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Abstract
The current trend towards more renewable and sustainable energy generation leads 
to an increased interest in new energy management systems and the concept of a 
smart grid. One important aspect of this is local energy trading, which is an exten-
sion of existing electricity markets by including prosumers, who are consumers also 
producing electricity. Prosumers having a surplus of energy may directly trade this 
surplus with other prosumers, who are currently in demand. In this paper, we present 
an overview of the literature in the area of local energy trading. In order to provide 
structure to the broad range of publications, we identify key characteristics, define 
the various settings, and cluster the considered literature along these characteristics. 
We identify three main research lines, each with a distinct setting and research ques-
tion. We analyze and compare the settings, the used techniques, and the results and 
findings within each cluster and derive connections between the clusters. In addi-
tion, we identify important aspects, which up to now have to a large extent been 
neglected in the considered literature and highlight interesting research directions, 
and open problems for future work.
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1 Introduction

In the last few years, a growing awareness of the impact of climate change has led 
to a trend towards more sustainable and renewable energy sources, such as photo-
voltaic systems (PV) or wind power. This results in high penetration of renewable 
energy sources and can lead to severe problems within the energy system. Among 
the most crucial disadvantages are the lack of control on the generation side as 
well as the uncertainty in predicting future amounts of energy generation due to 
the intermittent nature of renewable energy sources. Especially within the electric-
ity domain, this leads to an enormously complex, and challenging situation, as the 
ongoing electrification also leads to a drastic increase and changing patterns of elec-
tricity consumption.

In order to avoid upgrading the entire physical infrastructure of the electricity 
grid to compensate for the increased loads and peaks, one promising approach is the 
concept of a smart grid. Its core is the addition of a two-way communication layer 
on top of the current physical grid and the introduction of advanced sensor technol-
ogy and smart devices in the system. The keys to unlocking the potential of smart 
devices supporting the smart grid are algorithms and energy management systems. 
They use the additional information from the sensors, as well as information from 
outside the grid system, such as, e.g., weather forecasts, and aim to use the potential 
advantage of the flexibility offered by smart devices. As such, corresponding control 
algorithms are an important tool in ensuring a stable electricity distribution in the 
future.

One core task of the new energy management system is to support and enable 
local energy trading. Historically seen, energy trading has always happened on 
national electricity markets, where electricity producers, grid operators, retailers and 
suppliers, as well as large energy-intensive companies buy and sell electricity and 
short-term capacities. Due to the ongoing penetration of newly affordable technolo-
gies such as PV systems, batteries or electric vehicles (EVs) and in order to ensure 
a stable grid, it is essential to include also prosumers, who are consumers who also 
produce, store and trade energy by, e.g., PV and battery systems, in future energy 
markets. Currently, prosumers are not part of energy trading yet, mainly because 
of their small size and the uncontrollable nature of their local energy production. 
However, due to new concepts such as microgrids (see Sect. 4), these prosumers are 
now able to enter the energy markets. Possible approaches include trading with other 
prosumers, often referred to as Peer-to-Peer trading (P2P), or acting as one larger 
unit on traditional energy markets by combining their flexibility.

The field of traditional energy markets has always attracted the attention of 
researchers from different areas, such as electrical engineering, operations research, 
or (power) economics. This research considered amongst others, variations of the 
classical unit commitment problem (see, e.g.,  Bard 1988; Bertsimas et  al. 2013; 
Johnson et al. 1997; Sundar et al. 2019), bidding or pricing strategies for different 
national electricity markets (see, e.g.,  Aïd et  al. 2021, 2015; Anderson and Phil-
pott 2002; Bushnell and Oren 1997; Carmona et  al. 2012), load forecasting (see, 
e.g., Hahn et al. 2009; Hong et al. 2016; Lindberg et al. 2019), AC or DC optimal 
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power flow computations (see, e.g.,  Bienstock et  al. 2012, 2020; Bienstock and 
Verma 2019; Skolfield and Escobedo 2021) or cascading failures and blackouts in 
high-voltage grids (see, e.g., Bernstein et al. 2012; Bienstock 2015; Bienstock and 
Mattia 2007; Nesti et al. 2018). Compared to these problems, local energy trading 
focuses on the low-voltage (LV) or distribution grid and offers new, interesting chal-
lenges, such as congestions in LV grids due to the increased demand and local gen-
eration, or the impact of prosumers’ behavior, which is not necessarily restricted to 
cost savings or profit maximization. Hence, existing techniques and approaches used 
on a national level cannot simply be transfered to the local level, but need to be 
adapted and newly implemented.

The main contribution of this work is twofold. In a first step, we provide a 
detailed overview of existing literature in the area of local energy trading. Due to 
the wide range of settings and research questions in publications in this field, we 
first identify and define various characteristics and research questions related to the 
settings. Based on these questions and characteristics, we classify the considered 
literature into three main clusters and analyze each cluster on its own. During this 
analysis, we compare the used techniques within each cluster, as well as investigate 
possible connections between the clusters. In a second step, we identify open ques-
tions and challenges in local energy trading, based on the insights gained from the 
analysis. To the best of our knowledge, many of these interesting open challenges 
have been neglected up to now.

The paper is structured as follows. In Sect. 2, we present our main findings and 
results, followed by a detailed classification scheme in Sect. 3. Section 4 introduces 
a general model of a microgrid, while Sect. 5 presents a short theoretical introduc-
tion of the techniques used in the considered literature. In Sect. 6, we analyze the 
different clusters in detail w.r.t. the settings and used techniques. We conclude the 
work with a summary as well as an outlook to future research directions and open 
problems within the scope of local energy trading in Sect. 7.

2  Findings and results

In this section, we give a summary of the three main findings identified within the 
scope of this work. 

1. Three research directions Within the area of local energy trading, there are three 
main research questions, which up to now have been considered in the literature. 
The first research question deals with the problem of matching (fixed) demand and 
(fixed) supply. The second research question focuses on internal pricing schemes 
for the prosumers, in which each prosumer profits from participation. The last 
research question deals with the problem of a decentralized balancing of demand 
and supply for a set of prosumers, such as a microgrid. In contrast to the first 
research question, here smart devices and some parts of the demand and supply 
offer flexibility.
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2. Grid constraints In contrast to classical energy markets, the considered literature 
rarely took grid constraints in the LV grid into account. While this may be reason-
able and feasible for the classical energy production and generation of the last 
decades, the increased demands due to electrification as well as the local genera-
tion of, e.g., PV systems require that (LV-)grid constraints are also included in 
future local energy markets.

3. Uncertainty Only in a very limited subset of the literature uncertainty, either in 
prices or forecasts, is taken into account. The vast majority of the work assumes to 
have perfect knowledge of all parameters for these aspects. While this may seem 
reasonable for short time horizons, energy trading schemes that plan the trading 
for a whole day should include some form of safety against deviations from the 
predicted values.

As a first conclusion, we can state that there are currently three main lines of 
research in the area of local energy trading. Herein, very interesting ideas and 
algorithms ranging from game theory to distributed optimization have already 
been applied, but some important aspects, in particular grid constraints and 
uncertainty, have been neglected or ignored to a large extent. Hence, the area of 
local energy trading still offers many interesting open problems for each of the 
given research lines.

3  Clustering of local energy trading approaches

Given the wide range of different settings and research questions in the consid-
ered literature, we first cluster similar problem settings together and then com-
pare the clusters with each other. In order to cluster the settings, we first need 
to identify and define the key characteristics as well as the high-level research 
questions. Combining own findings as well as some of the characteristics found in 
Khorasany et al. (2018) and Ventosa et al. (2005), the final classification scheme 
is based on the following characteristics: 

1. Valuation Is the valuation of electricity of each prosumer taken into account? The 
valuation can be represented by means of bids in an auction approach or by util-
ity functions in (non-)cooperative games. Utility functions are often a weighted 
sum of different aspects of electricity consumption, such as the cost of purchase, 
the profit of selling electricity, or the satisfaction of (the results of) electricity 
consumption.

2. Flexibility What kind of flexibility w.r.t. electricity consumption and generation 
are taken into account? This can span from no flexibility over flexibility due to 
the usage of a battery or EV to flexible load and curtailment of PV generation.

3. Structure How is the computation organized? Is it done centrally at the microgrid 
operator (MGO) or are computations distributed among all participants?
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4. Objective What is the main objective of the setting? The objectives in the con-
sidered literature range from maximizing social welfare, over minimizing costs 
to minimizing peak load or maximizing local consumption.

5. Stability and Fairness Should the solution be stable against strategic manipulation 
of participants? Is the solution fair to everyone? As there is no common scientific 
definition of fairness, it refers to the lack of discrimination of a subset of the 
prosumers within assignments or decisions taken by the algorithms.

6. Participants and their incentives Which entities can participate in the local energy 
trading scheme? Do all participants profit from the local energy trading scheme 
or may some participants be off the same as when not joining the energy trading 
scheme?

Using these characteristics, the final classification scheme consists of three major 
clusters, each with a unique setting and high-level research question. Two of the 
major clusters can be further split into two subclusters each. The reason for main-
taining such a structure with three main clusters and two of them consisting of two 
subclusters each is that the two subclusters are very similar to each other, meaning 
that they are much closer related to each other than to any other cluster. Hence, we 
keep the three main clusters, each with a clear focus on the setting and problem 

Table 1  Overview of the 
relation between the different 
clusters and the characteristics; 
Matching without Flexibility 
(FM), Balancing with Flexibility 
(BF), Smart Matching without 
Flexibility (SMF), Direct 
Matching without Flexibility 
(DMF), Cooperative Pricing 
Scheme (CPS), Joint Balancing 
with Flexibility (JBF), 
Equilibrium Balancing with 
Flexibility (EBF))

Characteristics MF BF

SMF DMF CPS JBF EBF

Valuation
 Bids x x – – –
 Utility function – – – – x

Flexibility
 Battery – – x x x
 Demand – – – x x
 Supply – – x x x

Structure
 Centralized x x x – –
 Decentralized – – – x x
 Hybrid – x – x x

Objective
 Max social welfare x x – – x
 Min total cost – – x x –

Stability and Fairness
 Stability x – x – x
 Fairness – – x – –

Participants and Incentives
 Participants All All All All All
 Incentives x x x – x
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definition, but also acknowledge the smaller but still noticeable differences within 
two of the clusters. We refer to Table 1 for an overview of the relation between the 
different clusters and the considered characteristics.

The first identified cluster consists of settings in which the valuation of electricity 
of each prosumer is taken into account in the form of a bid. Demand and supply are 
fixed and smart devices do not offer any flexibility. Only prosumers are considered 
participants in this cluster and no participant is worse off compared to not joining 
the proposed energy trading schemes. The high-level research question in this set-
ting is to match fixed demand and supply with each other while maximizing the 
social welfare of the participants. In the following, we refer to this cluster as the 
Matching without Flexibility cluster. A closer analysis of the settings in this cluster 
reveals that it can be split further into two subclusters. In the first subcluster, all 
computations are done centrally and, assuming rational participants, the solution is 
protected against strategic manipulations. In addition, not all participants need to 
profit from participating. This subcluster is referred to as the Strategic Matching 
without Flexibility cluster. In the second subcluster, on the other hand, computations 
may be done in a decentralized way, but there is no guarantee that the solution is 
stable. Given some (light) assumptions, all participants may profit from their partici-
pation. We refer to this subcluster as the Direct Matching without Flexibility cluster.

The second cluster does not take the valuation of prosumers of electricity into 
account. Instead, its goal is to minimize the overall costs of a given set of prosum-
ers and divide the cost among the participants. Demand and supply are fixed, but in 
some cases, flexibility is offered by batteries. The computation is done centrally, and 
the distribution of the cost should be done fairly and in such a manner that no group 
of participants has an incentive to deviate from the centrally managed solution. The 
high-level research question is to find a pricing scheme, such that every prosumer 
benefits from following the optimal solution. For the remainder of this work, we 
refer to this second cluster as the Cooperative Pricing Scheme cluster.

The third cluster encompasses settings in which flexibility is offered by smart 
devices, such as batteries, EVs, or heat pumps, but also by flexible parts of the load. 
Participants can include a wide range of entities, from prosumers to companies or 
aggregators. The valuation of electricity is usually taken into account in the form 
of a utility function, often as a weighted sum of different objectives. Computations 
are done in a decentralized way, usually mimicking the underlying structure of the 
participants. The focus of the high-level research question is to locally balance con-
sumption and generation using the given flexibility while maximizing the social 
welfare. In the following, we refer to this cluster as the Balancing with Flexibil-
ity cluster. Similarly to the Matching without Flexibility cluster, we again can split 
the cluster into two subclusters, each with its own focus. In the first subcluster, the 
whole group of participants shares a common objective, usually the sum of the util-
ity functions of all participants. The main goal is then to find an optimal solution 
that maximizes (or minimizes) the objective. We refer to this subcluster as the Joint 
Balancing with Flexibility cluster. The other subcluster on the other hand treats 
every single participant as an individual, selfish agent which wants to maximize its 
own utility. In this setting, the objective is to find an equilibrium solution in which 
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no participant can improve its utility by deviating from this solution. In the follow-
ing, we refer to this cluster as the Equilibrium Balancing with Flexibility cluster.

At the start of our research, we considered in addition to characteristics 1 to 6 
also the following characteristics for the classification scheme. However, the addi-
tional characteristics were not selected because either they did not add any further 
insights into the clusters, or the resulting (sub)clusters were too small and the differ-
ences between subclusters were only present in one single aspect. 

 7. Devices What kind of (smart) devices, such as PV systems, batteries, EVs or 
heat pumps are considered in the approach? Within the scope of local energy 
trading, we are much more interested in the flexibility the devices can offer com-
pared to the management of the device themselves. Hence, the actual devices 
are not important, but only the (type of) flexibility they can offer.

 8. Time Horizon What is the considered time horizon of the setting? Are multiple 
time slots considered at once or only one single time slot after the other? The 
characteristic of time horizon is only important in the presence of smart devices, 
such as batteries or EVs, which can shift energy demand through time. Within 
each of the three main clusters, either all approaches have the same time horizon, 
or approaches covering one time slot do not consider the flexibility of such smart 
devices, and therefore each time slot can be optimized individually.

 9. Grid Constraints Are grid constraints considered in the problem definition? 
Due to an increase in electrification of mobility and heating as well as local 
electricity generation, congestion in LV grids or other violations of (LV) grid 
constraints are becoming more likely and hence pose a serious threat to the 
reliability of future electricity distribution. However, grid constraints are rarely 
taken into account in the considered approaches. Hence, the resulting subclus-
ters, which do take grid constraints into account, only consist of one or two 
approaches, and therefore can rather be seen as outliers than as actual clusters 
which offer further insights into the underlying structure of local energy trading.

 10. Uncertainty Is uncertainty taken into account? In particular in settings with a 
larger time horizon, forecasts and predictions of load and generation are often 
not perfect. PV generation heavily depends on the weather, while the household 
load is subject to the prosumer’s decisions and behavior. Both, human behavior, 
as well as the intermittent generation of renewable energy sources, are known 
to be difficult to predict. While it is reasonable to assume that in settings with 
only one time slot, uncertainty does not play a large role due to the short time 
horizon, most settings with larger time horizons also do not consider uncer-
tainty in predictions and forecasts. Similar to the grid constraints, the resulting 
subclusters would be very small and not yield any additional insights into local 
energy trading.
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4  General model

Before analyzing the settings and approaches within each cluster, we provide a 
common ground w.r.t. the used models and techniques. We first give a brief out-
line of the current electricity system, followed by a generalized framework, which 
includes the time horizon, a model of a microgrid as well as possible ways of trad-
ing. Although the model is quite comprehensive, specific aspects, such as, e.g., the 
incorporation of time-shiftable devices, are not taken into account. Nevertheless, all 
considered publications can be described well enough using the given model and 
trading possibilities.

Electricity System The current electricity system, as can be found in Europe, can 
be split up into two layers. The top level is the high-voltage or transmission grid. 
Large energy generators, such as, e.g., coal- or gas-fired power plants, as well as 
large-scale consumers, such as the energy-intensive industry, are directly connected 
to this level. The transmission system operator (TSO) is responsible for the safe and 
reliable transmission of electricity between the producers and consumers on this 
level and the mid/low-voltage grid. The bottom layer consists of the mid/low-voltage 
or distribution grid which connects the high-voltage grid with electricity consum-
ers, like private households or smaller businesses. The distribution system opera-
tor (DSO) is responsible for the safe and reliable operation on this level. Note that 
details regarding the distribution of responsibilities, here in the form of the TSO and 
DSO, may differ from country to country. Local energy trading mostly takes place in 
the mid-and low-voltage grid.

Time Horizon In general, energy management approaches cover a specific time 
horizon, which is discretized into equally-length, non-overlapping time slots t ∈ T  , 
where T  denotes the set of all time slots and t1 < t2 indicates that time slot t1 ends 
before time slot t2 starts. Based on this discretization, load and generation can be rep-
resented by vectors of length |T| , with the t− th entry representing the load, respec-
tively the generation, in time slot t. Depending on the chosen setting, the time hori-
zon spans a certain time period, which is often one day or a part of a day, although 
the period may also be longer. In literature often a time slot covers one hour.

Prosumer A microgrid represents a small part of a distribution grid, consisting of 
a set of prosumers N = {1,… ,N} . To specify the electric behavior of a prosumer 
i ∈ N  , devices and parameters may be used, which define the main characteristic of 
the corresponding household of the prosumer:

– The uncontrolled or fixed load fli ∈ ℝ
|T|
≥0

 of the household over the considered 
time horizon, whereby flt

i
 represents the fixed load of the household resulting 

during time slot t. This load results from devices that are assumed to not be shift-
able in time without a massive change in human behavior, such as, e.g., TV, 
lightning, or cooking.

– The adjustable load ali ∈ ℝ
|T|
≥0

 of household i, which can be adapted by reducing 
(curtailing) it, implying that only an amount between 0 and alt

i
 has to be served in 

time slot t. Note that ali represents the maximum amount of flexible load added 
to the fixed household load.
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– A battery, which can be used to increase the demand by charging or acting as 
a source of electricity by discharging. It has charging and discharging limits, a 
capacity limit, and an initial state of charge at the beginning of the given time 
horizon. Batteries are especially of interest for prosumers also producing elec-
tricity. In literature, various battery models are known and can represent different 
levels of detail, such as charging and discharging losses.

– An electric vehicle (EV), from a modeling perspective, can also be seen as a bat-
tery with some additional restrictions, resulting from arrival and departure times 
and a required state of charge at the departure time. In literature often settings are 
considered, where an EV is not discharging and thereby not providing electricity 
to the prosumer.

– Devices, which are a source of electricity, such as, e.g., PV panels. Comparable 
to the fixed load, the PV generation of a household i during time slot t can be 
specified by a value pt

i
≥ 0 . The generation may be curtailable, implying that the 

delivered electricity then has to be between 0 and pt
i
.

– An individual goal of household i, such as, e.g., minimizing energy costs, maxi-
mizing the self-usage of PV generation, or maximizing the own utility of con-
suming energy. This individual goal is modeled as a utility function ui , which 
may reflect a combination of different goals and maps an energy profile of the 
household to a value. This value then represents the valuation of household i for 
the profile and the utility function can be used to evaluate and compare different 
profiles with each other. Hereby, the utility function may depend, next to the pro-
file vector of prosumer i, also on the energy profiles, and thereby the decisions, 
of other prosumers.

Microgrid Operator Next to the households, also a microgrid operator (MGO), 
which is responsible for the interaction of the microgrid with the main grid, is a rel-
evant entity in a microgrid. In some research, this MGO also has control over certain 
assets, such as, e.g., a battery. In this case, the battery serves as a sort of communal 
battery and can be used to improve the overall situation for the microgrid. The MGO 
has also its own utility function uMGO , which may represent different goals of the 
community, such as, e.g., minimizing the interaction with the main grid, minimiz-
ing costs of the microgrid, maximizing self-usage of PV generation, or minimizing 
peaks in the energy profile of the overall microgrid. Additionally, some papers con-
sider a setting, where the MGO is also responsible for the compliance of low-voltage 
grid restrictions and limitations.

Trade A last relevant aspect of a microgrid is its connection to the main grid or 
the market. For this, mainly the cumulative difference between the load and gen-
eration of the whole microgrid is of interest. This difference has to be served by 
or exported to the main grid. In most literature, it is assumed that the correspond-
ing prices are fixed, whereby the feed-in price is in general assumed to be strictly 
smaller than the price for buying electricity from the main grid.

Interactions take place between the introduced entities of a microgrid, e.g., an 
interaction between two prosumers represents a trade between them. In the litera-
ture, mainly the following two types of trades are considered:



94 J. Hönen et al.

1 3

– Direct trade between prosumers, where a prosumer i sells electricity to a pro-
sumer j. This type of trade is often referred to as peer-to-peer (P2P) trading. Note 
that in most cases the overall demand in a microgrid is not equal to the overall 
supply, and therefore, also the possibility to trade with the main grid needs to be 
considered.

– Indirect trade between prosumers, where prosumers do not directly trade with 
each other, but with the MGO. They either sell or buy electricity to/from the 
MGO, which thereby serves as an intermediate agent linking demand and supply 
within the microgrid. In order to balance demand and supply within the micro-
grid, the MGO can interact with the main grid, and thereby participate in, e.g., 
day-ahead markets or trade with traditional suppliers. For this type of trading 
also the term community trading is used.

See also Fig. 1 for a simplified representation of indirect and direct trading. The 
houses within the dotted rectangle represent the prosumers of the microgrid, which 
communicate either only with the MGO in the indirect trading form or directly with 
each other in the direct trading. Note that there exist various hybrid forms of com-
munity trading and P2P trading, such as, e.g., neighboring microgrids trading with 
each other and with traditional markets (see, e.g., Sousa et al. 2019). In addition, it 
should be mentioned that concepts similar to local energy trading are also designed 
for structures such as energy communities, in which households are not necessarily 
geographically close to each other.

5  Theoretical background

Based on the general model presented in Sect. 4, many ways to trade between dif-
ferent entities with the goal to balance demand and supply are possible. Some of 
the approaches leave the decisions completely to the prosumers, while others use 

Fig. 1  Sketch of trading relationships between prosumers and the market in indirect and direct trading
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signals to steer the prosumers in a certain direction. In this section, we introduce and 
explain general concepts and theories behind the different approaches presented in 
the considered literature. These approaches cover techniques from game theory over 
distributed optimization techniques to economic theories. For a more in-depth anal-
ysis of the techniques and proofs, we provide additional references. Readers who 
are familiar with techniques and concepts such as, e.g., the core, the Shapley value, 
Stackelberg games, or ADMM may continue with the detailed analysis in Sect. 6.

The research field of game theory deals with mathematical models and concepts 
for the strategic behavior of rational players. A common division of game theory is 
into the areas of cooperative and non-cooperative game theory. As the name already 
hints, cooperative game theory deals with aspects related to coalitions of players, 
such as the allocation of profit of cooperation among all participating members. 
Often, the main focus is on finding such an allocation that makes the coalition of 
all players stable, meaning that no subset of members has an incentive to leave the 
coalition. Non-cooperative game theory, on the other hand, focuses on the behavior 
of players who compete with each other. Concepts such as an  equilibrium, which 
is a situation where no player can be better off by deviating, are the main founda-
tion for determining allocations. A further important area, which lies in the inter-
section of game theory and optimization is mechanism design, which focuses on 
designing market rules to ensure socially desirable outcomes. These concepts are 
explained in more detail in the following three subsections, followed by a fourth 
subsection, where relevant decentralized optimization techniques for the energy area 
are sketched.

5.1  Cooperative game theory

Starting with techniques from cooperative game theory, we introduce the concepts 
of the core and the Shapley value. Given a coalition game � = (N, v) , with N being 
the set of players, in our case the prosumers, and v ∶ 2N → ℝ being the value func-
tion, assigning a value v(S) to each subset of players S ⊆ N , the main question of 
cooperative game theory is how to allocate the value of a coalition to its members. 
In the area of energy trading, the value function v(S) could correspond to the value 
of the energy savings of a coalition S given that prosumers in S cooperate with each 
other, e.g., by trading or using batteries. Let x ∈ ℝ

|N| denote an allocation with xi 
being the share of player i ∈ N . An allocation x is called feasible, if 

∑
i∈N xi ≤ v(N) , 

that is the allocation distributes not more than the value of the grand coalition N. 
The allocation can be seen as the distribution of the overall savings of all prosumers 
among themselves.

The Shapley value is one of the most well-known concepts in cooperative game 
theory. Its main goal is to characterize a fair allocation of the value to the players. It 
is based on the following three axioms:

– Symmetry For all i, j ∈ N , where v(S ∪ {i}) = v(S ∪ {j}) for all S ⊂ N with 
i, j ∉ S , the allocations are equal, that is xi = xj.
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– Dummy player A player is a dummy player if she always adds the same 
amount of value to any coalition she joins, i.e. for all S with i ∉ S we 
have v(S ∪ {i}) − v(S) = v({i}) . The allocation for a dummy player is then 
xi ∶= v({i}) . This axiom is sometimes also known as the null player axiom.

– Additivity For two games �1 = (N, v) , �2 = (N,w) over the same set of players 
N, and the game �3 = (N, (v + w)) , defined by (v + w)(S) ∶= v(S) + w(S) for all 
S ⊆ N , the allocation for each player for game �3 has to be equal to the sum of the 
allocations for the two games �1 and �2 , i.e. we have xi((v + w)) = xi(v) + xi(w).

In Shapley (1967), Shapley specified an allocation scheme satisfying all these three 
axioms. In addition, it was shown that this is the unique allocation x satisfying effi-
ciency, that is 

∑
i∈N xi = v(N) . The Shapley value of player i for a game � = (N, v) 

is given by

It can be seen as the average marginal contribution of player i to any coalition. Tak-
ing a closer look, we see that in order to compute the Shapley value using this for-
mula we need to consider every subset at least once. Therefore, for general coalition 
games, the running time to compute the value in this way is exponential in the num-
ber of players. Nevertheless, there are approaches to deal with the running time, for 
example by approximating the value using (random) subsets of the coalitions of the 
players. Furthermore, for some special value functions, there also exists closed-form 
formulations that can be computed efficiently.

While the Shapley value is seen as fair and always exists for any coalition game, 
the question arises whether this allocation is also stable. The stability of an alloca-
tion is related to the question of whether subsets of agents could get better off by 
forming smaller coalitions on their own. One concept that deals with the stability 
of an allocation is the core, which is the set of stable allocations. An allocation x is 
stable and therefore in the core of a game � = (N, v) , if and only if

In practical applications, this is a desirable property, as a stable allocation ensures 
that no subset of players would have an incentive to deviate from the grand coali-
tion. One important question is whether there always exists an allocation in the core. 
The answer to this is ’no’, meaning there are games with an empty core, implying 
that there is no allocation to the players that is stable. For games with a non-empty 
core, the next interesting problem is if the Shapley value always lies within the core. 
Once again the answer to that question is ’no’, as there are games where the core is 
non-empty, but the Shapley value is not part of it. In Leyton-Brown and Shoham 
(2008) some examples of such games are given, as well as a detailed introduction to 
the area of cooperative game theory.

xi ∶=
1

|N|!
∑

S⊆N⧵{i}

|S|!(|N| − |S| − 1)![v(S ∪ i) − v(S)].

∑

i∈S

xi ≥ v(S), ∀S ⊆ N.
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5.2  Non‑cooperative game theory

In this section, we consider the research field of non-cooperative game theory. 
A (finite) normal-form game is defined by a triple � = (N,A, u) , with N being a 
(finite) set of players i, A = A1 ×A2 ×…An the set of available actions, with Ai 
being the action space of player i, and u ∶ A → ℝ

n the utility function, mapping a 
feasible strategy s ∈ A to its value u(s). Hereby, the i-th entry of u(⋅) represents the 
utility of player i. In the context of local energy trading, the set of players may rep-
resent the set of prosumers of the microgrid, and the action space Ai of player i may 
represent the possible actions and decisions of prosumer i during a given time hori-
zon T  . Often this translates to energy schedules specifying for each time slot t the 
usage of energy due to devices such as an EV or batteries. The utility function ui(s) 
in the game represents the utility function of prosumer i, as mentioned in Sect. 4. In 
most cases, the utility function is a combination of the cost of energy given the pro-
file s and the preferences of a prosumer w.r.t. its energy usage. There are two solu-
tion strategies for the players:

– Pure strategy Each player i chooses a pure action ai ∈ Ai.
– Mixed strategy Each player i randomizes over her set of available actions follow-

ing some probability distribution. A mixed strategy of player i is specified by a 
vector si ∈ ℝ

|Ai|
≥0

 with 
∑

ai∈Ai
si(ai) = 1 and si(ai) the probability that action ai is 

chosen by player i. We denote the space of all mixed strategies of player i by Si.

Note that a pure strategy is also a mixed strategy with all probability on one action. 
In contrast to the above definition, in the energy trading context, a mixed strategy 
can be seen as a convex combination of multiple (pure) strategies rather than a prob-
ability distribution, as each pure strategy corresponds to an energy usage profile that 
can be combined with each other. In a general game �  , this may not be possible and 
therefore the terms of mixed and pure strategies are used. The (expected) utility of a 
strategy s for player i is given by

If the game has only 1 player, this player can directly decide whether a strategy is 
optimal or not. However, in general, player sets are larger and we need another way 
to evaluate a strategy. In order to deal with this, we introduce one of the arguably 
most important solution concepts in game theory, namely the Nash equilibrium 
(NE). A strategy profile s = (s1, s2,… , sn) is called a NE, if and only if for all play-
ers i

where s−i is the strategy profile s without the strategy of player i. Referring back to 
the situation of energy trading, strategy profile s is a NE, if and only if no prosumer i 
can improve her utility (function) by deviating from si given that all other prosumers 

ui(s) =
∑

a∈A

ui(a)

n∏

j=1

sj(aj).

ui(si, s−i) ≥ ui(s
∗
i
, s−i) ∀s∗

i
∈ Si,
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still act according to s−i . In Nash (1950), Nash introduced his idea and showed that 
for every finite n-player game, there exists a mixed NE.

One popular game used for modeling markets is the Stackelberg game. It is often 
used for oligopoly models, where one player moves first, and the other players can 
observe this move and then decide on their actions. The player moving first is called 
the leader of the game, and the remaining players are the followers. Depending on 
the exact setting of a Stackelberg game there either exists a closed-form solution or 
an iterative approach converging towards the Stackelberg (Nash) equilibrium (SNE). 
In the context of energy trading or energy management systems, the leader is often 
the MGO, or another third entity independent of the prosumers, such as a DSO. The 
utility function of this leader is then related to grid constraints, such as minimiz-
ing peaks and its action space consists of setting energy prices for the prosumers. 
The followers are the prosumers, who, based on the decision of the MGO, try to 
maximize their own utility. They then report their resulting power profile back to the 
MGO, which can either react by updating the prices (increasing prices during times 
of peaks) and thereby entering the next iteration or by accepting the actions of the 
prosumers. The resulting solution is an SNE that ensures that neither the prosumers 
nor the MGO can be better off by deviating from the chosen actions.

5.3  Mechanism design

The research area of algorithmic mechanism design lies within the intersection of 
game theory and optimization. Its goal is to design algorithms or rules that ensure 
a socially desirable outcome in settings with selfish decision-making agents having 
individual preferences. Examples of such settings include various auctions, voting 
systems, cost-sharing mechanisms, or matchings.

The difference between a mechanism design and an optimization viewpoint is that 
in mechanism design the agents cannot directly be forced to reveal their preferences. 
In addition, agents may try to manipulate the outcome by revealing false preferences, 
and they may not have an incentive to accept the outcome. The main challenge now 
is to design the algorithm such that the individual objectives of the agents align with 
the overall goal of the socially desirable outcome. Often, the algorithm can be split 
up into two parts, namely the assignment and the payment scheme. The goal of the 
assignment scheme is to efficiently find a socially desirable solution assuming that 
the agents reveal their true valuation. The payment or incentive scheme then needs 
to be designed in such a way that revealing the true preferences always results in the 
best outcome for each agent.

In the following, we use the example of a second-price sealed bid auction to high-
light how assignment and payment schemes can look like. We also shortly introduce 
other types of auctions without going into the details of the algorithms.

In the second-price sealed bid auction, an auctioneer wants to sell only one item. 
The set of agents is the set of the possible buyers, each with a private valuation of 
the item. The utility function of an agent i is either 0 if agent i does not get the item 
after the auction, or it is its valuation minus the price paid for the item. The socially 
desirable outcome for the auctioneer is to sell the item to the agent with the highest 
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valuation. During the auction process, each agent can submit a value, representing 
its public valuation, without the agents knowing the value. Note that the bid is not 
necessarily equal to the private valuation. The auctioneer then declares the agent 
with the highest bid the winner (assignment scheme) and charges as the price the 
second highest bid to the winner (payment scheme). It can be shown that for each 
agent, truthfully submitting its private valuation is a dominant strategy. This prop-
erty is often referred to as dominant-strategy incentive compatible (DSIC). Thus, 
agents cannot improve their utility by misreporting their valuation, and due to the 
structure of the payments, they also have an incentive to accept the outcome.

The Vickrey-Clarke-Groves (VCG) mechanism is a generalization of the above auc-
tion setting and is able to select any socially desirable solution out of a set of feasible 
solutions while being truthful. It can also be applied to other auction setting such as the 
double auction, which is a two-sided auction. In two-sided auctions, the set of agents 
can be split into two subsets, namely the sellers and the buyers. Bids now consist of two 
values, the first one is the number or amount of items, in our case, electricity, which 
they either want to buy or sell. The second value is the price they are willing to pay 
or the price they want to receive. McAfee (1992), proposed a truthful mechanism for 
two-sided auctions which ensures that the payments received by the sellers are equal 
to the payments made by the buyers, a property which the VCG mechanism applied to 
this setting is not able to guarantee. Other variants of two-sided auctions are continuous 
double auctions, in which bids arrive over time and after each arrival, the auctioneer 
checks for possible trades. For an in-depth review of different truthful mechanisms as 
well as a theoretical introduction to mechanism design (see Nisan et al. 2007, in par-
ticular chapters 9 to 16).

In the area of energy trading, two-sided auctions, such as (continuous) double auc-
tions have been applied for matching demand and supply. The players are the prosum-
ers with either a surplus (seller) or a demand (buyer) of energy, as well as a private 
valuation of energy. The solution is then a set of players who trade with each other 
instead of selling to or buying from the electricity market.

Another approach from mechanism design, which is used for energy trading is 
called cake-cutting. The problem is to divide an infinitely divisible set of heterogene-
ous resources among a set of players. The main difference to other allocation problems 
in game theory, such as the core or Shapley value, is that the players have individual 
value functions ui over the set of resources. As players are selfish, the task is to divide 
the resources such that the assignment is seen as fair by every player. There are several 
notions that are related to the term fairness, but for cake-cutting, a mechanism to divide 
the resources is proportional, if for each player its piece is at least as valuable as the 
value of the complete resource divided by the number of players. A mechanism is said 
to be envy-free if for each player its own piece is at least as valuable as the piece of any 
other player. Both proportionality and envy-freeness are popular properties of fairness 
(see, e.g., Brams et al. 2011). In the area of energy trading, cake-cutting games have 
been used to split up the budget of an MGO for buying energy from its prosumers using 
different prices (Tushar et al. 2017).
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5.4  (Decentralized) optimization techniques

Apart from game theoretic techniques, there are also several optimization techniques, 
which have been successfully applied to problems in energy management and trading. 
Within this section, we focus on decentralized optimization techniques, but also pro-
vide an overview of popular centralized optimization techniques.

One popular decentralized technique is the alternating direction method of multipli-
ers (ADMM), which solves convex optimization problems by decomposing the prob-
lem into subproblems and solving these sequentially. The algorithm is applicable to 
optimization problems of the form

where x and z are vectors of variables, A, B and c given matrices or vectors, and f 
and g given convex functions. The augmented Lagrangian of this problem is

with 𝜌 > 0 . This function is minimized in an iterative approach, where, instead of 
optimizing over x and z at once, these vectors are updated one after the other, lead-
ing to the term alternating direction. The corresponding iterative steps are

Regarding convergence rates, there are many different results in the literature. One 
very general assumption, which is often made, is that the functions f and g are 
closed, proper, and convex. This assumption implies that the iterative subproblems 
of determining xk+1 and zk+1 are solvable. In practice, ADMM often converges fast 
to a moderate level of accuracy, but afterward shows slow converging behavior to 
high accuracy. See Boyd et al. 2011 for a detailed and in-depth analysis of ADMM, 
including both, theoretical and practical results.

A further class of decentralized optimization techniques, which have been 
successfully used in the energy domain, are variants of Consensus and Innova-
tion (C+I) (Sorin et al. 2019) or decentralized versions of primal-dual gradient 
methods (Khorasany et  al. 2020). These decentralized optimization techniques 
are applied by modeling the trading system using a mathematical formulation 
such as an LP, MILP, or MIQP. The arguably most important step here is to for-
mulate the problem in such a way, that the formulation can be decomposed into 
subproblems. These subproblems hereby often represent the problem of energy 
scheduling for a single prosumer, which then can solve its own (sub)problem 
using standard optimization techniques, such as interior point methods or the 
Simplex algorithm. Several of the above-mentioned techniques rely on a mas-
ter problem which coordinates the process of solving the overall problem. This 

min f (x) + g(z)

s.t. Ax + Bz = c,

L�(x, z, y) = f (x) + g(z) + yT (Ax + Bz − c) + (�∕2)‖Ax + Bz − c‖2
2
,

xk+1 ∶= argminxL�(x, z
k, yk),

zk+1 ∶= argminzL�(x
k+1, z, yk),

yk+1 ∶= yk + �
(
Axk+1 + Bzk+1 − c

)
.
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master problem is often solved by the MGO and together with the subproblems 
being solved by the prosumers, this is a quite natural representation of the struc-
ture of the underlying microgrid. These approaches also show similarities to the 
Stackelberg games, in which the prosumers solve their own problems and com-
municate their solutions to the MGO, which in turn updates and sends prices or 
other steering signals.

As briefly mentioned, the resulting subproblems often still need to be solved 
using centralized optimization methods. Usually, it is not stated which exact 
technique is used, but depending on the format of the optimization problem, 
standard optimization approaches, such as interior point methods, the (dual) 
Simplex algorithm, or gradient descend methods, may be used. A heuristic opti-
mization technique, which has been used is genetic algorithms.

6  Analysis

Based on the introduced general framework and the different techniques, we now 
study the introduced classification scheme in detail. We first describe the settings 
within each cluster and then analyze and compare the different techniques used 
within each cluster.

6.1  Matching without flexibility

6.1.1  Strategic matching without flexibility

As shortly described in Sect. 3, the Strategic Matching without Flexibility cluster 
is one of two clusters that mainly focuses on matching prosumers to each other. 
Even beyond the considered characteristics 1 to 6, the settings are all very simi-
lar to each other. If devices, such as PV or batteries, are considered, they are usu-
ally not controlled within the scope of the used techniques, but rather change the 
demand or surplus of the corresponding prosumers in a fixed and often greedy way, 
without offering any further flexibility. Corresponding to this general setting of fixed 
demand and supply, and no flexibility, the considered time horizon usually only cov-
ers one time slot. Hence, the research questions aim to match prosumers with each 
other on rather short notice, such as given in balancing markets. This also aligns 
with the absence of uncertainty in the data. If the considered time slot is rather short 
and the computations are done directly before the realization, forecast errors may be 
reasonably small and can therefore be neglected. Analyzing the approaches within 
this cluster, it becomes obvious that also the used techniques are quite similar and 
often related to concepts from mechanism design. The techniques can be divided 
into three groups, namely auctions, non-cooperative games as well as approaches 
based on matching and contract theory.

Approaches based on auctions are presented in Block et al. (2008), Chen and Liu 
(2017), Guerrero et  al. (2019), Khorasany et  al. (2017), Khorasany et  al. (2017), 
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Saur et al. (2019), Ströhle and Flath (2016) and Tushar et al. (2020). In all of these 
approaches, the prosumers participate in an auction and can be divided into two 
groups, one with a surplus of and one with a demand for electricity. The outcome 
of the auction is a subset of the prosumers, which trade with each other, as well 
as a clearing price and the amount of electricity each prosumer in the subset con-
tributes to the trade. Different types of auctions have been proposed throughout lit-
erature, with the standard double-auction (Khorasany et al. 2017; Saur et al. 2019; 
Tushar et  al. 2020) or combinatorial (VCG) auctions (Chen and Liu 2017; Kho-
rasany et al. 2017) as presented in Sect. 5 being the most prominent ones. A very 
interesting way how to combine heat and electricity into one auction is presented in 
Saur et al. (2019), where the double auction is modified to run once for both energy 
types simultaneously. Khorasany et  al. (2017) present a way how to include grid 
constraints into an auction setting by modifying the pricing mechanism of the dou-
ble auction to include additional charges based on a linear approximation of active 
power flow. In Ströhle and Flath (2016), the concept of a double auction is used in 
an online setting, in which both, demand and supply offers may appear and disap-
pear over time. The approach in Zhang et al. (2018) is based on the same principles 
as the auctions above, namely individual rationality (IR) and incentive compatibility 
(IC), but makes use of contract theory. All sellers publicly announce their producer 
type, which contains the amount of electricity to sell and the cost of production. The 
buyer then uses a mathematical model to find the optimal bids for each type. It is 
shown that for sellers truthfully reporting their type is a best response strategy.

Different matching approaches are presented in Khorasany et  al. (2021) and 
Krayem et al. (2021). In Khorasany et al. (2021), the matching is done via a priority 
list which is based on the economic profit of a trade between two prosumers. The 
negotiation between two matched prosumers is executed as an iterative approach and 
the final solution is shown to be a NE. In Krayem et al. (2021) the matching is based 
on the outcome of the Galey-Shapley algorithm, where the input is a distance meas-
ure of the difference between surplus and demand between each pair of prosumers. 
In this approach, there is no negotiation process as the internal trading price is fixed 
to a certain fraction of the trading price with the external grid.

In contrast to the previous approaches, the approach in Park et al. (2016) is based 
on a non-cooperative game. A set of prosumers reports their demand or supply for 
the coming time slot to the MGO. Based on previous contributions to the microgrid 
(MGO), as well as its current request, the MGO distributes the surplus of electricity 
to the prosumers with a need. The distribution algorithm is based on a water-filling 
algorithm, while the strategic choice of how much energy to ask for is decided using 
a non-cooperative game among the prosumers with a demand for electricity.

6.1.2  Direct matching with flexibility

Another way to enable trading between prosumers is to either use continuous dou-
ble auctions (Block et al. 2008; Chen et al. 2019; Guerrero et al. 2019; Vytelingum 
et al. 2010), or to match buyers and sellers directly with each other (Khorasany et al. 
2021; Mengelkamp et al. 2017). Using the iterative nature of a continuous double 
auction, in Block et al. (2008) heat and electricity are traded together. To achieve 
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this, two continuous double auctions are executed in parallel and after each new 
computation, bundle constraints between heat and electricity are checked. In Guer-
rero et al. (2019) and Vytelingum et al. (2010), each possible trade is first checked 
w.r.t. grid violations, before it is allowed and congestion prices may be added. In 
Khorasany et  al. (2021) on the other hand, the peer matching algorithm includes 
the impact of trades for the grid constraints by means of the pricing negotiation. 
Mengelkamp et  al. (2017) analyze the efficiency of random peer matching on the 
social welfare. The price negotiation can range from pay-as-bid strategies for the 
buyers (Mengelkamp et  al. 2017) to iterative negotiation algorithms (Khorasany 
et  al. 2021), in which both players update their prices until a final price is found. 
In Mengelkamp et  al. (2017), a comparison between continuous double auctions 
and random peer-matching algorithms with different price negotiation techniques is 
presented.

6.2  Cooperative pricing scheme

As mentioned in Sect. 3, the main research question for the settings in the Coop-
erative Pricing Scheme cluster is to encourage prosumers to follow the centrally 
computed solution by creating a pricing scheme from which every prosumer prof-
its. The settings within this cluster are once again very similar to each other, also 
beyond the considered characteristics. Apart from Lee et al. (2014), no approach 
considers uncertainty in any form, although there are some settings with mul-
tiple time slots. Grid constraints are also not taken into account. This may be 
explained by the settings, where prosumers do not have flexibility in their load 
to change their demand or surplus. Hence, even without the centrally computed 
solution, prosumers would still trade the same amount of electricity with the 
grid. Therefore, no additional problems w.r.t. grid congestion or violation of grid 
constraints appear. In all settings, some form of renewable energy production, 
mostly PV generation, is considered. Some of the settings also include batteries, 
which are usually used to minimize the amount of traded electricity with the grid. 
The settings with batteries often cover multiple time slots, while most settings 
with only one time slot do not consider batteries. The main difference between 
the approaches, which consider only a single time slot at once, and approaches, 
which consider multiple time slots, can be found in the centralized computation, 
while the pricing scheme is often identical or at least very similar. In general, the 
used techniques are based on cooperative game theory, in particular the Shapley 
value and the core.

The approaches, which are directly based on the Shapley value are (Dixon et al. 
2018; Han et  al. 2019, 2018, 2019, 2021; Lee et  al. 2014; Li 2021; Long et  al. 
2019; Mitridati et al. 2021; Yamamoto 2021). While (Dixon et al. 2018; Lee et al. 
2014; Yamamoto 2021) cover only one time slot, the remaining approaches solve 
the centralized problem of minimizing the total cost of the microgrid for a larger 
time horizon. Combined with batteries, this can further increase the cost saving 
compared to solutions of individual prosumers. One important aspect to be consid-
ered when using the Shapley value is the scalability of the approach. In general, 
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an exponential number of subproblems has to be solved to be able to compute the 
Shapley value. Hence, for slightly larger microgrids this may already pose a serious 
problem. Fortunately, only the payments depend on the Shapley value, while the 
distribution of electricity between the prosumers and devices is the solution to the 
centralized optimization problem. Hence, the Shapley value may theoretically still 
be computed even after the considered time horizon. One assumption in this context 
is that all prosumers will participate in the trading scheme, even without knowing 
their exact cost savings. Another way how to avoid the problem of computational 
complexity is by approximating the Shapley value, which can be done in various 
ways (see Han et  al. 2019, 2021; Lee et  al. 2014). In Han et  al. (2021), a strati-
fied sampling approach is used to reduce the number of subproblems to solve, while 
Han et  al. (2019) cluster similar prosumer profiles together to reduce the number 
of participants and thereby also the number of subproblems to solve. The approach 
in Lee et al. (2014) does not reduce the number of subproblems to solve, but rather 
computes the asymptotic Shapley value using statistical parameter of the considered 
uncertainty. In addition, it is shown that the asymptotic Shapley value lies within the 
core of the cooperative game.

Another technique used within the Cooperative Pricing Scheme cluster is to show 
that a tailor-made pricing scheme lies within the core of the cooperative game, and 
is therefore stable against group deviations. As mentioned before, this is done in 
Lee et al. (2014) for the Shapley value, but also in Mitridati et al. (2021) for a pric-
ing scheme based on the nucleolus and in Tushar et al. (2018) for the mid-market 
price. The mid-market pricing scheme simply computes the internal trading price as 
the average of buying and feed-in price of the grid. Based on the common assump-
tion that the feed-in price is strictly smaller than the buying price of the grid, it 
can be shown that this pricing scheme lies within the core of the game. Apart from 
the nucleolus and the Shapley value as pricing schemes, in Mitridati et al. (2021) 
two additional allocation schemes are introduced. The first one is a uniform pric-
ing scheme, while the second one is based on the VCG payment rule. In Long et al. 
(2017) several pricing schemes are proposed. The first pricing scheme is the mid-
market price, which lies within the core, as explained above. The second pricing 
scheme is based on a double auction, while the third one is referred to as bill-shar-
ing. In this pricing scheme, the single microgrid bill of the overall trade with the 
external grid is shared among all prosumers using a fixed internal price for buying 
and selling.

A further technique from cooperative game theory is used in the second step of 
the two-step optimization approach in Jiang et al. (2021). Here, a Nash Bargaining 
approach is used to decide how the jointly generated cost savings should be distrib-
uted among the players.
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6.3  Balancing with flexibility

6.3.1  Joint Balancing with flexibility

The settings within the Joint Balancing with Flexibility cluster deal with the ques-
tion of  how prosumers can make use of their flexibility to optimize a common 
objective. The settings and approaches within this cluster are all rather similar to 
each other, although some settings highlight particular aspects, such as the prefer-
ence between different ’types’ of electricity, such as, e.g., locally produced or green 
electricity. Due to the decentralized structure of computation, individual data and 
parameters of the participants, such as the flexibility or the valuation of electricity, 
do not need to be shared. Therefore, most settings take data privacy into account. As 
mentioned in Sect. 3, all of the settings in the Joint Balancing with Flexibility clus-
ter do take flexibility into account. In some settings, this flexibility directly stems 
from devices such as batteries, EVs, or heat pumps, but there are also some problem 
definitions, in which flexibility only stems from the flexible part of the load. These 
settings often reduce the problem to a bare minimum and do not model any devices. 
Nevertheless, the models are able to represent the key problems that may occur in 
(local) energy trading. Regarding the time horizon, some settings directly formulate 
models for multiple time slots, while quite a few of the considered settings within 
this cluster only formulate single time slot models. Nevertheless, it is often noted 
that for the sake of simplicity and notation only a single time slot is modeled, but 
the presented approach can easily be adapted for multiple time slots. However, even 
though larger time horizons can be modeled at once, uncertainty is not taken into 
account in any of the settings. Grid constraints are also not considered by the major-
ity of settings, although a few use approximations of power flow to create price sig-
nals for overloaded lines within the grid. In all settings, decentralized optimization 
techniques, such as ADMM, relaxed C+I, or decentralized primal-dual algorithms 
are used.

The approaches in this cluster are Baroche et al. (2019), Guo et al. (2021), Jiang 
et al. (2021), Khorasany et al. (2018, 2020), Le Cadre (2019), Moret et al. (2018, 
2020), Morstyn and McCulloch (2019), Sorin et al. (2019) and Sousa et al. (2019). 
In Baroche et al. (2019), Guo et al. (2021), Le Cadre (2019), Moret et al. (2018), 
Moret et al. (2020), Sorin et al. (2019) and Sousa et al. (2019), the approaches are 
based on simplified and reduced models in which no devices are directly modeled. 
Nevertheless, different types of local trading, such as direct peer-to-peer trading, 
communal trading, or a hybrid version are formulated and solved either via ADMM 
or relaxed C+I, see Sect. 5 for a short introduction to these techniques. Due to the 
structure of the simplified models, there is no difference in the objective value of 
the proposed decentralized and centralized optimization algorithms. In addition to 
an optimal solution, the relaxed C+I in Sorin et al. (2019) also computes prices for 
each individual trade, which are based on the economic concept of shadow prices, 
that are the dual variables of the trade constraints. In Khorasany et al. (2018) and 
Khorasany et al. (2020), the same simplified model is extended by grid constraints 
in the form of distribution load flow. Based on the load flow, the power transfer dis-
tribution factor (PTDF), which computes the contribution of each trade between 
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prosumers in the power flow, is computed for each line in the grid and is used as a 
price signal for the prosumers. Before solving this model with an adapted decentral-
ized primal-dual gradient method, Lagrangian multipliers move global constraints 
into the objective function. Instead of introducing grid constraints to the simpli-
fied models, in Jiang et al. (2021), Lee et al. (2019) and Morstyn and McCulloch 
(2019) different devices, such as batteries are directly modeled. While Morstyn and 
McCulloch (2019) introduce prosumer preferences over different classes of electric-
ity, such as green or local electricity, Jiang et al. (2021) focus on a payment scheme 
in a second stage, which is based on a Nash Bargaining game. All three models 
are again solved using ADMM. In Moret et al. (2020) risk levels for prosumers are 
introduced to model different human behavior in the presence of uncertainty. The 
model is again solved using ADMM.

6.3.2  Equilibrium balancing with flexibility

Another approach to make use of flexibility is offered by the settings in the Equi-
librium Balancing with Flexibility cluster. In contrast to the Joint Balancing with 
Flexibility cluster, the participants behave more selfishly and do not simply act as 
distributed computing units for the goal of the whole microgrid. Individual objec-
tives and goals are more important and techniques that lead to stable solutions in 
which no participant can improve anymore have to be used. Beyond the considered 
characteristics, for most aspects, there are large similarities between the settings, 
although there are some exceptions. Comparable with the previous cluster, due to 
the decentralized structure of computations, in most cases, sensitive data, such as 
flexibility or utility functions, can remain private for each participant. Apart from 
Shilov et  al. (2021), no other setting considers grid constraints in its approach. 
Devices are mostly explicitly modeled, although there are a few settings, in which 
there are either no devices modeled, or PV generation is indirectly included via the 
load profiles. Regarding the considered time horizon, the settings are evenly split up 
between considering only a single time slot and multiple time slots at once. Further-
more, unlike the previous cluster, settings covering only one time slot can not always 
easily be upgraded to multiple time slot models. This is mainly a consequence of the 
absence of one central model which can be split up into subproblems for each par-
ticipant. Adapting all individual models while ensuring that the used techniques still 
converge to an equilibrium is more challenging. Regarding uncertainty, only some 
settings take that into account, even if a larger time horizon is modeled. Hence, no 
exact pattern between time horizon and uncertainty can be recognized, as there are 
settings with only one time slot, but also settings covering multiple time slots, which 
consider uncertainty. Due to the focus on individual objectives, techniques in this 
cluster have to be able to represent this selfish behavior, while ensuring that a sta-
ble solution is found. Game theory offers the right tools for such problems, and in 
most settings, a Stackelberg game is used to model the relation between the differ-
ent participants. Other settings ignore the leader-follower dynamic of Stackelberg 
games and focus on general non-cooperative games. In some settings, either the 
non-cooperative or Stackelberg games are complemented by other techniques, such 
as auctions.
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The first group consists of Stackelberg games in which prosumers are leaders and 
followers. The notion of prosumer is generalized beyond the definition in Sect. 4, as 
also companies that either buy or sell electricity are included. This setting is consid-
ered in Anoh et al. (2020), El Rahi et al. (2019), Lee et al. (2015), Liu et al. (2018), 
Liu et al. (2017) and Paudel et al. (2019). In Anoh et al. (2020), Lee et al. (2015) and 
Paudel et al. (2019), the set of prosumers is divided into a set of sellers and a set of 
buyers. The sellers act as the leaders in a multi-leader multi-follower Stackelberg 
game, while the buyers are the followers. The strategies of sellers and buyers can 
differ from one approach to the other. In Anoh et al. (2020) and Lee et al. (2015), 
the sellers start by announcing the amount of electricity they are willing to sell, and 
the buyers react with the prices they are able to pay. Based on these prices, the sell-
ers update the amount of electricity and the game continues until convergence to a 
Stackelberg equilibrium. In Paudel et  al. (2019), the strategies are quite different. 
The sellers announce their prices and the amount of electricity they are able to sell 
first, and then the buyers react with a selection of the sellers. This selection is a 
probability distribution for each buyer over the complete set of sellers and should 
indicate the probability of a buyer choosing a specific seller. The buyers compute 
this selection using an evolutionary game. Based on this selection, the sellers update 
their prices using a non-cooperative game. Note that hereby the amount of electric-
ity to sell is a fixed parameter in this setting. Again, it is shown that the iterative 
Stackelberg game converges to a Stackelberg equilibrium. In El Rahi et al. (2019), 
Liu et al. (2018) and Liu et al. (2017) on the other hand, the prosumers are not in 
advance divided into buyers or sellers. In all these settings, the leader is a single 
entity that can buy and sell electricity and the followers are the set of prosumers. 
In Liu et al. (2018) and Liu et al. (2017), the leader is a storage system within the 
microgrid, which can buy excess electricity or sell electricity to prosumers with a 
demand. Its goal is to maximize its profit, while the objectives of the prosumers 
are to maximize their own utility. The leader starts by announcing internal prices 
for the prosumers. Based on these prices, the prosumers can each solve their own 
(bounded) optimization problem to maximize their utility. They then announce their 
optimal amount of electricity to buy or sell, and the leader reacts to this by adjusting 
its prices. While the convergence of this iterative approach to a Stackelberg game 
is shown in Liu et al. (2018), in Liu et al. (2017) the model is based on a bi-level 
optimization problem, and no guarantees for convergence are made. In El Rahi et al. 
(2019), instead of a storage system, a power company is the leader of the Stack-
elberg game. It first announces a price, based on which the prosumers play a non-
cooperative game among themselves to determine how much electricity to buy or 
sell. Two different ways to achieve a Stackelberg game are proposed, with the first 
one being an iterative one leading to an �-Stackelberg equilibrium, while in the sec-
ond, the leader solves a non-linear optimization problem to directly find the Stackel-
berg equilibrium.

The second group of settings uses Stackelberg games to model the relation 
between the prosumers and their MGO or DSO. This setting is considered in Askel-
and et al. (2021), Aussel et al. (2020), Cui et al. (2018), Le Cadre (2019), Le Cadre 
et  al. (2019), Liu et  al. (2017), Rajasekhar et  al. (2019), Tushar et  al. (2014) and 
Zugno et al. (2013). In Cui et al. (2018), Le Cadre et al. (2019) and Liu et al. (2017), 
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the leader of the game is the MGO, while the prosumers are the followers. The goal 
of the leader is to maximize its profit and it starts by submitting initial internal buy-
ing and selling prices to the prosumers. The prosumers use these prices as input to 
their utility maximization problems and optimize them on their own. The prosum-
ers then announce the amount of electricity to buy or sell and the leader updates 
its prices. The existence of a Stackelberg equilibrium is shown. In Askeland et al. 
(2021), Le Cadre (2019), Tushar et al. (2014) and Zugno et al. (2013), the leader 
is either a central power station, which wants to buy surplus electricity from the 
prosumers, the DSO, which wants to minimize the grid cost of the microgrid or 
retailers, who want to maximize their profit of selling electricity to the prosumers. 
The followers are once again the prosumers, who want to maximize their utility, or 
local MGOs, who want to maximize the social welfare of their set of prosumers. The 
leader announces initial prices or grid tariffs and based on this, the prosumers opti-
mize their utility. In contrast to Cui et al. (2018) and Liu et al. (2017), the prosumers 
either solve a generalized Nash equilibrium (GNE) game to decide how much to 
sell to the central power station, or they need to solve a complementary problem to 
compute an equilibrium. In both cases, the prosumers then announce their electricity 
consumption, either on an individual base (Tushar et al. 2014), or on an aggregated 
level (Askeland et  al. 2021). Based on the reaction of the prosumers, the leader 
updates its prices and this iterative scheme continues until some convergence cri-
terion is met. In Zugno et al. (2013) on the other hand, the bilevel problem is refor-
mulated into a single-level MILP, which can easily be solved. A similar approach 
is taken in Aussel et  al. (2020), where the trilevel problem is reformulated twice 
to obtain a tractable formulation. In a first step, an explicit formulation is derived 
for the prosumers, which removes the bottom layer. The remaining two layers, with 
the supplier being the leader and the MGOs being followers, are then reformulated 
using the KKT conditions of the followers in the leader’s problem. In Rajasekhar 
et al. (2019), the MGO also acts as the leader of the Stackelberg game, but instead 
of using price signals as a strategy, it uses demand profiles. In the beginning, the 
MGO collects the load profiles of all prosumers and optimally schedules its own 
battery usage. It then broadcasts the aggregated load profiles minus the prosumer’s 
load profile to each prosumer. In addition, also boundaries for the aggregated load 
profile and penalty prices are announced. The prosumers then optimize their utility 
function, which is a weighted sum of electricity costs, the comfort level, and the 
minimization of interruption to increase the life span of appliances. The prosumers 
announce their resulting load profiles to the MGO, which updates its battery sched-
ule and possibly also the penalty prices. This process continues until the difference 
in the objective function of the MGO is reasonably small. It is shown that the itera-
tive process converges to a Stackelberg equilibrium.

The third group of approaches uses general non-cooperative games to model 
the interactions between prosumers and other participants. The corresponding 
approaches are Devine and Bertsch (2018), Dvorkin et  al. (2019), Grübel et  al. 
(2020), Kim et al. (2013), Le Cadre et al. (2020), Li (2021), Shilov et al. (2021), 
Tushar et al. (2017) and Zhang et al. (2019). In Devine and Bertsch (2018), Grübel 
et al. (2020), Kim et al. (2013) and Le Cadre et al. (2020), a non-cooperative game 
is played among all prosumers. The utility functions of the players consist of the cost 
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and the satisfaction of electricity consumption, while the strategies of the prosumers 
are their load profiles. In Grübel et al. (2020), the prosumer may be equipped with 
storage devices and the market equilibrium problem is reformulated into a mixed 
complementarity problem using the KKT conditions. The resulting formulation is 
then solved via ADMM. A similar solution approach is presented in Devine and 
Bertsch (2018), where a non-cooperative game between prosumers, consumers, and 
generator units with possible failure times is modeled. The formulation results in 
a stochastic mixed complementarity problem, which solves the optimization prob-
lems of each prosumer and results in an equilibrium solution. In Kim et al. (2013), 
a tailor-made billing scheme penalizes heavy electricity user and it is shown that an 
iterative gradient-based algorithm converges to the NE of the game. In Le Cadre 
et al. (2020) on the other hand, the coupling constraints between the prosumers lead 
to a GNE. A detailed analysis provides insights into the efficiency of the GNE com-
pared to a central solution. In Shilov et al. (2021), a GNE game is played between 
the DSO and the prosumers. The strategy of the prosumers is based on the amount 
of flexibility that they are willing to offer, while the strategy of the DSO is based on 
the fraction of the prosumers’ flexibility that it wants to use, as well as a congestion 
price. Due to a coupling constraint between the prosumers as well as the DSO, a 
GNE is computed. In Tushar et al. (2017), a similar setting is considered, in which a 
power company is interested in buying surplus electricity from the prosumers, given 
a fixed budget. A cake-cutting game is proposed and a variational equilibrium is 
found using a decentralized algorithm. In Dvorkin et al. (2019), a non-cooperative 
game between a market operator, producers and consumers is modeled. It is shown 
that a unique equilibrium always exists and a distributed algorithm is presented, 
in which producers and consumers react to the market operator’s prices by adapt-
ing their production and consumption. In Zhang et al. (2019), two non-cooperative 
games between prosumers, the MGO, and suppliers are played. The MGO acts as 
a local aggregator between the prosumers on the one side and the suppliers on the 
other side. For the non-cooperative game between MGO and suppliers, the suppliers 
offer bids to the MGO. The MGO then uses these bids and the net demand of the 
prosumers to compute external trading prices with the suppliers. The utility function 
of the suppliers represents the profit they make by selling electricity to the MGO. 
The second non-cooperative game in Zhang et al. (2019) is played among the pro-
sumers, who decide on their load profiles, given some predefined buying and selling 
prices for the given time interval. The utility functions of the prosumers consist of 
the cost of buying or the profit of selling electricity locally as well as the utility of 
electricity consumption. For both non-cooperative games, it is shown that a unique 
NE exists and an iterative algorithm is given, which converges to the NE. Both non-
cooperative games are then connected via the MGO, which updates the external 
and internal prices after a change in either bids from the suppliers or the electricity 
consumption from the prosumers. In Li (2021) on the other hand, a trilevel prob-
lem between the DSO, MGOs, and prosumers is modeled. Two different solution 
approaches, one cooperative and one non-cooperative are proposed. In both cases, 
the trilevel model is first reduced to a bilevel model by deriving an analytical solu-
tion to the non-cooperative game between MGOs and their respective prosumers. 
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The remaining bilevel problem is then solved either in a cooperative or non-cooper-
ative way using price and demand as signals.

The last group combines Stackelberg or general non-cooperative games with auc-
tions (see Doan et al. 2021; He and Zhang 2021; Saad et al. 2011; Tsaousoglou et al. 
2021; Tushar et al. 2016; Wang et al. 2014). In the considered literature, there are 
two main ways to combine these approaches with each other. In Saad et al. (2011) 
and Wang et al. (2014), a non-cooperative game is played among a set of prosum-
ers with a surplus of electricity. The strategies of the sellers are specified by the 
amount of electricity they are willing to sell, while the utility is the profit they gain 
by selling electricity to the buyers. The prices are computed using a standard double 
auction between buyers and sellers, as is also often seen in the Strategic Matching 
without Flexibility cluster. After initializing the amounts to sell, the double auction 
is run, and based on the new clearing price, each prosumer one after the other finds 
best responses by communicating with the MGO, which acts as the auctioneer. It 
is shown that this iterative algorithm converges to a NE. In He and Zhang (2021), 
a non-cooperative game is played among the prosumers of a microgrid. Each pro-
sumer first solves a simple optimization problem to determine how much electricity 
to offer or ask for in the auction. Following a double auction, the winners partici-
pate in a non-cooperative game, in which each participant finds an optimal deviation 
from its original bid. This deviation maximizes a utility function, which consists of 
profit and the reluctance to deviate from the original bid. Afterward, the clearing 
price of the double auction is updated and the non-cooperative game continues, with 
each participant finding its best response to the new clearing price until a stopping 
criterion is met. Similarly to the above approaches, in Tsaousoglou et  al. (2021), 
a modified version of a combinatorial auction is run. Within each iteration, play-
ers are added to the set of winners of the auction, based on the outcome of a non-
cooperative game. In Doan et al. (2021) and Tushar et al. (2016) on the other hand, 
a double auction is run first to determine the set of winners of the auction, as well as 
the clearing price limits. Then, a Stackelberg game is played, with the MGO being 
the leader and the followers are either the winning buyers or sellers of the double 
auction. Using the range of possible clearing prices, the objective of the MGO is to 
maximize the average social welfare of the remaining set of winners. The strategy of 
the followers is to adapt the amount of electricity they are willing to sell or buy. This 
iterative process continues until the Stackelberg equilibrium is found.

6.4  Connections between clusters

Based on the previous analysis of the clusters w.r.t. the used techniques and various 
aspects of the settings, we now identify and highlight connections between the three 
main clusters. Thereby, approaches from different clusters may complement each 
other when combined.

As already seen in the Equilibrium Balancing with Flexibility cluster, there are 
different approaches that combine the flexibility of this cluster with the auction-
based approaches in the Matching without Flexibility cluster. This allows for an 
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integration of a market-based pricing scheme into prosumers’ decision processes 
and thereby extends the given approaches.

Another possible combination of approaches from two different clusters is to 
use the decentralized algorithms presented in the Joint Balancing with Flexibility 
cluster to compute an optimal solution, which can then be used in the Cooperative 
Pricing Scheme cluster. In both cases, the objective of the optimization problem is 
to minimize the sum of electricity costs of the microgrid. While the approaches in 
the Cooperative Pricing Scheme cluster are often based on centralized approaches 
along with their disadvantages regarding data privacy, decentralized optimization 
approaches (in the Joint Balancing with Flexibility cluster) could avoid this. In addi-
tion, new possibilities on how to fairly assign the benefits of cooperating among the 
participants may arise from this connection.

7  Discussion and conclusion

Summarizing, we can state that there are currently three main lines of research for 
local energy trading, each with a distinct setting and focus on one specific high-level 
research question of local energy trading: 

1. The main goal of approaches within the Matching without Flexibility cluster 
is to match demand and supply, mostly by means of an auction. Prosumers can 
express their individual valuation in the form of bids and the MGO computes a 
clearing price, which maximizes the social welfare using well-established auction 
mechanisms.

2. The Communal Pricing Scheme focuses on creating pricing mechanisms that 
incentivize prosumers to be part of a microgrid. Instead of focusing on the load 
and flexibility of single prosumers, load profiles and flexibility of the whole com-
munity are combined to increase the overall profit. This additional profit is then 
split up between the prosumers, such that everyone profits from participation.

3. The last cluster is the Balancing with Flexibility cluster, which makes use of the 
flexibility of smart devices and the present loads to balance demand and supply. 
Using decentralized algorithms on the base of the underlying structure of the 
microgrid, the privacy of data can be ensured.

These central research questions within the clusters also align well with the con-
sidered research questions and findings of the analyzed literature. Combined with 
the different characteristics of the classification scheme, see Sect. 3, we can iden-
tify several future research directions and major open problems.

The first research direction is the uncertainty in data. While it has already been 
considered in other related areas, such as power flow computations, this topic 
has not been studied much in a local energy trading setting. Most of the consid-
ered trading approaches simply use predictions or forecasts for the majority of 
their data. Although many publications across all clusters state the integration 
of uncertainty or stochasticity in data as an important, open research question, 
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only a few approaches have already done first steps to integrate uncertainty into 
their methods. We propose to start with the integration of robust or stochastic 
methods into approaches of the Joint Balancing with Flexibility cluster and then 
to further proceed with approaches in other clusters. This is based on the follow-
ing reasons: 

1.1 The original formulation of these approaches are all built upon a centralized 
model, for which it is fairly straightforward to apply well-established methods, 
such as (adaptive) robust optimization or stochastic programming. The challenge 
then lies within the adaption of the decentralized optimization techniques to the 
updated formulations of the problem.

1.2 Most of the settings within the Joint Balancing with Flexibility cluster can cover 
time horizons of several hours and more. Within these time horizons, a consider-
able amount of uncertainty, compared to short time horizons of up to 15 min, can 
appear. Therefore, it is important to deal with the uncertainty in these settings 
first, before also considering smaller time horizons.

1.3 When applying techniques from robust optimization to the centralized models 
in the Joint Balancing with Flexibility cluster, additional synergy effects, due to 
uncertainty sets, may appear, when combining the robust approaches with the 
ideas of the Cooperative Pricing Scheme cluster.

It is worth mentioning that the integration of uncertainty has to be applied not only 
for local energy trading but also for energy management approaches, which are simi-
lar to the approaches in Joint Balancing with Flexibility.

The second future research direction, which up to now has not received much 
attention in local energy trading, is the integration of the physical infrastructure of 
microgrids. In large parts of the analyzed literature, the power aspect of the (LV) 
grid is strictly separated from the energy aspect of local trading. Future work in 
local energy trading has to integrate the power aspect into the approaches to ensure a 
stable electricity distribution. There are two main ways how to achieve this: 

2.1 The direct approach integrates the power aspect by means of constraints, directly 
modeling the power flow and grid constraints. Approaches in the Joint Balancing 
with Flexibility cluster are once again a good starting point due to their central 
optimization models, in which different versions of power flow approximations 
can easily be integrated.

2.2 The indirect approach makes use of different steering approaches, such as, e.g., 
congestion prices. These can then encourage or discourage prosumers to consume 
more electricity or to curtail their PV generation. Approaches within the Matching 
without Flexibility clusters are a good starting point to integrate the power aspect 
in an indirect way (see, e.g., Khorasany et al. 2017; Vytelingum et al. 2010).

A third research direction, which has yet to gain focus in local energy trading, is the 
modeling of human behavior (see, e.g., Pena-Bello et al. 2022). While it is reason-
able (and necessary) to make some assumptions on prosumer behavior to analyze 
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equilibria and their efficiencies, it has been shown that prosumers do not focus 
solely on the financial aspect of their decisions (see, e.g., Martiskainen 2007). Based 
on the reviewed literature, two ways how to integrate prosumer behavior into local 
energy trading can be identified: 

3.1 A rather direct approach is to introduce different classifications of electricity, 
representing various aspects, such as ’green’ or ’local’ electricity. Prosumers can 
then follow their own individual preferences over these different types (see, e.g., 
Morstyn and McCulloch 2019).

3.2 Another approach is to extend the already existing utility functions of the pro-
sumers by additional aspects, such as, e.g., an ecological motive. Using game-
theoretic approaches, a detailed analysis of equilibria w.r.t. differently weighted 
motives could reveal interesting results and insights for designing future energy 
policies and incentives.
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