications and systems has attracted 
the interest of many academics. This research explores the 
meaningful information exchange between two or more 
entities within a healthcare ecosystem at the semantic level 
(Liu & Li, 2015; Ouksel & Sheth, 1999) from the perspective 
of information systems, proposing a new architecture for HIS 
designed to support the delivery of high-quality care.

In view of the complex nature of medical information 
representations, international standards have been produced 
in order to achieve their semantic interoperability, such as 
HL7 v2, and v3 (HL7 International, 1987), open EHR (open 
EHR, 2003) and CEN/ISO 13606 (ISO) (European Commit-
tee for Standardization (CEN), 2019). Although these stand-
ards claim to solve the problem of semantic exchange, from 
the perspective of information exchange, they are actually 
applied at different levels of information systems, i.e. syn-
tactic, semantic, and pragmatic (Liu & Li, 2015). However, 
the semantic ambiguity persists (Dolin et al., 2018; Jiang 
et al., 2015, 2016).

Because of the sub-optimal performance of these 
standards, especially at semantic and pragmatic levels, 
all continue to evolve. FHIR (Fast Health Interoperability 
Resources) (HL7 International, 2011) is the latest version 
of HL7; it is applicable in the majority of healthcare sce-
narios and has been adopted by all UK hospitals, and those 
in many other countries. One of the main reasons for the 
healthcare sector’s wide acceptance of FHIR is its excel-
lent compatibility with Internet protocols and its ease of 
deployment (Bender and Sartipi, 2013). However, with its 
widespread application in industry, FHIR’s limitations in 
terms of semantic interoperability create ambiguity (Jiang 
et al., 2015, 2016), leading researchers to address the issues 
associated with its implementation (Dolin et al., 2018; Jiang 
et al., 2015). Focusing on its limitations, this paper proposes 
an ostensive information architecture for the enhancement of 
FHIR’s interoperability in digital healthcare systems.

The ostensive approach, which defines concepts by direct 
demonstration, is often applied in language and philosophy 
(Malcolm, 1954; Wittgenstein, 2019); it is considered par-
ticularly effective in the clarification of semantics. In the 
context of healthcare ecosystems, FHIR can be regarded 
as a language to encapsulate local health data for cross-
institutional exchange. Semantic ambiguities are gener-
ated when implementers have contrasting understandings 
of the FHIR’s lexical definition, leading to inconsistencies 
in its use. Therefore, this paper considers the clarification 
of FHIR’s meanings as understood by an implementer via 
the illustration of FHIR-represented data in local health 
information systems as examples of inconsistency between 
implementers.

In this research, the ostensive approach is a process of 
demonstrating the way in which FHIR is used by implement-
ers to represent the healthcare services supported by local 
health information systems (HISs). Thus, this paper explains 
a healthcare service through the following steps:

1) explaining its lexical semantics by use of an FHIR 
knowledge graph;

2) explicating semantics by highlighting explicit corre-
spondences between FHIR and local data attributes, and

3) showing examples of these attributes by describing the 
values of attributes that are stored in local datasets

The above three actions are carried out by the Semantic 
Engine, which is composed of a core and peripheral knowl-
edge graphs. The core is the FHIR knowledge graph, and 
the peripherals are the nodes and their relationships, which 
reflect the correspondences between FHIR resources and 
the local database. The Semantic Engine has the capacity to:

1) provide semantic interpretation by displaying nodes and 
their relationships, and

2) retrieve relevant data from multiple local databases, 
map these data back to the nodes, and assemble the data 
according to the relationships between nodes.

The Semantic Engine can be regarded as a ‘switch’ within 
HISs to facilitate semantics interaction; it provides the deno-
tation of healthcare concepts by a topology of nodes and 
corresponding examples to answer semantic queries from 
heterogeneous systems within healthcare ecosystems. There-
fore, semantic interoperability can be enhanced through the 
sharing of consensus ontology and examples, while patient-
centred care can be supported by the proposed ostensive 
healthcare information architecture.

This paper will illustrate two example cases of proposed 
ostensive information architecture functionalities. The first 
shows the way in which the Semantic Engine responds to 
semantic queries, while the second demonstrates how it 
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retrieves data from heterogeneous databases to enable cross-
institutional data sharing. Overall, this study provides a new 
perspective on the solution of semantic ambiguity in terms 
of information architecture. Further, the proposed ostensive 
information architecture naturally separates semantic expla-
nation and data storage, which is an option to ensure data 
privacy and enhance data security.

This paper is structured as follows: Section 2 introduces 
the interoperability supported by FHIR and addresses its 
limitations in this respect. Section 3 reviews the available 
related work, while Section 4 explores the root cause of 
semantic ambiguity in FHIR implementation, comparing the 
lexical and ostensive approaches from a theoretical perspec-
tive. Section 5 describes the proposed ostensive information 
architecture, the functions of the Semantic Engine, and the 
value it offers, and Section 6 demonstrates the effectiveness 
of the proposed information system architecture by employ-
ing the MIMIC III dataset and diabetes datasets. Section 7 
presents a summary of the Semantic Engine’s applications, 
discusses the study’s limitations, and provides some sugges-
tions for future research directions, followed by the conclu-
sions of this research.

2  Interoperability Addressed by FHIR and its 
Limitations

FHIR is proposed by HL7 International to improve the 
interoperability of systems in the healthcare domain and to 
facilitate information exchange between the stakeholders of 
healthcare ecosystems. FHIR is an open suite of software 
specification and implementation, comprising two elements: 
information models entitled ‘resources’, and a specification 
for the exchange of these resources. The goal of FHIR is to 
render all health data accessible to large-scale analytics in 
order to improve the quality of healthcare services.

In contrast to the earlier standards of HL7 v2 and v3, 
FHIR is likely to rapidly gain attention from the sector 
because it actively embraces Internet technologies and offers 
advantages such as agility, fast iteration, and low learn-
ing costs (Bender and Sartipi, 2013, Zong et al., 2021, Xu 
et al., 2020, Leroux et al., 2017), with additional support 
for mobile applications (Mandel et al., 2016, Bender and 
Sartipi, 2013, Sayeed et al., 2020). FHIR adopts a REST-
ful API which facilitates interactions and represents data in 
the currently popular JSON (JavaScript Object Notation) 
format, in addition to the EDI and XML formats provided 
by the earlier standards. FHIR provides a set of standards 
with established patterns to improve interoperability among 
a wide range of systems and devices that transcend EHR 
(Electronic health record) systems. FHIR for heterogeneous 
healthcare information systems is akin to the TCP/IP stand-
ard for the Internet. FHIR significantly reduces the difficulty 

of the transformation of incumbent information systems and 
its implementation compared to OpenEHR and the previous 
versions of HL7 (Bender and Sartipi, 2013).

In 2018, six Internet giants, namely Amazon, Google, 
IBM, Microsoft, Oracle, and Salesforce, jointly committed 
themselves to the elimination of interoperability barriers 
in healthcare by adopting FHIR as an exchange standard 
(Information Technology Industry Council, 2018). FHIR is 
selected as the basis of this research because it has been 
adopted as the national standard across all hospitals in the 
United Kingdom (UK) (NHS, 2020) and has also been 
widely adopted in other sectors.

In addition to the RESTful interface, FHIR resources can 
be exchanged through the paradigms of document, messag-
ing and services; these comprise the three types of resource 
collections serving different purposes (McKenzie, 2016). 
For current solutions, FHIR is usually adopted as a front-
end server, expressing the local healthcare data with the term 
‘resources’; it provides an HTTP/REST interface for appli-
cations by developers to access data (Saripalle et al., 2019). 
Heterogeneous databases mutually communicate through 
their front-end servers. These FHIR servers are oriented 
towards each other, establishing an unimpeded network of 
intercommunication through RESTful APIs at the technical 
and syntactical level. The semantic interoperability between 
heterogeneous databases is theoretically ensured by FHIR 
resources, which constitute unified information models to 
ensure that all agents communicate via the same discourse 
system.

The fundamental units of FHIR that represent clinical 
information are resources, which are information models 
featuring a set of pre-defined properties for a specific aspect 
of the domain. For example, the resource representing an 
individual patient has attributes including name, gender, 
address, and date of birth. Effectively, a resource can be 
identified as a schema, which describes all of the relevant 
attributes of a conceptual entity. Currently, FHIR R4 defines 
146 types of resources within five categories; these are 
Foundation (30), Base (26), Clinical (39), Financial (16), 
and Specialised (35). FHIR consolidates all categories of 
data with these pre-defined resources, which are already in 
use or will be used in HISs. FHIR, as a sign system, offers a 
defined lexical space in which clinical concepts, healthcare 
services, and FHIR resources are utilised.

The widespread adoption of FHIR has led to an increased 
debate on the limitations of semantic interoperability; 
Kubick (2016) and Kraus (2018) discuss the semantic 
ambiguity introduced by the implementors due to different 
combinations of FHIR resources being used to explain the 
same healthcare service. When FHIR is adopted as an ‘inter-
pretation wrapper’ in a healthcare ecosystem for information 
exchange, all parties to it are able to choose FHIR resources 
to represent their healthcare services. In consequence, 
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different institutions may not be able to interoperate due to 
the inconsistencies in the use of FHIR resources; semantic 
ambiguity in communication based on FHIR resources is 
introduced and amplified by the interactive process.

Three types of semantic ambiguity have been identi-
fied in FHIR implementation, with the first caused by the 
insufficient rigour of the FHIR specification. Beale (2019) 
contends that the inconsistency in the definition of FHIR 
produces semantic ambiguity. The following examples have 
been found in FHIR v4.3.0:

• Same semantics with different lexical names

Dosage in Medication Statement has the same mean-
ing as Dosage Instruction in Medication Dispense. The 
three elements, Location.hoursOfOperation, Healthcare 
Service.Available Time, and Slot.start, are different names, 
although they appear to designate the same thing.

• Same lexical name with different semantics

The ‘substitution’ in Medication Request and Medication 
Dispense describes two different actions.

• Same lexical name and semantics, but different data 
structure

The ‘status reason’ in Medication Request is defined as a 
Single-valued attribute; in Medication Administration, it is a 
container attribute, and in Medication Dispense, it includes 
two sub-elements.

These imprecise definitions inevitably lead to misuse 
or inconsistency in the implementation of FHIR; further, 
the FHIR specification involves terminology in a variety 

of fields and is relatively complicated. The lexical defini-
tions do not have the capacity to guide implementers to 
precisely match FHIR resources to idiosyncratic local data-
bases because it is impossible for the FHIR specification to 
describe all mapping scenarios; this is an inherent flaw of 
the lexical approach, which is discussed in Section 4 from a 
theoretical perspective.

The second type of semantic ambiguity is introduced 
by FHIR extensions. As the 80/20 rule of FHIR resources 
(HL7 International, 2019) is adopted to avoid overlap and 
redundant definitions of resources, lesser-used terms can be 
freely defined by implementors in the format of extension of 
resources, which accounts for 20% of clinical terminologies. 
Because FHIR unifies healthcare resources but lacks explicit 
contextual constraints, the 80/20 rule enables an institution 
to define its own extensions for the same healthcare service. 
An issue of this nature both causes barriers to information 
exchange and also obstructs medical discoveries based on 
cross-institutional data analysis (Dolin et al., 2018). Seman-
tic interoperability particularly deteriorates when extensions 
of resources are used to deal with specialist health data.

The third type of semantic ambiguity is due to the free-
dom and flexibility FHIR offers implementers; they can 
employ FHIR resources, or combinations of them, in order 
to interpret healthcare services, even though some may not 
be mature and/or stable, which leads to semantic ambiguity. 
FHIR v4.3.0 defines 139 resources, of which 100 belong to 
non-clinical categories. The number, which increases with 
every release, grants a substantial degree of freedom to 
implementers to use these resources. For example, in Fig. 1, 
the resources of ‘observation’ can be combined with other 
resources to represent laboratory results, imaging study find-
ings, diagnostic test results, vital signs, and other physical 
examination findings. These are the combinations of FHIR 

Fig. 1  An example of cor-
respondence between clinical 
actions and FHIR resources 
(HL7, 2022)
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resources suggested by HL7 (https:// www. hl7. org/ fhir/ resou 
rcegu ide. html). The potential misuse of resources occurs 
when healthcare data are beyond the scope of HL7-sug-
gested combinations. Additionally, FHIR implementers can 
tailor FHIR integrations to specific business needs, result-
ing in multiple customised resource collections occurring 
between different systems (Dolin et al., 2018; Jiang et al., 
2016). The interoperability issue caused by diversified FHIR 
collections is recognised by HL7 International (2022).

This research aims to demonstrate these semantic ambi-
guities generated in FHIR implementation and seeks to 
decrease their occurrence by exposing the correspondences 
between FHIR resources and the attributes of local datasets. 
When the custom use of FHIR is demonstrated to other par-
ties within the healthcare ecosystem, stakeholders can select 
its optimum interpretation and promote it to the standard of 
the whole ecosystem.

3  Related Work to Improve FHIR Compliance

Regarding the three types of semantic ambiguity discussed 
in Section 2, HL7 launched an office website (http:// hl7. org/ 
fhir/ regis try/) to manage extension publications. Once an 
extension defined by implementers is approved by HL7, it 
is shared with all FHIR users through an official channel; 
this centralised management method effectively unifies and 
standardises custom extensions. However, the use of exten-
sions faces the problem of interoperability caused by imple-
menters' contrasting understandings of lexical definitions. 
McClure et al. (2020) propose a framework to guide harmo-
nisation among multiple FHIR users in terms of terminol-
ogy, data elements, measure clauses, and measure concepts. 
Tute et al. (2021) take a similar approach, proposing a data 
quality assessment method for the support of collaborative 
governance.

The approach of ensuring FHIR conformity through 
review processes is usually costly in terms of time and 
labour. Sayeed et al. (2020) take an alternative approach, 
proposing an application that automatically merges 
patient-generated health data, represented by FHIR 
resources, into EHR. This approach is effort-effective but 
its scope is limited to patient-generated health data, and 
it does not cover electronic health records, which are the 
most complex aspect of healthcare ecosystems. Pfaff et al. 
(2019) contribute mapping scripts for the interpretation 
of medical data with FHIR resources; in their study, the 
data from the Integrating Biology & the Bedside (i2b2), 
the Patient-Centred Outcomes Research Network (PCOR-
net), and the Observational Medical Outcomes Partnership 
are automatically encapsulated by the FHIR. However, 
the script compatibility issues caused by the idiosyncra-
sies of local data sources persist. In their framework, the 

adaptation of a local database to the mapping script is allo-
cated to the local database layer; therefore, the inconsist-
ency of using FHIR resources caused by different imple-
menters remains unresolved.

Another approach is to leverage the national effort to 
harmonise the FHIR resources for medical data repre-
sentation across hospitals. The Medical Informatics Ini-
tiative (MII) and local data integration centres (DICs) in 
Germany collaborate to standardise COVID-19 data in 
FHIR profiles through another set of models, i.e., the Ger-
man Corona Consensus Dataset (GECCO). Using FHIR, 
GECCO defines 83 data elements and has been extended 
to all hospitals nationwide (Rosenau et al., 2022). The 
United Kingdom adopts the same approach and proposes 
FHIR UK Core (NHS, 2020) to enable consistent infor-
mation flows across borders. However, the disadvantage 
of this approach is the lack of agility and the high cost of 
upgrading.

In industry, a more straightforward approach is adopted; 
a developer collaboration and publishing platform (Firely, 
2015) plays the role of coordinator and facilitator among 
developers to improve the conformance of FHIR, consti-
tuting a loosely-regulated approach. The above approaches 
have their own advantages and disadvantages; this study 
seeks to develop a low-cost, and high-efficiency method by 
which to ensure FHIR conformity.

Table 1 summarises the benefits and constraints of exist-
ing FHIR compliance solutions in terms of cost, efficiency, 
implementation difficulty, and application breadth. The sug-
gested ostensive information architecture has clear advan-
tages over current solutions.

In view of the necessity for FHIR to use a consensus-
based approach, this study considers the related work of 
ontology used as an artefact to promote the harmonisation of 
health information systems. Ontology artefacts play a critical 
role in the fields of medical terminology unification, cross-
medical protocol interoperability, and information exchange 
between heterogeneous systems for healthcare services. In 
summary, relevant ontologies comprise the following three 
types:

• Ontology for terminology: representing terminologi-
cal and taxonomic aspects of medical knowledge

Ontology has been used to unify the medical inter-
pretations in order to establish an agreement on medical 
terminologies in diverse clinical systems, such as LOINC 
and SNOMED-CT. From this perspective, terminology 
ontologies are the pre-defined agreements designed to 
standardise the language of a domain, providing each 
term with a precise meaning and a specific granularity. 
Therefore, terminology ontologies lay the foundation for 
the exchange of medical information.

https://www.hl7.org/fhir/resourceguide.html
https://www.hl7.org/fhir/resourceguide.html
http://hl7.org/fhir/registry/
http://hl7.org/fhir/registry/
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• Ontology as a bridge between two systems: represent-
ing the relationships between terminology ontologies

Regarding the clinical concepts that comprise the medical 
terminologies defined by different standards, ‘bridge’ 
ontologies are adopted to facilitate information exchanges 
between terminology ontologies and are employed to 
unify the definitions of clinical concepts. Ryan (2006) 
interconnects HL7 v3 and SNOMED-CT through ontology 
matching, and Bodenreider (2008) uses the same method 
to enable SNOMED-CT to understand the laboratory test 
result coded in LOINC. Those similar operations facilitate 
semantic interoperability between heterogeneous coding 
systems and also support the integration of dispersed health 
information systems (Plastiras et al., 2014).

• Domain ontology: providing a common knowledge 
base for healthcare ecosystems

Compared to the healthcare domain ontology proposed 
by individual researchers or national institutions, the FHIR-
based ontology has evident international influence and the 
advantage of wide promotion. To encourage FHIR’s adop-
tion, the following studies propose methods for the trans-
formation of healthcare data into the corresponding HL7 
FHIR structure (Jiang et al., 2017; Kiourtis et al., 2019). A 
significant amount of research effort has been devoted to 
the improvement of FHIR coverage scenarios. Beredimas 
et al. (2015) propose an OWL (Web Ontology Language) 
ontology that defines the primitive and complex data types 
of the FHIR framework and the validation rules to enable 
FHIR to express data information externally to traditional 
medical databases.

El-Sappagh et al. (2019) extend FHIR to the telehealth 
scenario, introducing real-time sensor data into the 
historical EHR medical data with the aim of providing 
more comprehensive patient data to clinical decision 

support systems. Similar works have been carried out by 
Peng and Goswami (2019), combining data generated from 
the Internet of Things (IoT)-empowered smart home devices 
to EHR; meanwhile, Mavrogiorgou et al. (2019) collect 
multi-dimensional data reflecting patients’ health. This 
type of research (Moreira et al., 2018; Wagholikar et al., 
2017) extends the application of FHIR to a broader range of 
medical data, promoting the wider adoption of FHIR.

Literature review provides evidence that ontology arte-
facts are widely-adopted, with the aim of improving data 
harmonisation and accessibility, and FHIR-based ontology is 
a mainstream approach to contend with the ever-increasing 
complexity of healthcare ecosystems. Thereby, this research 
study explores the FHIR conformity solution on the basis of 
the FHIR ontology artefact. The next section delves into the 
root cause of semantic ambiguity in FHIR implementation.

4  Information Interaction through Lexical 
and Ostensive Approach

By investigating the practice of information management 
and human communication, we recognise that the 
fundamental cause of semantic ambiguity generated in 
FHIR implementation lies in using signs to represent 
objects. A sign can be anything that is interpreted as a 
substitute for something else (Eco, 1979), particularly in 
human communication. In semiotics, researchers examine 
information interaction through the study of signs and their 
effect on the human actors involved. Multiple semiotic 
theories hold different stances in epistemology and have laid 
different cornerstones in communication. They profoundly 
impact the fields of informatics (Liu & Li, 2015; Liu et al., 
2010), information systems (Baxter et al., 2018; Brödner, 
2019), knowledge management (Holzinger et al., 2014) and 
artificial intelligence (Chartier et al., 2019; Staab, 2019; 
Targon, 2018).

Table 1  Comparison between FHIR Compliance Solutions

Solution Time and cost Efficiency to  
decrease ambiguity

Easy to 
 Implement

Scope of 
application

HL7 official website (http:// hl7. org/ fhir/ regis try/) Low Low Easy Wide
A framework for harmonisation
(McClure et al., 2020; Tute et al., 2021)

High High Hard Wide

Automatic tools
(Pfaff et al., 2019; Sayeed et al., 2020)

Low High Easy Narrow

FHIR resources harmonisation national wide
(NHS, 2020, Rosenau et al., 2022)

High High Easy Wide

A developer collaboration and publishing platform
(Firely, 2015)

Low Low Easy Wide

An ostensive information architecture Low High Easy Wide

http://hl7.org/fhir/registry/
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Saussure’s theory of signs originated with the thought of 
a dichotomy. He believed that a sign links a signifier and a 
signified, which may exist in material form or as a concept. 
The signifier in his theory is something that explicitly exists 
and can be distinguished by human senses (Leeds-Hurwitz, 
1993). Peirce reckoned that the existence of an interpretant 
is critical and must be introduced in the process of making 
sense of a sign, which he terms a semiosis. An interpretant 
directly connects a sign and an object, while the sign and 
the object are linked by a dotted line (Fig. 2) in Peirce’s 
triadic model. The dotted line in the figure indicates that 
the correspondence between the sign and the object is not 
objectively determined but is dependent on the context and 
purpose of the communication and hence subject to personal 
interpretation. The interpretant can be regarded as the effect 
of such a sense-making process (Chandler, 2017) through 
the use of signs in different contexts or for different purposes 
(Liszka, 1990; Savan, 1987). Therefore, between a sign and 
an object, there is no strict one-to-one correspondence as 
suggested in Saussure’s model; although most specifications 
for information sharing adopt the Saussurean model of static 
mapping between lexicons and objects, including FHIR.

Peircean semiotics emphasises the effect of using signs 
in context (Staab, 2019). By emphasising the subjectivity in 
the mapping between the sign and the business context in 
which the sign is used, the triadic model of semiosis offers 
a theoretical basis for an ostensive approach to pinpoint the 
meaning of the sign (i.e., semantics) and its effect on the 
sense-making of the sign (i.e., pragmatics).

To deal with the possibility of one-sign-multiple-objects, 
the ostensive approach is introduced to explicate the sign-
object correspondence via direct demonstrating actions and 
examples. In such a way, semantic ambiguity is resolved, 
especially when complex signs such as FHIR are involved.

The FHIR specification uses the lexical approach to 
explain the definitions of resources. In other words, FHIR 
interprets the meanings of resources in language, which can 
be understood as the ‘sign’ (as illustrated in Fig. 2). In the 
context of FHIR implementation, different implementers 
may have contrasting understandings of the FHIR definition, 
leading to the same FHIR resource being used to explain 
different clinical data. Semantic ambiguity is created when 
many interpreters illustrate the same concept with contra-
dicting signs. The ambiguity of "same semantic with dif-
ferent lexical names" is depicted in Fig. 3. Similarly, the 
ambiguity of ‘same lexical name with different semantics’ 
occurs when the same sign is mapped to multiple objects by 
different interpretants. Just as Dolin et al. (2018) addressed, 
the primary challenge of FHIR adoption is to transform mul-
tiple distributed local datasets into consistent FHIR formats.

Therefore, this paper proposes an ostensive approach as 
a complement to the lexical approach in order to reduce the 
semantic ambiguity introduced by the contrasting under-
standing of the FHIR definition.

5  An Ostensive Approach of Elucidating 
Semantics

This research study adopts FHIR as the grounds on which to 
explain the concepts in the healthcare domain. In response to 
the limitations of FHIR, an ostensive approach is proposed 
that provides clinical data as examples to further explain the 
semantics defined by FHIR, along with the understandings 
of different implementors.

Thus, a knowledge graph is constructed on the basis of 
FHIR, and the FHIR knowledge graph is extended in order 
to connect attributes stored in local databases; this is termed 
‘FHIR-centric knowledge graph of the Semantic Engine’, 

Fig. 2  Peirce’s triadic model (Peirce, 1958) Fig. 3  Peirce’s triadic model
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enabling semantic elaboration and reasoning, and the clini-
cal data stored in heterogeneous local information systems 
can be retrieved by the Semantic Engine. In summary, the 
core of the Semantic Engine is the FHIR knowledge graph; 
the peripheral consists of attribute nodes in the local data-
sets. The correspondents between the FHIR resource nodes 
and local attribute nodes are connected by ‘mapping’ lines. 
Due to the fact that attribute nodes are defined by local 
implementors, it is difficult to name nodes consistently, 
which may lead to ambiguity.

The query statements sent by clients to the Semantic 
Engine reflect their understanding of the FHIR specifica-
tion through the lexical approach. The data in response to the 
request ostensibly exhibits the data providers’ understand-
ing of FHIR specifications. If there is mismatching between 
the clients and data providers in terms of the understand-
ings of FHIR, the data in the response can help the user to 
comprehend the gap. In summary, the proposed information 
architecture helps users to comprehend the semantic ambi-
guity produced by the lexical approach through the ostensive 
examples.

In general, the Semantic Engine is responsible for the 
processing of all semantics-related tasks. For example, the 
meaning of a node can be elaborated by the nodes connected 
with it and their relationships; effectively, the topology 
graph of this node discloses the node’s meaning. Semantic 
reasoning can be conducted through analysis of the relation-
ships between nodes, for example, the shortest path between 
two of them.

This paper proposes this semantics-data separated archi-
tecture for HISs to support semantic interoperability (Fig. 4), 

which can be regarded as a federated architecture. The 
Semantic Engine maps and integrates data from autonomous 
component database systems. The federated architecture 
(Wallender et al., 1979) is a common approach to integrate 
data from dispersed databases (Batini et al., 1986) and is 
adopted in the healthcare domain (Dusetzina et al., 2014).

The key purpose of this design is to employ FHIR in 
a computational method that leverages the advantages of 
the knowledge graph to process semantics, and takes pri-
vacy and security concerns into account. The separation of 
semantic processing and data storage can reduce the problem 
of data privacy leakage caused by the unified storage of data, 
and access mechanisms based on authorization further guar-
antee data privacy; this is discussed in Section 7.

In summary, the Semantic Engine has two main functions:

1) the enhancement of semantic interoperability across 
dispersed health information systems by feeding back 
the JSON file to show the semantic definitions in FHIR 
along with the understandings by implementors; and

2) the elimination of semantic ambiguity by providing cor-
responding examples in the form of data stored in differ-
ent local health information systems.

5.1  An Ostensive Information Architecture

On the principle of separating semantic processing and data 
storage, this study positions FHIR in health information sys-
tems. In contrast to the use of FHIR as a standard protocol 
for the transformation of local databases for information 
exchange, FHIR is abstracted from the front-end of each 

Fig. 4  A semantics-data separated information architecture
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local information system and unified at the logical top level 
of the entire health information system (Fig. 5).

This study’s proposal simplifies the architecture of health 
information systems by centralising the semantic interpreta-
tion layer in order to avoid the ambiguity caused by different 
interpretants of FHIR, which means that the correspond-
ence between the data provided by the specified primary 
database and FHIR resources is a system-wide standard, 
and other systems that differ from the standard definitions 
should follow the semantic interpretation of the primary 
system. For example, patients’ names and addresses could 
come from multiple clinical systems, but the patient registra-
tion system is usually taken as the primary system. When a 
query requires the ICU (intensive care units) information of 
a patient to be provided by the Semantic Engine, this will 
feed back the name and address from the patient registration 
system and the relevant ICU information from the intensive 
care information system, with the name and address of this 
patient stored in the intensive care information system in 
different formats being ignored. The centralised semantic 
interpretation layer can be deployed on the cloud to solve the 
problem of access bottlenecks caused by multiple requests.

Through setting the master–slave relationships between 
dispersed systems, the system-wide semantics are now uni-
fied; in other words, regarding a piece of data to describe a 
certain patient attribute, there is only one mapping relation-
ship between FHIR and local clinical information systems 
within an entire ecosystem, even though there are multiple 
databases storing the same patient attributes. When two peer 
hospitals make inconsistent use of FHIR resources, the two 
different mapping methods are represented as two external 
graphs to the FHIR knowledge graph. The local implement-
ers of both hospitals can establish a consensus by comparing 
and selecting.

The architecture of the proposed HISs is shown in Fig. 5. 
To support data retrieval, the Semantic Engine comprises 
two main elements: FHIR knowledge graph and transforma-
tion components.

This architecture contains three layers in order to 
respond to the FHIR queries; the semantic interpreta-
tion layer is a FHIR knowledge graph, which provides an 
explanation of semantics in lexical definition by nodes and 
their relationships. The transformation layer works with 
local health information systems to provide the semantics 

Fig. 5  An ostensive architecture of HISs
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by example, constituting the data stored in heterogeneous 
local systems. The mapping connector in the transfor-
mation layer matches data with FHIR resources, generat-
ing conflict alerts if and when data inconsistencies are 
detected. For example, an alert occurs if a date of birth 
has been assigned to two data sources through schema 
matching (Section 5.2.2) or the same concept has been 
interpreted by different FHIR resources. Therefore, the 
mapping connector consists of several sub-components.

An explanation is provided in Section 6.2.2. of the func-
tions that convert the data from two data sources into a 
unified FHIR-defined format in the Record linker, which 
combines the records of the same patient from different 
databases. For example, the record linker can recognise 
the records for a patient in a hospital’s billing system and 
the claim management system of an insurance company, 
associating the two records. The querying processor 
translates queries from the Semantic Engine and obtains 
data from local databases. The bottom layer represents the 
local healthcare information systems where the clinical 
data are stored.

Figure 6 illustrates the processes of a semantic engine 
dealing with a semantic query. The FHIR knowledge graph 
plays a critical role as a user interface and semantic inter-
preter. Ten internal steps (shown in Fig. 6) include redi-
recting user queries to different local databases, generating 
query statements, collecting query results, and merging 
them to return responses to users. Nie and Roantree (2019) 
address the question of how to merge the records of different 
aspects of the same object when they are stored in multiple 
databases. In this study, the patient profile can be taken as a 
key variable by which to conduct the record linkage.

5.2  Semantic Engine

As previously mentioned, the core of the Semantic Engine 
is the FHIR knowledge graph; this study uses Neo4j (Lal, 
2015) for its development. In order to facilitate data 
exchange between dispersed information systems, the 
local data require connections to the Semantic Engine. 
This research transforms the properties of local data into 
these property nodes; values of local data are retrieved 

Fig. 6  Semantic query processing flow
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as examples to further render the semantics explicit. 
This Semantic Engine can support semantic interpreta-
tion, semantic computing, and semantic reasoning. This 
research study focuses on the function of semantic inter-
pretation, which explains concepts to the queries. The 
details of how the Semantic Engine is structured based 
on FHIR schema are shown below, along with how local 
data connections to the Semantic Engine are implemented.

5.2.1   The Construction of an FHIR Knowledge Graph

The JSON representation of an FHIR schema is used to 
construct the knowledge graph, with each defined entity 

becoming an Entity node. Each property of the defined 
entities occupies a Property node. Relationships between 
entities that are defined within the JSON schema become 
edges within the knowledge graph. Figure 7 details the 
construction of a knowledge graph from the FHIR JSON 
schema.

This JSON is parsed and converted into a series of map-
pings which are imported into a Neo4j graph database with 
the top-level object “Patient” becoming an Entity node 
and all sub-objects become property nodes within the 
graph. Once the data is inside Neo4j the query language 
Cypher (Lal, 2015) can be used to view all information 
relating to a Patient. The software to generate the knowl-
edge graph is available here (Guo et al., 2023).

Similar Cypher commands can be used to query other 
resources. Since the resources are interconnected, the FHIR 
knowledge graph can be constructed.

5.2.2  Schema Matching

This step is designed to clarify the correspondence between 
FHIR resources and local data. The knowledge graph of the 
Semantic Engine comprises a set of nodes, N, and a series 

of edges, E . This knowledge graph contains not only the 
low-level mappings for individual data sources but further 
abstractions of these data, providing the capacity to seman-
tically reason. For the remainder of this section, this paper 
focuses on the schema-matching and schema-mapping com-
ponents, which are used to provide a basis for interoper-
ability between healthcare systems. To map data stored in 
dispersed systems correctly to the Semantic Engine, each 
individual source must be understood in detail; this requires 

Fig. 7  FHIR – Graph mapping
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a graph model that can capture the complexity of this indi-
vidual source.

Figure 8 illustrates, at a high level, the nodes and edges 
required to effectively provide a means by which to perform 
schema mapping. Nodes in the graph represent sources, 
properties, and mappings; edges are used to denote rela-
tions between them. Within the graph, there are four node 
types, specifically:

1. Source denotes a particular data source, identifying the 
system from which the data are obtained. This node con-
tains the connecting information for an individual source 
to facilitate communication with a particular mapping 
connector. 2. Entity relates to a particular entity from a 
data source; within a DBMS (database management sys-
tem), these may correspond to tables. 3. Property refers to 
an entity’s attribute, such as the name of a patient, which 
corresponds to columns within an RDBMS (relational 
database management system); there is a ‘one-to-many’ 
relationship between an entity and its property. Finally, 
4. Mapping denotes the way in which two properties 
between local data sources and the semantic engine may 
be related.

5.2.3  Mapping Data to FHIR

This study uses MIMIC III (https:// mimic. physi onet. org/ 
about/ mimic/) and a diabetes dataset (https:// archi ve. ics. 
uci. edu/ ml/ datas ets/ Diabe tes) as two local health infor-
mation databases. MIMIC III consists of 26 tables with 
58,598 instances covering 12 years intensive care data 
from 2001 to 2012. The diabetes dataset includes more 
than 250,000 records. In the process of mapping the data 
with corresponding FHIR resources, it is often the case 
that a concept defined by FHIR requires data from multiple 

MIMIC data tables for ostensive interpretation. Because 
MIMIC datasets are focused on intensive care medicine, 
many concepts defined by FHIR cannot be fully explained 
by MIMIC data, although it can be the case that two data 
records need to be amalgamated to match an attribute of 
an FHIR resource or a data record needs to be split into 
two segments to match the attributes of the FHIR resource. 
There is also a conflict between the index relationship 
between the MIMIC database and the FHIR resource, 
which occurs when querying the health information of an 
individual patient. Restrictions such as data types should 
follow the definition of FHIR and be guaranteed by the 
implementer.

When all datasets within a health ecosystem are matched 
with FHIR resources, it can be said that the health informa-
tion relating to patients has been semantically connected. 
By this stage, any stakeholder in the health ecosystem can 
theoretically access all health information relating to a spe-
cific patient; therefore, patient-centred diagnosis, evidence-
based medical research, medical insurance services, public 
health policy development, and such other healthcare-related 
services can be supported by this system.

In order to map data to FHIR, the structural mapping 
information of the data source, a set of contextual mappings, 
and a series of transformation functions are all required.

Structural information links entities and their properties 
within the graph, with each entity and property representing 
a node. The structural information is either derived from a 
supplied schema such as an RDBMS or, for flat files, manu-
ally supplied by a user. Once the structural information is 
converted into the graphical format, it can be mapped to the 
FHIR knowledge graph using the ‘Cypher’ command for 
processing. This is required in order to overcome differences 
in terminology and structural differences where one entity in 
FHIR may be composed of two or more entities within the 
local data source. This challenge resulted from the semantic 
ambiguity described in Section 2 and is the reason why this 
study sought to expose the inconsistent use of FHIR among 
its implementers.

The contextual mappings denote the context in which a 
specific data source is to be used; for example, the FHIR 
schema contains the concept of an “observation”, refer-
ring to medical observations, such as body weight or bone 
density. While this entity has wide usage due to its generic 
nature, specific data sources may focus only on a specific 
measurement. For the diabetes dataset, while it is an obser-
vation within the FHIR schema, it should only be queried if 
the user is requesting blood glucose levels.

This requires a mapping that can determine context; 
it can be achieved by embedding the semantics of the 
mapping within a mapping node. When mapping across 
data sources, the data may require semantic augmentation 
in order to ensure accuracy. An example is data, which 

Fig. 8  Graph Structure

https://mimic.physionet.org/about/mimic/
https://mimic.physionet.org/about/mimic/
https://archive.ics.uci.edu/ml/datasets/Diabetes
https://archive.ics.uci.edu/ml/datasets/Diabetes
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provide values for the same entity, such as blood glucose 
levels, but are represented by differing units of measurement. 
These inconsistencies are overcome by using transformative 
functions embedded within the mapping nodes linking two 
properties.

In this research, the MIMIC data are converted into a 
graphical format using the relational schema and then sup-
plemented with manual mappings to FHIR supplied in CSV 
format for batch processing with Cypher. The diabetes data 
are a series of flat-files; this representation therefore does not 
contain the necessary structural information, which was pro-
vided by a domain expert. In addition, the diabetes dataset 
has low dimensionality, requiring the provision of additional 
contextual mappings in order to accurately map the data to 
FHIR. The schema and data mapping are performed manu-
ally in this research, whereas in industry, developers can use 
tools to convert local data into the FHIR format in batches 
(Kiourtis et al., 2019). Regardless of the method used by 
the implementer, the purpose of this step is to illustrate the 
corresponding relationships between FHIR and local data 
in node-edge format.

6  Enhancing Semantic Interoperability 
with the Semantic Engine

In this section, two case studies are conducted in order to 
explain that the proposed ostensive information architecture 
can:

(1) decrease semantic ambiguity by showing the data val-
ues and their context, and

(2) synthesise data from disparate systems with the aim of 
achieving patient-centred diagnosis.

6.1  Ostensive Approach to the Enhancement 
of Semantic Interpretation

FHIR v4 defines 146 types of resources to describe the 
concepts within the healthcare domain; all resources are 
represented in JSON format, and naturally have sufficient 
feasibility to be represented by a knowledge graph. 
Because Neo4j enables semantic searching and reasoning, 
the meaning of a concept such as ‘Patient’ can be easily 
understood through the property node and its relationships. 
For this reason, the FHIR knowledge graph is termed a ‘core 
Semantic Engine’. The lexical definition can be searched on 
the Semantic Engine, while the ostensive examples can also 
be retrieved by it. The following example illustrates the way 
in which the ostensive approach supports the reduction of 
semantic ambiguity.

In FHIR, for example, one of the properties of ‘patient’ 
is ‘DeceaseDateTime’. Because FHIR has not clearly 
defined the concept of date of death with context, the pos-
sibility of the introduction of semantic ambiguity occurs. 
In MIMIC datasets, two tables reflect the content of ‘death 
time’. There are three relevant columns in the patient table 
(Fig. 9): DOD, DOD_HOSP and DOD_SSN.

DOD_HOSP indicates the date of death stored in the 
hospital database, and DOD_SSN refers to the date of 
death in a social security database. The screenshot to the 
right of Fig. 9 shows that the values of DOD_HOSP and 
DOD_SSN are different. From the screenshot to the left of 
Fig. 9, it can be deduced that DOD is the combination of 
records of DOD_HOSP and DOD_SS, and DOD_HOSP 
has a higher priority for adoption if both values exist.

There is also a DEATHTIME in the Admission Table 
(Fig. 10). The comparison demonstrates that records of 
death times in the two tables are inconsistent; for exam-
ple, in Patient table, the death time of HADM_ID = 9 is 

Fig. 9  Patient table in MIMIC data sets



 Information Systems Frontiers

1 3

11/14/49 0:00; while in Admission table, the record is 11 
/14/49 10:15. As the times in all records in the Patient 
table are 0:00, it is assumed that the record in the Admis-
sion table is more accurate.

Thus, on the basis of the above observations, seman-
tic ambiguity is generated if the data source has not been 
shown to data users; this leads to misjudgements during 
data analysis. Semantic ambiguity, a typical type of data 
quality problem that occurs often, has been identified as the 

cause of such issues because the FHIR specification cannot 
enumerate all matching situations for local databases.

The ostensive approach has the capacity to reduce this 
type of ambiguity by providing the sources of data. The 
source of DOD_HOSP, DOD_SSN and DEATHTIME 
can be found by retrieving the table, property, and source 
attributes from the knowledge graph, as a similar process 
to a ‘reverse lookup’.

The following query would return all sources and tables 
by initially searching for all mappings that link to the 
FHIR Patient attribute ‘deceasedDateTime’.

In order to identify the source, a query must be run on that 
source dataset to identify matching values. Such an operation 
is for data users to figure out how the FHIR implementer maps 

local data to FHIR, which is beneficial for the data users to use 
data correctly. For example, for a datetime x and patient ID y 
this would be converted into the following queries.

Fig. 10  Admission table in MIMIC data sets
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In summary, the Semantic Engine performs the lexi-
cal- and ostensive approach through semantic searching 
facilitated by the FHIR knowledge graph, retrieving data 
and their context as examples from local clinical systems. 
Furthermore, specifying primary data sources in local 
datasets through the construction of mapping relationships 
can prevent data conflicts in data exchange processes.

6.2  Querying Blood Glucose Levels in the FIHR 
Defined Format

In this section, an example is used to explain how data can be 
retrieved from multiple institutional EHRs in FHIR format.

This case study queries blood glucose levels from 
MIMIC and diabetes datasets in FHIR format by 
using the Semantic Engine; the query is posed to the 
system using FHIR terminology. In this instance, all 
observations related to a patient, which are blood glucose 
measurements, are the object of the research. Command 
box 4 details the query in SQL format. The observation in 
FHIR is used to model the result of medical observations, 
while the coding property of FHIR is used to denote the 
type of test. For this example, it is assumed that LOINC 
codes (McDonald et al., 2003) are used to code medical 
observations. Within an observation, ‘subject.reference’ 
refers to the patient with ID 1.

Fig. 11  Mappings for FHIR Observation
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Using the query SQL format, the next step is to query 
the Semantic Engine in order to determine what sources are 
required in order to fulfil the query. This is achieved by exam-
ining all mapping nodes connected to an FHIR observation.

Figure 11 details the mappings for an FHIR observation 
of both the MIMIC data and the diabetes datasets. The FHIR 
knowledge graph sits at the centre of the Semantic Engine 
and remains stable unless FHIR evolves to a new version. 
The MIMIC and diabetes datasets are connected to the FHIR 
knowledge graph through schema mapping (Section 5.2.2) 
and data mapping (Section 5.2.3). When a new data source 
is connected to the FHIR knowledge graph, the Semantic 
Engine is updated.

6.2.1  Query Processing

After identification of what source(s) are required to fulfil 
the query, in this case the diabetes data and the MIMIC 
dataset, the next step is to translate the query into a format 
that can be read by each mapping connector.

The diabetes data are a single-source dataset; thus, 
in this instance, manual mappings provided by domain 
experts are required to match FHIR entities to the dimen-
sions within the diabetes dataset schema. This is achieved 
by examining the mapping nodes between the diabetes 
dataset and FHIR shown in Table 2.

From these mappings, it can be observed that the 
‘patient’ attribute is a STATIC value embedded within the 
mappings, the attribute ‘value’ from ‘observation’ maps 
directly to the column ‘value’ within the diabetes dataset 
and that the FHIR attribute ‘issued’ maps to the ‘date-
time’ attribute within the diabetes dataset. The STATIC 
value represents an annotation to the source data to supply 
required semantics in order to achieve integration. In this 

instance as the source dataset only contains the dimen-
sions datetime and value annotated information such as 
the Patient is required as a static annotation to the source 
dataset. An example of the dataset with semantic annota-
tions can be seen in Table 6.

Examining these mappings, which describe the source 
data, a comparative SQL query to extract the data from 
their respective source can be seen in Command box 5.

Table 2  Mappings for the diabetes dataset

Fig. 12  MIMIC internal mappings
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The MIMIC dataset shows that an observation in FHIR 
is represented by the tables Lab events, Admissions, 
Patients, and D_Labitems within MIMIC. A query for 
these data requires a join across these tables, necessitating 
knowledge of the MIMIC schema. The knowledge graph 
can be queried to identify these internal joins to translate 
the query (Fig. 12); a tabular representation of these joins 

is presented in Table 3 where entity refers to an FHIR 
entity, and property relates to the property of the entity. 
Each row of the table represents a mapping across enti-
ties within FHIR and the properties that join the above-
mentioned entities.

By examining these relationships, the query can be 
translated into a similar one that can query data in the 
MIMIC schema (Command box 6).

The query is now translated and can be passed to the local 
clinical database for the retrieval of data according to the 
mapping relationships.

6.2.2  Combining Data from Multiple Data Sources

Each query passed to the local clinical database returns a csv 
file. The data returned from the MIMIC and diabetes queries 
are shown in Tables 4 and 5 respectively. The next steps are 
to convert these files into FHIR format and integrate them 
in order to return a unified view.

In the case of sparse data sources, these may not con-
tain sufficient information to correctly integrate data into 
FHIR. For example, the diabetes data (Table 5) contains only 
two columns, i.e., datetime and value. These data require 

annotation with static semantic data in order to be integrated 
with FHIR; these semantic annotations are embedded within 
the mapping nodes with the static identifier. These STATIC 
mappings are used in conjunction with the mappings derived 
from the source to facilitate semantic integration within the 
knowledge graph.

For the diabetes dataset, the static data requiring annota-
tion are patient id, the LOINC code, and the unit of meas-
urement. This produces an intermediate csv file, as shown 
in Table 6.

The next step of the process is the re-examination of the 
mappings in order to transform each attribute into FHIR. 
This is achieved by re-examining the mappings to deter-
mine how attributes returned map to FHIR, and by applying 
any transformations embedded within the mapping nodes. 
Any attributes that contain no mappings are disregarded. 
The MIMIC data and diabetes data after this re-mapping are 
shown in Tables 7 and 8 respectively.

Finally, the two datasets require integration. A previous 
work (Scriney et al., 2019) proposes a methodology for the 
determination of an integration strategy by examining the 
common datasets for each source in order to design a com-
mon data model. In this study, the common data model is 
the FHIR JSON schema. Using this methodology, the row-
append method is selected to produce the unified data mart 
shown in Table 9.

Table 3  Tabular representation of MIMIC internal mappings pre-
sented in Fig. 11

Entity Property

Labevents MIMIC.labevents,itemid
Labevents MIMIC.labevents.hadm_id
Labitems MIMIC.labitems.itemid
Admissions MIMIC.admissions.hadm_id
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7  Discussion and Conclusions

Interestingly, during the review process of this paper, FHIR 
released its latest version (FHIR v4B, released on May 28, 
2022), which discusses the issue of conformality. FHIR v4.3.0 
introduces a conformance layer (HL7 International, 2022) to 
mitigate the interoperability problem caused by the inconsistent 
use of FHIR specifications by different applications, 
which is the third type of semantic ambiguity discussed in 
Section 2. The conformance layer is a statement provided by 
implementers about how the resources and their exchange 
paradigms are used to solve particular use cases, comprising 
a value set, a structure definition, a capability statement, and 
an implementation guide. The conformance layer is similar to 
the extension publishing management, which can improve the 
FHIR conformality, but challenges nevertheless remain.

The proposed ostensive architecture is demonstrated 
by the prototype of the Semantic Engine to enable data 
exchange and improve semantic interoperability in this 
research study. The work has been partially tested in a pro-
ject supported by the Government of the Republic of Ireland 
in 2021, which involved multiple data sources for COVID-
19 data analytics; a relational database was constructed to 
interpret semantics, and acts as the Semantic Engine.

This research broadens the scope of the application of 
FHIR in healthcare ecosystems. The data from heterogene-
ous sources, such as smart devices, can be interchanged with 
clinical data via the Semantic Engine.

7.1  The Functionalities of the Semantic Engine

The main functionalities of the Semantic Engine can be 
summarised in the following four respects:

1. Semantic reasoning

Underpinned by Neo4j, the concepts or resources defined in 
FHIR are explained through the connected properties of nodes and 
their relationships. This schematized FHIR data naturally develops 
the capacity for semantic reasoning between clinical concepts.

The steps for general semantic reasoning are summarised 
as follows.

Data acquisition:
A query enters the system in FHIR format. From this 
query, a list of entities is obtained, represented as e and 
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Table 5  Data returned from 
diabetes query

DATETIME VALUE

23/10/2018 08:00 354
23/10/2018 18:00 275
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their properties as ep which are required to deliver the 
query. Where  ep is a subset of all available properties 
within an entity.Data source (src) which can satisfy this 
query are discovered through a traversal of the knowl-
edge graph identifying mapping nodes (m) which link to 

these properties. Mapping nodes (m) can subsequently be 
viewed as relations between properties (ep) and sources.

The following query (Command box 7) identifies any map-
pings for a given property (ep) and returns the data source (src), 
the relevant entity (tab) and the property required (prop).

Table 6  Diabetes data after 
annotation

DATETIME VALUE FHIR.Observation.
subject.reference

FHIR.Observation.
coding.code

FHIR.Observation.
Unit

23/10/2018 08:00 354 1 2339–0 mg/dL
23/10/2018 18:00 275 1 2339–0 mg/dL

Table 7  MIMIC data after 
re-mapping

FHIR.Observation.
subject.reference

FHIR.Observation.
issued

FHIR.Observation.
value

FHIR.Observation.
Unit

FHIR.Observation.
coding.code

1 20/10/2018 20:04 265 mg/dL 2339–0
1 20/10/2018 21:51 267 mg/dL 2339–0
1 20/10/2018 00:42 299 mg/dL 2339–0
1 20/10/2018 01:46 294 mg/dL 2339–0

Table 8  Diabetes data after 
re-mapping

FHIR.Observation.
issued

FHIR.Observation.
value

FHIR.Observation.
subject.reference

FHIR.Observation.
coding.code

FHIR.Observation.
Unit

23/10/2018 08:00 354 1 2339–0 mg/dL
23/10/2018 18:00 275 1 2339–0 mg/dL

Table 9  FHIR Observation 
response of diabetes data

FHIR.Observation.
subject.reference

FHIR.Observation.
issued

FHIR.Observation.
value

FHIR.Observation.
Unit

FHIR.Observation.
coding.code

1 20/10/2018 20:04 265 mg/dL 2339–0
1 20/10/2018 21:51 267 mg/dL 2339–0
1 20/10/2018 00:42 299 mg/dL 2339–0
1 20/10/2018 01:46 294 mg/dL 2339–0
1 23/10/2018 08:00 354 mg/dL 2339–0
1 23/10/2018 18:00 275 mg/dL 2339–0
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For each mapping, the data source (src) is queried in 
order to return the defined properties (prop). The data 
obtained from the source systems are then converted back 
into FHIR format (as specified in Section 6.2.2).

2. Patient-centric data organisation

The organisation of data into a patient-centric approach is 
the premise of achieving patient-centric care. From the perspec-
tive of the stakeholders of the healthcare ecosystem, ranging 
from clinicians to carers, legal practitioners, and taxpayers, a 
wide range of individuals seek to obtain a holistic view of every 
individual patient’s case. The benefits and challenges of this 
have been addressed by academics from many different fields 
(Pelzang, 2010), with the organisation of patient data used in a 
patient-centric approach representing the first step towards the 
elimination of the silos between the health systems.

To facilitate semantic interoperability, the Semantic Engine 
organises the distributed healthcare data relating to patients 
and reflects the logic of diagnosis and treatment. Therefore, in 
addition to the provision of holistic patient health information 
which can be presented via the Semantic Engine, the patient 
him/herself can be empowered to authorise which data can be 
accessed and used by which organisations and agencies. This 
function can be achieved by the use of an extra module of data 
authority management, which is not discussed in detail in this 
paper. Moreover, patients may not be aware of the consequences 
of their own choices, which is an issue worthy of further 
exploration from the perspective of healthcare management.

3. Enhancing semantic interoperability

In addition to the definition and interpretation of medical 
terms, the Semantic Engine can retrieve data from disparate 
local databases to further clarify the meaning of definitions 
by providing examples. Through this ostensive approach, 
the ambiguity caused by lexical definition can be minimised.

In the process of designing the verification scenarios, this 
study identifies a problem with unclear data sources, which 
potentially poses challenges for subsequent data analysis 
processes. The same FHIR resource, observation, has been 
used to interpret data collected from patient-worn monitoring 
equipment and clinical equipment in hospital settings. 
On consideration of the level of data reliability needed to 
support patient-centred diagnosis, it is clear that patient-worn 
monitoring equipment is less reliable than clinical equipment 
used in a clinical setting. Therefore, in practice, physicians 
should carefully review the laboratory reports and only use the 
data provided by the monitoring equipment for reference. In 
order to provide a firm foundation for an information-assisted 
clinical diagnosis system, the limitations of this study and 
suggestions for future research are discussed.

4.  Applicability in other fields

This proposed information architecture processes 
semantics and data separately to avoid privacy and security 
issues arising from centralised data storage, while support 
information can be exchanged across heterogeneous 
databases. This architecture can be applied in other domains 
that require information exchange and communication 
between dispersed systems. The construction of a consensus 
knowledge graph is the premise of the application of this 
semantic-data separated architecture.

7.2  The Limitations of the Research Study

This study adopts FHIR as domain knowledge to 
construct a Semantic Engine for the interpretation of the 
meanings of clinical concepts. It is observed that FHIR 
does not distinguish between the different levels of data 
reliability. When this ostensive information architecture 
is brought into use, consideration should be given to 
the level of data reliability and the conflicts caused by 
multiple data sources being used for the same indicator. 
This problem can potentially be solved by specifying the 
primary database, although due to the limited availability 
of medical data, this study does not provide an in-depth 
discussion of this issue.

This study focuses on semantic interoperability but 
does not explore the relationship between semantics and 
operational processes, such as patient pathways or clinical 
procedures. The context of the data is an extremely 
important factor concerning their semantics and may vary 
in the different processes, which this study does not explore 
in depth.

The ostensive information architecture proposed by 
this study is applicable to the entire medical ecosystem, 
therefore, it is evident that there is a serious problem 
of record linkage, specifically in terms of detecting, 
identifying, matching, and merging records across 
heterogeneous databases that relate to the same patient 
(Reyes-Galaviz et al., 2017). For example, two systems may 
refer to the same patient but use different identity codes to 
correctly identify a patient across systems. To overcome 
these issues, this study proposes a model of record linker 
in the transformation layer; this is similar to the method 
proposed by Nie and Roantree (Nie & Roantree, 2019) 
which seeks to produce a probabilistic means of identifying 
patients during the re-mapping process. Due to the fact that 
no public medical data contains patient details in order 
to protect patient privacy, the difficulty of obtaining data 
on patients’ profiles from multiple systems precludes the 
conduct of a case study in this study to demonstrate how 
the record linker works.
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7.3  Implications for Future Research

This proposal of the ostensive information architecture simply 
represents the first step towards the achievement of patient-cen-
tric diagnosis. The following are directions worthy of further 
exploration:

• In the current Semantic Engine, the properties for edges 
are limited, which indicates the affiliation between nodes. 
In further research, richer semantic properties could be 
added to the edges. For example, data from a wearable 
device could be given low priority if there are data for 
the exact measurement from a medical device. The richer 
semantic properties can support the Semantic Engine in 
the construction of a diagnostic graph, which has the 
capacity to reason and prioritise the level of data reli-
ability according to its sources.

• Breakthroughs in the medical field and the discovery of 
new diseases mean that the definitions of clinical concepts 
are in constant evolution; this underlines the fact that a 
gap between the Semantic Engine and the data examples 
is likely to persist. Therefore, the function of tracing 
and managing the changes of FHIR resources becomes 
essential to ensuring rigour in the mapping of relationships. 
Blockchain technology offers an optional solution to this 
challenge; it can be used to record the evolutionary history 
of FHIR whilst also tracking the changes in patients’ 
medical history records (Zhang et al., 2018). The use of 
blockchain technology in healthcare information systems 
has many potential application scenarios and is of high 
practical value (Mettler, 2016). For example, blockchain 
can be used to provide access to medical data (Azaria et al., 
2016) and privacy control (Yue et al., 2016). Overall, the 
proposed ostensive information architecture provides a 
foundation for HISs; additional research work, including 
mapping of organisations, patient pathways, and clinical 
processes to the Semantic Engine, should be based on a 
comprehensive HIS proposal.

7.4  Conclusion

In this study, in order to enhance the semantic interoperability 
of FHIR, and also consider the data privacy issues and 
regulatory requirements for data sharing, an ostensive 
information architecture is proposed that separates semantic 
processing from clinical data storage. There is deliberate 
separation of semantic schema and underlying data, with the 
aim of improving flexibility and scalability. The centralised 
FHIR knowledge graph has the capacity to reduce the cost of 
the application of FHIR to multiple disparate clinical systems, 
and is also be flexible in its evolution. This study summarises 
the benefits of the semantics-data separated architecture into 
three principal points, as follows:

1. The centralised deployment of FHIR can reduce the 
costs incurred by its separate deployment in individual 
local systems, alleviating the impact of its evolution. Our 
system is a federated architecture where queries are first 
to run on their respective sources and the data returned 
are mapped and integrated using the Semantic Engine, 
returning a unified view of the data. As we do not envisage 
incremental updates to the Semantic Engine, it is possible 
to alleviate potential time costs within the integration and 
mapping steps by hosting multiple instances of the FHIR 
knowledge graph within the cloud.

2. This architecture acquires horizontal scalability through 
the maintenance of the distributed storage of clinical data 
and the deployment of the centralised FHIR knowledge 
graph layer in the cloud cluster. This architecture 
supports vertical scalability in terms of handling complex 
semantic reasoning and the evolution of FHIR.

3. The abstract semantic layer provides patients with the 
capacity to gain a complete view of their healthcare 
from dispersed data sources, enabling them to precisely 
decide the degree and extent of information exposure by 
managing the access permissions that can be embedded in 
the Semantic Engine. The Semantic Engine executes the 
role-based accessed management tasks without exposing 
the FHIR knowledge graph to patients.
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